1
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Kelly H, Inada M, Itoh Y. The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells. Cells 2025; 14:209. [PMID: 39937000 PMCID: PMC11816416 DOI: 10.3390/cells14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures.
Collapse
Affiliation(s)
- Hannah Kelly
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Che S, Pham PH, Barbut S, Bienzle D, Susta L. Transcriptomic Profiles of Pectoralis major Muscles Affected by Spaghetti Meat and Woody Breast in Broiler Chickens. Animals (Basel) 2024; 14:176. [PMID: 38254345 PMCID: PMC10812457 DOI: 10.3390/ani14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Spaghetti meat (SM) and woody breast (WB) are breast muscle myopathies of broiler chickens, characterized by separation of myofibers and by fibrosis, respectively. This study sought to investigate the transcriptomic profiles of breast muscles affected by SM and WB. Targeted sampling was conducted on a flock to obtain 10 WB, 10 SM, and 10 Normal Pectoralis major muscle samples from 37-day-old male chickens. Total RNA was extracted, cDNA was used for pair-end sequencing, and differentially expressed genes (DEGs) were determined by a false discovery rate of <0.1 and a >1.5-fold change. Principal component and heatmap cluster analyses showed that the SM and WB samples clustered together. No DEGs were observed between SM and WB fillets, while a total of 4018 and 2323 DEGs were found when comparing SM and WB, respectively, against Normal samples. In both the SM and WB samples, Gene Ontology terms associated with extracellular environment and immune response were enriched. The KEGG analysis showed enrichment of cytokine-cytokine receptor interaction and extracellular matrix-receptor interaction pathways in both myopathies. Although SM and WB are macroscopically different, the similar transcriptomic profiles suggest that these conditions may share a common pathogenesis. This is the first study to compare the transcriptomes of SM and WB, and it showed that, while both myopathies had profiles different from the normal breast muscle, SM and WB were similar, with comparable enriched metabolic pathways and processes despite presenting markedly different macroscopic features.
Collapse
Affiliation(s)
- Sunoh Che
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| | - Phuc H. Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| | - Shai Barbut
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada; (S.C.); (P.H.P.)
| |
Collapse
|
4
|
Garza MC, Kang SG, Kim C, Monleón E, van der Merwe J, Kramer DA, Fahlman R, Sim VL, Aiken J, McKenzie D, Cortez LM, Wille H. In Vitro and In Vivo Evidence towards Fibronectin's Protective Effects against Prion Infection. Int J Mol Sci 2023; 24:17525. [PMID: 38139358 PMCID: PMC10743696 DOI: 10.3390/ijms242417525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A distinctive signature of the prion diseases is the accumulation of the pathogenic isoform of the prion protein, PrPSc, in the central nervous system of prion-affected humans and animals. PrPSc is also found in peripheral tissues, raising concerns about the potential transmission of pathogenic prions through human food supplies and posing a significant risk to public health. Although muscle tissues are considered to contain levels of low prion infectivity, it has been shown that myotubes in culture efficiently propagate PrPSc. Given the high consumption of muscle tissue, it is important to understand what factors could influence the establishment of a prion infection in muscle tissue. Here we used in vitro myotube cultures, differentiated from the C2C12 myoblast cell line (dC2C12), to identify factors affecting prion replication. A range of experimental conditions revealed that PrPSc is tightly associated with proteins found in the systemic extracellular matrix, mostly fibronectin (FN). The interaction of PrPSc with FN decreased prion infectivity, as determined by standard scrapie cell assay. Interestingly, the prion-resistant reserve cells in dC2C12 cultures displayed a FN-rich extracellular matrix while the prion-susceptible myotubes expressed FN at a low level. In agreement with the in vitro results, immunohistopathological analyses of tissues from sheep infected with natural scrapie demonstrated a prion susceptibility phenotype linked to an extracellular matrix with undetectable levels of FN. Conversely, PrPSc deposits were not observed in tissues expressing FN. These data indicate that extracellular FN may act as a natural barrier against prion replication and that the extracellular matrix composition may be a crucial feature determining prion tropism in different tissues.
Collapse
Affiliation(s)
- M. Carmen Garza
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Eva Monleón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Departamento de Anatomía e Histología Humana, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Jacques van der Merwe
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David A. Kramer
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Leonardo M. Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
5
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
6
|
The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis. Int J Mol Sci 2023; 24:ijms24032183. [PMID: 36768503 PMCID: PMC9917210 DOI: 10.3390/ijms24032183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.
Collapse
|
7
|
Kumar L, Bisen M, Khan A, Kumar P, Patel SKS. Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines 2022; 10:biomedicines10102477. [PMID: 36289739 PMCID: PMC9598837 DOI: 10.3390/biomedicines10102477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Musculoskeletal disorders include rheumatoid arthritis, osteoarthritis, sarcopenia, injury, stiffness, and bone loss. The prevalence of these conditions is frequent among elderly populations with significant mobility and mortality rates. This may lead to extreme discomfort and detrimental effect on the patient’s health and socioeconomic situation. Muscles, ligaments, tendons, and soft tissue are vital for body function and movement. Matrix metalloproteinases (MMPs) are regulatory proteases involved in synthesizing, degrading, and remodeling extracellular matrix (ECM) components. By modulating ECM reconstruction, cellular migration, and differentiation, MMPs preserve myofiber integrity and homeostasis. In this review, the role of MMPs in skeletal muscle function, muscle injury and repair, skeletal muscle inflammation, and muscular dystrophy and future approaches for MMP-based therapies in musculoskeletal disorders are discussed at the cellular and molecule level.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
- Correspondence: (L.K.); (S.K.S.P.); Tel.: +91-017-9235-0000 (L.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Azhar Khan
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Pradeep Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (L.K.); (S.K.S.P.); Tel.: +91-017-9235-0000 (L.K.)
| |
Collapse
|
8
|
Singh AK, Rai A, Weber A, Posern G. miRNA mediated downregulation of cyclase-associated protein 1 (CAP1) is required for myoblast fusion. Front Cell Dev Biol 2022; 10:899917. [PMID: 36246999 PMCID: PMC9562714 DOI: 10.3389/fcell.2022.899917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Myoblast fusion is essential for the formation, growth, and regeneration of skeletal muscle, but the molecular mechanisms that govern fusion and myofiber formation remain poorly understood. Past studies have shown an important role of the actin cytoskeleton and actin regulators in myoblast fusion. The Cyclase-Associated Proteins (CAP) 1 and 2 recently emerged as critical regulators of actin treadmilling in higher eukaryotes including mammals. Whilst the role of CAP2 in skeletal muscle development and function is well characterized, involvement of CAP1 in this process remains elusive. Here we report that CAP1, plays a critical role in cytoskeletal remodeling during myoblast fusion and formation of myotubes. Cap1 mRNA and protein are expressed in both murine C2C12 and human LHCN-M2 myoblasts, but their abundance decreases during myogenic differentiation. Perturbing the temporally controlled expression of CAP1 by overexpression or CRISPR-Cas9 mediated knockout impaired actin rearrangement, myoblast alignment, expression of profusion molecules, differentiation into multinucleated myotubes, and myosin heavy chain expression. Endogenous Cap1 expression is post-transcriptionally downregulated during differentiation by canonical myomiRs miR-1, miR-133, and miR-206, which have conserved binding sites at the 3′ UTR of the Cap1 mRNA. Deletion of the endogenous 3′ UTR by CRISPR-Cas9 in C2C12 cells phenocopies overexpression of CAP1 by inhibiting myotube formation. Our findings implicates Cap1 and its myomiR-mediated downregulation in the myoblast fusion process and the generation of skeletal muscle.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Internal Medicine I, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Anurag Kumar Singh, ; Guido Posern,
| | - Amrita Rai
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anja Weber
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Anurag Kumar Singh, ; Guido Posern,
| |
Collapse
|
9
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
10
|
Dynamic Expression of Membrane Type 1-Matrix Metalloproteinase (Mt1-mmp/Mmp14) in the Mouse Embryo. Cells 2021; 10:cells10092448. [PMID: 34572097 PMCID: PMC8465375 DOI: 10.3390/cells10092448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023] Open
Abstract
MT1-MMP/MMP14 belongs to a subgroup of the matrix metalloproteinases family that presents a transmembrane domain, with a cytosolic tail and the catalytic site exposed to the extracellular space. Deficient mice for this enzyme result in early postnatal death and display severe defects in skeletal, muscle and lung development. By using a transgenic line expressing the LacZ reporter under the control of the endogenous Mt1-mmp promoter, we reported a dynamic spatiotemporal expression pattern for Mt1-mmp from early embryonic to perinatal stages during cardiovascular development and brain formation. Thus, Mt1-mmp shows expression in the endocardium of the heart and the truncus arteriosus by E8.5, and is also strongly detected during vascular system development as well as in endothelial cells. In the brain, LacZ reporter expression was detected in the olfactory bulb, the rostral cerebral cortex and the caudal mesencephalic tectum. LacZ-positive cells were observed in neural progenitors of the spinal cord, neural crest cells and the intersomitic region. In the limb, Mt1-mmp expression was restricted to blood vessels, cartilage primordium and muscles. Detection of the enzyme was confirmed by Western blot and immunohistochemical analysis. We suggest novel functions for this metalloproteinase in angiogenesis, endocardial formation and vascularization during organogenesis. Moreover, Mt1-mmp expression revealed that the enzyme may contribute to heart, muscle and brain throughout development.
Collapse
|
11
|
Gutiérrez J, Gonzalez D, Escalona-Rivano R, Takahashi C, Brandan E. Reduced RECK levels accelerate skeletal muscle differentiation, improve muscle regeneration, and decrease fibrosis. FASEB J 2021; 35:e21503. [PMID: 33811686 DOI: 10.1096/fj.202001646rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
The muscle regeneration process requires a properly assembled extracellular matrix (ECM). Its homeostasis depends on the activity of different matrix-metalloproteinases (MMPs). The reversion-inducing-cysteine-rich protein with kazal motifs (RECK) is a membrane-anchored protein that negatively regulates the activity of different MMPs. However, the role of RECK in the process of skeletal muscle differentiation, regeneration, and fibrosis has not been elucidated. Here, we show that during skeletal muscle differentiation of C2C12 myoblasts and in satellite cells on isolated muscle fibers, RECK is transiently up regulated. C2C12 myoblasts with reduced RECK levels are more prone to enter the differentiation program, showing an accelerated differentiation process. Notch-1 signaling was reduced, while p38 and AKT signaling were augmented in myoblasts with decreased RECK levels. Overexpression of RECK restores the normal differentiation process but diminished the ability to form myotubes. Transient up-regulation of RECK occurs during skeletal muscle regeneration, which was accelerated in RECK-deficient mice (Reck±). RECK, MMPs and ECM proteins augmented in chronically damaged WT muscle, a model of muscle fibrosis. In this model, RECK ± mice showed diminished fibrosis compared to WT. These results strongly suggest that RECK is acting as a potential myogenic repressor during muscle formation and regeneration, emerging as a new player in these processes, and as a potential target to treat individuals with the muscle-wasting disease.
Collapse
Affiliation(s)
- Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile.,Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Gonzalez
- Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Escalona-Rivano
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Chiaki Takahashi
- Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Enrique Brandan
- Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
12
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
14
|
Localization of T-cell factor 4 positive fibroblasts and CD206-positive macrophages during skeletal muscle regeneration in mice. Ann Anat 2021; 235:151694. [DOI: 10.1016/j.aanat.2021.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
|
15
|
Smith LR, Kok HJ, Zhang B, Chung D, Spradlin RA, Rakoczy KD, Lei H, Boesze-Battaglia K, Barton ER. Matrix Metalloproteinase 13 from Satellite Cells is Required for Efficient Muscle Growth and Regeneration. Cell Physiol Biochem 2020; 54:333-353. [PMID: 32275813 DOI: 10.33594/000000223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Cell migration and extracellular matrix remodeling underlie normal mammalian development and growth as well as pathologic tumor invasion. Skeletal muscle is no exception, where satellite cell migration replenishes nuclear content in damaged tissue and extracellular matrix reforms during regeneration. A key set of enzymes that regulate these processes are matrix metalloproteinases (MMP)s. The collagenase MMP-13 is transiently upregulated during muscle regeneration, but its contribution to damage resolution is unknown. The purpose of this work was to examine the importance of MMP-13 in muscle regeneration and growth in vivo and to delineate a satellite cell specific role for this collagenase. METHODS Mice with total and satellite cell specific Mmp13 deletion were utilized to determine the importance of MMP-13 for postnatal growth, regeneration after acute injury, and in chronic injury from a genetic cross with dystrophic (mdx) mice. We also evaluated insulin-like growth factor 1 (IGF-1) mediated hypertrophy in the presence and absence of MMP-13. We employed live-cell imaging and 3D migration measurements on primary myoblasts obtained from these animals. Outcome measures included muscle morphology and function. RESULTS Under basal conditions, Mmp13-/- mice did not exhibit histological or functional deficits in muscle. However, following acute injury, regeneration was impaired at 11 and 14 days post injury. Muscle hypertrophy caused by increased IGF-1 was blunted with minimal satellite cell incorporation in the absence of MMP-13. Mmp13-/- primary myoblasts displayed reduced migratory capacity in 2D and 3D, while maintaining normal proliferation and differentiation. Satellite cell specific deletion of MMP-13 recapitulated the effects of global MMP-13 ablation on muscle regeneration, growth and myoblast movement. CONCLUSION These results show that satellite cells provide an essential autocrine source of MMP-13, which not only regulates their migration, but also supports postnatal growth and resolution of acute damage.
Collapse
Affiliation(s)
- Lucas R Smith
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Neurobiology, Physiology & Behavior, Physical Medicine & Rehabilitation, University of California, Davis, CA, USA
| | - Hui Jean Kok
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Boshi Zhang
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Du Chung
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ray A Spradlin
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Kyla D Rakoczy
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Hanqin Lei
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | | | - Elisabeth R Barton
- Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA, .,Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Ceafalan LC, Dobre M, Milanesi E, Niculae AM, Manole E, Gherghiceanu M, Hinescu ME. Gene expression profile of adhesion and extracellular matrix molecules during early stages of skeletal muscle regeneration. J Cell Mol Med 2020; 24:10140-10150. [PMID: 32681815 PMCID: PMC7520258 DOI: 10.1111/jcmm.15624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle regeneration implies the coordination of myogenesis with the recruitment of myeloid cells and extracellular matrix (ECM) remodelling. Currently, there are no specific biomarkers to diagnose the severity and prognosis of muscle lesions. In order to investigate the gene expression profile of extracellular matrix and adhesion molecules, as premises of homo‐ or heterocellular cooperation and milestones for skeletal muscle regeneration, we performed a gene expression analysis for genes involved in cellular cooperation, migration and ECM remodelling in a mouse model of acute crush injury. The results obtained at two early time‐points post‐injury were compared to a GSE5413 data set from two other trauma models. Third day post‐injury, when inflammatory cells invaded, genes associated with cell‐matrix interactions and migration were up‐regulated. After day 5, as myoblast migration and differentiation started, genes for basement membrane constituents were found down‐regulated, whereas genes for ECM molecules, macrophage, myoblast adhesion, and migration receptors were up‐regulated. However, the profile and the induction time varied according to the experimental model, with only few genes being constantly up‐regulated. Gene up‐regulation was higher, delayed and more diverse following more severe trauma. Moreover, one of the most up‐regulated genes was periostin, suggestive for severe muscle damage and unfavourable architecture restoration.
Collapse
Affiliation(s)
- Laura C Ceafalan
- Cell Biology, Neurosciences and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Dobre
- Molecular Pathology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Elena Milanesi
- Molecular Pathology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Radiobiology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Andrei M Niculae
- Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Emilia Manole
- Cell Biology, Neurosciences and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.,Ultrastructural Pathology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania
| | - Mihail E Hinescu
- Cell Biology, Neurosciences and Experimental Myology Laboratory, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
17
|
Chan ZCK, Kwan HLR, Wong YS, Jiang Z, Zhou Z, Tam KW, Chan YS, Chan CB, Lee CW. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. eLife 2020; 9:54379. [PMID: 32208136 PMCID: PMC7093154 DOI: 10.7554/elife.54379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
At vertebrate neuromuscular junctions (NMJs), the synaptic basal lamina contains different extracellular matrix (ECM) proteins and synaptogenic factors that induce and maintain synaptic specializations. Here, we report that podosome-like structures (PLSs) induced by ubiquitous ECM proteins regulate the formation and remodeling of acetylcholine receptor (AChR) clusters via focal ECM degradation. Mechanistically, ECM degradation is mediated by PLS-directed trafficking and surface insertion of membrane-type 1 matrix metalloproteinase (MT1-MMP) to AChR clusters through microtubule-capturing mechanisms. Upon synaptic induction, MT1-MMP plays a crucial role in the recruitment of aneural AChR clusters for the assembly of postsynaptic specializations. Lastly, the structural defects of NMJs in embryonic MT1-MMP-/- mice further demonstrate the physiological role of MT1-MMP in normal NMJ development. Collectively, this study suggests that postsynaptic MT1-MMP serves as a molecular switch to synaptogenesis by modulating local ECM environment for the deposition of synaptogenic signals that regulate postsynaptic differentiation at developing NMJs.
Collapse
Affiliation(s)
- Zora Chui-Kuen Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Shun Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Wai Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 2020; 104:81-92. [PMID: 32063453 DOI: 10.1016/j.semcdb.2020.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Myoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle. A plethora of genes and their products is involved in regulation of myoblast fusion and a precise multilevel interplay between them is crucial for myogenic cells to fuse. In this review, we describe both cellular events taking place during myoblast fusion (migration, adhesion, elongation, cell-cell recognition, alignment, and fusion of myoblast membranes enabling formation of myotubes) as well as recent findings on mechanisms regulating this process. Also, we present muscle disorders in humans that have been associated with defects in genes involved in regulation of myoblast fusion.
Collapse
|
19
|
A study of chewing muscles: Age-related changes in type I collagen and matrix metalloproteinase-2 expression. Arch Oral Biol 2019; 109:104583. [PMID: 31706109 DOI: 10.1016/j.archoralbio.2019.104583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In this study, the aim was to investigate the biochemical, physiological and histological changes that occur in masticatory muscles of the masticatory system with aging. DESIGN In this study, 14 BALB/c mice were used. Animals were divided into two equal groups of seven. Group I was organized as the group of young animals (n = 7) and Group II as the group of adult animals (n = 7). After routine histological follow-up was performed, the tissues were embedded in paraffin. 4-5 μm thick cross-sections were taken from paraffin-embedded tissues and they were stained with Haemotoxylin and Eosin Type I collagen and Matrix metalloproteinase-2 (MMP-2) immunohistochemically. RESULTS It was observed that there was a decrease and shrinking in blood vessels due to aging. In young mice, Type I collagen and MMP-2 immunoreactivity in the masseter muscle tissue showed low staining, while Type I collagen and MMP-2 immunoreactivity in the temporal muscle tissue showed moderate staining. Type I collagen and MMP-2 immunoreactivity were significantly higher in the masseter and temporal muscles of elderly mice (p = 0.001). In the H-score evaluation, MMP-2 immune reactivity was significantly lower in young mice than in older mice (p = 0.001). CONCLUSION It was determined that severe pain complications and functional losses are likely to occur with the increase of degeneration due to aging of masticator muscles.
Collapse
|
20
|
Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019; 10:828. [PMID: 31379590 PMCID: PMC6658195 DOI: 10.3389/fphys.2019.00828] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal myofibers are injured due to mechanical stresses experienced during physical activity, or due to myofiber fragility caused by genetic diseases. The injured myofiber needs to be repaired or regenerated to restore the loss in muscle tissue function. Myofiber repair and regeneration requires coordinated action of various intercellular signaling factors-including proteins, inflammatory cytokines, miRNAs, and membrane lipids. It is increasingly being recognized release and transmission of these signaling factors involves extracellular vesicle (EV) released by myofibers and other cells in the injured muscle. Intercellular signaling by these EVs alters the phenotype of their target cells either by directly delivering the functional proteins and lipids or by modifying longer-term gene expression. These changes in the target cells activate downstream pathways involved in tissue homeostasis and repair. The EVs are heterogeneous with regards to their size, composition, cargo, location, as well as time-course of genesis and release. These differences impact on the subsequent repair and regeneration of injured skeletal muscles. This review focuses on how intracellular vesicle production, cargo packaging, and secretion by injured muscle, modulates specific reparative, and regenerative processes. Insights into the formation of these vesicles and their signaling properties offer new understandings of the orchestrated response necessary for optimal muscle repair and regeneration.
Collapse
Affiliation(s)
- Daniel C Bittel
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
21
|
Matsumoto H, Kawaguchi F, Itoh S, Yotsu S, Fukuda K, Oyama K, Mannen H, Sasazaki S. The SNPs in bovine MMP14 promoter influence on fat-related traits. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T. Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. J Trace Elem Med Biol 2018; 49:27-34. [PMID: 29895369 PMCID: PMC6082398 DOI: 10.1016/j.jtemb.2018.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Zinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation. Zn transporters account for a transient decrease of intracellular Zn upon myogenesis induction followed by a gradual increase of Zn in myotubes. Considering the subcellular localization and function of each of the Zn transporters, our findings indicate that a fine regulation is necessary to maintain correct metal concentrations in the cytosol and subcellular compartments to avoid toxicity, maintain homeostasis, and for loading metalloproteins needed during myogenesis. This study advances our basic understanding of the complex Zn transport network during muscle differentiation.
Collapse
Affiliation(s)
- Amanda L Paskavitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Sonia Ortiz-Miranda
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
23
|
Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms? Toxins (Basel) 2018; 10:toxins10050182. [PMID: 29723952 PMCID: PMC5983238 DOI: 10.3390/toxins10050182] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration after myonecrosis involves the activation, proliferation and fusion of myogenic cells, and a coordinated inflammatory response encompassing phagocytosis of necrotic cell debris, and the concerted synthesis of cytokines and growth factors. Myonecrosis often occurs in snakebite envenomings. In the case of venoms that cause myotoxicity without affecting the vasculature, such as those of many elapid snakes, regeneration proceeds successfully. In contrast, in envenomings by most viperid snakes, which affect the vasculature and extracellular matrix in addition to muscle fibers, regeneration is largely impaired and, therefore, the muscle mass is reduced and replaced by fibro-adipose tissue. This review discusses possible causes for such poor regenerative outcome including: (a) damage to muscle microvasculature, which causes tissue hypoxia and affects the inflammatory response and the timely removal of necrotic tissue; (b) damage to intramuscular nerves, which results in atrophy of regenerating fibers; (c) degradation of muscle cell basement membrane, compromising the spatial niche for proliferating myoblasts; (d) widespread degradation of the extracellular matrix; and (e) persistence of venom components in the damaged tissue, which may affect myogenic cells at critical points in the regenerative process. Understanding the causes of poor muscle regeneration may pave the way for the development of novel therapeutic interventions aimed at fostering the regenerative process in envenomed patients.
Collapse
|
24
|
Sakr M, Li XY, Sabeh F, Feinberg TY, Tesmer JJG, Tang Y, Weiss SJ. Tracking the Cartoon mouse phenotype: Hemopexin domain-dependent regulation of MT1-MMP pericellular collagenolytic activity. J Biol Chem 2018; 293:8113-8127. [PMID: 29643184 DOI: 10.1074/jbc.ra117.001503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.
Collapse
Affiliation(s)
- Moustafa Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Sadat City, Egypt 32897
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - John J G Tesmer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yi Tang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
25
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
26
|
Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell Tissue Res 2018; 372:549-570. [PMID: 29404727 DOI: 10.1007/s00441-018-2792-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.
Collapse
|
27
|
Marcinczyk M, Elmashhady H, Talovic M, Dunn A, Bugis F, Garg K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017; 141:233-242. [PMID: 28697464 DOI: 10.1016/j.biomaterials.2017.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Faiz Bugis
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA.
| |
Collapse
|
28
|
McColl R, Nkosi M, Snyman C, Niesler C. Analysis and quantification of in vitro myoblast fusion using the LADD Multiple Stain. Biotechniques 2016; 61:323-326. [PMID: 27938324 DOI: 10.2144/000114485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022] Open
Abstract
Myoblast fusion, which is essential for muscle development, regeneration, and repair, can be assessed in vitro via the calculation of a fusion index. Traditionally, this requires use of either immunocytochemistry or fluorescently-labeled cytoskeletal staining, followed by microscopy and laborious analysis. The expense and time-consuming nature of the optimization and application of antibody-based techniques such as immunocytochemistry, as well as the need for specialized analytical equipment such as fluorescence microscopes, presents a barrier to the routine analysis of this crucial step during terminal differentiation. Here, we describe (i) a novel use of the commonly available LADD Multiple Stain for visualization of myoblast fusion in vitro; (ii) the optimization of a simple image analysis method to generate quick, quantifiable data representative of a fusion index; and (iii) the use of a protocol combining these two procedures to investigate in vitro myoblast fusion in a simple and efficient manner as proof-of-concept.
Collapse
Affiliation(s)
- Rhys McColl
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, South Africa
| | - Mthokozisi Nkosi
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, South Africa
| | - Celia Snyman
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, South Africa
| | - Carola Niesler
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, South Africa
| |
Collapse
|
29
|
AbdulHameed MDM, Ippolito DL, Stallings JD, Wallqvist A. Mining kidney toxicogenomic data by using gene co-expression modules. BMC Genomics 2016; 17:790. [PMID: 27724849 PMCID: PMC5057266 DOI: 10.1186/s12864-016-3143-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background Acute kidney injury (AKI) caused by drug and toxicant ingestion is a serious clinical condition associated with high mortality rates. We currently lack detailed knowledge of the underlying molecular mechanisms and biological networks associated with AKI. In this study, we carried out gene co-expression analyses using DrugMatrix—a large toxicogenomics database with gene expression data from rats exposed to diverse chemicals—and identified gene modules associated with kidney injury to probe the molecular-level details of this disease. Results We generated a comprehensive set of gene co-expression modules by using the Iterative Signature Algorithm and found distinct clusters of modules that shared genes and were associated with similar chemical exposure conditions. We identified two module clusters that showed specificity for kidney injury in that they 1) were activated by chemical exposures causing kidney injury, 2) were not activated by other chemical exposures, and 3) contained known AKI-relevant genes such as Havcr1, Clu, and Tff3. We used the genes in these AKI-relevant module clusters to develop a signature of 30 genes that could assess the potential of a chemical to cause kidney injury well before injury actually occurs. We integrated AKI-relevant module cluster genes with protein-protein interaction networks and identified the involvement of immunoproteasomes in AKI. To identify biological networks and processes linked to Havcr1, we determined genes within the modules that frequently co-express with Havcr1, including Cd44, Plk2, Mdm2, Hnmt, Macrod1, and Gtpbp4. We verified this procedure by showing that randomized data did not identify Havcr1 co-expression genes and that excluding up to 10 % of the data caused only minimal degradation of the gene set. Finally, by using an external dataset from a rat kidney ischemic study, we showed that the frequently co-expressed genes of Havcr1 behaved similarly in a model of non-chemically induced kidney injury. Conclusions Our study demonstrated that co-expression modules and co-expressed genes contain rich information for generating novel biomarker hypotheses and constructing mechanism-based molecular networks associated with kidney injury. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD, 21702, USA
| | - Danielle L Ippolito
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Jonathan D Stallings
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
30
|
Jenkins MH, Alrowaished SS, Goody MF, Crawford BD, Henry CA. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction. Skelet Muscle 2016; 6:18. [PMID: 27141287 PMCID: PMC4852425 DOI: 10.1186/s13395-016-0089-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/31/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. RESULTS We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. CONCLUSIONS These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.
Collapse
Affiliation(s)
- Molly H Jenkins
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA.,Present Address: Minerva Biotechnologies, Waltham, MA 02451 USA
| | - Sarah S Alrowaished
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA
| | - Michelle F Goody
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB Canada
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, 217 Hitchner Hall, Orono, ME 04469 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
31
|
Tassone E, Valacca C, Mignatti P. Membrane-Type 1 Matrix Metalloproteinase Downregulates Fibroblast Growth Factor-2 Binding to the Cell Surface and Intracellular Signaling. J Cell Physiol 2015; 230:366-77. [PMID: 24986796 DOI: 10.1002/jcp.24717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular, and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1- MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell's biological response to FGF-2.
Collapse
Affiliation(s)
- Evelyne Tassone
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York
| | - Cristina Valacca
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York
| | - Paolo Mignatti
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York.,Department of Cell Biology, New York University School of Medicine, New York
| |
Collapse
|
32
|
Devine RD, Bicer S, Reiser PJ, Velten M, Wold LE. Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia. Am J Physiol Heart Circ Physiol 2015; 309:H685-91. [PMID: 26092976 DOI: 10.1152/ajpheart.00106.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023]
Abstract
Cardiac and skeletal muscle dysfunction is a recognized effect of cancer-induced cachexia, with alterations in heart function leading to heart failure and negatively impacting patient morbidity. Cachexia is a complex and multifaceted disease state with several potential contributors to cardiac and skeletal muscle dysfunction. Matrix metalloproteinases (MMPs) are a family of enzymes capable of degrading components of the extracellular matrix (ECM). Changes to the ECM cause disruption both in the connections between cells at the basement membrane and in cell-to-cell interactions. In the present study, we used a murine model of C26 adenocarcinoma-induced cancer cachexia to determine changes in MMP gene and protein expression in cardiac and skeletal muscle. We analyzed MMP-2, MMP-3, MMP-9, and MMP-14 as they have been shown to contribute to both cardiac and skeletal muscle ECM changes and, thereby, to pathology in models of heart failure and muscular dystrophy. In our model, cardiac and skeletal muscles showed a significant increase in RNA and protein levels of several MMPs and tissue inhibitors of metalloproteinases. Cardiac muscle showed significant protein increases in MMP-2, MMP-3, MMP-9, and MMP-14, whereas skeletal muscles showed increases in MMP-2, MMP-3, and MMP-14. Furthermore, collagen deposition was increased after C26 adenocarcinoma-induced cancer cachexia as indicated by an increased left ventricular picrosirius red-positive-stained area. Increases in serum hydroxyproline suggest increased collagen turnover, implicating skeletal muscle remodeling. Our findings demonstrate that cancer cachexia-associated matrix remodeling results in cardiac fibrosis and possible skeletal muscle remodeling. With these findings, MMPs represent a possible therapeutic target for the treatment of cancer-induced cachexia.
Collapse
Affiliation(s)
- Raymond D Devine
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sabahattin Bicer
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhelms-University, University Medical Center, Bonn, Germany; and
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Snyman C, Niesler CU. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil 2015; 36:215-25. [DOI: 10.1007/s10974-015-9414-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/22/2015] [Indexed: 12/15/2022]
|
34
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
35
|
Gomez-Rodriguez V, Orbe J, Martinez-Aguilar E, Rodriguez JA, Fernandez-Alonso L, Serneels J, Bobadilla M, Perez-Ruiz A, Collantes M, Mazzone M, Paramo JA, Roncal C. Functional MMP-10 is required for efficient tissue repair after experimental hind limb ischemia. FASEB J 2014; 29:960-72. [PMID: 25414484 DOI: 10.1096/fj.14-259689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We studied the role of matrix metalloproteinase-10 (MMP-10) during skeletal muscle repair after ischemia using a model of femoral artery excision in wild-type (WT) and MMP-10 deficient (Mmp10(-/-)) mice. Functional changes were analyzed by small animal positron emission tomography and tissue morphology by immunohistochemistry. Gene expression and protein analysis were used to study the molecular mechanisms governed by MMP-10 in hypoxia. Early after ischemia, MMP-10 deficiency resulted in delayed tissue reperfusion (10%, P < 0.01) and in increased necrosis (2-fold, P < 0.01), neutrophil (4-fold, P < 0.01), and macrophage (1.5-fold, P < 0.01) infiltration. These differences at early time points resulted in delayed myotube regeneration in Mmp10(-/-) soleus at later stages (regenerating myofibers: 30 ± 9% WT vs. 68 ± 10% Mmp10(-/-), P < 0.01). The injection of MMP-10 into Mmp10(-/-) mice rescued the observed phenotype. A molecular analysis revealed higher levels of Cxcl1 mRNA (10-fold, P < 0.05) and protein (30%) in the ischemic Mmp10(-/-) muscle resulting from a lack of transcriptional inhibition by MMP-10. This was further confirmed using siRNA against MMP-10 in vivo. Our results demonstrate an important role of MMP-10 for proper muscle repair after ischemia, and suggest that chemokine regulation such as Cxcl1 by MMP-10 is involved in muscle regeneration.
Collapse
Affiliation(s)
- Violeta Gomez-Rodriguez
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Josune Orbe
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Esther Martinez-Aguilar
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose A Rodriguez
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Leopoldo Fernandez-Alonso
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Jens Serneels
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Miriam Bobadilla
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Perez-Ruiz
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Maria Collantes
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Massimiliano Mazzone
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose A Paramo
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| | - Carmen Roncal
- *Laboratory of Atherothrombosis, Division of Cardiovascular Sciences, and Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Vascular Surgery, Complejo Hopitalario de Navarra, Pamplona, Spain; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium; and Small Animal Imaging Research Unit, CIMA and Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
36
|
Paolillo FR, Arena R, Dutra DB, de Cassia Marqueti Durigan R, de Araujo HS, de Souza HCD, Parizotto NA, Cipriano G, Chiappa G, Borghi-Silva A. Low-level laser therapy associated with high intensity resistance training on cardiac autonomic control of heart rate and skeletal muscle remodeling in wistar rats. Lasers Surg Med 2014; 46:796-803. [PMID: 25363390 DOI: 10.1002/lsm.22298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Phototherapy plus dynamic exercise can enhance physical performance and improve health. The aim of our study was to evaluate the effect of low-level laser therapy (LLLT) associated with high intensity resistance training (HIT) on cardiac autonomic and muscle metabolic responses in rats. STUDY DESIGN/MATERIALS AND METHODS Forty Wistar rats were randomized into 4 groups: sedentary control (CG), HIT, LLLT and HIT + LLLT. HIT was performed 3 times/week for 8 weeks with loads attached to the tail of the animal. The load was gradually increased by 10% of body mass until reaching a maximal overload. For LLLT, irradiation parameters applied to the tibialis anterior (TA) muscle were as follows: infrared laser (780 nm), power of 15 mW for 10 seconds, leading to an irradiance of 37.5 mW/cm(2), energy of 0.15 J per point and fluency of 3.8 J/cm(2). Blood lactate (BL), matrix metalloproteinase gelatinase A (MMP(-2)) gene expression and heart rate variability (HRV) indices were performed. RESULTS BL significantly increased after 8-weeks for HIT, LLLT and HIT + LLLT groups. However, peak lactate when normalized by maximal load was significantly reduced for both HIT and HIT + LLLT groups (P<0.05). MMP-2 in the active form was significantly increased after HIT, LLLT and HIT + LLLT compared tom the CG (P<0.05). There was a significant reduction in low frequency [LF (ms(2))] and increase in high frequency [HF (un)] and HF (ms(2))] for the HIT, LLLT and HIT + LLLT groups compared with the CG (P < 0.05). However, the LF/HF ratio was further reduced in the LLLT and HIT + LLLT groups compared to the CG and HIT group (P < 0.05). CONCLUSION These results provide evidence for the positive benefits of LLLT and HIT with respect to enhanced muscle metabolic and cardiac autonomic function in Wistar rats.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wong HLX, Cao R, Jin G, Ming Chan K, Cao Y, zhou Z. When MT1-MMP meets ADAMs. Cell Cycle 2014; 11:2793-8. [DOI: 10.4161/cc.20949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Bobadilla M, Sáinz N, Rodriguez JA, Abizanda G, Orbe J, de Martino A, García Verdugo JM, Páramo JA, Prósper F, Pérez-Ruiz A. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 2014; 32:447-61. [PMID: 24123596 DOI: 10.1002/stem.1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease.
Collapse
Affiliation(s)
- Míriam Bobadilla
- Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
von Nandelstadh P, Gucciardo E, Lohi J, Li R, Sugiyama N, Carpen O, Lehti K. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton. Mol Biol Cell 2014; 25:2556-70. [PMID: 24989798 PMCID: PMC4148246 DOI: 10.1091/mbc.e13-11-0667] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.
Collapse
Affiliation(s)
- Pernilla von Nandelstadh
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Jouko Lohi
- Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland Department of Pathology, HUSLAB, Helsinki University Central Hospital, FIN-00290, Helsinki, Finland
| | - Rui Li
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Olli Carpen
- Department of Pathology, University of Turku and Turku University Central Hospital, FIN-20520, Turku, Finland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland Department of Pathology, Haartman Institute, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Lund DK, Mouly V, Cornelison DDW. MMP-14 is necessary but not sufficient for invasion of three-dimensional collagen by human muscle satellite cells. Am J Physiol Cell Physiol 2014; 307:C140-9. [PMID: 24898588 DOI: 10.1152/ajpcell.00032.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The twenty-five known matrix metalloproteases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteases (TIMPs), mediate cell invasion through the extracellular matrix (ECM). In a comparative three-dimensional assay, we analyzed human and mouse satellite cells' competence to invade an artificial ECM (collagen I). We identified a single MMP that 1) is expressed by human muscle satellite cells; 2) is induced at the mRNA/protein level by adhesion to collagen I; and 3) is necessary for invasion into a collagen I matrix. Interestingly, murine satellite cells neither express this MMP, nor invade the collagen matrix. However, exogenous human MMP-14 is not sufficient to induce invasion of a collagen matrix by murine cells, emphasizing species differences.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biology and Bond Life Sciences Center, University of Missouri, Columbia, Missouri; and
| | - Vincent Mouly
- Institut de Myologie, Université Pierre et Marie Curie, Paris, France
| | - D D W Cornelison
- Division of Biology and Bond Life Sciences Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
41
|
Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P. Understanding the process of fibrosis in Duchenne muscular dystrophy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:965631. [PMID: 24877152 PMCID: PMC4024417 DOI: 10.1155/2014/965631] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.
Collapse
Affiliation(s)
- Yacine Kharraz
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Joana Guerra
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Patrizia Pessina
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Antonio L. Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| |
Collapse
|
42
|
Zordan P, Rigamonti E, Freudenberg K, Conti V, Azzoni E, Rovere-Querini P, Brunelli S. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death Dis 2014; 5:e1031. [PMID: 24481445 PMCID: PMC4040684 DOI: 10.1038/cddis.2013.558] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023]
Abstract
The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.
Collapse
Affiliation(s)
- P Zordan
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | - E Rigamonti
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | - K Freudenberg
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | - V Conti
- 1] Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy [2] Department of Health Sciences, University of Milano-Bicocca, San Raffaele Scientific Institute, Milano, Italy
| | - E Azzoni
- 1] Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy [2] Department of Health Sciences, University of Milano-Bicocca, San Raffaele Scientific Institute, Milano, Italy
| | - P Rovere-Querini
- 1] Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy [2] San Raffaele University, Milano, Italy
| | - S Brunelli
- 1] Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy [2] Department of Health Sciences, University of Milano-Bicocca, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
43
|
Monge C, Saha N, Boudou T, Pózos-Vásquez C, Dulong V, Glinel K, Picart C. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3432-3442. [PMID: 25100929 PMCID: PMC4119880 DOI: 10.1002/adfm.201203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In vivo, cells are sensitive to the stiffness of their micro-environment and especially to the spatial organization of the stiffness. In vitro studies of this phenomenon can help to better understand the mechanisms of the cell response to spatial variations of the matrix stiffness. In this work, we design polelyelectrolyte multilayer films made of poly(L-lysine) and a photo-reactive hyaluronan derivative. These films can be photo-crosslinked through a photomask to create spatial patterns of rigidity. Quartz substrates incorporating a chromium mask are prepared to expose selectively the film to UV light (in a physiological buffer), without any direct contact between the photomask and the soft film. We show that these micropatterns are chemically homogeneous and flat, without any preferential adsorption of adhesive proteins. Three groups of pattern geometries differing by their shape (circles or lines), size (form 2 to 100 μm) or interspacing distance between the motifs are used to study the adhesion and spatial organization of myoblast cells. On large circular micropatterns, the cells form large assemblies that are confined to the stiffest parts. Conversely, when the size of the rigidity patterns is subcellular, the cells respond by forming protrusions. Finally, on linear micropatterns of rigidity, myoblasts align and their nuclei drastically elongate in specific conditions. These results pave the way for the study of the different steps of myoblast fusion in response to matrix rigidity in well-defined geometrical conditions.
Collapse
Affiliation(s)
- Claire Monge
- CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France
| | - Naresh Saha
- CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France; Institute of Condensed Matter & Nanosciences, Bio & Soft Matter division Croix du Sud 1, box L7.04.02 B-1348 Louvain-la-Neuve, Belgium
| | - Thomas Boudou
- CNRS-UMR 5628, Laboratoire des Matériaux et du Génie Physique, CNRS et Institut Polytechnique de Grenoble, Université de Grenoble, 3 parvis L. Néel F-38016 Grenoble, France
| | - Cuauhtemoc Pózos-Vásquez
- Institute of Condensed Matter & Nanosciences, Bio & Soft Matter division Croix du Sud 1, box L7.04.02 B-1348 Louvain-la-Neuve, Belgium
| | - Virginie Dulong
- Laboratoire Polymères, Biopolymères, Surfaces, CNRS-UMR 6270 Université de Rouen Bd Maurice de Broglie F-76821 Mont Saint Aignan, France
| | | | | |
Collapse
|
44
|
Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 2013; 12:75-87. [PMID: 23290138 DOI: 10.1016/j.stem.2012.09.015] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 06/07/2012] [Accepted: 09/14/2012] [Indexed: 01/07/2023]
Abstract
The influence of the extracellular matrix (ECM) within the stem cell niche remains poorly understood. We found that Syndecan-4 (Sdc4) and Frizzled-7 (Fzd7) form a coreceptor complex in satellite cells and that binding of the ECM glycoprotein Fibronectin (FN) to Sdc4 stimulates the ability of Wnt7a to induce the symmetric expansion of satellite stem cells. Newly activated satellite cells dynamically remodel their niche via transient high-level expression of FN. Knockdown of FN in prospectively isolated satellite cells severely impaired their ability to repopulate the satellite cell niche. Conversely, in vivo overexpression of FN with Wnt7a dramatically stimulated the expansion of satellite stem cells in regenerating muscle. Therefore, activating satellite cells remodel their niche through autologous expression of FN that provides feedback to stimulate Wnt7a signaling through the Fzd7/Sdc4 coreceptor complex. Thus, FN and Wnt7a together regulate the homeostatic levels of satellite stem cells and satellite myogenic cells during regenerative myogenesis.
Collapse
Affiliation(s)
- C Florian Bentzinger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Alameddine HS. Matrix metalloproteinases in skeletal muscles: Friends or foes? Neurobiol Dis 2012; 48:508-18. [DOI: 10.1016/j.nbd.2012.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022] Open
|
46
|
Saravia-Otten P, Robledo B, Escalante T, Bonilla L, Rucavado A, Lomonte B, Hernández R, Flock JI, Gutiérrez JM, Gastaldello S. Homogenates of skeletal muscle injected with snake venom inhibit myogenic differentiation in cell culture. Muscle Nerve 2012; 47:202-12. [PMID: 23169301 DOI: 10.1002/mus.23489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Viperid snakebite envenomings are characterized by muscle necrosis and a deficient regenerative response. METHODS Homogenates from gastrocnemius muscles of mice injected with the venom of the snake Bothrops asper or with 2 tissue-damaging toxins were added to cultures of C2C12 myogenic cells. Myoblasts proliferation and fusion were assessed. Venom was detected by immunoassay in mouse muscle during the first week after injection. RESULTS Homogenates from venom-injected muscle induced a drop in the number of proliferating myoblasts and a complete elimination of myotube formation. The inhibitory effect induced by homogenates from venom-injected mice was abrogated by preincubation of the homogenate with antivenom antibodies but not with control antibodies. This finding provides evidence that the effect is due to the action of venom in the tissue. CONCLUSIONS Our observations suggest that traces of venom in muscle tissue might inhibit myotube formation and preclude a successful regenerative response.
Collapse
Affiliation(s)
- Patricia Saravia-Otten
- Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Satellite cells represent the primary population of stem cells resident in skeletal muscle. These adult muscle stem cells facilitate the postnatal growth, remodeling, and regeneration of skeletal muscle. Given the remarkable regenerative potential of satellite cells, there is great promise for treatment of muscle pathologies such as the muscular dystrophies with this cell population. Various protocols have been developed which allow for isolation, enrichment, and expansion of satellite cell derived muscle stem cells. However, isolated satellite cells have yet to translate into effective modalities for therapeutic intervention. Broadening our understanding of satellite cells and their niche requirements should improve our in vivo and ex vivo manipulation of these cells to expedite their use for regeneration of diseased muscle. This review explores the fates of satellite cells as determined by their molecular signatures, ontogeny, and niche dependent programming.
Collapse
Affiliation(s)
- Arif Aziz
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, Canada K1H 8L6
| | | | | |
Collapse
|
48
|
Calve S, Isaac J, Gumucio JP, Mendias CL. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am J Physiol Cell Physiol 2012; 303:C577-88. [PMID: 22785117 DOI: 10.1152/ajpcell.00057.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1-HAS3). We found that HA and HAS1-HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1-HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation.
Collapse
Affiliation(s)
- Sarah Calve
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | |
Collapse
|
49
|
Shimizu-Hirota R, Xiong W, Baxter BT, Kunkel SL, Maillard I, Chen XW, Sabeh F, Liu R, Li XY, Weiss SJ. MT1-MMP regulates the PI3Kδ·Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev 2012; 26:395-413. [PMID: 22345520 DOI: 10.1101/gad.178749.111] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3β signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.
Collapse
Affiliation(s)
- Ryoko Shimizu-Hirota
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zile MR, Baicu CF, Stroud RE, Van Laer A, Arroyo J, Mukherjee R, Jones JA, Spinale FG. Pressure overload-dependent membrane type 1-matrix metalloproteinase induction: relationship to LV remodeling and fibrosis. Am J Physiol Heart Circ Physiol 2012; 302:H1429-37. [PMID: 22287584 DOI: 10.1152/ajpheart.00580.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased myocardial extracellular matrix collagen represents an important structural milestone during the development of left ventricular (LV) pressure overload (PO); however, the proteolytic pathways that contribute to this process are not fully understood. This study tested the hypothesis that membrane type 1-matrix metalloproteinase (MT1-MMP) is directly induced at the transcriptional level in vivo during PO and is related to changes in LV collagen content. PO was induced in vivo by transverse aortic constriction in transgenic mice containing the full length human MT1-MMP promoter region ligated to luciferase (MT1-MMP Prom mice). MT1-MMP promoter activation (luciferase expression), expression, and activity; collagen volume fraction (CVF); and left atrial dimension were measured at 1 (n = 8), 2 (n = 12), and 4 (n = 17) wk following PO. Non-PO mice (n = 10) served as controls. Luciferase expression increased by fivefold at 1 wk, fell at 2 wk, and increased again by ninefold at 4 wk of PO (P < 0.05). MT1-MMP expression and activity increased at 1 wk, fell at 2 wk, and increased again at 4 wk after PO. CVF increased at 1 wk, remained unchanged at 2 wk, and increased by threefold at 4 wk of PO (P < 0.05). There was a strong positive correlation between CVF and MT1-MMP activity (r = 0.80, P < 0.05). Left atrial dimension remained unchanged at 1 and 2 wk but increased by 25% at 4 wk of PO. When a mechanical load was applied in vitro to LV papillary muscles isolated from MT1-MMP Prom mice, increased load caused MT1-MMP promoter activation to increase by twofold and MT1-MMP expression to increase by fivefold (P < 0.05). These findings challenge the canonical belief that PO suppresses overall matrix proteolytic activity, but rather supports the concept that certain proteases, such as MT1-MMP, play a pivotal role in PO-induced matrix remodeling and fibrosis.
Collapse
Affiliation(s)
- Michael R Zile
- Divisions of Cardiology, Department of Medicine, Medical University of South Carolina, 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|