1
|
Hashimoto K, Ohira M, Kodama A, Kimoto M, Inoue M, Toné S, Usui Y, Hanashima A, Goto T, Ogura Y, Ujihara Y, Mohri S. Loss of connectin novex-3 leads to heart dysfunction associated with impaired cardiomyocyte proliferation and abnormal nuclear mechanics. Sci Rep 2024; 14:13727. [PMID: 38877142 PMCID: PMC11178842 DOI: 10.1038/s41598-024-64608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Momoko Ohira
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Mariko Inoue
- Central Research Institute, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shigenobu Toné
- Laboratory of Molecular Developmental Biology, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama, 350-0394, Japan
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Takato Goto
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yuhei Ogura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
2
|
Forer A, Otsuka S. Structural evidence for elastic tethers connecting separating chromosomes in crane-fly spermatocytes. Life Sci Alliance 2023; 6:e202302303. [PMID: 37591724 PMCID: PMC10435969 DOI: 10.26508/lsa.202302303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Different types of anaphase bridges are reported to form between segregating chromosomes during cell division. Previous studies using laser microsurgery suggested that elastic tethers connect the telomeres of separating anaphase chromosomes in many animal meiotic and mitotic cells. However, structural evidence is lacking for their existence. In this study, by correlating live imaging with electron tomography, we examined whether visible structures connect separating telomeres in meiosis I of crane-fly primary spermatocytes. We found structures extending between separating telomeres in all stages of anaphase. The structures consist of two components: one is darkly stained, looking somewhat like chromatin, whereas the other is more lightly stained, appearing filamentous. Although in early anaphase both structures extend between telomeres, in later anaphase, the darker structure extends shorter distances from the telomeres but the lighter structure still extends between the separating telomeres. From these observations, we deduced that these structures represent the "tethers" inferred from the laser-cutting experiments. Because elastic tethers have been detected in a variety of animal cells, they probably are present during anaphase in all animal cells.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, Canada
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria
| |
Collapse
|
3
|
Forer A, Adil A, Berns MW. Blocking Protein Phosphatase 1 [PP1] Prevents Loss of Tether Elasticity in Anaphase Crane-Fly Spermatocytes. Front Mol Biosci 2021; 8:636746. [PMID: 34169091 PMCID: PMC8218814 DOI: 10.3389/fmolb.2021.636746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
In normal anaphase cells, telomeres of each separating chromosome pair are connected to each other by tethers. Tethers are elastic at the start of anaphase: arm fragments cut from anaphase chromosomes in early anaphase move across the equator to the oppositely-moving chromosome, telomere moving toward telomere. Tethers become inelastic later in anaphase as the tethers become longer: arm fragments no longer move to their partners. When early anaphase cells are treated with Calyculin A (CalA), an inhibitor of protein phosphatases 1 (PP1) and 2A (PP2A), at the end of anaphase chromosomes move backward from the poles, with telomeres moving toward partner telomeres. Experiments described herein show that in cells treated with CalA, backwards movements are stopped in a variety of ways, by cutting the tethers of backwards moving chromosomes, by severing arms of backwards moving chromosomes, by severing arms before the chromosomes reach the poles, and by cutting the telomere toward which a chromosome is moving backwards. Measurements of arm-fragment velocities show that CalA prevents tethers from becoming inelastic as they lengthen. Since treatment with CalA causes tethers to remain elastic throughout anaphase and since inhibitors of PP2A do not cause the backwards movements, PP1 activity during anaphase causes the tethers to become inelastic.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, ON, Canada
| | - Aisha Adil
- Biology Department, York University, Toronto, ON, Canada
| | - Michael W Berns
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Surgery, University of California, Irvine, Irvine, CA, United States.,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Kite E, Forer A. The role of phosphorylation in the elasticity of the tethers that connect telomeres of separating anaphase chromosomes. Nucleus 2020; 11:19-31. [PMID: 31948316 PMCID: PMC6973318 DOI: 10.1080/19491034.2019.1710329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Elastic tethers, connecting telomeres of all separating anaphase chromosome pairs, lose elasticity when they lengthen during anaphase. Treatment with phosphatase inhibitor CalyculinA causes anaphase chromosomes to move backwards after they reach the poles, suggesting that dephosphorylation causes loss of tether elasticity. We added 50nM CalyculinA to living anaphase crane-fly spermatocytes with different length tethers. When tethers were short, almost all partner chromosomes moved backwards after nearing the poles. When tethers were longer, fewer chromosomes moved backwards. With yet longer tethers none moved backward. This is consistent with tether elasticity being lost by dephosphorylation. 50nM CalyculinA blocks both PP1 and PP2A. To distinguish between PP1 and PP2A we treated cells with short tethers with 50nM okadaic acid which blocks solely PP2A, or with 1µM okadaic acid which blocks both PP1 and PP2A. Only 1µM okadaic acid caused chromosomes to move backward. Thus, tether elasticity is lost because of dephosphorylation by PP1.
Collapse
Affiliation(s)
- Emma Kite
- Biology Department, York University, Toronto, Ontario, Canada
| | - Arthur Forer
- Biology Department, York University, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Forer A, Berns MW. Elastic Tethers Between Separating Anaphase Chromosomes Regulate the Poleward Speeds of the Attached Chromosomes in Crane-Fly Spermatocytes. Front Mol Biosci 2020; 7:161. [PMID: 32850955 PMCID: PMC7405647 DOI: 10.3389/fmolb.2020.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Elastic "tethers" connect separating anaphase chromosomes in most (or all) animal cells. We tested whether tethers are involved in coordinating movements of separating anaphase chromosomes in crane-fly spermatocytes. In these cells the coupled movements of separating chromosomes become uncoupled after the tethers are severed by laser microbeam irradiation of the interzone region between the chromosomes (Sheykhani et al., 2017). While this strongly suggests that tethers are involved with coordinating the poleward chromosome movements, the experiments are open to another interpretation: laser irradiations that cut the tethers also might damage something else in the interzone, and those non-tether components might regulate chromosome movements. In the experiments reported herein we distinguish between those two possibilities by disabling the tethers without cutting the interzone. We cut the arms from individual chromosomes, thereby severing the mechanical connection between separating chromosomes, disconnecting them, without damaging components in the interzone. Disabling tethers in this way uncoupled the movements of the separating chromosomes. We thus conclude that tethers are involved in regulating the speeds of separating anaphase chromosomes in crane-fly spermatocytes.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, ON, Canada
| | - Michael W. Berns
- Department of Surgery, Biomedical Engineering and Developmental and Cell Biology, Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
- Department of Bioengineering, Institute for Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma 2019; 128:53-67. [PMID: 30617552 DOI: 10.1007/s00412-018-00689-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023]
Abstract
Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. This response can be more or less local, depending on the organ or tissue affected by the parasite, or else systemic when the parasite affects the entire host body. The most extreme of the latter cases is intragenomic parasitism, where the parasite is present in all host nuclei as any other genomic element. Here, we show the molecular crosstalk between a parasitic chromosome (also named B chromosome) and the host genome, manifested through gene expression changes. The transcriptome analysis of 0B and 1B females of the grasshopper Eyprepocnemis plorans, validated by a microarray experiment performed on four B-lacking and five B-carrying females, revealed changes in gene expression for 188 unigenes being consistent in both experiments. Once discarded B-derived transcripts, there were 46 differentially expressed genes (30 up- and 16 downregulated) related with the adaptation of the host genome to the presence of the parasitic chromosome. Interestingly, the functions of these genes could explain some of the most important effects of B chromosomes, such as nucleotypic effects derived from the additional DNA they represent, chemical defense and detoxification, protein modification and response to stress, ovary function, and regulation of gene expression. Collectively, these changes uncover an intimate host-parasite interaction between A and B chromosomes during crucial steps of gene expression and protein function.
Collapse
|
7
|
Goodenough U, Roth R, Kariyawasam T, He A, Lee JH. Epiplasts: Membrane Skeletons and Epiplastin Proteins in Euglenids, Glaucophytes, Cryptophytes, Ciliates, Dinoflagellates, and Apicomplexans. mBio 2018; 9:e02020-18. [PMID: 30377285 PMCID: PMC6212826 DOI: 10.1128/mbio.02020-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Animals and amoebae assemble actin/spectrin-based plasma membrane skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates (ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, viscoelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts include a class of proteins, here called the epiplastins, with a head/medial/tail domain organization, whose medial domains have been characterized in previous studies by their low-complexity amino acid composition. We have identified two additional features of the medial domains: a strong enrichment of acid/base amino acid dyads and a predicted β-strand/random coil secondary structure. These features have served to identify members in two additional unicellular eukaryotic radiations-the glaucophytes and cryptophytes-as well as additional members in the alveolates and euglenids. We have analyzed the amino acid composition and domain structure of 219 epiplastin sequences and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also encoded in Insecta, Basidiomycetes, and Caulobacter genomes. We discuss the diverse cellular traits that are supported by epiplasts and propose evolutionary scenarios that are consonant with their distribution in extant eukaryotes.IMPORTANCE Membrane skeletons associate with the inner surface of the plasma membrane to provide support for the fragile lipid bilayer and an elastic framework for the cell itself. Several radiations, including animals, organize such skeletons using actin/spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including disease-causing parasites such as Plasmodium, have been known to construct an alternative and essential skeleton (the epiplast) using a class of proteins that we term epiplastins. We have identified epiplastins in two additional radiations and present images of their epiplasts using electron microscopy. We analyze the sequences and secondary structure of 219 epiplastins and present an in-depth overview and analysis of their known and posited roles in cellular organization and parasite infection. An understanding of epiplast assembly may suggest therapeutic approaches to combat infectious agents such as Plasmodium as well as approaches to the engineering of useful viscoelastic biofilms.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Robyn Roth
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amelia He
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Fegaras E, Forer A. Precocious cleavage furrows simultaneously move and ingress when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1401-1411. [PMID: 29564559 DOI: 10.1007/s00709-018-1239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A "precocious" cleavage furrow develops and ingresses during early prometaphase in Mesostoma ehrenbergii spermatocytes (Forer and Pickett-Heaps Eur J Cell Biol 89:607-618, 2010). In response to chromosome movements which regularly occur during prometaphase and that alter the balance of chromosomes in the two half-spindles, the precocious furrow shifts its position along the cell, moving 2-3 μm towards the half cell with fewer chromosomes (Ferraro-Gideon et al. Cell Biol Int 37:892-898, 2013). This process continues until proper segregation is achieved and the cell enters anaphase with the cleavage furrow again in the middle of the cell. At anaphase, the furrow recommences ingression. Spindle microtubules (MTs) are implicated in various furrow positioning models, and our experiments studied the responses of the precocious furrows to the absence of spindle MTs. We depolymerized spindle MTs during prometaphase using various concentrations of nocodazole (NOC) and colcemid. The expected result is that the furrow should regress and chromosomes remain in the midzone of the cell (Cassimeris et al. J Cell Sci 96:9-15, 1990). Instead, the furrows commenced ingression and all three bivalent chromosomes moved to one pole while the univalent chromosomes, that usually reside at the two poles, either remained at their poles or moved to the opposite pole along with the bivalents, as described elsewhere (Fegaras and Forer 2018). The microtubules were completely depolymerized by the drugs, as indicated by immunofluorescence staining of treated cells (Fegaras and Forer 2018), and in the absence of microtubules, the furrows often ingressed (in 33/61 cells) at a rate similar to normal anaphase ingression (~ 1 μm/min), while often simultaneously moving toward one pole. Thus, these results indicate that in the absence of anaphase and of spindle microtubules, cleavage furrows resume ingression.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
9
|
Nuclear connectin novex-3 promotes proliferation of hypoxic foetal cardiomyocytes. Sci Rep 2018; 8:12337. [PMID: 30120340 PMCID: PMC6098106 DOI: 10.1038/s41598-018-30886-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Loss of cardiomyocyte proliferative capacity after birth is a major obstacle for therapeutic heart regeneration in adult mammals. We and others have recently shown the importance of hypoxic in utero environments for active foetal cardiomyocyte proliferation. Here, we report the unexpected expression of novex-3, the short splice variant of the giant sarcomeric protein connectin (titin), in the cardiomyocyte nucleus specifically during the hypoxic foetal stage in mice. This nuclear localisation appeared to be regulated by the N-terminal region of novex-3, which contains the nuclear localisation signal. Importantly, the nuclear expression of novex-3 in hypoxic foetal cardiomyocytes was repressed at the postnatal stage following the onset of breathing and the resulting elevation of oxygen tension, whereas the sarcomeric expression remained unchanged. Novex-3 knockdown in foetal cardiomyocytes repressed cell cycle-promoting genes and proliferation, whereas novex-3 overexpression enhanced proliferation. Mechanical analysis by atomic force microscopy and microneedle-based tensile tests demonstrated that novex-3 expression in hypoxic foetal cardiomyocytes contributes to the elasticity/compliance of the nucleus at interphase and facilitates proliferation, by promoting phosphorylation-induced disassembly of multimer structures of nuclear lamins. We propose that novex-3 has a previously unrecognised role in promoting cardiomyocyte proliferation specifically at the hypoxic foetal stage.
Collapse
|
10
|
Fegaras E, Forer A. Chromosomes selectively detach at one pole and quickly move towards the opposite pole when kinetochore microtubules are depolymerized in Mesostoma ehrenbergii spermatocytes. PROTOPLASMA 2018; 255:1205-1224. [PMID: 29468300 DOI: 10.1007/s00709-018-1214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
In a typical cell division, chromosomes align at the metaphase plate before anaphase commences. This is not the case in Mesostoma spermatocytes. Throughout prometaphase, the three bivalents persistently oscillate towards and away from either pole, at average speeds of 5-6 μm/min, without ever aligning at a metaphase plate. In our experiments, nocodazole (NOC) was added to prometaphase spermatocytes to depolymerize the microtubules. Traditional theories state that microtubules are the producers of force in the spindle, either by tubulin depolymerizing at the kinetochore (PacMan) or at the pole (Flux). Accordingly, if microtubules are quickly depolymerized, the chromosomes should arrest at the metaphase plate and not move. However, in 57/59 cells, at least one chromosome moved to a pole after NOC treatment, and in 52 of these cells, all three bivalents moved to the same pole. Thus, the movements are not random to one pole or other. After treatment with NOC, chromosome movement followed a consistent pattern. Bivalents stretched out towards both poles, paused, detached at one pole, and then the detached kinetochores quickly moved towards the other pole, reaching initial speeds up to more than 200 μm/min, much greater than anything previously recorded in this cell. As the NOC concentration increased, the average speeds increased and the microtubules disappeared faster. As the kinetochores approached the pole, they slowed down and eventually stopped. Similar results were obtained with colcemid treatment. Confocal immunofluorescence microscopy confirms that microtubules are not associated with moving chromosomes. Thus, these rapid chromosome movements may be due to non-microtubule spindle components such as actin-myosin or the spindle matrix.
Collapse
Affiliation(s)
- Eleni Fegaras
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Arthur Forer
- Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
11
|
Paliulis LV, Forer A. A review of "tethers": elastic connections between separating partner chromosomes in anaphase. PROTOPLASMA 2018; 255:733-740. [PMID: 29307016 DOI: 10.1007/s00709-017-1201-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Recent work has demonstrated the existence of elastic connections, or tethers, between the telomeres of separating partner chromosomes in anaphase. These tethers oppose the poleward spindle forces in anaphase. Functional evidence for tethers has been found in a wide range of animal taxa, suggesting that they might be present in all dividing cells. An examination of the literature on cell division from the nineteenth century to the present reveals that connections between separating partner chromosomes in anaphase have been described in some of the earliest observations of cell division. Here, we review what is currently known about connections between separating partner chromosomes in anaphase, and we speculate on possible functions of tethers, and on what they are made of and how one might determine their composition.
Collapse
Affiliation(s)
| | - Arthur Forer
- Biology Department, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
12
|
Sheykhani R, Berns M, Forer A. Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles. Cytoskeleton (Hoboken) 2017; 74:91-103. [PMID: 27935262 DOI: 10.1002/cm.21347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022]
Abstract
Separating anaphase chromosomes in crane-fly spermatocytes are connected by elastic tethers, as originally described by LaFountain et al. (2002): telomere-containing arm fragments severed from the arms move backwards to the partner telomeres. We have tested whether the tethers coordinate the movements of separating partner chromosomes. In other cell types anaphase chromosomes move faster, temporarily, when their kinetochore microtubules are severed. However, in crane-fly spermatocytes the chromosomes move at their usual speed when their kinetochore microtubules are severed. To test whether the absence of increased velocity is because tethers link the separating chromosomes and coordinate their movements, we cut tethers with a laser microbeam and then cut the kinetochore microtubules. After this procedure, the associated chromosome sped up, as in other cells. These results indicate that the movements of partner anaphase chromosomes in crane-fly spermatocytes are coordinated by elastic tethers connecting the two chromosomes and confirm that chromosomes speed up in anaphase when their kinetochore microtubules are severed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Biology Department, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Michael Berns
- Beckman Laser Institute and Department of Biomedical Engineering, University of California, Irvine, CA, 92617.,Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego 92093
| | - Arthur Forer
- Biology Department, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
13
|
Forer A, Duquette ML, Paliulis LV, Fegaras E, Ono M, Preece D, Berns MW. Elastic 'tethers' connect separating anaphase chromosomes in a broad range of animal cells. Eur J Cell Biol 2017; 96:504-514. [PMID: 28780966 DOI: 10.1016/j.ejcb.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023] Open
Abstract
We describe the general occurrence in animal cells of elastic components ("tethers") that connect individual chromosomes moving to opposite poles during anaphase. Tethers, originally described in crane-fly spermatocytes, exert force on chromosome arms opposite to the direction the anaphase chromosomes move. We show that they exist in a broad range of animal cells. Thus tethers are previously unrecognised components of general mitotic mechanisms that exert force on chromosomes and they need to be accounted for in general models of mitosis in terms of forces on chromosomes and in terms of what their roles might be.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, Ontario, M3J 1P3, Canada.
| | - Michelle L Duquette
- Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego 92093, United States
| | | | - E Fegaras
- Biology Department, York University, North York, Ontario, M3J 1P3, Canada
| | - M Ono
- Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego 92093, United States
| | - D Preece
- Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego 92093, United States
| | - Michael W Berns
- Department of Bioengineering and Institute for Engineering in Medicine, University of California, San Diego 92093, United States; Beckman Laser Institute and Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States.
| |
Collapse
|
14
|
Yakupova EI, Vikhlyantsev IM, Bobyleva LG, Penkov NV, Timchenko AA, Timchenko MA, Enin GA, Khutzian SS, Selivanova OM, Bobylev AG. Different amyloid aggregation of smooth muscles titin in vitro. J Biomol Struct Dyn 2017; 36:2237-2248. [PMID: 28661225 DOI: 10.1080/07391102.2017.1348988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comparative study of amyloid properties of the aggregates of smooth muscle titin (SMT) from chicken gizzard was carried out. These aggregates were formed in two solutions: 0.15 M glycine-KOH, pH 7.2-7.4 (SMT(Gly)) and 0.2 M KCl, 10 mM imidazole, pH 7.0 (SMT(KCl)). Electron microscopy data showed that SMT aggregates has an amorphous structure in both cases. The results of atomic-force microscopy demonstrated slight differences in morphology in two types of aggregates. The SMT(Gly) aggregates were represented as branching chains, composed of spherical aggregates approximately 300-500 nm in diameter and up to 35 nm in height. The SMT(KCl) aggregates formed sponge-like structures with strands of 8-10 nm in height. Structural analysis of SMT aggregates by X-ray diffraction revealed the presence of cross-β-sheet structure in the samples under study. In the presence of SMT(Gly) aggregates, thioflavine T fluorescence intensity was higher (~3-fold times) compared with that in the presence of SMT(KCl) aggregates. Congo red-stained SMT(Gly) aggregates had yellow to apple-green birefringence under polarized light, which was not observed for SMT(KCl) aggregates. Dynamic light scattering data showed the similar rate of aggregation for both types of aggregates, though SMT(KCl) aggregates were able to partially disaggregate under increased ionic strength of the solution. The ability of SMT to aggregation followed by disaggregation may be functionally significant in the cell.
Collapse
Affiliation(s)
- Elmira I Yakupova
- a Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia.,b Pushchino State Institute of Natural Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Ivan M Vikhlyantsev
- a Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia.,b Pushchino State Institute of Natural Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Liya G Bobyleva
- a Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Nikita V Penkov
- c Institute of Cell Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Alexander A Timchenko
- d Institute of Protein Research, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Maria A Timchenko
- a Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Gennady A Enin
- d Institute of Protein Research, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Sergei S Khutzian
- a Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia.,c Institute of Cell Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Olga M Selivanova
- d Institute of Protein Research, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Alexander G Bobylev
- a Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia.,b Pushchino State Institute of Natural Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
15
|
Hintermair C, Voß K, Forné I, Heidemann M, Flatley A, Kremmer E, Imhof A, Eick D. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep 2016; 6:27401. [PMID: 27264542 PMCID: PMC4893663 DOI: 10.1038/srep27401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022] Open
Abstract
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.
Collapse
Affiliation(s)
- Corinna Hintermair
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Kirsten Voß
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| | - Andrew Flatley
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Axel Imhof
- Biomedical Center Munich, Center of Integrated Protein Science (CIPSM), ZFP, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science (CIPSM), Marchioninistrasse 25, 81377 Munich, Germany
| |
Collapse
|
16
|
Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 2015; 163:108-22. [PMID: 26388440 DOI: 10.1016/j.cell.2015.08.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/09/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low-complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Shusheng Wang
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Yuejia Huang
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Xiaonan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
17
|
He L, Cao G, Huang M, Xue R, Hu X, Gong C. Expression pattern of immunoglobulin superfamily members in the silkworm, Bombyx mori. Gene 2014; 548:198-209. [PMID: 25020261 DOI: 10.1016/j.gene.2014.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022]
Abstract
Immunoglobulin superfamily (IgSF) proteins are involved in cell adhesion, cell communication and immune functions. In this study, 152 IgSF genes containing at least one immunoglobulin (Ig) domain were predicted in the Bombyx mori silkworm genome. Of these, 145 were distributed on 25 chromosomes with no genes on chromosomes 16, 18 and 26. Multiple sequence alignments and phylogenetic evolution analysis indicated that IgSFs evolved rapidly. Gene ontology (GO) annotation indicated that IgSF members functioned as cellular components and in molecular functions and biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IgSF proteins were involved in signal transduction, signaling molecules and interaction, and cell communication. Microarray-based expression data showed tissue expression for 136 genes in anterior silkgland, middle silkgland, posterior silkgland, testis, ovary, fat body, midgut, integument, hemocyte, malpighian tubule and head. Expression pattern of IgSF genes in the silkworm ovary and midgut was analyzed by RNA-Seq. Expression of 105 genes was detected in the ovary in strain Dazao. Expression in the midgut was detected for 74 genes in strain Lan5 and 75 genes in strain Ou17. Expression of 34 IgSF genes in the midgut relative to the actin A3 gene was significantly different between strains Lan5 and Ou17. Furthermore, 1 IgSF gene was upregulated and 1 IgSF gene was downregulated in strain Lan5, and 4 IgSF genes were upregulated and 2 IgSF genes were downregulated in strain Ou17 after silkworms were challenged with B. mori cypovirus (BmCPV), indicating potential involvement in the response to BmCPV-infection. These results provide an overview of IgSF family members in silkworms, and lay the foundation for further functional studies.
Collapse
Affiliation(s)
- Lei He
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Moli Huang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China.
| |
Collapse
|
18
|
Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat 2014; 35:1046-59. [PMID: 24980681 DOI: 10.1002/humu.22611] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/20/2014] [Indexed: 01/10/2023]
Abstract
The 364 exon TTN gene encodes titin (TTN), the largest known protein, which plays key structural, developmental, mechanical, and regulatory roles in cardiac and skeletal muscles. Prior to next-generation sequencing (NGS), routine analysis of the whole TTN gene was impossible due to its giant size and complexity. Thus, only a few TTN mutations had been reported and the general incidence and spectrum of titinopathies was significantly underestimated. In the last months, due to the widespread use of NGS, TTN is emerging as a major gene in human-inherited disease. So far, 127 TTN disease-causing mutations have been reported in patients with at least 10 different conditions, including isolated cardiomyopathies, purely skeletal muscle phenotypes, or infantile diseases affecting both types of striated muscles. However, the identification of TTN variants in virtually every individual from control populations, as well as the multiplicity of TTN isoforms and reference sequences used, stress the difficulties in assessing the relevance, inheritance, and correlation with the phenotype of TTN sequence changes. In this review, we provide the first comprehensive update of the TTN mutations reported and discuss their distribution, molecular mechanisms, associated phenotypes, transmission pattern, and phenotype-genotype correlations, alongside with their implications for basic research and for human health.
Collapse
Affiliation(s)
- Claire Chauveau
- Inserm, U787 Myology Group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; UPMC, UMR787, Paris, France
| | | | | |
Collapse
|
19
|
Schweizer N, Weiss M, Maiato H. The dynamic spindle matrix. Curr Opin Cell Biol 2014; 28:1-7. [DOI: 10.1016/j.ceb.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
20
|
Yatsenko AS, Shcherbata HR. Drosophila miR-9a targets the ECM receptor Dystroglycan to canalize myotendinous junction formation. Dev Cell 2014; 28:335-48. [PMID: 24525189 DOI: 10.1016/j.devcel.2014.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 01/12/2023]
Abstract
Establishment of intercellular interactions between various cell types of different origin is vital for organism development and tissue maintenance. Therefore, precise timing, expression pattern, and amounts of extracellular matrix (ECM) proteins must be tightly regulated. Particularly, the ECM is important for the development and function of myotendinous junctions (MTJs). We find that precise levels of the ECM receptor Dystroglycan (Dg) are required for MTJ formation in Drosophila and that Dg levels in this process are controlled by miR-9a. In the embryo, Dg is enriched at the termini of the growing muscles facing the tendon matrix and absent from miR-9a-expressing tendons. This gradient of Dg expression is crucial for proper muscle-tendon attachments and is adjusted by miR-9a. In addition to Dg, miR-9a regulates the expression of several other critical muscle genes, and we therefore propose that during embryogenesis, miR-9a specifically controls the expression of mesodermal genes to canalize MTJ morphogenesis.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
21
|
Zhang J, Zhang S, Wang Y, Xu W, Zhang J, Jiang H, Huang F. Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito. PLoS One 2014; 9:e89473. [PMID: 24586804 PMCID: PMC3933544 DOI: 10.1371/journal.pone.0089473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/22/2014] [Indexed: 12/30/2022] Open
Abstract
Background Antimalarial drugs may impact mosquito’s defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. Methodology/Principal Findings We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Conclusions/Significance Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug’s impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Shuguang Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yanyan Wang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Wenyue Xu
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Jingru Zhang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail: (FH); (HJ)
| | - Fusheng Huang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
- * E-mail: (FH); (HJ)
| |
Collapse
|
22
|
Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. J Proteomics 2013; 105:186-203. [PMID: 24355481 DOI: 10.1016/j.jprot.2013.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023]
Abstract
UNLABELLED Greenbug (Schizaphis graminum Rondani) biotypes are classified by their differential virulence to wheat, barley, and sorghum varieties possessing greenbug resistance genes. Virulent greenbug biotypes exert phytotoxic effects upon their hosts during feeding, directly inducing physiological and metabolic alterations and accompanying foliar damage. Comparative analyses of the salivary proteomes of four differentially virulent greenbug biotypes C, E, G, and H showed significant proteomic divergence between biotypes. Thirty-two proteins were identified by LC-MS/MS; the most prevalent of which were three glucose dehydrogenase paralogs (GDH), lipophorin, complementary sex determiner, three proteins of unknown function, carbonic anhydrase, fibroblast growth factor receptor, and abnormal oocyte (ABO). Seven nucleotide-binding proteins were identified, including ABO which is involved in mRNA splicing. Quantitative variation among greenbug biotypes was detected in six proteins; two GDH paralogs, carbonic anhydrase, ABO, and two proteins of unknown function. Our findings reveal that the greenbug salivary proteome differs according to biotype and diverges substantially from those reported for other aphids. The proteomic profiles of greenbug biotypes suggest that interactions between aphid salivary proteins and the plant host result in suppression of plant defenses and cellular transport, and may manipulate transcriptional regulation in the plant host, ultimately allowing the aphid to maintain phloem ingestion. BIOLOGICAL SIGNIFICANCE Greenbug (Schizaphis graminum Rondani, GB) is a major phytotoxic aphid pest of wheat, sorghum, and barley. Unlike non-phytotoxic aphids, GB directly damages its host, causing uniformly characteristic symptoms leading to host death. As saliva is the primary interface between the aphid and its plant host, saliva is also the primary aphid biotypic determinant, and differences in biotypic virulence are the result of biotypic variations in salivary content. This study analyzed the exuded saliva of four distinct Greenbug biotypes with a range of virulence to crop lines containing greenbug resistance traits in order to identify differences between salivary proteins of the examined biotypes. Our analyses confirmed that the salivary proteomes of the examined greenbug biotypes differ widely, identified 32 proteins of the greenbug salivary proteome, and found significant proteomic variation between six identified salivary proteins. The proteomic variation identified herein is likely the basis of biotypic virulence, and the proteins identified can serve as the basis for functional studies into both greenbug-induced phytotoxic damage and into the molecular basis of virulence in specific GB biotypes. This article is part of a Special Issue entitled: SI: Proteomics of non-model organisms.
Collapse
|
23
|
Forer A, Ferraro-Gideon J, Berns M. Distance segregation of sex chromosomes in crane-fly spermatocytes studied using laser microbeam irradiations. PROTOPLASMA 2013; 250:1045-1055. [PMID: 23315093 DOI: 10.1007/s00709-013-0480-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/03/2013] [Indexed: 06/01/2023]
Abstract
Univalent sex chromosomes in crane-fly spermatocytes have kinetochore spindle fibres to each spindle pole (amphitelic orientation) from metaphase throughout anaphase. The univalents segregate in anaphase only after the autosomes approach the poles. As each univalent moves in anaphase, one spindle fibre shortens and the other spindle fibre elongates. To test whether the directionality of force production is fixed at anaphase, that is, whether one spindle fibre can only elongate and the other only shorten, we cut univalents in half with a laser microbeam, to create two chromatids. In both sex-chromosome metaphase and sex-chromosome anaphase, the two chromatids that were formed moved to opposite poles (to the poles to which their fibre was attached) at speeds about the same as autosomes, much faster than the usual speeds of univalent movements. Since the chromatids moved to the pole to which they were attached, independent of the direction to which the univalent as a whole was moving, the spindle fibre that normally elongates in anaphase still is able to shorten and produce force towards the pole when allowed (or caused) to do so.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, ON, Canada, M3J 1P3,
| | | | | |
Collapse
|
24
|
Sheykhani R, Shirodkar PV, Forer A. The role of myosin phosphorylation in anaphase chromosome movement. Eur J Cell Biol 2013; 92:175-86. [PMID: 23566798 DOI: 10.1016/j.ejcb.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/26/2013] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production. Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
25
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|
26
|
LaFountain JR, Cohan CS, Oldenbourg R. Functional states of kinetochores revealed by laser microsurgery and fluorescent speckle microscopy. Mol Biol Cell 2011; 22:4801-8. [PMID: 22031294 PMCID: PMC3237623 DOI: 10.1091/mbc.e11-06-0494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The impact of mechanical forces on kinetochore motility was investigated using laser microsurgery and fluorescent speckle microscopy on kinetochores and associated microtubules during anaphase in crane fly spermatocytes. Kinetochores detached from their chromosomes moved at twice their normal speed, entering a motile state identified as “park.” The impact of mechanical forces on kinetochore motility was investigated using laser microsurgery to detach kinetochores with associated chromatin (K fragment) from meiotic chromosomes in spermatocytes from the crane fly Nephrotoma suturalis. In spermatocytes, elastic tethers connect telomeres of homologues during anaphase A of meiosis I, thus preventing complete disjunction until mid- to late anaphase A. K fragments liberated from tethered arms moved at twice the normal velocity toward their connected poles. To assess functional states of detached and control kinetochores, we loaded cells with fluorescently labeled tubulin for fluorescent speckle microscopy on kinetochore microtubules. Control kinetochores added fluorescent speckles at the kinetochore during anaphase A, whereas kinetochores of K fragments generally did not. In cases in which speckles reappeared in K-fragment K fibers, speckles and K fragments moved poleward at similar velocities. Thus detached kinetochores convert from their normal polymerization (reverse pac-man) state to a different state, in which polymerization is not evident. We suggest that the converted state is “park,” in which kinetochores are anchored to plus ends of kinetochore microtubules that shorten exclusively at their polar ends.
Collapse
Affiliation(s)
- James R LaFountain
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
27
|
Mikelsaar AV, Sünter A, Toomik P, Mikelsaar R, Kalev I, Kõiveer A, Piirsoo A, Karpson K, Juronen E. Titin A-band-specific monoclonal antibody Tit1 5H1.1. Cellular Titin as a centriolar protein in non-muscle cells. Hybridoma (Larchmt) 2011; 29:391-401. [PMID: 21050039 DOI: 10.1089/hyb.2009.0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the development of a new mouse anti-titin monoclonal antibody, named MAb Tit1 5H1.1, using the synthetic peptide corresponding to an amino acid sequence in the A-band of the titin molecule as immunogen. In the human skeletal muscle, MAb Tit1 5H1.1 reveals a clearly striated staining pattern, reacting with the A-band of the sarcomere. Electrophoretic, immunoblotting, and amino acid sequence analyses with ESI-MS/MS of human skeletal muscle tissue proved the target antigen of MAb Tit1 5H1.1 to be titin. The antibody reacts with titin also in non-muscle cells, producing a punctate pattern in cytoplasm and the nucleus. The most striking finding was a clear reaction of MAb Tit1 5H1.1 with centrioles in all cell types investigated so far. Immunocytochemical co-localization study with ninein-specific antibodies confirmed that the target antigen of MAb Tit1 5H1.1 is a centriole-associated protein. Experiments of the inhibition of synthesis of titin using titin siRNA duplex for the destruction of titin mRNA have shown a decreased staining of centrioles by MAb Tit1 5H1.1 in non-muscle cells and support the proposal that the target antigen of MAb is indeed titin. We suggest this anti-titin monoclonal antibody could be a valuable tool in the study of titin function and its subcellular location, both in muscle and non-muscle cells.
Collapse
|
28
|
Johansen KM, Forer A, Yao C, Girton J, Johansen J. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? Chromosome Res 2011; 19:345-65. [DOI: 10.1007/s10577-011-9187-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Precocious (pre-anaphase) cleavage furrows in Mesostoma spermatocytes. Eur J Cell Biol 2010; 89:607-18. [PMID: 20434231 DOI: 10.1016/j.ejcb.2010.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/22/2022] Open
Abstract
It generally is assumed that cleavage furrows start ingression at anaphase, but this is not always true. Cleavage furrows are initiated during prometaphase in spermatocytes of the flatworm Mesostoma, becoming detectable soon after the spindles achieve bipolarity. The furrows deepen during prometaphase, but ingression soon arrests. After anaphase the pre-existing furrow recommences its ingression and rapidly cleaves the cell. Such "precocious" furrowing also commonly occurs in diatoms and other algae. The position of the "precocious" cleavage furrow changes when there are changes in the distribution of chromosomes. Each of the 4 unipolarly-oriented univalent chromosomes moves to a pole at the start of prometaphase but later in prometaphase may move to the opposite pole. The furrow position adjusts during prometaphase according to the numbers of univalents at the two poles: when there are two univalent chromosomes at each pole the furrow is symmetrical at the spindle equator, but when there are unequal numbers at the poles the furrow shifts 2-3 microm toward the half-spindle with fewer univalents. Nocodazole causes spindle microtubules to disappear. After addition of nocodazole, bivalents become detached from one pole and move toward the other, which causes the furrow to shift 2-3 microm toward the pole with fewer chromosomes. Furrow positioning thus is sensitive to the positioning of chromosomes in the spindle and furrow positions change in the absence of spindle microtubules.
Collapse
|
30
|
Dialynas G, Speese S, Budnik V, Geyer PK, Wallrath LL. The role of Drosophila Lamin C in muscle function and gene expression. Development 2010; 137:3067-77. [PMID: 20702563 DOI: 10.1242/dev.048231] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner side of the nuclear envelope (NE) is lined with lamins, a meshwork of intermediate filaments that provides structural support for the nucleus and plays roles in many nuclear processes. Lamins, classified as A- or B-types on the basis of biochemical properties, have a conserved globular head, central rod and C-terminal domain that includes an Ig-fold structural motif. In humans, mutations in A-type lamins give rise to diseases that exhibit tissue-specific defects, such as Emery-Dreifuss muscular dystrophy. Drosophila is being used as a model to determine tissue-specific functions of A-type lamins in development, with implications for understanding human disease mechanisms. The GAL4-UAS system was used to express wild-type and mutant forms of Lamin C (the presumed Drosophila A-type lamin), in an otherwise wild-type background. Larval muscle-specific expression of wild type Drosophila Lamin C caused no overt phenotype. By contrast, larval muscle-specific expression of a truncated form of Lamin C lacking the N-terminal head (Lamin C DeltaN) caused muscle defects and semi-lethality, with adult 'escapers' possessing malformed legs. The leg defects were due to a lack of larval muscle function and alterations in hormone-regulated gene expression. The consequences of Lamin C association at a gene were tested directly by targeting a Lamin C DNA-binding domain fusion protein upstream of a reporter gene. Association of Lamin C correlated with localization of the reporter gene at the nuclear periphery and gene repression. These data demonstrate connections among the Drosophila A-type lamin, hormone-induced gene expression and muscle function.
Collapse
Affiliation(s)
- George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, IA 52241, USA
| | | | | | | | | |
Collapse
|
31
|
Gatlin JC, Matov A, Danuser G, Mitchison TJ, Salmon ED. Directly probing the mechanical properties of the spindle and its matrix. J Cell Biol 2010; 188:481-9. [PMID: 20176922 PMCID: PMC2828919 DOI: 10.1083/jcb.200907110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/25/2010] [Indexed: 01/12/2023] Open
Abstract
Several recent models for spindle length regulation propose an elastic pole to pole spindle matrix that is sufficiently strong to bear or antagonize forces generated by microtubules and microtubule motors. We tested this hypothesis using microneedles to skewer metaphase spindles in Xenopus laevis egg extracts. Microneedle tips inserted into a spindle just outside the metaphase plate resulted in spindle movement along the interpolar axis at a velocity slightly slower than microtubule poleward flux, bringing the nearest pole toward the needle. Spindle velocity decreased near the pole, which often split apart slowly, eventually letting the spindle move completely off the needle. When two needles were inserted on either side of the metaphase plate and rapidly moved apart, there was minimal spindle deformation until they reached the poles. In contrast, needle separation in the equatorial direction rapidly increased spindle width as constant length spindle fibers pulled the poles together. These observations indicate that an isotropic spindle matrix does not make a significant mechanical contribution to metaphase spindle length determination.
Collapse
Affiliation(s)
- Jesse C Gatlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The nucleus is bordered by a double bilayer nuclear envelope, communicates with the cytoplasm via embedded nuclear pore complexes, and is structurally supported by an underlying nucleoskeleton. The nucleoskeleton includes nuclear intermediate filaments formed by lamin proteins, which provide major structural and mechanical support to the nucleus. However, other structural proteins also contribute to the function of the nucleoskeleton and help connect it to the cytoskeleton. This chapter reviews nucleoskeletal components beyond lamins and summarizes specific methods and strategies useful for analyzing nuclear structural proteins including actin, spectrin, titin, linker of nucleoskeleton and cytoskeleton (LINC) complex proteins, and nuclear spindle matrix proteins. These components can localize to highly specific functional subdomains at the nuclear envelope or nuclear interior and can interact either stably or dynamically with a variety of partners. These components confer upon the nucleoskeleton a functional diversity and mechanical resilience that appears to rival the cytoskeleton. To facilitate the exploration of this understudied area of biology, we summarize methods useful for localizing, solubilizing, and immunoprecipitating nuclear structural proteins, and a state-of-the-art method to measure a newly-recognized mechanical property of nucleus.
Collapse
Affiliation(s)
- Zhixia Zhong
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Huang L, Cheng T, Xu P, Duan J, Fang T, Xia Q. Immunoglobulin superfamily is conserved but evolved rapidly and is active in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2009; 18:517-530. [PMID: 19604311 DOI: 10.1111/j.1365-2583.2009.00896.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Immunoglobulin superfamily (IgSF) proteins are known for their abilities to specifically recognize and adhere to cells. In this paper, we predicted the presence of 133 IgSF proteins in the silkworm (Bombyx mori) genome. Comparison with similar proteins in other model organisms (Caenorhabditis elegans, Drosophila melanogaster, Anopheles gambiae, Apis mellifera and Homo sapiens) indicated that IgSF proteins are conserved but have rapidly evolved from worms to human beings. However, these proteins are well conserved amongst insects. Silkworm microarray-based expression data showed tissue expression of 57 IgSF genes and microbe-induced differential expression of 37 genes. Based on the expression data, we can conclude that the silkworm IgSF is active.
Collapse
Affiliation(s)
- L Huang
- Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
34
|
Scholey JM. Kinesin-5 in Drosophila embryo mitosis: sliding filament or spindle matrix mechanism? CELL MOTILITY AND THE CYTOSKELETON 2009; 66:500-8. [PMID: 19291760 PMCID: PMC2778298 DOI: 10.1002/cm.20349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Drosophila syncytial embryo uses multiple astral mitotic spindles that are specialized for rapid mitosis. The homotetrameric kinesin-5, KLP61F contributes to various aspects of mitosis in this system, all of which are consistent with it exerting outward forces on spindle poles. In principle, kinesin-5 could accomplish this by (i) sliding microtubules (MTs), minus end leading, relative to a static spindle matrix or (ii) crosslinking and sliding apart adjacent pairs of antiparallel interpolar (ip) MTs. Here, I critically review data on the biochemistry of purified KLP61F, its localization and dynamic properties within spindles, and quantitative modeling of KLP61F function. While a matrix-based mechanism may operate in some systems, the work tends to support the latter "sliding filament" mechanism for KLP61F action in Drosophila embryo spindles. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, California, USA.
| |
Collapse
|
35
|
Buch C, Lindberg R, Figueroa R, Gudise S, Onischenko E, Hallberg E. An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells. J Cell Sci 2009; 122:2100-7. [DOI: 10.1242/jcs.047373] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here, we characterize a transmembrane protein of the nuclear envelope that we name spindle-associated membrane protein 1 (Samp1). The protein is conserved in metazoa and fission yeast and is homologous to Net5 in rat and Ima1 in Schizosaccharomyces pombe. We show that, in human cells, the protein is a membrane-spanning polypeptide with an apparent molecular mass of 43 kDa. This is consistent with a predicted polypeptide of 392 amino acids that has five transmembrane segments and its C-terminus exposed to the nucleoplasm. During interphase, Samp1 was specifically distributed in the inner nuclear membrane. Post-transcriptional silencing of Samp1 expression resulted in separation of centrosomes from the nuclear envelope, indicating that it is functionally connected to the cytoskeleton. At the onset of mitosis, most of the protein dispersed out into the ER, as expected. However, during mitosis, a significant fraction of the protein specifically localized to the polar regions of the mitotic spindle. We demonstrate for the first time, in human cells, the existence of a membranous structure overlapping with the mitotic spindle. Interestingly, another integral inner nuclear membrane protein, emerin, was absent from the spindle-associated membranes. Thus, Samp1 defines a specific membrane domain associated with the mitotic spindle.
Collapse
Affiliation(s)
- Charlotta Buch
- Department of Biosciences and Nutrition, Karolinska Institute, SE-141 57 Huddinge, Sweden
- Life Sciences, Södertörns University, SE-141 89 Huddinge, Sweden
| | - Robert Lindberg
- Life Sciences, Södertörns University, SE-141 89 Huddinge, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ricardo Figueroa
- Life Sciences, Södertörns University, SE-141 89 Huddinge, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Santhosh Gudise
- Department of Biosciences and Nutrition, Karolinska Institute, SE-141 57 Huddinge, Sweden
- Life Sciences, Södertörns University, SE-141 89 Huddinge, Sweden
| | - Evgeny Onischenko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Einar Hallberg
- Life Sciences, Södertörns University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
36
|
Pickett-Heaps J, Forer A. Mitosis: spindle evolution and the matrix model. PROTOPLASMA 2009; 235:91-99. [PMID: 19255823 DOI: 10.1007/s00709-009-0030-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/07/2009] [Indexed: 05/27/2023]
Abstract
Current spindle models explain "anaphase A" (movement of chromosomes to the poles) in terms of a motility system based solely on microtubules (MTs) and that functions in a manner unique to mitosis. We find both these propositions unlikely. An evolutionary perspective suggests that when the spindle evolved, it should have come to share not only components (e.g., microtubules) of the interphase cell but also the primitive motility systems available, including those using actin and myosin. Other systems also came to be involved in the additional types of motility that now accompany mitosis in extant spindles. The resultant functional redundancy built reliability into this critical and complex process. Such multiple mechanisms are also confusing to those who seek to understand how chromosomes move. Narrowing this commentary down to just anaphase A, we argue that the spindle matrix participates with MTs in anaphase A and that this matrix may contain actin and myosin. The diatom spindle illustrates how such a system could function. This matrix may be motile and work in association with the MT cytoskeleton, as it does with the actin cytoskeleton during cell ruffling and amoeboid movement. Instead of pulling the chromosome polewards, the kinetochore fibre's role might be to slow polewards movement to allow correct chromosome attachment to the spindle. Perhaps the earliest eukaryotic cell was a cytoplast organised around a radial MT cytoskeleton. For cell division, it separated into two cytoplasts via a spindle of overlapping MTs. Cytokinesis was actin-based cleavage. As chromosomes evolved into individual entities, their interaction with the dividing cytoplast developed into attachment of the kinetochore to radial (cytoplast) MTs. We believe it most likely that cytoplasmic motility systems participated in these events.
Collapse
|
37
|
Xie L, Forer A. Jasplakinolide, an actin stabilizing agent, alters anaphase chromosome movements in crane-fly spermatocytes. ACTA ACUST UNITED AC 2008; 65:876-89. [DOI: 10.1002/cm.20309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Meadows JC, Millar J. Latrunculin A delays anaphase onset in fission yeast by disrupting an Ase1-independent pathway controlling mitotic spindle stability. Mol Biol Cell 2008; 19:3713-23. [PMID: 18562692 PMCID: PMC2526695 DOI: 10.1091/mbc.e08-02-0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/23/2008] [Accepted: 06/11/2008] [Indexed: 11/11/2022] Open
Abstract
It has been proposed previously that latrunculin A, an inhibitor of actin polymerization, delays the onset of anaphase by causing spindle misorientation in fission yeast. However, we show that Delta mto1 cells, which are defective in nucleation of cytoplasmic microtubules, have profoundly misoriented spindles but are not delayed in the timing of sister chromatid separation, providing compelling evidence that fission yeast does not possess a spindle orientation checkpoint. Instead, we show that latrunculin A delays anaphase onset by disrupting interpolar microtubule stability. This effect is abolished in a latrunculin A-insensitive actin mutant and exacerbated in cells lacking Ase1, which cross-links antiparallel interpolar microtubules at the spindle midzone both before and after anaphase. These data indicate that both Ase1 and an intact actin cytoskeleton are required for preanaphase spindle stability. Finally, we show that loss of Ase1 activates a checkpoint that requires only the Mad3, Bub1, and Mph1, but not Mad1, Mad2, or Bub3 checkpoint proteins.
Collapse
Affiliation(s)
- John C. Meadows
- *Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
- Cell Cycle Laboratory (M116), Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan Millar
- *Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
- Cell Cycle Laboratory (M116), Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
39
|
Qi J, Chi L, Labeit S, Banes AJ. Nuclear localization of the titin Z1Z2Zr domain and role in regulating cell proliferation. Am J Physiol Cell Physiol 2008; 295:C975-85. [PMID: 18684985 DOI: 10.1152/ajpcell.90619.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Titin (also called connectin) is a major protein in sarcomere assembly as well as providing elastic return of the sarcomere postcontraction in cardiac and striated skeletal muscle tissues. In addition, it has been speculated that titin is associated with nuclear functions, including chromosome and spindle formation, and regulation of muscle gene expression. In the present study, a short isoform of titin was detected in a human osteoblastic cell line, MG-63 cells, by both immunostaining and Western blot analysis. Confocal images of titin staining showed both cytoplasmic and nuclear localization in a punctate pattern. Therefore, we hypothesized that human titin may contain a nuclear localization signal (NLS). A functional NLS, 200-PAKKTKT-206, located in a low-complexity, titin-specific region between Z2 and Z repeats, was found by sequentially deleting segments of the NH(2)-terminal sequence in conjunction with an enhanced green fluorescent protein reporter system and confirmed by site-directed mutagenesis. Overexpression of titin's amino terminal fragment (Z1Z2Zr) in human osteoblasts (MG-63) increased cell proliferation by activating the Wnt/beta-catenin pathway. RT-PCR screens of tissue panels demonstrated that residues 1-206 were ubiquitously expressed at low levels in all tissues and cell types analyzed. Our data implicate a dual role for titin's amino terminal region, i.e., a novel nuclear function promoting cell division in addition to its known structural role in Z-line assembly.
Collapse
Affiliation(s)
- Jie Qi
- Flexcell International Corporation, Hillsborough, North Carolina 27278, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Forer A, Pickett-Heaps JD, Spurck T. What generates flux of tubulin in kinetochore microtubules? PROTOPLASMA 2008; 232:137-141. [PMID: 18421550 DOI: 10.1007/s00709-008-0286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/10/2007] [Indexed: 05/26/2023]
Abstract
We discuss models for production of tubulin flux in kinetochore microtubules. Current models concentrate solely on microtubules and their associated motors and enzymes. For example, in some models the driving force for flux is enzymes at the poles and the kinetochores; in others the driving force is motor molecules that are associated with a stationary spindle matrix. We present a different viewpoint, that microtubules are propelled poleward by forces arising from the spindle matrix, that the forces on the microtubules "activate" polymerising and depolymerising enzymes at kinetochores and poles, that matrix forces utilise actin, myosin, and microtubule motors, and that the matrix itself may not necessarily be static.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
42
|
Fabian L, Forer A. Possible roles of actin and myosin during anaphase chromosome movements in locust spermatocytes. PROTOPLASMA 2007; 231:201-213. [PMID: 17922265 DOI: 10.1007/s00709-007-0262-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/20/2006] [Indexed: 05/25/2023]
Abstract
We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes.
Collapse
|