1
|
Iida H, Kawai-Takaishi M, Miyagawa Y, Takegami Y, Uezumi A, Honda T, Imagama S, Hosoyama T. PDZRN3 regulates adipogenesis of mesenchymal progenitors in muscle. Regen Ther 2025; 28:473-480. [PMID: 39980718 PMCID: PMC11840944 DOI: 10.1016/j.reth.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Intramuscular adipose tissue (IMAT) is frequently formed in certain pathological conditions, such as biological aging, and ectopic fat accumulation leads to muscle weakness and a subsequent decline in physical function. Although mesenchymal progenitors (MPs) are present in postnatal skeletal muscle and are the cells from which IMAT originates, the molecular mechanism by which MPs contribute to IMAT formation has not been completely elucidated. Recently, we found that PDZ domain-containing ring finger 3 (PDZRN3), an E3-ubiquitin ligase, was highly expressed in MPs. In this study, we aimed to clarify the functions of PDZRN3 in MPs and the roles of PDZRN3 in IMAT formation using in vitro and in vivo experiments. Methods Primary mouse MPs isolated from hindlimb muscles were applied to adipogenic differentiation conditions, and expression fluctuation of PDZRN3 was verified with adipogenic differentiation and Wnt signaling markers. The role of PDZRN3 on MP's adipogenesis was evaluated in vitro by gene knock-down experiments. To evaluate the contribution of PDZRN3 to IMAT formation in vivo, tamoxifen-inducible MP-specific Pdzrn3 knockout (Pdzrn3 MPcKO) mice were developed. Results PDZRN3 was more expressed in MPs than in muscle stem cells, and its expression profile of PDZRN3 fluctuated with the adipogenic differentiation of MPs. Our results revealed that PDZRN3 suppressed the adipogenesis of MPs in vitro through the activation of Wnt signaling and that a decrease in PDZRN3 accelerated adipogenesis. Indeed, IMAT significantly increased in the denervated muscles of Pdzrn3 MPcKO mice. Conclusions Our findings suggest that PDZRN3 is a key molecule in regulating IMAT formation. Since ectopic fat accumulation is frequently found in the skeletal muscles of older adults and also muscular dystrophy patients, PDZRN3 and its related pathways may represent a novel therapeutic target for these muscle pathologies.
Collapse
Affiliation(s)
- Hiroki Iida
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Minako Kawai-Takaishi
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshihiro Miyagawa
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Chemistry, Kurume University Graduate School of Medicine, Kurume, Fukuoka, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tohru Hosoyama
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
2
|
Kawai-Takaishi M, Miyagawa Y, Honda T, Inui M, Hosoyama T. Postnatal Pdzrn3 deficiency causes acute muscle atrophy without alterations in endplate morphology. Biochem Biophys Res Commun 2024; 696:149542. [PMID: 38244315 DOI: 10.1016/j.bbrc.2024.149542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
PDZ domain-containing RING finger family protein 3 (PDZRN3) is expressed in various tissues, including the skeletal muscle. Although PDZRN3 plays a crucial role in the terminal differentiation of myoblasts and synaptic growth/maturation in myogenesis, the role of this molecule in postnatal muscles is completely unknown despite its lifelong expression in myofibers. In this study, we aimed to elucidate the function of PDZRN3 in mature myofibers using myofiber-specific conditional knockout mice. After tamoxifen injection, PDZRN3 deficiency was confirmed in both fast and slow myofibers of Myf6-CreERT2; Pdzrn3flox/flox (Pdzrn3mcKO) mice. Transcriptome analysis of the skeletal muscles of Pdzrn3mcKO mice identified differentially expressed genes, including muscle atrophy-related genes such as Smox, Amd1/2, and Mt1/2, suggesting that PDZRN3 is involved in the homeostatic maintenance of postnatal muscles. PDZRN3 deficiency caused muscle atrophy, predominantly in fast-twitch (type II) myofibers, and reduced muscle strength. While myofiber-specific PDZRN3 deficiency did not influence endplate morphology or expression of neuromuscular synaptic formation-related genes in postnatal muscles, indicating that the relationship between PDZRN3 and neuromuscular junctions might be limited during muscle development. Considering that the expression of Pdzrn3 in skeletal muscles was significantly lower in aged mice than in mature adult mice, we speculated that the PDZRN3-mediated muscle maintenance system might be associated with the pathophysiology of age-related muscle decline, such as sarcopenia.
Collapse
Affiliation(s)
- Minako Kawai-Takaishi
- Department of Musculoskeletal Disease, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshihiro Miyagawa
- Department of Musculoskeletal Disease, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan; Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Tohru Hosoyama
- Department of Musculoskeletal Disease, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| |
Collapse
|
3
|
Jin P, Wu L, Zhang G, Yang B, Zhu B. PDZRN4 suppresses tumorigenesis and androgen therapy-resistance in prostate cancer. J Cancer 2022; 13:2293-2300. [PMID: 35517421 PMCID: PMC9066220 DOI: 10.7150/jca.69269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background: PDZRN4 (PDZ domain-containing RING finger 4), a member of the LNX (ligand of numb protein-X) family that regulates the levels of NUMB, plays a critical role in suppressing the proliferation and invasion of hormone-related malignant tumours. There are few studies on the role of PDZRN4 in the pathogenesis of prostate cancer (PCa). We aimed to examine whether PDZRN4 regulates the growth and development of PCa. Methods: Cell transduction and Western blotting were used to establish and confirm PDZRN4 knock down in PC cells. Using the MTT, wound healing, transwell migration, and animal experiments, we explored the biological function of PDZRN4 knockdown (PDZRN4-kd) cells. Via PCR and immunohistochemistry, the mRNA and protein expression of PDZRN4 was examined in PC cells and tissues. Results: Hormone-dependent (LNCap) and hormone-independent (DU145, PC3, and C4-2) PC lines were transfected with lentivirus carrying PDZRN4 shRNA. The Western blotting results showed that the expression of PDZRN4 was stably downregulated in PDZRN4 knockdown (PDZRN4-kd) cells. The proliferation, invasion and migration of PDZRN4-kd cells were dramatically increased in vivo. To explore the expression of PDZRN4 in prostate cancer samples, we analysed TCGA data and found that PDZRN4 was negatively correlated with the development of PC. PDZRN4 levels were downregulated by androgen deprivation in hormone-sensitive cells. Moreover, PDZRN4 failed to induce proliferation in DU145 cells with androgen deprivation. Conclusions: PDZRN4 is a functional suppressor of prostate cancer growth and development and is a potential target of biochemical therapy in hormone-resistant PC.
Collapse
Affiliation(s)
- Peng Jin
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, Hunan, PCR, 410008
| | - Lielin Wu
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, Hunan, PCR, 410008
| | - Gang Zhang
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, Hunan, PCR, 410008
| | - Bo Yang
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, Hunan, PCR, 410008
| | - Bisong Zhu
- Organ Transplant Center, Xiangya Hospital, Central South University, Changsha, Hunan, PCR, 410008
| |
Collapse
|
4
|
Li Q, Zhong J, Yang S, Liang Y. Lower expression of PDZRN3 induces endometrial carcinoma progression via the activation of canonical Wnt signaling. Oncol Lett 2022; 23:98. [PMID: 35154429 DOI: 10.3892/ol.2022.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Qiuhong Li
- Department of Obstetrics and Gynecology, Shanghai Yangpu District Shidong Hospital, Shanghai 2000438, P.R. China
| | - Jie Zhong
- Department of Obstetrics and Gynecology, Shanghai Yangpu District Shidong Hospital, Shanghai 2000438, P.R. China
| | - Shangjie Yang
- Department of Obstetrics and Gynecology, Yangpu Hospital Affiliated to Tongji University, Shanghai 200090, P.R. China
| | - Yanping Liang
- Department of Obstetrics and Gynecology, Shanghai Yangpu District Shidong Hospital, Shanghai 2000438, P.R. China
| |
Collapse
|
5
|
Jiang Y, Chen S. Functional New Transcription Factors (TFs) Associated with Cervical Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8381559. [PMID: 35126951 PMCID: PMC8808228 DOI: 10.1155/2022/8381559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
The goal of this research was to find noval transcription factors (TFs) that are involved in cervical carcinogenesis. The Gene Expression Omnibus (GEO) database was utilized to analyze ten cervical cancer datasets using the Robust Rank Aggregation (RRA) technique. Survival and differential expression were validated using GEPIA (Gene Expression Profiling Interactive Analysis). The transcriptional regulatory network and putative targets were built using Cytoscape. A real-time PCR (quantitative real-time polymerase chain reaction) experiment was used to confirm the mRNA expression. Using public cervical cancer single-cell RNA-sequencing (scRNA-seq), bulk TCGA-CESC RNA-seq, and microarray datasets, coexpression correlations between putative targets and TFs were confirmed. After combining the results of 10 datasets, 8 TFs, including EMX2 (Empty Spiracles Homeobox 2), were chosen among 385 robust DEGs. In the normal female reproductive tract, EMX2 is extensively expressed, but it is reduced in cervical cancer. Overexpression EMX2 suppresses the proliferation of HeLa cells. 12 potential targets of EMX2 were selected. Our research has revealed evidence that EMX2 acted as a tumor suppressor in cervical cancer and PDZRN3 might be possible target of EMX2 in cervical cancer. It might be a therapeutic target in the future.
Collapse
Affiliation(s)
- Yicheng Jiang
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing, China
| | - Shi Chen
- Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wang BB, Hou LM, Zhou WD, Liu H, Tao W, Wu WJ, Niu PP, Zhang ZP, Zhou J, Li Q, Huang RH, Li PH. Genome-wide association study reveals a quantitative trait locus and two candidate genes on Sus scrofa chromosome 5 affecting intramuscular fat content in Suhuai pigs. Animal 2021; 15:100341. [PMID: 34425484 DOI: 10.1016/j.animal.2021.100341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E-07) while 11 cases reached the suggestive significance level (P < 1.77E-05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37-73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92-3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes.
Collapse
Affiliation(s)
- B B Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - L M Hou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W D Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W Tao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - W J Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - P P Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Z P Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - J Zhou
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China
| | - Q Li
- Huaiyin Pig Breeding Farm of Huaian City, Huaian 223322, China
| | - R H Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - P H Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; Huaian Academy, Nanjing Agricultural University, Huaian 223005, China.
| |
Collapse
|
7
|
Pesta D, Jelenik T, Zaharia OP, Bobrov P, Görgens S, Bódis K, Karusheva Y, Krako Jakovljevic N, Lalic NM, Markgraf DF, Burkart V, Müssig K, Knebel B, Kotzka J, Eckel J, Strassburger K, Szendroedi J, Roden M. NDUFB6 Polymorphism Is Associated With Physical Activity-Mediated Metabolic Changes in Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:693683. [PMID: 34659107 PMCID: PMC8518618 DOI: 10.3389/fendo.2021.693683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The rs540467 SNP in the NDUFB6 gene, encoding a mitochondrial complex I subunit, has been shown to modulate adaptations to exercise training. Interaction effects with diabetes mellitus remain unclear. We assessed associations of habitual physical activity (PA) levels with metabolic variables and examined a possible modifying effect of the rs540467 SNP. Volunteers with type 2 (n=242), type 1 diabetes (n=250) or normal glucose tolerance (control; n=139) were studied at diagnosis and subgroups with type 1 (n=96) and type 2 diabetes (n=95) after 5 years. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps, oxygen uptake at the ventilator threshold (VO2AT) by spiroergometry and PA by questionnaires. Translational studies investigated insulin signaling and mitochondrial function in Ndufb6 siRNA-treated C2C12 myotubes, with electronic pulse stimulation (EPS) to simulate exercising. PA levels were 10 and 6%, VO2AT was 31% and 8% lower in type 2 and type 1 diabetes compared to control. Within 5 years, 36% of people with type 2 diabetes did not improve their insulin sensitivity despite increasing PA levels. The NDUFB6 rs540467 SNP modifies PA-mediated changes in insulin sensitivity, body composition and liver fat estimates in type 2 diabetes. Silencing Ndufb6 in myotubes reduced mitochondrial respiration and prevented rescue from palmitate-induced insulin resistance after EPS. A substantial proportion of humans with type 2 diabetes fails to respond to rising PA with increasing insulin sensitivity. This may at least partly relate to a polymorphism of the NDUFB6 gene, which may contribute to modulating mitochondrial function. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT01055093. The trial was retrospectively registered on 25th of January 2010.
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Sven Görgens
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Paul-Langerhaus-Group Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Nina Krako Jakovljevic
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Clinics for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nebojsa M. Lalic
- Paul-Langerhaus-Group Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Daniel F. Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Jürgen Eckel
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Paul-Langerhaus-Group Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Michael Roden,
| |
Collapse
|
8
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
9
|
Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel) 2020; 10:ani10071173. [PMID: 32664293 PMCID: PMC7401650 DOI: 10.3390/ani10071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary It is assumed that the athletic performance of horses is influenced by a large number of genes; however, to date, not many genomic studies have been performed to identify candidate genes. In this study we performed a systematic review of genome-wide association studies followed by functional analyses aiming to identify the most candidate genes for horse performance. We were successful in identifying 669 candidate genes, from which we built biological process networks. Regulatory elements (transcription factors, TFs) of these genes were identified and used to build a gene–TF network. Genes and TFs presented in this study are suggested to play a role in the studied traits through biological processes related with exercise performance, for example, positive regulation of glucose metabolism, regulation of vascular endothelial growth factor production, skeletal system development, cellular response to fatty acids and cellular response to lipids. In general, this study may provide insights into the genetic architecture underlying horse performance in different breeds around the world. Abstract Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene–TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene–TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene–TF network highlighting TFs and the most candidate genes for horse performance.
Collapse
|
10
|
Honda T, Inui M. PDZRN3 protects against apoptosis in myoblasts by maintaining cyclin A2 expression. Sci Rep 2020; 10:1140. [PMID: 31980707 PMCID: PMC6981127 DOI: 10.1038/s41598-020-58116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/07/2020] [Indexed: 11/28/2022] Open
Abstract
PDZRN3 is a PDZ domain-containing RING-finger family protein that functions in various developmental processes. We previously showed that expression of PDZRN3 is induced together with that of MyoD during the early phase of skeletal muscle regeneration in vivo. We here show that PDZRN3 suppresses apoptosis and promotes proliferation in myoblasts in a manner dependent on cyclin A2. Depletion of PDZRN3 in mouse C2C12 myoblasts by RNA interference reduced the proportion of Ki-67-positive cells and the level of Akt phosphorylation, implicating PDZRN3 in regulation of both cell proliferation and apoptosis. Exposure of C2C12 cells as well as of C3H10T1/2 mesenchymal stem cells and NIH-3T3 fibroblasts to various inducers of apoptosis including serum deprivation resulted in a greater increase in the amount of cleaved caspase-3 in PDZRN3-depleted cells than in control cells. The abundance of cyclin A2 was reduced in PDZRN3-depleted C2C12 myoblasts, as was that of Mre11, which contributes to the repair of DNA damage. Overexpression of cyclin A2 restored the expression of Mre11 and Ki-67 as well as attenuated caspase-3 cleavage in PDZRN3-depleted cells deprived of serum. These results indicate that PDZRN3 suppresses apoptosis and promotes proliferation in myoblasts and other cell types by maintaining cyclin A2 expression.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
- YIC Rehabilitation College, 4-11-1 Nishiube-Minami, Ube, Yamaguchi, 759-0208, Japan.
| |
Collapse
|
11
|
Hoshiba T, Yokoyama N. Decellularized extracellular matrices derived from cultured cells at stepwise myogenic stages for the regulation of myotube formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118658. [PMID: 31978502 DOI: 10.1016/j.bbamcr.2020.118658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
The regulation of stem cell differentiation is key for muscle tissue engineering and regenerative medicine. To this end, various substrates mimicking the native extracellular matrix (ECM) have been developed with consideration of the mechanical, topological, and biochemical properties. However, mimicking the biochemical properties of the native ECM is difficult due to its compositional complexity. To develop substrates that mimic the native ECM and its biochemical properties, decellularization is typically used. Here, substrates mimicking the native ECM at each myogenic stage are prepared as stepwise myogenesis-mimicking matrices via the in vitro myogenic culture of C2C12 myoblasts and decellularization. Cells adhered to the stepwise myogenesis-mimicking matrices at similar levels. However, the matrices derived from cells at the myogenic early stage suppressed cell growth and promoted myogenesis. This promotion of myogenesis was potentially due to the suppression of the activation of endogenous BMP signaling following the suppression of the expression of the myogenic-inhibitory factors, Id2 and Id3. Our stepwise myogenesis-mimicking matrices will be suitable ECM models for basic biological research and myogenesis of stem cells. Further, these matrices will provide insights that improve the efficacy of decellularized ECM for muscle repair.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Natsumi Yokoyama
- Yamagata Prefectural Yonezawa Kojokan Senior High School, 1101 Oh-aza, Sasano, Yonezawa, Yamagata 992-1443, Japan
| |
Collapse
|
12
|
Zhou ZS, Li MX, Liu J, Jiao H, Xia JM, Shi XJ, Zhao H, Chu L, Liu J, Qi W, Luo J, Song BL. Competitive oxidation and ubiquitylation on the evolutionarily conserved cysteine confer tissue-specific stabilization of Insig-2. Nat Commun 2020; 11:379. [PMID: 31953408 PMCID: PMC6969111 DOI: 10.1038/s41467-019-14231-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Insig-2 is an ER membrane protein negatively controlling lipid biosynthesis. Here, we find that Insig-2 is increased in the tissues, including liver, but unaltered in the muscle of gp78-deficient mice. In hepatocytes and undifferentiated C2C12 myoblasts, Insig-2 is ubiquitylated on Cys215 by gp78 and degraded. However, the C215 residue is oxidized by elevated reactive oxygen species (ROS) during C2C12 myoblasts differentiating into myotubes, preventing Insig-2 from ubiquitylation and degradation. The stabilized Insig-2 downregulates lipogenesis through inhibiting the SREBP pathway, helping to channel the carbon flux to ATP generation and protecting myotubes from lipid over-accumulation. Evolutionary analysis shows that the YECK (in which C represents Cys215 in human Insig-2) tetrapeptide sequence in Insig-2 is highly conserved in amniotes but not in aquatic amphibians and fishes, suggesting it may have been shaped by differential selection. Together, this study suggests that competitive oxidation-ubiquitylation on Cys215 of Insig-2 senses ROS and prevents muscle cells from lipid accumulation.
Collapse
Affiliation(s)
- Zhang-Sen Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengwu Jiao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Ming Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huabin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liping Chu
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Jingrong Liu
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech Universiy, Shanghai, 201203, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400:629-638. [PMID: 30504522 DOI: 10.1515/hsz-2018-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022]
Abstract
Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, I-70124 Bari, Italy
| |
Collapse
|
14
|
Skeletal Muscle Cell Oxidative Stress as a Possible Therapeutic Target in a Denervation-Induced Experimental Sarcopenic Model. Spine (Phila Pa 1976) 2019; 44:E446-E455. [PMID: 30299418 DOI: 10.1097/brs.0000000000002891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A basic study using a rodent model of sarcopenia. OBJECTIVE To elucidate the contribution of oxidative stress to muscle degeneration and the efficacy of antioxidant treatment for sarcopenia using an animal model of neurogenic sarcopenia. SUMMARY OF BACKGROUND DATA Oxidative stress has been reported to be involved in a number of pathologies, including musculoskeletal disorders. Its relationship with sarcopenia, one of the potential origins of lower back pain, however, is not yet fully understood. METHODS Myoblast cell lines (C2C12) were treated with H2O2, an oxidative stress inducer, and N-acetyl-L-cysteine (NAC), an antioxidant. Apoptotic effects induced by oxidative stress and the antioxidant effects of NAC were assessed by western blotting, immunocytochemistry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assays. An animal model of sarcopenia was produced via axotomy of the sciatic nerves to induce muscle atrophy. Twenty-four male Sprague-Dawley rats were divided into sham, sham+NAC, axotomy, and axotomy+NAC groups. Rats were provided water only or water containing NAC (1 g/L) for 4 weeks. The gastrocnemius muscle was isolated and stained with hematoxylin and eosin (H&E) 2 weeks after axotomy, from which muscle cells were harvested and protein extracted for evaluation. RESULTS Mitogen-activated protein kinases (MAPKs) were significantly activated by H2O2 treatment in C2C12 cells, which was ameliorated by NAC pretreatment. Furthermore, H2O2 induced apoptosis and death of C2C12 cells, which was prevented by NAC pretreatment. The weight of the gastrocnemius muscle was reduced in the axotomy group, which was prevented by NAC administration. Lastly, although muscle specimens from the axotomy group showed greater reductions in muscle fiber, the oral administration of NAC significantly inhibited amyotrophy via antioxidant effects. CONCLUSION The current in vitro and in vivo study demonstrated the possible involvement of oxidative stress in sarcopenic pathology. NAC represents a potential anti-sarcopenic drug candidate, preventing amyotrophy and fatty degeneration. LEVEL OF EVIDENCE 4.
Collapse
|
15
|
Honda T, Inui M. PDZRN3 regulates differentiation of myoblasts into myotubes through transcriptional and posttranslational control of Id2. J Cell Physiol 2018; 234:2963-2972. [PMID: 30066954 DOI: 10.1002/jcp.27113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
PDZRN3 (also known as LNX3) is a member of the PDZ domain-containing RING finger protein family. We previously showed that PDZRN3 is essential for differentiation of myoblasts into myotubes and that depletion of PDZRN3 inhibits such differentiation downstream of the upregulation of myogenin, a basic helix-loop-helix (bHLH) transcription factor required for completion of the differentiation process. However, the mechanism by which PDZRN3 controls this process has remained unclear. Myogenin is rendered active during the late stage of myogenic differentiation by the downregulation of Id2, a negative regulator of bHLH transcription factors. We now show that depletion of PDZRN3 inhibits the differentiation of C2C12 cells by inducing the upregulation of Id2 and thereby delaying its downregulation. Knockdown of Id2 by RNA interference restores the differentiation of PDZRN3-depleted cells. Luciferase reporter assays revealed that a putative binding site for STAT5b in the Id2 gene promoter is required for the upregulation of Id2 expression by PDZRN3 depletion. In addition, the amount of phosphorylated Id2 was reduced and that of the nonphosphorylated protein concomitantly increased in PDZRN3-depleted cells, with the inhibitory effect of Id2 on bHLH transcription factors having previously been shown to be attenuated by phosphorylation of Id2 catalyzed by the complex of Cdk2 with cyclin A2 or E1. Indeed, the expression of cyclin A2, but not that of cyclin E1, was reduced in PDZRN3-depleted cells. Our results thus indicate that PDZRN3 plays a key role in the differentiation of myoblasts into myotubes by regulating Id2 at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
16
|
Vázquez-Ulloa E, Lizano M, Sjöqvist M, Olmedo-Nieva L, Contreras-Paredes A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev Med Virol 2018; 28:e1988. [PMID: 29956408 DOI: 10.1002/rmv.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.5 million new cancer cases per year. Seven groups of viruses have been classified as oncogenic: hepatitis B and C viruses (HBV and HCV respectively), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), human T lymphotropic virus (HTLV-1), human papillomavirus (HPV), and Merkel cell polyomavirus (MCPyV). These viruses share the ability to manipulate a variety of cell pathways that are critical in proliferation and differentiation, leading to malignant transformation. Viral proteins interact directly or indirectly with different members of the Notch pathway, altering their normal function. This review focuses exclusively on the direct interactions of viral oncoproteins with Notch elements, providing a deeper understanding of the dual behavior of the Notch pathway as activator or suppressor of neoplasia in virus-related cancers.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico Nacional de México, Instituto Tecnológico de Gustavo A. Madero, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
| | - Leslie Olmedo-Nieva
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Marunaka K, Furukawa C, Fujii N, Kimura T, Furuta T, Matsunaga T, Endo S, Hasegawa H, Anzai N, Yamazaki Y, Yamaguchi M, Ikari A. The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg 2+ regulator claudin-16 in renal tube epithelial cells. J Biol Chem 2017. [PMID: 28623232 DOI: 10.1074/jbc.m117.779405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion exchange in the renal tubules is fundamental to the maintenance of physiological ion levels. Claudin-16 (CLDN16) regulates the paracellular reabsorption of Mg2+ in the thick ascending limb of Henle's loop in the kidney, with dephosphorylation of CLDN16 increasing its intracellular distribution and decreasing paracellular Mg2+ permeability. CLDN16 is located in the tight junctions, but the mechanism regulating its localization is unclear. Using yeast two-hybrid systems, we found that CLDN16 binds to PDZRN3, a protein containing both RING-finger and PDZ domains. We also observed that the carboxyl terminus of the cytoplasmic CLDN16 region was required for PDZRN3 binding. PZDRN3 was mainly distributed in the cytosol of rat kidney cells and upon cell treatment with the protein kinase A inhibitor H-89, colocalized with CLDN16. H-89 also increased mono-ubiquitination and the association of CLDN16 with PDZRN3. Mono-ubiquitination levels of a K275A mutant were lower, and its association with PDZRN3 was reduced compared with wild-type (WT) CLDN16 and a K261A mutant, indicating that Lys-275 is the major ubiquitination site. An S217A mutant, a dephosphorylated form of CLDN16, localized to the cytosol along with PDZRN3 and the endosomal marker Rab7. PDZRN3 siRNA increased cell-surface localization of WT CLDN16 in H-89-treated cells or containing the S217A mutant and also suppressed CLDN16 endocytosis. Of note, H-89 decreased paracellular Mg2+ flux in WT CLDN16 cells, and PDZRN3 siRNA increased Mg2+ flux in the H-89-treated WT CLDN16 and S217A mutant cells. These results suggest that PDZRN3 mediates endocytosis of dephosphorylated CLDN16 and represents an important component of the CLDN16-trafficking machinery in the kidney.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Chisa Furukawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Naoko Fujii
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-8611
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196
| | - Hajime Hasegawa
- Saitama Medical Center, Saitama Medical University, Saitama 350-8550
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 321-0293
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196.
| |
Collapse
|
18
|
Ben-Avraham D, Karasik D, Verghese J, Lunetta KL, Smith JA, Eicher JD, Vered R, Deelen J, Arnold AM, Buchman AS, Tanaka T, Faul JD, Nethander M, Fornage M, Adams HH, Matteini AM, Callisaya ML, Smith AV, Yu L, De Jager PL, Evans DA, Gudnason V, Hofman A, Pattie A, Corley J, Launer LJ, Knopman DS, Parimi N, Turner ST, Bandinelli S, Beekman M, Gutman D, Sharvit L, Mooijaart SP, Liewald DC, Houwing-Duistermaat JJ, Ohlsson C, Moed M, Verlinden VJ, Mellström D, van der Geest JN, Karlsson M, Hernandez D, McWhirter R, Liu Y, Thomson R, Tranah GJ, Uitterlinden AG, Weir DR, Zhao W, Starr JM, Johnson AD, Ikram MA, Bennett DA, Cummings SR, Deary IJ, Harris TB, Kardia SLR, Mosley TH, Srikanth VK, Windham BG, Newman AB, Walston JD, Davies G, Evans DS, Slagboom EP, Ferrucci L, Kiel DP, Murabito JM, Atzmon G. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 2017; 9:209-246. [PMID: 28077804 PMCID: PMC5310665 DOI: 10.18632/aging.101151] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Joe Verghese
- Integrated Divisions of Cognitive & Motor Aging (Neurology) and Geriatrics (Medicine), Montefiore-Einstein Center for the Aging Brain, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathryn L. Lunetta
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D. Eicher
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - Rotem Vered
- Psychology Department, University of Haifa, Haifa, Israel
| | - Joris Deelen
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, Seattle, WA 98115, USA
| | - Aron S. Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Maria Nethander
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Fornage
- The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Amy M. Matteini
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Michele L. Callisaya
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Albert V. Smith
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Philip L. De Jager
- Broad Institute of Harvard and MIT, Cambridge, Harvard Medical School, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Denis A. Evans
- Rush Institute for Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Simon P. Mooijaart
- Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherland
| | - David C. Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jeanine J. Houwing-Duistermaat
- Genetical Statistics, Leiden University Medical Center, Leiden, Netherland. Department of Statistics, University of Leeds, Leeds, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Moed
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Rebekah McWhirter
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Russell Thomson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, and Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Andrew D. Johnson
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Velandai K. Srikanth
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ann B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eline P. Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Broad Institute of Harvard and MIT, Boston, MA 02131, USA
| | - Joanne M. Murabito
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gil Atzmon
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Hu T, Yang H, Han ZG. PDZRN4 acts as a suppressor of cell proliferation in human liver cancer cell lines. Cell Biochem Funct 2015; 33:443-9. [PMID: 26486104 DOI: 10.1002/cbf.3130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/12/2015] [Accepted: 08/03/2015] [Indexed: 11/11/2022]
Abstract
Recently, some reports show that Ligand of Numb Protein-X 1 (LNX1) could be a suppressor gene in gliomas, while our current research has firstly shown that PDZ domain containing ring finger 4 (PDZRN4), another member of LNX family, could also be a potential suppressor in hepatocellular carcinoma (HCC). PDZRN4, also named LNX4 (Ligand of Numb Protein-X 4), is a member of the LNX family. We recently found that PDZRN4, but not LNX1, was down-regulated in HCC samples, and the role of PDZRN4 in the progression of HCC had not been studied before. To address this question, firstly, we evaluated the expression of PDZRN4 in HCC samples and adjacent non-cancerous tissues. Semi-quantitative polymerase chain reaction showed that PDZRN4 was down-regulated in 24/36 (66.7%) HCC samples separately. In addition, our research shows that PDZRN4 is silenced in all of the 12 HCC cell lines tested. Subsequently, cell-based functional assay exhibited that ectopic expression of PDZRN4 inhibits the proliferation, plate colony formation and anchorage-independent colony formation of HCC cells. Collectively, our results showed that PDZRN4 might be a potential tumour suppressor gene and had anti-proliferative effect on HCC cell proliferation, which would be of great significance to the researches on HCC.
Collapse
Affiliation(s)
- Taotao Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center, Shanghai, Shanghai, China
| | - Hong Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) of Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center, Shanghai, Shanghai, China
| |
Collapse
|
20
|
Shin DH, Lee JW, Park JE, Choi IY, Oh HS, Kim HJ, Kim H. Multiple Genes Related to Muscle Identified through a Joint Analysis of a Two-stage Genome-wide Association Study for Racing Performance of 1,156 Thoroughbreds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:771-81. [PMID: 25925054 PMCID: PMC4412973 DOI: 10.5713/ajas.14.0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/11/2014] [Accepted: 08/14/2014] [Indexed: 12/30/2022]
Abstract
Thoroughbred, a relatively recent horse breed, is best known for its use in horse racing. Although myostatin (MSTN) variants have been reported to be highly associated with horse racing performance, the trait is more likely to be polygenic in nature. The purpose of this study was to identify genetic variants strongly associated with racing performance by using estimated breeding value (EBV) for race time as a phenotype. We conducted a two-stage genome-wide association study to search for genetic variants associated with the EBV. In the first stage of genome-wide association study, a relatively large number of markers (~54,000 single-nucleotide polymorphisms, SNPs) were evaluated in a small number of samples (240 horses). In the second stage, a relatively small number of markers identified to have large effects (170 SNPs) were evaluated in a much larger number of samples (1,156 horses). We also validated the SNPs related to MSTN known to have large effects on racing performance and found significant associations in the stage two analysis, but not in stage one. We identified 28 significant SNPs related to 17 genes. Among these, six genes have a function related to myogenesis and five genes are involved in muscle maintenance. To our knowledge, these genes are newly reported for the genetic association with racing performance of Thoroughbreds. It complements a recent horse genome-wide association studies of racing performance that identified other SNPs and genes as the most significant variants. These results will help to expand our knowledge of the polygenic nature of racing performance in Thoroughbreds.
Collapse
Affiliation(s)
- Dong-Hyun Shin
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Jin Woo Lee
- Horse Industry Research Center, Korea Racing Authority (KRA), Gwacheon 427-711,
Korea
| | - Jong-Eun Park
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Ik-Young Choi
- Genome Analysis Center, National Instrumentation and Environmental Management (NICEM), Seoul National University, Seoul 151-921,
Korea
| | - Hee-Seok Oh
- Department of Statistics, Seoul National University, Seoul 151-747,
Korea
| | | | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- C&K Genomics, Seoul 151-742,
Korea
| |
Collapse
|
21
|
PDZRN3/LNX3 is a novel target of human papillomavirus type 16 (HPV-16) and HPV-18 E6. J Virol 2014; 89:1439-44. [PMID: 25355882 DOI: 10.1128/jvi.01743-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 proteins have a C-terminal PDZ binding motif through which they bind, and target for proteasome-mediated degradation, a number of PDZ-containing cellular targets. Recent studies have suggested that the RING-containing ubiquitin-protein ligase PDZRN3 might also be an HPV E6 target. In this analysis, we show that HPV-16 and HPV-18 E6 can target PDZRN3 in a PDZ- and proteasome-dependent manner and provide a connection between the HPV life cycle and differentiation-related STAT signaling.
Collapse
|
22
|
Sewduth RN, Jaspard-Vinassa B, Peghaire C, Guillabert A, Franzl N, Larrieu-Lahargue F, Moreau C, Fruttiger M, Dufourcq P, Couffinhal T, Duplàa C. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat Commun 2014; 5:4832. [PMID: 25198863 DOI: 10.1038/ncomms5832] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/28/2014] [Indexed: 01/01/2023] Open
Abstract
Development and stabilization of a vascular plexus requires the coordination of multiple signalling processes. Wnt planar cell polarity (PCP) signalling is critical in vertebrates for diverse morphogenesis events, which coordinate cell orientation within a tissue-specific plane. However, its functional role in vascular morphogenesis is not well understood. Here we identify PDZRN3, an ubiquitin ligase, and report that Pdzrn3 deficiency impairs embryonic angiogenic remodelling and postnatal retinal vascular patterning, with a loss of two-dimensional polarized orientation of the intermediate retinal plexus. Using in vitro and ex vivo Pdzrn3 loss-of-function and gain-of-function experiments, we demonstrate a key role of PDZRN3 in endothelial cell directional and coordinated extension. PDZRN3 ubiquitinates Dishevelled 3 (Dvl3), to promote endocytosis of the Frizzled/Dvl3 complex, for PCP signal transduction. These results highlight the role of PDZRN3 to direct Wnt PCP signalling, and broadly implicate this pathway in the planar orientation and highly branched organization of vascular plexuses.
Collapse
Affiliation(s)
- Raj N Sewduth
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Béatrice Jaspard-Vinassa
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Claire Peghaire
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Aude Guillabert
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Nathalie Franzl
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | | | - Catherine Moreau
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | | | - Pascale Dufourcq
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Thierry Couffinhal
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [3] CHU de Bordeaux, Service des Maladies Cardiaques et Vasculaires, F-33000 Bordeaux, France
| | - Cécile Duplàa
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| |
Collapse
|
23
|
Honda T, Ishii A, Inui M. Regulation of adipocyte differentiation of 3T3-L1 cells by PDZRN3. Am J Physiol Cell Physiol 2013; 304:C1091-7. [DOI: 10.1152/ajpcell.00343.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PDZRN3, a member of the PDZRN (or LNX) family of proteins, is essential for the differentiation of mesenchymal stem cells into myotubes, but it plays an inhibitory role in the differentiation of these cells into osteoblasts. Given that mesenchymal stem cells also differentiate into adipocytes, we examined the possible role of PDZRN3 in adipogenesis in mouse 3T3-L1 preadipocytes. The expression of PDZRN3 decreased at both the mRNA and protein levels during adipogenic differentiation. RNAi-mediated depletion of PDZRN3 enhanced the differentiation of 3T3-L1 cells into adipocytes as assessed on the basis of lipid accumulation. The upregulation of aP2 and CCAAT/enhancer-binding protein (C/EBP)-β during adipocyte differentiation was also enhanced in the PDZRN3-depleted cells, as was the induction of peroxisome proliferator-activated receptor-γ (PPARγ), an upstream regulator of aP2 and C/EBPα, at both the mRNA and protein levels. Among transcription factors that control the expression of PPARγ, we found that STAT5b, but not STAT5a, was upregulated in PDZRN3-depleted cells at both mRNA and protein levels. Tyrosine phosphorylation of STAT5b, but not that of STAT5a, was also enhanced at an early stage of differentiation by PDZRN3 depletion. In addition, the expression of C/EBPβ during the induction of differentiation was enhanced at the mRNA and protein levels in PDZRN3-depleted cells. Our results thus suggest that PDZRN3 negatively regulates adipogenesis in 3T3-L1 cells through downregulation of STAT5b and C/EBPβ and consequent suppression of PPARγ expression.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Aiko Ishii
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
24
|
A genome-wide association study for irinotecan-related severe toxicities in patients with advanced non-small-cell lung cancer. THE PHARMACOGENOMICS JOURNAL 2012; 13:417-22. [PMID: 22664479 DOI: 10.1038/tpj.2012.24] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/26/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023]
Abstract
The identification of patients who are at high risk for irinotecan-related severe diarrhea and neutropenia is clinically important. We conducted the first genome-wide association study (GWAS) to search for novel susceptibility genes for irinotecan-related severe toxicities, such as diarrhea and neutropenia, in non-small-cell lung cancer (NSCLC) patients treated with irinotecan chemotherapy. The GWAS putatively identified 49 single-nucleotide polymorphisms (SNPs) associated with grade 3 diarrhea (G3D) and 32 SNPs associated with grade 4 neutropenia (G4N). In the replication series, the SNPs rs1517114 (C8orf34), rs1661167 (FLJ41856) and rs2745761 (PLCB1) were confirmed as being associated with G3D, whereas rs11128347 (PDZRN3) and rs11979430 and rs7779029 (SEMAC3) were confirmed as being associated with G4N. The final imputation analysis of our GWAS and replication study showed significant overlaps of association signals within these novel variants. This GWAS screen, along with subsequent validation and imputation analysis, identified novel SNPs associated with irinotecan-related severe toxicities.
Collapse
|
25
|
Kidins220/ARMS interacts with Pdzrn3, a protein containing multiple binding domains. Biochimie 2012; 94:2054-7. [PMID: 22609016 DOI: 10.1016/j.biochi.2012.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/04/2012] [Indexed: 11/22/2022]
Abstract
We report the identification of a novel partner of Kidins220/ARMS (Kinase D-interacting substrate of 220 kDa/Ankyrin Repeat-rich Membrane Spanning) an adaptor of neurotrophin receptors playing crucial roles during neurogenesis. Screening a phage display library of brain cDNA products we found that D. rerio Pdzrn3, a protein containing RING-finger and PDZ-domains, interacts with Kidins220/ARMS through its first PDZ-domain. Both zebrafish proteins share high homology with the corresponding mammalian proteins and both genes are developmentally expressed in neural districts where early neurogenesis occurs. The interaction was also confirmed by biochemical assays and by co-localization at the tips of growing neurites of PC12 cells induced with nerve growth factor.
Collapse
|
26
|
Flynn M, Saha O, Young P. Molecular evolution of the LNX gene family. BMC Evol Biol 2011; 11:235. [PMID: 21827680 PMCID: PMC3162930 DOI: 10.1186/1471-2148-11-235] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/09/2011] [Indexed: 02/07/2023] Open
Abstract
Background LNX (Ligand of Numb Protein-X) proteins typically contain an amino-terminal RING domain adjacent to either two or four PDZ domains - a domain architecture that is unique to the LNX family. LNX proteins function as E3 ubiquitin ligases and their domain organisation suggests that their ubiquitin ligase activity may be targeted to specific substrates or subcellular locations by PDZ domain-mediated interactions. Indeed, numerous interaction partners for LNX proteins have been identified, but the in vivo functions of most family members remain largely unclear. Results To gain insights into their function we examined the phylogenetic origins and evolution of the LNX gene family. We find that a LNX1/LNX2-like gene arose in an early metazoan lineage by gene duplication and fusion events that combined a RING domain with four PDZ domains. These PDZ domains are closely related to the four carboxy-terminal domains from multiple PDZ domain containing protein-1 (MUPP1). Duplication of the LNX1/LNX2-like gene and subsequent loss of PDZ domains appears to have generated a gene encoding a LNX3/LNX4-like protein, with just two PDZ domains. This protein has novel carboxy-terminal sequences that include a potential modular LNX3 homology domain. The two ancestral LNX genes are present in some, but not all, invertebrate lineages. They were, however, maintained in the vertebrate lineage, with further duplication events giving rise to five LNX family members in most mammals. In addition, we identify novel interactions of LNX1 and LNX2 with three known MUPP1 ligands using yeast two-hybrid asssays. This demonstrates conservation of binding specificity between LNX and MUPP1 PDZ domains. Conclusions The LNX gene family has an early metazoan origin with a LNX1/LNX2-like protein likely giving rise to a LNX3/LNX4-like protein through the loss of PDZ domains. The absence of LNX orthologs in some lineages indicates that LNX proteins are not essential in invertebrates. In contrast, the maintenance of both ancestral LNX genes in the vertebrate lineage suggests the acquisition of essential vertebrate specific functions. The revelation that the LNX PDZ domains are phylogenetically related to domains in MUPP1, and have common binding specificities, suggests that LNX and MUPP1 may have similarities in their cellular functions.
Collapse
Affiliation(s)
- Michael Flynn
- Department of Biochemistry, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
27
|
Murea M, Lu L, Ma L, Hicks PJ, Divers J, McDonough CW, Langefeld CD, Bowden DW, Freedman BI. Genome-wide association scan for survival on dialysis in African-Americans with type 2 diabetes. Am J Nephrol 2011; 33:502-9. [PMID: 21546767 DOI: 10.1159/000327985] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/17/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND African-Americans (AAs) with diabetes have high incidence rates of end-stage renal disease (ESRD) with associated high mortality. Genetic factors modulating the risk of mortality on dialysis are poorly understood. METHODS A genome-wide association study was performed in 610 AAs with type 2 diabetes (T2D) and ESRD on dialysis, using the Affymetrix 6.0 platform (868,155 SNPs). Time to death was assessed using Cox proportional hazards model adjusting for ancestry and other confounding variables. Cases were censored at kidney transplant or (if living) at study conclusion. RESULTS Mean follow-up was 5.4 ± 3.5 years; 434 deaths were recorded. Five SNPs were associated with time to death at p < 1.00 × 10(-6): rs2681019 (HR = 2.58, P(REC) = 8.00 × 10(-8)), rs815815 in CALM2 (HR = 1.51, P(ADD) = 6.50 × 10(-7)), rs926392 (HR = 2.37, P(REC) = 4.80 × 10(-7)), and rs926391 (HR = 2.30, P(REC) = 7.30 × 10(-7)) near DHX35, and rs11128347 in PDZRN3 (HR = 0.57, P(ADD) = 6.00 × 10(-7)). Other SNPs had nominal associations with time to death (p < 1.00 × 10(-5)). CONCLUSION Genetic variation may modify the risk of death on dialysis. SNPs in proximity to genes regulating vascular extracellular matrix, cardiac ventricular repolarization, and smoking cessation are associated with dialysis survival in AAs with T2D. These results warrant replication in other cohorts and races.
Collapse
Affiliation(s)
- Mariana Murea
- Department of Internal Medicine, Section on Nephrology, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157-1053, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Honda T, Yamamoto H, Ishii A, Inui M. PDZRN3 negatively regulates BMP-2-induced osteoblast differentiation through inhibition of Wnt signaling. Mol Biol Cell 2010; 21:3269-77. [PMID: 20668165 PMCID: PMC2938391 DOI: 10.1091/mbc.e10-02-0117] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PDZRN3, a member of the PDZ domain–containing RING finger family of proteins plays an important role in negative feedback control of BMP-2–induced osteoblast differentiation in C2C12 mouse mesenchymal progenitor cells through inhibition of Wnt–β-catenin signaling. PDZRN3 is a member of the PDZ domain–containing RING finger family of proteins. We previously showed that PDZRN3 is essential for the differentiation of C2C12 mouse mesenchymal progenitor cells into myotubes. Mesenchymal progenitor cells differentiate into osteoblasts, chondrocytes, and adipocytes in addition to myotubes, and we have now examined the potential role of PDZRN3 in the differentiation of C2C12 cells into osteoblasts. The abundance of PDZRN3 in C2C12 cells was increased after the induction of osteoblast differentiation by exposure to bone morphogenetic protein (BMP)-2 in low-serum medium. Depletion of PDZRN3 in C2C12 cells by RNA interference resulted in marked enhancement of the BMP-2–induced up-regulation of alkaline phosphatase (ALP) activity. Dkk1, an inhibitor of Wnt signaling, markedly attenuated the enhancement of the BMP-2–induced increase in ALP activity by PDZRN3 depletion. The up-regulation of ALP activity by Wnta3a was also promoted by depletion of PDZRN3. Furthermore, the expression and Wnt3a-induced phosphorylation of LRP6 as well as the increase in the cytosolic abundance of β-catenin induced by Wnt3a were potentiated in PDZRN3-depleted cells. These results indicate that PDZRN3 plays an important role in negative feedback control of BMP-2–induced osteoblast differentiation in C2C12 cells through inhibition of Wnt–β-catenin signaling.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Sema4D/CD100 is a type of class 4 semaphorin, exhibiting crucial roles in growth cone guidance in developing neurons. Sema4D is widely expressed throughout the central nervous system in embryonic mouse brain, and is selectively localized to oligodendrocytes and myelin in the postnatal brain. However, direct evidence of the actual involvement of Sema4D in the neuronal network development crucial for neurobehavioral performance is still lacking. The present study therefore examined whether Sema4D deficiency leads to abnormal behavioral development. METHODS Both wild-type and Sema4D-deficient mice were subjected to behavioral analyses including open-field, adhesive tape removal, rotarod tests and a water maze task. RESULTS Open-field tests revealed increased locomotor activity in Sema4D-deficient mice with less percentage of time spent in the center of the field. In both the adhesive tape removal and rotarod tests, which examine motor coordination and balance, Sema4D-deficient mice showed significantly superior performance, suggesting facilitated motor behavior. Both Sema4D-deficient and wild-type mice successfully learnt the water maze task, locating a hidden escape platform, and also showed precise memory for the platform position in probe tests. However, the swimming speed of Sema4D-deficient mice was significantly faster than that of wild-type mice, providing further evidence of their accelerated motor behavior. CONCLUSION Our mouse behavioral analyses revealed enhanced motor activity in Sema4D-deficient mice, suggesting the crucial involvement of Sema4D in the neurodevelopmental processes of the central structures mediating motor behavior in mice.
Collapse
|
30
|
De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 2009; 4:e4907. [PMID: 19300518 PMCID: PMC2654672 DOI: 10.1371/journal.pone.0004907] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/28/2009] [Indexed: 12/21/2022] Open
Abstract
Background The pathophysiology of obesity and type 2 diabetes mellitus is associated with abnormalities in endocrine signaling in adipose tissue and one of the key signaling affectors operative in these disorders is the nuclear hormone transcription factor peroxisome proliferator-activated receptor-γ (PPARγ). PPARγ has pleiotropic functions affecting a wide range of fundamental biological processes including the regulation of genes that modulate insulin sensitivity, adipocyte differentiation, inflammation and atherosclerosis. To date, only a limited number of direct targets for PPARγ have been identified through research using the well established pre-adipogenic cell line, 3T3-L1. In order to obtain a genome-wide view of PPARγ binding sites, we applied the pair end-tagging technology (ChIP-PET) to map PPARγ binding sites in 3T3-L1 preadipocyte cells. Methodology/Principal Findings Coupling gene expression profile analysis with ChIP-PET, we identified in a genome-wide manner over 7700 DNA binding sites of the transcription factor PPARγ and its heterodimeric partner RXR during the course of adipocyte differentiation. Our validation studies prove that the identified sites are bona fide binding sites for both PPARγ and RXR and that they are functionally capable of driving PPARγ specific transcription. Our results strongly indicate that PPARγ is the predominant heterodimerization partner for RXR during late stages of adipocyte differentiation. Additionally, we find that PPARγ/RXR association is enriched within the proximity of the 5′ region of the transcription start site and this association is significantly associated with transcriptional up-regulation of genes involved in fatty acid and lipid metabolism confirming the role of PPARγ as the master transcriptional regulator of adipogenesis. Evolutionary conservation analysis of these binding sites is greater when adjacent to up-regulated genes than down-regulated genes, suggesting the primordial function of PPARγ/RXR is in the induction of genes. Our functional validations resulted in identifying novel PPARγ direct targets that have not been previously reported to promote adipogenic differentiation. Conclusions/Significance We have identified in a genome-wide manner the binding sites of PPARγ and RXR during the course of adipogenic differentiation in 3T3L1 cells, and provide an important resource for the study of PPARγ function in the context of adipocyte differentiation.
Collapse
|
31
|
Arrell DK, Niederländer NJ, Faustino RS, Behfar A, Terzic A. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells 2007; 26:387-400. [PMID: 17991915 DOI: 10.1634/stemcells.2007-0599] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the developing embryo, instructive guidance from the ventral endoderm secures cardiac program induction within the anterolateral mesoderm. Endoderm-guided cardiogenesis, however, has yet to be resolved at the proteome level. Here, through cardiopoietic priming of the endoderm with the reprogramming cytokine tumor necrosis factor alpha (TNFalpha), candidate effectors of embryonic stem cell cardiac differentiation were delineated by comparative proteomics. Differential two-dimensional gel electrophoretic mapping revealed that more than 75% of protein species increased >1.5-fold in the TNFalpha-primed versus unprimed endodermal secretome. Protein spot identification by linear ion trap quadrupole (LTQ) tandem mass spectrometry (MS/MS) and validation by shotgun LTQ-Fourier transform MS/MS following multidimensional chromatography mapped 99 unique proteins from 153 spot assignments. A definitive set of 48 secretome proteins was deduced by iterative bioinformatic screening using algorithms for detection of canonical and noncanonical indices of secretion. Protein-protein interaction analysis, in conjunction with respective expression level changes, revealed a nonstochastic TNFalpha-centric secretome network with a scale-free hierarchical architecture. Cardiovascular development was the primary developmental function of the resolved TNFalpha-anchored network. Functional cooperativity of the derived cardioinductive network was validated through direct application of the TNFalpha-primed secretome on embryonic stem cells, potentiating cardiac commitment and sarcomerogenesis. Conversely, inhibition of primary network hubs negated the procardiogenic effects of TNFalpha priming. Thus, proteomic cartography establishes a systems biology framework for the endodermal secretome network guiding stem cell cardiopoiesis.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departmentsof Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
32
|
Lu Z, Je HS, Young P, Gross J, Lu B, Feng G. Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. ACTA ACUST UNITED AC 2007; 177:1077-89. [PMID: 17576800 PMCID: PMC2064367 DOI: 10.1083/jcb.200610060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin–proteasome pathway has been implicated in synaptic development and plasticity. However, mechanisms by which ubiquitination contributes to precise and dynamic control of synaptic development and plasticity are poorly understood. We have identified a PDZ domain containing RING finger 3 (PDZRN3) as a synapse-associated E3 ubiquitin ligase and have demonstrated that it regulates the surface expression of muscle-specific receptor tyrosine kinase (MuSK), the key organizer of postsynaptic development at the mammalian neuromuscular junction. PDZRN3 binds to MuSK and promotes its ubiquitination. Regulation of cell surface levels of MuSK by PDZRN3 requires the ubiquitin ligase domain and is mediated by accelerated endocytosis. Gain- and loss-of-function studies in cultured myotubes show that regulation of MuSK by PDZRN3 plays an important role in MuSK-mediated nicotinic acetylcholine receptor clustering. Furthermore, overexpression of PDZRN3 in skeletal muscle of transgenic mice perturbs the growth and maturation of the neuromuscular junction. These results identify a synapse-associated E3 ubiquitin ligase as an important regulator of MuSK signaling.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|