1
|
Baude JA, Li MD, Jackson SM, Sharma A, Walter DI, Stowers RS. Engineered basement membrane mimetic hydrogels to study mammary epithelial morphogenesis and invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640825. [PMID: 40093166 PMCID: PMC11908212 DOI: 10.1101/2025.02.28.640825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Reconstituted basement membrane (rBM) products like Matrigel are widely used in 3D culture models of epithelial tissues and cancer. However, their utility is hindered by key limitations, including batch variability, xenogenic contaminants, and a lack of tunability. To address these challenges, we engineered a 3D basement membrane (eBM) matrix by conjugating defined extracellular matrix (ECM) adhesion peptides (IKVAV, YIGSR, RGD) to an alginate hydrogel network with precisely tunable stiffness and viscoelasticity. We optimized the mechanical and biochemical properties of the engineered basement membranes (eBMs) to support mammary acinar morphogenesis in MCF10A cells, similar to rBM. We found that IKVAV-modified, fast-relaxing (τ1/2 = 30-150 s), and soft (E = 200 Pa) eBMs best promoted polarized acinar structures. Clusters became invasive and lost polarity only when the IKVAV-modified eBM exhibited both similar stiffness to a malignant breast tumor (E = 4000 Pa) and slow stress relaxation (τ1/2 = 600-1100 s). Notably, tumor-like stiffness alone was not sufficient to drive invasion in fast stress relaxing matrices modified with IKVAV. In contrast, RGD-modified matrices promoted a malignant phenotype regardless of mechanical properties. We also utilized this system to interrogate the mechanism driving acinar and tumorigenic phenotypes in response to microenvironmental parameters. A balance in activity between β1- and β4-integrins was observed in the context of IKVAV-modified eBMs, prompting further investigation into the downstream mechanisms. We found differences in hemidesmosome formation and production of endogenous laminin in response to peptide type, stress relaxation, and stiffness. We also saw that inhibiting either focal adhesion kinase or hemidesmosome signaling in IKVAV eBMs prevented acinus formation. This eBM matrix is a powerful, reductionist, xenogenic-free system, offering a robust platform for both fundamental research and translational applications in tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Jane A Baude
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
| | - Megan D Li
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
| | - Sabrina M Jackson
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
| | - Abhishek Sharma
- University of California, Santa Barbara, Department of Mechanical Engineering
| | - Daniella I Walter
- University of California, Santa Barbara, Department of Mechanical Engineering
| | - Ryan S Stowers
- University of California, Santa Barbara, Department of Molecular, Cellular, and Developmental Biology
- University of California, Santa Barbara, Department of Mechanical Engineering
- University of California, Santa Barbara, Department of Bioengineering
| |
Collapse
|
2
|
Fang H, Ren W, Cui Q, Liang H, Yang C, Liu W, Wang X, Liu X, Shi Y, Feng J, Chen C. Integrin β4 promotes DNA damage-related drug resistance in triple-negative breast cancer via TNFAIP2/IQGAP1/RAC1. eLife 2023; 12:RP88483. [PMID: 37787041 PMCID: PMC10547475 DOI: 10.7554/elife.88483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Anti-tumor drug resistance is a challenge for human triple-negative breast cancer (TNBC) treatment. Our previous work demonstrated that TNFAIP2 activates RAC1 to promote TNBC cell proliferation and migration. However, the mechanism by which TNFAIP2 activates RAC1 is unknown. In this study, we found that TNFAIP2 interacts with IQGAP1 and Integrin β4. Integrin β4 activates RAC1 through TNFAIP2 and IQGAP1 and confers DNA damage-related drug resistance in TNBC. These results indicate that the Integrin β4/TNFAIP2/IQGAP1/RAC1 axis provides potential therapeutic targets to overcome DNA damage-related drug resistance in TNBC.
Collapse
Affiliation(s)
- Huan Fang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- Kunming College of Life Sciences, University of Chinese Academy of SciencesKunming, YunnanChina
| | - Wenlong Ren
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- School of Life Science, University of Science & Technology of ChinaHefeiChina
| | - Qiuxia Cui
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- Affiliated Hospital of Guangdong Medical UniversityGuangdongChina
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Huichun Liang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Chuanyu Yang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Wenjing Liu
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Xinye Wang
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
| | - Xue Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People’s Hospital South CampusShanghaiChina
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou UniversityZhengzhouChina
| | - Jing Feng
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People’s Hospital South CampusShanghaiChina
- The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen)ShenzhenChina
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangdong ProvinceGuangzhouChina
| | - Ceshi Chen
- Kunming Institute of Zoology, Chinese Academy of SciencesKunming, YunnanChina
- Academy of Biomedical Engineering, Kunming Medical UniversityKunmingChina
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
3
|
Su N, Fang Y, Chen X, Chen X, Xia Z, Huang H, Xia Y, Liu P, Tian X, Cai Q. Targeting P21-activated kinase suppresses proliferation and enhances chemosensitivity in T-cell lymphoblastic lymphoma. BLOOD SCIENCE 2023; 5:249-257. [PMID: 37941919 PMCID: PMC10629744 DOI: 10.1097/bs9.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/28/2023] [Indexed: 11/10/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a highly aggressive non-Hodgkin lymphoma with a poor prognosis. P21-activated kinase (PAK) is a component of the gene expression-based classifier that can predict the prognosis of T-LBL. However, the role of PAK in T-LBL progression and survival remains poorly understood. Herein, we found that the expression of PAK1 was significantly higher in T-LBL cell lines (Jurkat, SUP-T1, and CCRF-CEM) compared to the human T-lymphoid cell line. Moreover, PAK2 mRNA level of 32 relapsed T-LBL patients was significantly higher than that of 37 cases without relapse (P = .012). T-LBL patients with high PAK1 and PAK2 expression had significantly shorter median RFS than those with low PAK1 and PAK2 expression (PAK1, P = .028; PAK2, P = .027; PAK1/2, P = .032). PAK inhibitors, PF3758309 (PF) and FRAX597, could suppress the proliferation of T-LBL cells by blocking the G1/S cell cycle phase transition. Besides, PF could enhance the chemosensitivity to doxorubicin in vitro and in vivo. Mechanistically, through western blotting and RNA sequencing, we identified that PF could inhibit the phosphorylation of PAK1/2 and downregulate the expression of cyclin D1, NF-κB and cell adhesion signaling pathways in T-LBL cell lines. These findings suggest that PAK might be associated with T-LBL recurrence and further found that PAK inhibitors could suppress proliferation and enhance chemosensitivity of T-LBL cells treated with doxorubicin. Collectively, our present study underscores the potential therapeutic effect of inhibiting PAK in T-LBL therapy.
Collapse
Affiliation(s)
- Ning Su
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematology Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Xia
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaopeng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Moradi-Mehr S, Khademy M, Akbari-Birgani S, Kafian H, Lalenejad M, Abdollahpour D, Moghimi M. Comparative evaluation of the therapeutic strategies using a minimal model of luminal-A breast cancer. Biochem Biophys Res Commun 2023; 666:107-114. [PMID: 37182285 DOI: 10.1016/j.bbrc.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Cellular behavior is heavily influenced by cellular interactions, which are often lost in conventional cell culture methods. As a result, in vitro cellular behavior may not accurately reflect in vivo conditions. Three-dimensional (3D) culture, on the other hand, is better suited for studying cellular behavior as it allows for more comprehensive cell communication. In this study, we utilized 3D culture of the MCF-7 cell line to create a minimal model of luminal-A breast cancer and evaluated its histopathological and morphological features using various methods. To determine the optimal therapeutic strategies for eliminating cancer cells, we assessed the effectiveness of diverse therapeutic approaches, including targeting distinct phases of the cell cycle, endocrine therapy, and gene therapy in both 2D and 3D culture systems. Our findings indicate that cells derived from mammospheres respond differently to their parent cells in monolayer culture depending on the therapeutic strategy used. This variability in drug response may be due to the altered microenvironment created by heterogeneous cellular makeup and emerging cellular interactions in the 3D culture. Therefore, it is important to administer a therapeutic approach that can eradicate cells regardless of the microenvironment.
Collapse
Affiliation(s)
- Sahar Moradi-Mehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mitra Khademy
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hosein Kafian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Meelad Lalenejad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Daryoush Abdollahpour
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Minoosh Moghimi
- Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Tomasin R, Bruni-Cardoso A. The role of cellular quiescence in cancer - beyond a quiet passenger. J Cell Sci 2022; 135:276213. [PMID: 35929545 DOI: 10.1242/jcs.259676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quiescence, the ability to temporarily halt proliferation, is a conserved process that initially allowed survival of unicellular organisms during inhospitable times and later contributed to the rise of multicellular organisms, becoming key for cell differentiation, size control and tissue homeostasis. In this Review, we explore the concept of cancer as a disease that involves abnormal regulation of cellular quiescence at every step, from malignant transformation to metastatic outgrowth. Indeed, disrupted quiescence regulation can be linked to each of the so-called 'hallmarks of cancer'. As we argue here, quiescence induction contributes to immune evasion and resistance against cell death. In contrast, loss of quiescence underlies sustained proliferative signalling, evasion of growth suppressors, pro-tumorigenic inflammation, angiogenesis and genomic instability. Finally, both acquisition and loss of quiescence are involved in replicative immortality, metastasis and deregulated cellular energetics. We believe that a viewpoint that considers quiescence abnormalities that occur during oncogenesis might change the way we ask fundamental questions and the experimental approaches we take, potentially contributing to novel discoveries that might help to alter the course of cancer therapy.
Collapse
Affiliation(s)
- Rebeka Tomasin
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
6
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
7
|
Drain AP, Zahir N, Northey JJ, Zhang H, Huang PJ, Maller O, Lakins JN, Yu X, Leight JL, Alston-Mills BP, Hwang ES, Chen YY, Park CC, Weaver VM. Matrix compliance permits NF-κB activation to drive therapy resistance in breast cancer. J Exp Med 2021; 218:e20191360. [PMID: 33822843 PMCID: PMC8025243 DOI: 10.1084/jem.20191360] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 01/10/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are associated with poor survival mediated by treatment resistance. TNBCs are fibrotic, yet little is known regarding how the extracellular matrix (ECM) evolves following therapy and whether it impacts treatment response. Analysis revealed that while primary untreated TNBCs are surrounded by a rigid stromal microenvironment, chemotherapy-resistant residual tumors inhabit a softer niche. TNBC organoid cultures and xenograft studies showed that organoids interacting with soft ECM exhibit striking resistance to chemotherapy, ionizing radiation, and death receptor ligand TRAIL. A stiff ECM enhanced proapoptotic JNK activity to sensitize cells to treatment, whereas a soft ECM promoted treatment resistance by elevating NF-κB activity and compromising JNK activity. Treatment-resistant residual TNBCs residing within soft stroma had elevated activated NF-κB levels, and disengaging NF-κB activity sensitized tumors in a soft matrix to therapy. Thus, the biophysical properties of the ECM modify treatment response, and agents that modulate stiffness-dependent NF-κB or JNK activity could enhance therapeutic efficacy in patients with TNBC.
Collapse
Affiliation(s)
- Allison P. Drain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
| | - Nastaran Zahir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA
| | - Jason J. Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Hui Zhang
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
| | - Po-Jui Huang
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Ori Maller
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Johnathon N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Xinmiao Yu
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Jennifer L. Leight
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA
| | - Brenda P. Alston-Mills
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA
| | - E. Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Catherine C. Park
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
- University of California, San Francisco Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
8
|
Cooke M, Baker MJ, Kazanietz MG. Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Front Cell Dev Biol 2020; 8:118. [PMID: 32158759 PMCID: PMC7051914 DOI: 10.3389/fcell.2020.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) representing ∼85% of new diagnoses. The disease is often detected in an advanced metastatic stage, with poor prognosis and clinical outcome. In order to escape from the primary tumor, cancer cells acquire highly motile and invasive phenotypes that involve the dynamic reorganization of the actin cytoskeleton. These processes are tightly regulated by Rac1, a small G-protein that participates in the formation of actin-rich membrane protrusions required for cancer cell motility and for the secretion of extracellular matrix (ECM)-degrading proteases. In this perspective article we focus on the mechanisms leading to aberrant Rac1 signaling in NSCLC progression and metastasis, highlighting the role of Rac Guanine nucleotide Exchange Factors (GEFs). A plausible scenario is that specific Rac-GEFs activate discrete intracellular pools of Rac1, leading to unique functional responses in the context of specific oncogenic drivers, such as mutant EGFR or mutant KRAS. The identification of dysregulated Rac signaling regulators may serve to predict critical biomarkers for metastatic disease in lung cancer patients, ultimately aiding in refining patient prognosis and decision-making in the clinical setting.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Li J, Luo M, Ou H, Liu X, Kang X, Yin W. Integrin β4 promotes invasion and anoikis resistance of papillary thyroid carcinoma and is consistently overexpressed in lymphovascular tumor thrombus. J Cancer 2019; 10:6635-6648. [PMID: 31777592 PMCID: PMC6856897 DOI: 10.7150/jca.36125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Although the majority of papillary thyroid cancers (PTC) are indolent, a subset of PTCs behaves aggressively due to extensive invasion and distant metastasis. Integrin β4, a member of the integrin family, has been shown to enhance the progression in some malignancies; however, its role in PTC remains unclear. Here, we demonstrated that β4 overexpression was associated with extrathyroid extension, lymph node metastasis, high TNM stage, and poor overall survival based on The Cancer Genome Atlas cohort. Immunohistochemistry showed that β4 expression was significantly upregulated in the tumors with infiltrating growth pattern, as well as those with positive lymphovascular invasion. Moreover, β4 was invariably overexpressed in the lymphovascular tumor thrombi, which has not been reported before. After shRNA-induced knockdown of β4 in vitro, the migration, invasion and scratch repair ability of the tumor cells were significantly reduced. Furthermore, β4 reduction decreased anchorage-independent growth and increased anoikis. The bioinformatics analysis revealed that approximately 70 pathways were significantly dysregulated in the high β4 expression group. The MAPK pathway and propanoate metabolism were located in the network center of those pathways. Taken together, our results suggest that β4 could promote the tumor's aggressiveness by enhancing invasion and antagonizing anoikis. The upregulated expression of β4 in the tumor thrombi is intrinsically linked to its role in strengthening the anoikis resistance.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China.,State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, 518055, China
| | - Minghua Luo
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Huiting Ou
- Department of Endocrinology, Shenzhen Second People's Hospital, Guangdong Province, 518035, China
| | - Xiaoling Liu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Xueling Kang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| |
Collapse
|
10
|
Czarnomysy R, Bielawska A, Bielawski K. Effect of 2nd and 3rd generation PAMAM dendrimers on proliferation, differentiation, and pro-inflammatory cytokines in human keratinocytes and fibroblasts. Int J Nanomedicine 2019; 14:7123-7139. [PMID: 31564869 PMCID: PMC6731979 DOI: 10.2147/ijn.s211682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background Poly(amidoamine) (PAMAM) dendrimers are of considerable interest when used as a carrier for topical drugs for the skin, although little is known about their possible side effects. Therefore, our study was about the impact of 2nd and 3rd generation PAMAM dendrimers on human keratinocytes and fibroblasts cells. Methods The effect of the tested compounds on collagen biosynthesis was determined using 5[3H]-proline incorporation bioassay. Morphological changes accompanying cell growth inhibition were observed using a confocal microscope. To evaluate the percentage of apoptotic/necrotic cells and the cell growth dynamic of apoptotic features, we performed Annexin V/PI double staining assay, assessed caspase activity, and performed cell cycle analysis by flow cytometry. The flow cytometry method was also used to determine the effect of dendrimers on pro-inflammatory cytokines (IL-6, IL-8 IL-1β). Results The obtained results showed that as the concentration and the generation of dendrimers increased, collagen biosynthesis decreased. We also observed abnormalities in cell differentiation, which may have caused disturbed secretion of pro-inflammatory cytokines. We found that dendrimers cause chronic inflammation which may cause adverse changes in the skin, ultimately– leading to apoptosis in the case of dendrimers in lower concentrations or necrosis at higher concentrations (especially 3rd generation dendrimers). In addition, the inflammatory path induced by the tested compounds was caused by damage in the mitochondria, which we observed as a significant decrease in the mitochondrial membrane potential. Conclusion The results of our study showed that PAMAM dendrimers can cause disorders of cell proliferation and differentiation and may be the cause of cell cycle deregulation and chronic adverse inflammation.
Collapse
Affiliation(s)
- Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok 15-089, Poland
| |
Collapse
|
11
|
Shehzad A, Ravinayagam V, AlRumaih H, Aljafary M, Almohazey D, Almofty S, Al-Rashid NA, Al-Suhaimi EA. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr Pharm Des 2019; 25:3599-3607. [PMID: 31612821 DOI: 10.2174/1381612825666191014163923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Vijaya Ravinayagam
- Scientific Research & Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamad AlRumaih
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah Aljafary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Almohazey
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Almofty
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor A Al-Rashid
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Pérez-Yépez EA, Saldívar-Cerón HI, Villamar-Cruz O, Pérez-Plasencia C, Arias-Romero LE. p21 Activated kinase 1: Nuclear activity and its role during DNA damage repair. DNA Repair (Amst) 2018; 65:42-46. [PMID: 29597073 DOI: 10.1016/j.dnarep.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 01/30/2023]
Abstract
p21-activated kinase 1 (PAK1) is a serine/threonine kinase activated by the small GTPases Rac1 and Cdc42. It is located in the chromosome 11q13 and is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme plays a pivotal role in the control of a number of fundamental cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, it is well documented that PAK1 also plays crucial roles in the nucleus participating in mitotic events and gene expression through its association and/or phosphorylation of several transcription factors, transcriptional co-regulators and cell cycle-related proteins, including Aurora kinase A (AURKA), polo-like kinase 1 (PLK1), the forkhead transcription factor (FKHR), estrogen receptor α (ERα), and Snail. More recently, PAK signaling has emerged as a component of the DNA damage response (DDR) as PAK1 activity influences the cellular sensitivity to ionizing radiation and promotes the expression of several genes involved in the Fanconi Anemia/BRCA pathway. This review will focus on the nuclear functions of PAK1 and its role in the regulation of DNA damage repair.
Collapse
Affiliation(s)
- Eloy Andrés Pérez-Yépez
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Héctor Iván Saldívar-Cerón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado postal 14-740, 07360 México, D. F., México
| | - Olga Villamar-Cruz
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico
| | - Carlos Pérez-Plasencia
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico
| | - Luis Enrique Arias-Romero
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico.
| |
Collapse
|
13
|
Li M, Li X, Zhuang Y, Wang Y, Burow ME, Collins-Burow B, Xue M, Song C, Shan B. Induction of HOXA9 expression in three-dimensional organotypic culture of the Claudin-low breast cancer cells. Oncotarget 2018; 7:51503-51514. [PMID: 27409175 PMCID: PMC5239492 DOI: 10.18632/oncotarget.10491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
The gene expression signatures of the molecular intrinsic subtypes of breast cancer are regulated by epigenetic mechanisms such as methylation of CpG islands in gene promoters. Epigenetic codes can be regulated by the tumor microenvironment. The Claudin-low subtype is associated with triple-negative invasive ductal carcinomas in patients. Herein we explored epigenetic regulation of gene expression in the Claudin-low breast cancer cells by extracellular matrix (ECM), a key component of the tumor microenvironment. We modeled attachment to ECM using laminin rich ECM three-dimensional organotypic culture (lrECM 3D). In 2D and lrECM 3D cultures we examined expression of the homeobox (HOX) genes that epigenetically regulated in development and cancer. We demonstrated induction of the selected HOX genes in lrECM 3D culture of the Claudin-low breast cancer cells MDA-MB-231 and Hs578T. In particular activation of HOXA9 expression in lrECM 3D culture required binding of bromodomain containing 4 to the HOXA9 promoter and involved CpG hypomethylation. Our findings warrant further investigation of the ECM-regulated epigenetic coding of gene expression in the Claudin-low breast cancer.
Collapse
Affiliation(s)
- Miao Li
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xi Li
- Department of Sports Medicine and Joint Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yan Zhuang
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yan Wang
- Department of Biological Engineering, Zunyi Medical College Zhuhai Campus, Zhuhai, China
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Min Xue
- Department of Physiology, Xuzhou Medical College, Xuzhou, China
| | - Chengjie Song
- Department of Physiology, Xuzhou Medical College, Xuzhou, China
| | - Bin Shan
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| |
Collapse
|
14
|
Identification of cancer genes that are independent of dominant proliferation and lineage programs. Proc Natl Acad Sci U S A 2017; 114:E11276-E11284. [PMID: 29229826 PMCID: PMC5748209 DOI: 10.1073/pnas.1714877115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Large, multidimensional “landscaping” projects have provided datasets that can be mined to identify potential targets for subgroups of tumors. Here, we analyzed genomic and transcriptomic data from human breast tumors to identify genes whose expression is enriched in tumors harboring specific genetic alterations. However, this analysis revealed that two other factors, proliferation rate and tumor lineage, are more dominant factors in shaping tumor transcriptional programs than genetic alterations. This discovery shifted our attention to identifying genes that are independent of the dominant proliferation and lineage programs. A small subset of these genes represents candidate targets for combination cancer therapies because they are druggable, maintained after treatment with chemotherapy, essential for cell line survival, and elevated in drug-resistant stem-like cancer cells. Large, multidimensional cancer datasets provide a resource that can be mined to identify candidate therapeutic targets for specific subgroups of tumors. Here, we analyzed human breast cancer data to identify transcriptional programs associated with tumors bearing specific genetic driver alterations. Using an unbiased approach, we identified thousands of genes whose expression was enriched in tumors with specific genetic alterations. However, expression of the vast majority of these genes was not enriched if associations were analyzed within individual breast tumor molecular subtypes, across multiple tumor types, or after gene expression was normalized to account for differences in proliferation or tumor lineage. Together with linear modeling results, these findings suggest that most transcriptional programs associated with specific genetic alterations in oncogenes and tumor suppressors are highly context-dependent and are predominantly linked to differences in proliferation programs between distinct breast cancer subtypes. We demonstrate that such proliferation-dependent gene expression dominates tumor transcriptional programs relative to matched normal tissues. However, we also identified a relatively small group of cancer-associated genes that are both proliferation- and lineage-independent. A subset of these genes are attractive candidate targets for combination therapy because they are essential in breast cancer cell lines, druggable, enriched in stem-like breast cancer cells, and resistant to chemotherapy-induced down-regulation.
Collapse
|
15
|
Hutchins GGA, Treanor D, Wright A, Handley K, Magill L, Tinkler-Hundal E, Southward K, Seymour M, Kerr D, Gray R, Quirke P. Intratumoral stromal morphometry predicts disease recurrence but not response to 5-fluorouracil-results from the QUASAR trial of colorectal cancer. Histopathology 2017; 72:391-404. [PMID: 28746977 DOI: 10.1111/his.13326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
AIMS The biological importance of tumour-associated stroma is becoming increasingly apparent, but its clinical utility remains ill-defined. For stage II/Dukes B colorectal cancer (CRC), clinical biomarkers are urgently required to direct therapeutic options. We report here prognostic/predictive analyses, and molecular associations, of stromal morphometric quantification in the Quick and Simple and Reliable (QUASAR) trial of CRC. METHODS AND RESULTS Relative proportions of tumour epithelium (PoT) or stroma (PoS) were morphometrically quantified on digitised haematoxylin and eosin (H&E) sections derived from 1800 patients enrolled in QUASAR, which randomised 3239 (91% stage II) CRC patients between adjuvant fluorouracil/folinic acid (FUFA) chemotherapy and observation. The prognostic and predictive values of PoT/PoS measurements were determined by the use of stratified log-rank analyses. A high proportion of tumour stroma (≥50%) was associated with an increased recurrence risk: 31.3% (143/457) recurrence for ≥50% versus 21.9% (294/1343) for <50% [rate ratio (RR) 1.62; 95% confidence interval (CI) 1.30-2.02; P < 0.0001]. Of patients with stromal proportions of ≥65%, 40% (46/115) had recurrent disease within 10 years. The adverse prognostic effect of a high stromal proportion was independent of established prognostic variables, and was maintained in stage II/Dukes B patients (RR 1.62; 95% CI 1.26-2.08; P = 0.0002). KRAS mutation in the presence of a high stromal proportion augmented recurrence risk (RR 2.93; 95% CI 1.87-4.59; P = 0.0005). Stromal morphometry did not predict response to FUFA chemotherapy. CONCLUSIONS Simple digital morphometry applied to a single representative H&E section identifies CRC patients with a >50% higher risk of disease recurrence. This technique can reliably partition patients into subpopulations with different risks of tumour recurrence in a simple and cost-effective manner. Further prospective validation is warranted.
Collapse
Affiliation(s)
- Gordon G A Hutchins
- Section of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Darren Treanor
- Section of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Alexander Wright
- Section of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Kelly Handley
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Laura Magill
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Emma Tinkler-Hundal
- Section of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Katie Southward
- Section of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Seymour
- National Cancer Research Network Coordinating Centre, University of Leeds, Leeds, UK
| | - David Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Gray
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Philip Quirke
- Section of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | |
Collapse
|
16
|
Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017; 8:14173-14191. [PMID: 27845911 PMCID: PMC5355171 DOI: 10.18632/oncotarget.13309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The development of personalised therapies has ushered in a new and exciting era of cancer treatment for a variety of solid malignancies. Yet pancreatic ductal adenocarcinoma (PDAC) has failed to benefit from this paradigm shift, remaining notoriously refractory to targeted therapies. Chemotherapy is the cornerstone of management but can offer only modest survival benefits of a few months with 5-year survival rates rarely exceeding 3%. Despite these disappointing statistics, significant strides have been made towards understanding the complex biology of pancreatic cancer, with deep genomic sequencing identifying novel genetic aberrations and key signalling pathways. The PI3K-PDK1-AKT pathway has received great attention due to its prominence in carcinogenesis. However, efforts to target several components of this network have resulted in only a handful of drugs demonstrating any survival benefit in solid tumors; despite promising pre-clinical results. p-21 activated kinase 4 (PAK4) is a gene that is recurrently amplified or overexpressed in PDAC and both PAK4 and related family member PAK1, have been linked to aberrant RAS activity, a common feature in pancreatic cancer. As regulators of PI3K, PAKs have been highlighted as a potential prognostic marker and therapeutic target. In this review, we discuss the biology of pancreatic cancer and the close interaction between PAKs and the PI3K pathway. We also suggest proposals for future research that may see the development of effective targeted therapies that could finally improve outcomes for this disease.
Collapse
Affiliation(s)
- Kiruthikah Thillai
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Hoyin Lam
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Debashis Sarker
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
17
|
PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep 2017; 7:43013. [PMID: 28220839 PMCID: PMC5318947 DOI: 10.1038/srep43013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies.
Collapse
|
18
|
A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth. Sci Rep 2017; 7:42555. [PMID: 28198380 PMCID: PMC5309789 DOI: 10.1038/srep42555] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a heterogeneous disease consisting of several subtypes. Among these subtypes, triple negative breast cancer is particularly difficult to treat. This is due to a lack of understanding of the mechanisms behind the disease, and consequently a lack of druggable targets. PAK4 plays critical roles in cell survival, proliferation, and morphology. PAK4 protein levels are high in breast cancer cells and breast tumors, and the gene is often amplified in basal like breast cancers, which are frequently triple negative. PAK4 is also overexpressed in other types of cancer, making it a promising drug target. However, its inhibition is complicated by the fact that PAK4 has both kinase-dependent and -independent functions. Here we investigate a new clinical compound KPT-9274, which has been shown to inhibit PAK4 and NAMPT. We find that KPT-9274 (and its analog, KPT-8752) can reduce the steady state level of PAK4 protein in triple negative breast cancer cells. These compounds also block the growth of the breast cancer cells in vitro, and stimulate apoptosis. Most importantly, oral administration of KPT-9274 reduces tumorigenesis in mouse models of human triple negative breast cancer. Our results indicate that KPT-9274 is a novel therapeutic option for triple negative breast cancer therapy.
Collapse
|
19
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
20
|
Cruz OV, Prudnikova TY, Araiza-Olivera D, Perez-Plasencia C, Johnson N, Bernhardy AJ, Slifker M, Renner C, Chernoff J, Arias LE. Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget 2016; 7:76590-76603. [PMID: 27740936 PMCID: PMC5363532 DOI: 10.18632/oncotarget.12576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/07/2016] [Indexed: 01/19/2023] Open
Abstract
Cells that are deficient in homologous recombination, such as those that have mutations in any of the Fanconi Anemia (FA)/BRCA genes, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, FA/BRCA-deficient tumors represent a small fraction of breast cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. The gene encoding the serine-threonine protein kinase p21-activated kinase 1 (PAK1) is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme controls many cellular processes by phosphorylating both cytoplasmic and nuclear substrates. Here, we show that depletion or pharmacological inhibition of PAK1 down-regulated the expression of genes involved in the FA/BRCA pathway and compromised the ability of cells to repair DNA by Homologous Recombination (HR), promoting apoptosis and reducing colony formation. Combined inhibition of PAK1 and PARP in PAK1 overexpressing breast cancer cells had a synergistic effect, enhancing apoptosis, suppressing colony formation, and delaying tumor growth in a xenograft setting. Because reduced PAK1 activity impaired FA/BRCA function, inhibition of this kinase in PAK1 amplified and/or overexpressing breast cancer cells represents a plausible strategy for expanding the utility of PARP inhibitors to FA/BRCA-proficient cancers.
Collapse
Affiliation(s)
- Olga Villamar Cruz
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | | | | | - Carlos Perez-Plasencia
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| | - Neil Johnson
- Experimental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrea J. Bernhardy
- Experimental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael Slifker
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Catherine Renner
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Luis E. Arias
- UBIMED, Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
21
|
Chen MJ, Wu DW, Wang YC, Chen CY, Lee H. PAK1 confers chemoresistance and poor outcome in non-small cell lung cancer via β-catenin-mediated stemness. Sci Rep 2016; 6:34933. [PMID: 27713506 PMCID: PMC5054675 DOI: 10.1038/srep34933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
PAK1 confers resistance to the estrogen antagonist tamoxifen in breast cancer. However, a role for PAK1 remains to be elucidated for chemoresistance and prognosis in non-small cell lung cancer (NSCLC). We provide evidence that PAK1 confers cisplatin resistance by increasing β-catenin expression through ERK/GSK3β signaling. The increased β-catenin expression promotes sphere cell formation and expression of stemness markers and this β-catenin-induced stemness is responsible for PAK1-mediated cisplatin resistance. We enrolled 87 NSCLC patients who had received cisplatin-based chemotherapy to confirm the association between PAK1 expression and response to chemotherapy and outcomes. PAK1 expression, evaluated by immunohistochemistry, was positively correlated with pERK and β-catenin expression in lung tumors. Patients with high-PAK1, high-pERK, and high-nuclear β-catenin tumors more frequently showed an unfavorable response to cisplatin-based chemotherapy when compared to their counterparts. Kaplan-Meier and Cox regression analysis also indicated a poorer overall survival (OS) and relapse free survival (RFS) in patients with high-PAK1, high-pERK, and high-nuclear β-catenin tumors. In conclusion, PAK1 confers cisplatin resistance in NSCLC via β-catenin-mediated stemness. Therefore, we suggest that clinical use of a combination of the MEK/ERK inhibitor AZD6244 and cisplatin might improve sensitivity to cisplatin-based chemotherapy and outcomes in NSCLC patients who harbor high-PAK1-expressing tumors.
Collapse
Affiliation(s)
- Ming-Jenn Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Yi Chen
- Department of Surgery, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Zhan K, Lin M, Liu M, Sui Y, Babekir HM, Zhao G. Three-dimensional culture system can induce expression of casein in immortalized bovine mammary epithelial cells. Anim Sci J 2016; 88:817-825. [PMID: 27624457 DOI: 10.1111/asj.12702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 01/22/2023]
Abstract
Primary bovine mammary epithelial cells (BMECs) are not ideal models for long-term studies of lactation mechanisms because these cells in a monolayer culture system cannot be polarized to simulate the physiological functions in vitro. We investigate the effects of different culture models and karyotypes on casein expression in a three-dimensional (3D) culture system. The immortalized cells' karyotypes were analyzed at passages 10, 20, 30 and 40 to detect the effects of chromosome stability. Western blotting examined that whether or not the immortalized cells at passages 5, 10, 20, 30, 40 and 50 could induce expression of casein in a 3D culture system. The proper polarization of the acinar structures was monitored. BMECs were successfully immortalized. The cell karyotype at passage 30 remained at 60 chromosomes and the average value was 57.1 ± 0.40 after passage 40. The polarized protein's levels were up-regulated in 3D culture compared to 2D culture. Expression of αs1, β and κ-casein could be detectable in a passage range in 3D culture. Expression of αs2-casein was undetectable in all experimental groups. However, all casein expressions were barely detectable in traditional 2D culture system. Therefore, 3D culture system is an important tool for the long-term study of lactation mechanisms in vitro.
Collapse
Affiliation(s)
- Kang Zhan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Miao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - MingMei Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - YangNan Sui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | - GuoQi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Molecular basis for cytokine biomarkers of complex 3D microtissue physiology in vitro. Drug Discov Today 2016; 21:950-61. [PMID: 27021792 DOI: 10.1016/j.drudis.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
'Physiologically more-relevant' claims are readily made for cells cultured on any surface or in a scaffold that provides loosely defined 3D geometry. A set of tools to measure culture '3D-ness' more accurately are needed. Such tools should find applications in fields ranging from high-throughput identification of substrates for tissue engineering and regenerative medicine to cell-based screening of drug candidates. Until now, these fields have not provided a consensus for the most promising place to initiate the search. Here, we review recent advances in transcriptomic, proteomic, inflammation and oncology-related pathways, as well as functional studies that strongly point to cytokines as the most likely compounds to form the missing consensus.
Collapse
|
24
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
25
|
Arias-Romero LE, Chernoff J. p21-activated kinases in Erbb2-positive breast cancer: A new therapeutic target? Small GTPases 2014; 1:124-128. [PMID: 21686266 DOI: 10.4161/sgtp.1.2.14109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 02/03/2023] Open
Abstract
The activation of receptor tyrosine kinases, particularly ErbB2, has been linked to the genesis and progression of breast cancer. Two of the central signaling pathways activated by ErbB2 are the Ras/Raf-1/Mek/Erk pathway, which plays an important role in tumor cell growth and migration, and the PI3K/Akt pathway, which plays an important role in cell survival. Recently, we and others have shown that signaling through the Ras-Erk pathway can be influenced by p21-activated kinase 1 (Pak1), an effector of the Rho family GTP ases Rac and Cdc42. Expression of activated forms of Rac promotes activation of Erk through mechanisms involving Pak1 phosphorylation of Raf-1 and Mek1. In addition, Pak1 has also been implicated in the activation of Akt. However, our understanding regarding the degree to which Rho GTPases, and their effectors such as Pak1, contribute to ErbB2-mediated signaling is very limited.Recent results from our laboratory indicate that ErbB2 expression correlates with Pak activation in estrogen receptor negative human breast tumor samples. Using a three-dimensional (3D) culture of human MCF-10A mammary epithelial cells, we found that activation of Rac-Pak pathway by ErbB2 induces growth factor independent proliferation and promotes disruption of acini-like structures through the activation of the Erk and Akt pathways. We also observed that blocking Pak1 activity by small molecule inhibitors impeded the ability of activated ErbB2 to transform these cells and to activate its associated downstream signaling targets. In addition, we found that suppressing Pak activity in ErbB2-amplified breast cancer cells delayed tumor formation and downregulated Erk and Akt signaling in vivo. These results support a model in which Pak, by activating Erk and Akt, cooperates with ErbB2 in transforming mammary epithelial cells.
Collapse
|
26
|
Abstract
Transformation of a normal cell to a cancer cell is caused by mutations in genes that regulate proliferation, apoptosis, and invasion. Small GTPases such as Ras, Rho, Rac and Cdc42 orchestrate many of the signals that are required for malignant transformation. The p21-activated kinases (PAKs) are effectors of Rac and Cdc42. PAKs are a family of serine/threonine protein kinases comprised of six isoforms (PAK1–6), and they play important roles in cytoskeletal dynamics, cell survival and proliferation. They act as key signal transducers in several cancer signaling pathways, including Ras, Raf, NFκB, Akt, Bad and p53. Although PAKs are not mutated in cancers, they are overexpressed, hyperactivated or amplified in several human tumors and their role in cell transformation make them attractive therapeutic targets. This review discusses the evidence that PAK is important for cell transformation and some key signaling pathways it regulates. This review primarily discusses Group I PAKs (PAK1, PAK2 and PAK3) as Group II PAKs (PAK4, PAK5 and PAK6) are discussed elsewhere in this issue (by Minden).
Collapse
Affiliation(s)
- Diana Zi Ye
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
27
|
Abstract
The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant S1 cells that form polarized spheres (‘acini’), the malignant T4-2 cells that form large tumor-like clusters, and the ‘phenotypically reverted’ T4-2 cells that polarize as a result of correction of the microenvironmental signaling. We identified 180 genes that display an increased expression in disorganized compared to polarized structures. Network, GSEA and transcription factor binding site analyses suggested that NFkB is a common activator for the 180 genes. NFkB was found to be activated in disorganized breast cancer cells, and inhibition of microenvironmental signaling via EGFR, beta1 integrin, MMPs, or their downstream signals suppressed its activation. The postulated role of NFkB was experimentally verified: Blocking the NFkB pathway with a specific chemical inhibitor or shRNA induced polarization and inhibited invasion of breast cancer cells in 3D cultures. These results may explain why NFkB holds promise as a target for therapeutic intervention: Its inhibition can reverse the oncogenic signaling involved in breast cancer progression and integrate the essential microenvironmental control of tissue architecture.
Collapse
|
28
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
29
|
Wang JH, Du JY, Wu YY, Chen MC, Huang CH, Shen HJ, Lee CF, Lin TH, Lee YJ. Suppression of prolactin signaling by pyrrolidine dithiocarbamate is alleviated by N-acetylcysteine in mammary epithelial cells. Eur J Pharmacol 2014; 738:301-9. [PMID: 24952131 DOI: 10.1016/j.ejphar.2014.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Prolactin is the key hormone to stimulate milk synthesis in mammary epithelial cells. It signals through the Jak2-Stat5 pathway to induce the expression of β-casein, a milk protein which is often used as a marker for mammary differentiation. Here we examined the effect of pyrrolidine dithiocarbamate (PDTC) on prolactin signaling. Our results show that PDTC downregulates prolactin receptor levels, and inhibits prolactin-induced Stat5 tyrosine phosphorylation and β-casein expression. This is not due to its inhibitory action on NF-κB since application of another NF-κB inhibitor, BAY 11-7082, and overexpression of I-κBα super-repressor do not lead to the same results. Instead, the pro-oxidant activity of PDTC is involved as inclusion of the antioxidant N-acetylcysteine restores prolactin signaling. PDTC triggers great extents of activation of ERK and JNK in mammary epithelial cells. These do not cause suppression of prolactin signaling but confer serine phosphorylation of insulin receptor substrate-1, thereby perturbing insulin signal propagation. As insulin facilitates optimal β-casein expression, blocking insulin signaling by PDTC might pose additional impediment to β-casein expression. Our results thus imply that lactation will be compromised when the cellular redox balance is dysregulated, such as during mastitis.
Collapse
Affiliation(s)
- Jen-Hsing Wang
- Department of Obstetrics and Gynecology, Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan, Republic of China
| | - Jyun-Yi Du
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ying Wu
- Department of Medical Laboratory Science and Technology, China Medical University and Hospital, Taichung 404, Taiwan, Republic of China
| | - Meng-Chi Chen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chun-Hao Huang
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Hsin-Ju Shen
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Chin-Feng Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China
| | - Yi-Ju Lee
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan, Republic of China; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan, Republic of China.
| |
Collapse
|
30
|
Orgaz JL, Herraiz C, Sanz-Moreno V. Rho GTPases modulate malignant transformation of tumor cells. Small GTPases 2014; 5:e29019. [PMID: 25036871 DOI: 10.4161/sgtp.29019] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rho GTPases are involved in the acquisition of all the hallmarks of cancer, which comprise 6 biological capabilities acquired during the development of human tumors. The hallmarks include proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis programs, as defined by Hanahan and Weinberg. (1) Controlling these hallmarks are genome instability and inflammation. Emerging hallmarks are reprogramming of energy metabolism and evading immune destruction. To give a different view to the readers, we will not be focusing on invasion, metastasis, or cytoskeletal remodeling, but we will review here how Rho GTPases contribute to other hallmarks of cancer with a special emphasis on malignant transformation.
Collapse
Affiliation(s)
- Jose L Orgaz
- Randall Division of Cell and Molecular Biophysics; New Hunt's House; Guy's Campus; King's College London; London, UK
| | - Cecilia Herraiz
- Randall Division of Cell and Molecular Biophysics; New Hunt's House; Guy's Campus; King's College London; London, UK
| | - Victoria Sanz-Moreno
- Randall Division of Cell and Molecular Biophysics; New Hunt's House; Guy's Campus; King's College London; London, UK
| |
Collapse
|
31
|
Abstract
p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.
Collapse
|
32
|
Abstract
The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer.
Collapse
Affiliation(s)
- Chetan K Rane
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
33
|
Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 2014; 35:1857-68. [DOI: 10.1016/j.biomaterials.2013.11.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
|
34
|
Abstract
p21-Activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Radu
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Galina Semenova
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Rachelle Kosoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- Cancer Biology program, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- To whom correspondence should be addressed: Jonathan Chernoff, Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA, Tel.: (215) 728 5319; Fax: (215) 728 3616;
| |
Collapse
|
35
|
Role of p-21-activated kinases in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:347-87. [PMID: 24529727 DOI: 10.1016/b978-0-12-800255-1.00007-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p-21-activated kinases (PAKs) are downstream effectors of Rho GTPases Rac and Cdc42. The PAK family consists of six members which are segregated into two subgroups (Group I and Group II) based on sequence homology. Group I PAKs (PAK1-3) are the most extensively studied but there is increasing interest in the functionality of Group II PAKs (PAK4-6). The PAK family proteins are thought to play an important role in many different cellular processes, some of which have particular significance in the context of cancer progression. This review explores established and more recent data, linking the PAK family kinases to cancer progression including expression profiles, evasion of apoptosis, promotion of cell survival, and regulation of cell invasion. Finally, we discuss attempts to therapeutically target the PAK family and outline the major obstacles that still need to be overcome.
Collapse
|
36
|
Basu S, Rajakaruna S, De Arcangelis A, Zhang L, Georges-Labouesse E, Menko AS. α6 integrin transactivates insulin-like growth factor receptor-1 (IGF-1R) to regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem 2013; 289:3842-55. [PMID: 24381169 DOI: 10.1074/jbc.m113.515254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knock-out mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were down-regulated, resulting in high levels of caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells.
Collapse
Affiliation(s)
- Subhasree Basu
- From the Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | | | | | | | | | | |
Collapse
|
37
|
Thuma F, Ngora H, Zöller M. The metastasis-associated molecule C4.4A promotes tissue invasion and anchorage independence by associating with the alpha6beta4 integrin. Mol Oncol 2013; 7:917-28. [PMID: 23727360 PMCID: PMC5528461 DOI: 10.1016/j.molonc.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023] Open
Abstract
C4.4A is a metastasis-associated molecule that functions appear to rely on associated alph6beta4 integrin. To corroborate the impact of the C4.4A-alpha6beta4 integrin association on metastasis formation, C4.4A was knocked-down in a highly metastatic rat pancreatic adenocarcinoma (ASML, ASML-C4.4Akd). Metastasis formation by ASML-C4.4Akd cells after intrafootpad application was strongly retarded in draining nodes and lung colonization was rare. Furthermore, cisplatin treatment significantly prolonged the survival time only of ASML-C4.4Akd-bearing rats. ASML-C4.4Akd cells display reduced migratory activity and impaired matrix protein degradation due to inefficient MMP14 activation; loss of drug-resistance is due to mitigated PI3K/Akt pathway activation. These losses of function rely on the laminin receptor C4.4A recruiting activated alpha6beta4 integrin into rafts, where C4.4A cooperates with alpha6beta4 and via alpha6beta4 with MMP14. Within this raft-located complex, MMP14 provokes focalized matrix degradation and mostly alpha6beta4 integrin promotes BAD phosphorylation and upregulated Bcl2 and BclXl expression. Thus, metastasis-promoting activities of C4.4A are not genuine characteristics of C4.4A. Instead, the raft-located laminin receptor C4.4A recruits alpha6beta4 integrin and supports via the alpha6beta4 integrin MMP14 activation. Thereby C4.4A acts as a linker to facilitate several steps in the metastatic cascade. Taking the restricted C4.4A expression in non-transformed tissue, this knowledge should pave the way toward the use of C4.4A as a therapeutic target.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
| | - Honoré Ngora
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
- German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
38
|
Wong LE, Chen N, Karantza V, Minden A. The Pak4 protein kinase is required for oncogenic transformation of MDA-MB-231 breast cancer cells. Oncogenesis 2013; 2:e50. [PMID: 23732710 PMCID: PMC3740299 DOI: 10.1038/oncsis.2013.13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Pak4 protein kinase, normally expressed at low level in the mammary gland, is commonly overexpressed in breast cancer. Overexpression of Pak4 transforms mouse mammary epithelial cells in vitro and renders these cells tumorigenic in athymic mice in vivo. Here we show that Pak4 is also required for oncogenic transformation of the human breast cancer cell line MDA-MB-231. These high Pak4-expressing human breast cancer cells form highly disorganized three-dimensional (3D) structures in vitro and readily give rise to orthotopic xenograft tumors in nude mice. We have found that when Pak4 levels are reduced, MDA-MB-231 cells exhibit decreased proliferation and migration in vitro, as well as gross restoration of normal 3D mammary acinar organization, the latter in association with a strong induction of apoptosis. Similarly, Pak4 knockdown suppresses MDA-MB-231 breast xenograft tumor formation in nude mice in vivo. These results indicate that Pak4 has a key role in the oncogenic transformation of breast cells.
Collapse
Affiliation(s)
- L E Wong
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
39
|
Chen N, Debnath J. IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 2013; 9:1214-27. [PMID: 23778976 DOI: 10.4161/auto.24870] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adherent cells require proper integrin-mediated extracellular matrix (ECM) engagement for growth and survival; normal cells deprived of proper ECM contact undergo anoikis. At the same time, autophagy is induced as a survival pathway in both fibroblasts and epithelial cells upon ECM detachment. Here, we further define the intracellular signals that mediate detachment-induced autophagy and uncover an important role for the IκB kinase (IKK) complex in the induction of autophagy in mammary epithelial cells (MECs) deprived of ECM contact. Whereas the PI3K-AKT-MTORC1 pathway activation potently inhibits autophagy in ECM-detached fibroblasts, enforced activation of this pathway is not sufficient to suppress detachment-induced autophagy in MECs. Instead, inhibition of IKK, as well as its upstream regulator, MAP3K7/TAK1, significantly attenuates detachment-induced autophagy in MECs. Furthermore, function-blocking experiments corroborate that both IKK activation and autophagy induction result from decreased ITGA3-ITGB1 (α3β1 integrin) function. Finally, we demonstrate that pharmacological IKK inhibition enhances anoikis and accelerates luminal apoptosis during acinar morphogenesis in three-dimensional culture. Based on these results, we propose that the IKK complex functions as a key mediator of detachment-induced autophagy and anoikis resistance in epithelial cells.
Collapse
Affiliation(s)
- Nan Chen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center; University of California, San Francisco; San Francisco, CA USA
| | | |
Collapse
|
40
|
Singhal R, Kandel ES. The response to PAK1 inhibitor IPA3 distinguishes between cancer cells with mutations in BRAF and Ras oncogenes. Oncotarget 2013; 3:700-8. [PMID: 22869096 PMCID: PMC3443253 DOI: 10.18632/oncotarget.587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While new drugs aimed at BRAF-mutated cancers are entering clinical practice, cells and tumors with activating Ras mutations are relatively resistant to those and quite a few other anti-cancer agents. This inspires the effort to reverse this resistance or to uncover new vulnerabilities in such resistant cancers. IPA3 has been originally identified as a small molecule inhibitor of p21-activated protein kinase 1 (PAK1), a candidate therapeutic target in human malignancies. We have tested a battery of melanoma and colon carcinoma cell lines that carry mutations in BRAF, NRAS and KRAS genes and have observed that those with NRAS and KRAS mutations are more sensitive to killing by IPA3. Genetic manipulations suggest that the differential response depends not just on these oncogenes, but also on additional events that were co-selected during tumor evolution. Furthermore, sublethal doses of IPA3 or ectopic expression of dominant-negative PAK1 sensitized Ras-mutated cells to GDC-0897 and AZD6244, which otherwise have reduced efficiency against cells with activated Ras. Dominant-negative PAK1 also reduced the growth of NRAS-mutated cells in confluent cultures, but, unlike IPA3, caused no significant toxicity. Although it remains to be proven that all the effects of IPA3 are exclusively due to inhibition of PAK1, our findings point to the existence of selective vulnerabilities, which are associated with Ras mutations and could be useful for better understanding and treatment of a large subset of tumors.
Collapse
Affiliation(s)
- Ruchi Singhal
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton St., Buffalo, NY 142263, USA
| | | |
Collapse
|
41
|
Elevated levels of Lewis y and integrin α5β1 correlate with chemotherapeutic drug resistance in epithelial ovarian carcinoma. Int J Mol Sci 2012; 13:15588-600. [PMID: 23443083 PMCID: PMC3546651 DOI: 10.3390/ijms131215588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/09/2023] Open
Abstract
Objective To measure Lewis y and integrin α5β1 expression in epithelial ovarian carcinoma and to correlate the levels of these molecules with ovarian carcinoma chemotherapy and prognosis. Methods The study population included 34 ovarian carcinoma patients with chemotherapeutic drug-resistance, six partially drug-sensitive cases, and 52 drug-sensitive cases (92 total). Immunochemistry was used to determine expression of Lewis y antigen and integrin α5β1 in ovarian carcinoma tissues, and correlation of these molecules with chemotherapy resistance was further investigated, Multi-factor logistic regression analysis was applied to investigate: age, surgical stage, grade, subtype of patient cases, metastasis of lymph nodes, residual tumor size, expression levels of Lewis y antigen and integrin α5β1 correlation with ovarian carcinoma chemotherapy resistance. Results The expression rates of Lewis y antigen and integrins α5 and β1 were significantly greater in the drug-resistant group (91.17%, 85.29%, 88.24%) than the partially sensitive (50.00%, 33.33%, 50.00%) or sensitive groups (61.54%, 57.69%, 55.77%). Binary logistic regression analysis revealed that surgical stage, residual tumor size, and expression of integrin α5 and Lewis y in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance. Conclusions Overexpression of Lewis y and integrin α5 are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.
Collapse
|
42
|
Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC, Gao S, Mills GB, Brugge JS. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012; 21:227-39. [PMID: 22340595 PMCID: PMC3297962 DOI: 10.1016/j.ccr.2011.12.024] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/07/2011] [Accepted: 12/20/2011] [Indexed: 02/05/2023]
Abstract
The PI3K/mTOR-pathway is the most commonly dysregulated pathway in epithelial cancers and represents an important target for cancer therapeutics. Here, we show that dual inhibition of PI3K/mTOR in ovarian cancer-spheroids leads to death of inner matrix-deprived cells, whereas matrix-attached cells are resistant. This matrix-associated resistance is mediated by drug-induced upregulation of cellular survival programs that involve both FOXO-regulated transcription and cap-independent translation. Inhibition of any one of several upregulated proteins, including Bcl-2, EGFR, or IGF1R, abrogates resistance to PI3K/mTOR inhibition. These results demonstrate that acute adaptive responses to PI3K/mTOR inhibition in matrix-attached cells resemble well-conserved stress responses to nutrient and growth factor deprivation. Bypass of this resistance mechanism through rational design of drug combinations could significantly enhance PI3K-targeted drug efficacy.
Collapse
Affiliation(s)
- Taru Muranen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Laura M. Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Devin T. Worster
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Marcin P. Iwanicki
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Loling Song
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Fabiana C. Morales
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Sizhen Gao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Gordon B. Mills
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Corresponding author , Department of Cell Biology, 240 Longwood Ave, Boston MA 02115, Phone: 617 432 3974, Fax: 617 432 3969
| |
Collapse
|
43
|
Gerson KD, Shearstone JR, Maddula VSRK, Seligmann BE, Mercurio AM. Integrin β4 regulates SPARC protein to promote invasion. J Biol Chem 2012; 287:9835-9844. [PMID: 22308039 DOI: 10.1074/jbc.m111.317727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The α6β4 integrin (referred to as "β4" integrin) is a receptor for laminins that promotes carcinoma invasion through its ability to regulate key signaling pathways and cytoskeletal dynamics. An analysis of published Affymetrix GeneChip data to detect downstream effectors involved in β4-mediated invasion of breast carcinoma cells identified SPARC, or secreted protein acidic and rich in cysteine. This glycoprotein has been shown to play an important role in matrix remodeling and invasion. Our analysis revealed that manipulation of β4 integrin expression and signaling impacted SPARC expression and that SPARC facilitates β4-mediated invasion. Expression of β4 in β4-deficient cells reduced the expression of a specific microRNA (miR-29a) that targets SPARC and impedes invasion. In cells that express endogenous β4, miR-29a expression is low and β4 ligation facilitates the translation of SPARC through a TOR-dependent mechanism. The results obtained in this study demonstrate that β4 can regulate SPARC expression and that SPARC is an effector of β4-mediated invasion. They also highlight a potential role for specific miRNAs in executing the functions of integrins.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jeffrey R Shearstone
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | | | | | - Arthur M Mercurio
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and.
| |
Collapse
|
44
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Keely PJ. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 2011; 16:205-19. [PMID: 21822945 PMCID: PMC3885166 DOI: 10.1007/s10911-011-9226-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is necessary for development of the mammary gland, and to maintain the normal architecture and function of the gland. Cells adhere to the ECM via the integrin family of trans-membrane receptors, which signal to control mammary-specific gene expression and regulate cell proliferation and survival. During tumor formation, the ECM is extensively remodeled and signaling through integrins is altered such that cells become proliferative and invasive. A key regulator of whether integrin-mediated adhesion will promote tumor suppression or tumor formation is the stiffness of the stromal ECM. The normal mammary gland is typically surrounded by a loose collagenous stroma. An increase in the deposition of collagen and other stromal components is associated with mammographic density, which is one of the greatest risk factors for developing breast carcinoma. Several groups have demonstrated that increased stromal ECM density results in a matrix that is stiffer. Cells sense the stiffness of their surrounding ECM by Rho-mediated contraction of the actin-myosin cytoskeleton. If the surrounding ECM is stiffer than the cell's ability to contract it, then the tensile forces that result are able to drive the clustering of integrins and assemble adhesion signaling complexes. The result is subsequent activation of signaling pathways including FAK, ERK, and PI3K that drive cell proliferation and survival. In contrast, focal complexes are not formed in a compliant matrix, and activation of FAK and pERK is diminished, resulting in control of proliferation. Signaling from FAK moreover regulates p53 and miR-200 members, which control apoptosis and epithelial phenotype, such that a compliant matrix is predicted to promote normal mammary gland architecture and suppress tumor formation.
Collapse
Affiliation(s)
- Patricia J Keely
- Department of Cell and Regenerative Biology, Laboratory for Cellular and Molecular Biology, & Laboratory for Optical and Computational Instrumentation, University of Wisconsin, 227D Bock Laboratories, 1525 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
46
|
Balasubramanian S, Fan M, Messmer-Blust AF, Yang CH, Trendel JA, Jeyaratnam JA, Pfeffer LM, Vestal DJ. The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein. J Biol Chem 2011; 286:20054-64. [PMID: 21502320 PMCID: PMC3103378 DOI: 10.1074/jbc.m111.249326] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 04/15/2011] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is important in numerous normal and pathological processes, including the angiogenic switch during tumor development and tumor metastasis. Whereas TNF-α and other cytokines up-regulate MMP-9 expression, interferons (IFNs) inhibit MMP-9 expression. We found that IFN-γ treatment or forced expression of the IFN-induced GTPase, mGBP-2, inhibit TNF-α-induced MMP-9 expression in NIH 3T3 fibroblasts, by inhibiting MMP-9 transcription. The NF-κB transcription factor is required for full induction of MMP-9 by TNF-α. Both IFN-γ and mGBP-2 inhibit the transcription of a NF-κB-dependent reporter construct, suggesting that mGBP-2 inhibits MMP-9 induction via inhibition of NF-κB-mediated transcription. Interestingly, mGBP-2 does not inhibit TNF-α-induced degradation of IκBα or p65/RelA translocation into the nucleus. However, mGBP-2 inhibits p65 binding to a κB oligonucleotide probe in gel shift assays and to the MMP-9 promoter in chromatin immunoprecipitation assays. In addition, TNF-α activation of NF-κB in NIH 3T3 cells is dependent on Rac activation, as evidenced by the inhibition of TNF-α induction of NF-κB-mediated transcription by a dominant inhibitory form of Rac1. A role for Rac in the inhibitory action of mGBP-2 on NF-κB is further shown by the findings that mGBP-2 inhibits TNF-α activation of endogenous Rac and constitutively activate Rac can restore NF-κB transcription in the presence of mGBP-2. This is a novel mechanism by which IFNs can inhibit the cytokine induction of MMP-9 expression.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Meiyun Fan
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Chuan H. Yang
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jill A. Trendel
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Jonathan A. Jeyaratnam
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Lawrence M. Pfeffer
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Deborah J. Vestal
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| |
Collapse
|
47
|
Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A. The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 2011; 10:1571-81. [PMID: 21478669 PMCID: PMC3127158 DOI: 10.4161/cc.10.10.15612] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 01/20/2023] Open
Abstract
Rac is a member of the Rho family of small GTPases, which act as molecular switches to control a wide array of cellular functions. In particular, Rac signaling has been implicated in the control of cell-cell adhesions, cell-matrix adhesions, cell migration, cell cycle progression and cellular transformation. As a result of its functional diversity, Rac signaling can influence several aspects of tumorigenesis. Consistent with this, in vivo evidence that Rac signaling contributes to tumorigenesis is continuously emerging. Additionally, our understanding of the mechanisms by which Rac signaling is regulated is rapidly expanding and consequently adds to the complexity of how Rac signaling could be modulated during tumorigenesis. Here we review the numerous biological functions and regulatory mechanisms of Rac signaling and discuss how they could influence the different stages of tumorigenesis.
Collapse
|
48
|
Lamb LE, Zarif JC, Miranti CK. The androgen receptor induces integrin α6β1 to promote prostate tumor cell survival via NF-κB and Bcl-xL Independently of PI3K signaling. Cancer Res 2011; 71:2739-49. [PMID: 21310825 DOI: 10.1158/0008-5472.can-10-2745] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies indicate that androgen receptor (AR) signaling is critical for prostate cancer cell survival, even in castration-resistant disease wherein AR continues to function independently of exogenous androgens. Integrin-mediated adhesion to the extracellular matrix is also important for prostate cell survival. AR-positive prostate cancer cells express primarily integrin α6β1 and adhere to a laminin-rich matrix. In this study, we show that active nuclear-localized AR protects prostate cancer cells from death induced by phosphoinositide 3-kinase (PI3K) inhibition when cells adhere to laminin. Resistance to PI3K inhibition is mediated directly by an AR-dependent increase in integrin α6β1 mRNA transcription and protein expression. Subsequent signaling by integrin α6β1 in AR-expressing cells increased NF-κB activation and Bcl-xL expression. Blocking AR, integrin α6, NF-κB, or Bcl-xL concurrent with inhibition of PI3K was sufficient and necessary to trigger death of laminin-adherent AR-expressing cells. Taken together, these results define a novel integrin-dependent survival pathway in prostate cancer cells that is regulated by AR, independent of and parallel to the PI3K pathway. Our findings suggest that combined targeting of both the AR/α6β1 and PI3K pathways may effectively trigger prostate cancer cell death, enhancing the potential therapeutic value of PI3K inhibitors being evaluated in this setting.
Collapse
Affiliation(s)
- Laura E Lamb
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
49
|
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets 2010; 14:703-25. [PMID: 20507214 DOI: 10.1517/14728222.2010.492779] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE OF THE FIELD P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. AREAS COVERED IN THIS REVIEW We discuss the mechanisms that control PAK1 activity, its involvement in physiological and pathophysiological processes, the benefits and the drawbacks of the current tools to regulate PAK1 activity, the evidence that suggests PAK1 as a therapeutic target and the likely directions of future research. WHAT THE READER WILL GAIN The reader will gain a better knowledge and understanding of the areas described above. TAKE HOME MESSAGE PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Collapse
Affiliation(s)
- Julia V Kichina
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
50
|
SHP2 mediates the localized activation of Fyn downstream of the α6β4 integrin to promote carcinoma invasion. Mol Cell Biol 2010; 30:5306-17. [PMID: 20855525 DOI: 10.1128/mcb.00326-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Src family kinase (SFK) activity is elevated in many cancers, and this activity correlates with aggressive tumor behavior. The α6β4 integrin, which is also associated with a poor prognosis in many tumor types, can stimulate SFK activation; however, the mechanism by which it does so is not known. In the current study, we provide novel mechanistic insight into how the α6β4 integrin selectively activates the Src family member Fyn in response to receptor engagement. Both catalytic and noncatalytic functions of SHP2 are required for Fyn activation by α6β4. Specifically, the tyrosine phosphatase SHP2 is recruited to α6β4 and its catalytic activity is stimulated through a specific interaction of its N-terminal SH2 domain with pY1494 in the β4 subunit. Fyn is recruited to the α6β4/SHP2 complex through an interaction with phospho-Y580 in the C terminus of SHP2. In addition to activating Fyn, this interaction with Y580-SHP2 localizes Fyn to sites of receptor engagement, which is required for α6β4-dependent invasion. Of significance for tumor progression, phosphorylation of Y580-SHP2 and SFK activation are increased in orthotopic human breast tumors that express α6β4 and activation of this pathway is dependent upon Y1494.
Collapse
|