1
|
Small but Powerful: The Human Vault RNAs as Multifaceted Modulators of Pro-Survival Characteristics and Tumorigenesis. Cancers (Basel) 2022; 14:cancers14112787. [PMID: 35681764 PMCID: PMC9179338 DOI: 10.3390/cancers14112787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Small non-protein-coding RNAs have been recognized as valuable regulators of gene expression in all three domains of life. Particularly in multicellular organisms, ncRNAs-mediated gene expression control has evolved as a central principle of cellular homeostasis. Thus, it is not surprising that non-coding RNA misregulation has been linked to various diseases. Here, we review the contributions of the four human vault RNAs to cellular proliferation, apoptosis and cancer biology. Abstract The importance of non-coding RNAs for regulating gene expression has been uncovered in model systems spanning all three domains of life. More recently, their involvement in modulating signal transduction, cell proliferation, tumorigenesis and cancer progression has also made them promising tools and targets for oncotherapy. Recent studies revealed a class of highly conserved small ncRNAs, namely vault RNAs, as regulators of several cellular homeostasis mechanisms. The human genome encodes four vault RNA paralogs that share significant sequence and structural similarities, yet they seem to possess distinct roles in mammalian cells. The alteration of vault RNA expression levels has frequently been observed in cancer tissues, thus hinting at a putative role in orchestrating pro-survival characteristics. Over the last decade, significant advances have been achieved in clarifying the relationship between vault RNA and cellular mechanisms involved in cancer development. It became increasingly clear that vault RNAs are involved in controlling apoptosis, lysosome biogenesis and function, as well as autophagy in several malignant cell lines, most likely by modulating signaling pathways (e.g., the pro-survival MAPK cascade). In this review, we discuss the identified and known functions of the human vault RNAs in the context of cell proliferation, tumorigenesis and chemotherapy resistance.
Collapse
|
2
|
Dong X, Akuetteh PDP, Song J, Ni C, Jin C, Li H, Jiang W, Si Y, Zhang X, Zhang Q, Huang G. Major Vault Protein (MVP) Associated With BRAF V600E Mutation Is an Immune Microenvironment-Related Biomarker Promoting the Progression of Papillary Thyroid Cancer via MAPK/ERK and PI3K/AKT Pathways. Front Cell Dev Biol 2022; 9:688370. [PMID: 35433709 PMCID: PMC9009514 DOI: 10.3389/fcell.2021.688370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignancy of the endocrine system, with an increase in incidence frequency. Major vault protein (MVP) is the main structural protein of the vault complex that has already been investigated in specific cancers. Yet the underlying biological functions and molecular mechanisms of MVP in PTC still remain considerably uncharacterized. Comprehensive analyses are predicated on several public datasets and local RNA-Seq cohort. Clinically, we found that MVP was upregulated in human PTC than in non-cancerous thyroid tissue and was correlated with vital clinicopathological parameters in PTC patients. MVP expression was associated with BRAF V600E, RAS, TERT, and RET status, and it was correlated with worse progression-free survival in PTC patients. Functionally, enrichment analysis provided new clues for the close relationship between MVP with cancer-related signaling pathways and the immune microenvironment in PTC. In PTC with high MVP expression, we found CD8+ T cells, regulatory T cells, and follicular helper T cells have a higher infiltration level. Intriguingly, MVP expression was positively correlated with multiple distinct phases of the anti-cancer immunity cycle. MVP knockdown significantly suppressed cell viability and colony formation, and promoted apoptosis. In addition, downregulated MVP markedly inhibited the migration and invasion potential of PTC cells. The rescue experiments showed that MVP could reverse the level of cell survival and migration. Mechanistically, MVP exerts its oncogenic function in PTC cells through activating PI3K/AKT/mTOR and MAPK/ERK pathways. These results point out that MVP is a reliable biomarker related to the immune microenvironment and provide a basis for elucidating the oncogenic roles of MVP in PTC progression.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Percy David Papa Akuetteh
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Ni
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuhao Si
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
3
|
Major Vault Protein Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection in CRL2843 CD163 Cell Lines and Primary Porcine Alveolar Macrophages. Viruses 2021; 13:v13112267. [PMID: 34835073 PMCID: PMC8618244 DOI: 10.3390/v13112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type Ⅰ interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type Ⅰ IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection.
Collapse
|
4
|
Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci 2021; 78:1487-1499. [PMID: 33063126 PMCID: PMC7904556 DOI: 10.1007/s00018-020-03675-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called "vault". Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
Collapse
Affiliation(s)
- Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Zhang X, Yang Y, Bu X, Wei Y, Lou X. The major vault protein is dispensable for zebrafish organ regeneration. Heliyon 2020; 6:e05422. [PMID: 33195847 PMCID: PMC7644919 DOI: 10.1016/j.heliyon.2020.e05422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
As the main constituent of the largest cellular ribonucleoprotein complex, the evolutionary highly conserved major vault protein (MVP) has been proposed play vital roles in the regeneration of multiple organs. In current study, we use a mvp knockout zebrafish line recently generated to characterize the function of MVP during organ regeneration. We found the regenerative capacity of heart, spinal cord and fin is preserved in mvp knockout zebrafish. Further experiments demonstrated in injured mvp knockout zebrafish, the cell death is enhanced while the transcriptome landscape is largely unchanged. These data showed MVP acts as an anti-apoptotic factor at early phase of injury response while plays a dispensable role in the regenerative programs in zebrafish.
Collapse
Affiliation(s)
- Xue Zhang
- Medical School, Nanjing University, China
| | - Yuxi Yang
- Medical School, Nanjing University, China
| | - Xiaoxue Bu
- Medical School, Nanjing University, China
| | | | - Xin Lou
- Medical School, Nanjing University, China
| |
Collapse
|
6
|
Bracher L, Ferro I, Pulido-Quetglas C, Ruepp MD, Johnson R, Polacek N. Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells. Biomolecules 2020; 10:biom10040614. [PMID: 32316166 PMCID: PMC7226377 DOI: 10.3390/biom10040614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory non-protein coding RNAs perform a remarkable variety of complex biological functions. Previously, we demonstrated a role of the human non-coding vault RNA1-1 (vtRNA1-1) in inhibiting intrinsic and extrinsic apoptosis in several cancer cell lines. Yet on the molecular level, the function of the vtRNA1-1 is still not fully clear. Here, we created HeLa knock-out cell lines revealing that prolonged starvation triggers elevated levels of apoptosis in the absence of vtRNA1-1 but not in vtRNA1-3 knock-out cells. Next-generation deep sequencing of the mRNome identified the PI3K/Akt pathway and the ERK1/2 MAPK cascade, two prominent signaling axes, to be misregulated in the absence of vtRNA1-1 during starvation-mediated cell death conditions. Expression of vtRNA1-1 mutants identified a short stretch of 24 nucleotides of the vtRNA1-1 central domain as being essential for successful maintenance of apoptosis resistance. This study describes a cell signaling-dependent contribution of the human vtRNA1-1 to starvation-induced programmed cell death.
Collapse
Affiliation(s)
- Lisamaria Bracher
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland;
| | - Iolanda Ferro
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
| | - Carlos Pulido-Quetglas
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland;
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- United Kingdom Dementia Research Institute, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9NU, UK
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- Correspondence:
| |
Collapse
|
7
|
Bai H, Wang C, Qi Y, Xu J, Li N, Chen L, Jiang B, Zhu X, Zhang H, Li X, Yang Q, Ma J, Xu Y, Ben J, Chen Q. Major vault protein suppresses lung cancer cell proliferation by inhibiting STAT3 signaling pathway. BMC Cancer 2019; 19:454. [PMID: 31092229 PMCID: PMC6521381 DOI: 10.1186/s12885-019-5665-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/30/2019] [Indexed: 01/07/2023] Open
Abstract
Background Major vault protein (MVP) is the major component of vault, a eukaryotic organelle involved in multiple cellular processes, and is important in multiple cellular processes and diseases including the drug resistance in cancer chemotherapies. However, the role of MVP in lung cancer remains unclear. Methods We examined MVP expression in 120 non-small cell lung cancer (NSCLC) tumors and matched normal tissues by immunohistochemistry. Its relationship with NSCLC prognosis was determined by investigating the patient cohort and analyzing the data from a published dataset consisting with more than 1900 lung cancer patients. We further performed shRNA-introduced knockdown of MVP in Lewis lung carcinoma (LLC) cells and examined its effects on the tumor formation in a xenograft mouse model and the tumor cell proliferation, apoptosis, and signal transduction in vitro. Results We found that MVP was up-regulated significantly in tumor tissues compared with the matched tumor-adjacent normal tissues. The increased expression of MVP in lung adenocarcinoma was associated with a better prognosis. Knockdown of MVP in LLC cells promoted xenografted lung cancer formation in mice, which was accompanied with accelerated tumor cell proliferation and suppressed cell apoptosis in vitro. Knockdown of MVP stimulated STAT3 phosphorylation, nuclear localization, and activation of JAK2 and RAF/MEK/ERK pathways in LLC cells. Administration of STAT3 inhibitor WP1066 could prevent MVP knockdown induced tumorigenesis. Conclusions Our findings demonstrate that MVP may act as a lung tumor suppressor via inhibiting STAT3 pathway. MVP would be a potential target for novel therapies of lung adenocarcinoma. Electronic supplementary material The online version of this article (10.1186/s12885-019-5665-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Chenchen Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yu Qi
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology, Nanjing Medical University, Nanjing, China
| | - Nan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.,Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Lili Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Margiotta AL, Bain LJ, Rice CD. Expression of the Major Vault Protein (MVP) and Cellular Vault Particles in Fish. Anat Rec (Hoboken) 2017; 300:1981-1992. [PMID: 28710803 DOI: 10.1002/ar.23645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
Cellular vaults are ubiquitous 13 mega Da multi-subunit ribonuceloprotein particles that may have a role in nucleocytoplasmic transport. Seventy percent of the vault's mass consists of a ≈100 kDa protein, the major vault protein (MVP). In humans, a drug resistance-associated protein, originally identified as lung resistance protein in metastatic lung cancer, was ultimately shown to be the previously described MVP. In this study, a partial MVP sequence was cloned from channel catfish. Recombinant MVP (rMVP) was used to generate a monoclonal antibody that recognizes full length protein in distantly related fish species, as well as mice. MVP is expressed in fish spleen, liver, anterior kidney, renal kidney, and gills, with a consistent expression in epithelial cells, macrophages, or endothelium at the interface of the tissue and environment or vasculature. We show that vaults are distributed throughout cells of fish lymphoid cells, with nuclear and plasma membrane aggregations in some cells. Protein expression studies were extended to liver neoplastic lesions in Atlantic killifish collected in situ at the Atlantic Wood USA-EPA superfund site on the southern branch of the Elizabeth River, VA. MVP is highly expressed in these lesions, with intense staining at the nuclear membrane, similar to what is known about MVP expression in human liver neoplasia. Additionally, MVP mRNA expression was quantified in channel catfish ovarian cell line following treatment with different classes of pharmacological agents. Notably, mRNA expression is induced by ethidium bromide, which damages DNA. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1981-1992, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alyssa L Margiotta
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, 29634
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, 29634.,Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, 29634
| | - Charles D Rice
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, 29634.,Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
9
|
Vuorinen EM, Rajala NK, Rauhala HE, Nurminen AT, Hytönen VP, Kallioniemi A. Search for KPNA7 cargo proteins in human cells reveals MVP and ZNF414 as novel regulators of cancer cell growth. Biochim Biophys Acta Mol Basis Dis 2016; 1863:211-219. [PMID: 27664836 DOI: 10.1016/j.bbadis.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Nina K Rajala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Hanna E Rauhala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland.
| | - Anssi T Nurminen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Vesa P Hytönen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Anne Kallioniemi
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| |
Collapse
|
10
|
Amort M, Nachbauer B, Tuzlak S, Kieser A, Schepers A, Villunger A, Polacek N. Expression of the vault RNA protects cells from undergoing apoptosis. Nat Commun 2015; 6:7030. [PMID: 25952297 PMCID: PMC4430821 DOI: 10.1038/ncomms8030] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Non-protein-coding RNAs are a functionally versatile class of transcripts exerting their biological roles on the RNA level. Recently, we demonstrated that the vault complex-associated RNAs (vtRNAs) are significantly upregulated in Epstein-Barr virus (EBV)-infected human B cells. Very little is known about the function(s) of the vtRNAs or the vault complex. Here, we individually express latent EBV-encoded proteins in B cells and identify the latent membrane protein 1 (LMP1) as trigger for vtRNA upregulation. Ectopic expression of vtRNA1-1, but not of the other vtRNA paralogues, results in an improved viral establishment and reduced apoptosis, a function located in the central domain of vtRNA1-1. Knockdown of the major vault protein has no effect on these phenotypes revealing that vtRNA1-1 and not the vault complex contributes to general cell death resistance. This study describes a NF-κB-mediated role of the non-coding vtRNA1-1 in inhibiting both the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Melanie Amort
- Division of Genomics and RNomics, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Birgit Nachbauer
- Division of Genomics and RNomics, Medical University Innsbruck, Innsbruck A-6020, Austria
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern Bern 3012, Switzerland
| | - Selma Tuzlak
- Division of Developmental Immunology, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Zentrum München, München D-81377, Germany
- German Center for Infection Research (DZIF), Partner site Munich, München D-81377, Germany
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München, München D-81377, Germany
- German Center for Infection Research (DZIF), Partner site Munich, München D-81377, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Norbert Polacek
- Division of Genomics and RNomics, Medical University Innsbruck, Innsbruck A-6020, Austria
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
11
|
Zhang W, Neo SP, Gunaratne J, Poulsen A, Boping L, Ong EH, Sangthongpitag K, Pendharkar V, Hill J, Cohen SM. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex. Cell Signal 2014; 27:436-42. [PMID: 25530215 DOI: 10.1016/j.cellsig.2014.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 01/06/2023]
Abstract
The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Anders Poulsen
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Liu Boping
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Esther Hongqian Ong
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | | | - Vishal Pendharkar
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Center, 31 Biopolis Way, Singapore 138669, Singapore
| | - Stephen M Cohen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| |
Collapse
|
12
|
Daly TK, Sutherland-Smith AJ, Penny D. Beyond BLASTing: tertiary and quaternary structure analysis helps identify major vault proteins. Genome Biol Evol 2013; 5:217-32. [PMID: 23275487 PMCID: PMC3595041 DOI: 10.1093/gbe/evs135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We examine the advantages of going beyond sequence similarity and use both protein three-dimensional (3D) structure prediction and then quaternary structure (docking) of inferred 3D structures to help evaluate whether comparable sequences can fold into homologous structures with sufficient lateral associations for quaternary structure formation. Our test case is the major vault protein (MVP) that oligomerizes in multiple copies to form barrel-like vault particles and is relatively widespread among eukaryotes. We used the iterative threading assembly refinement server (I-TASSER) to predict whether putative MVP sequences identified by BLASTp and PSI Basic Local Alignment Search Tool are structurally similar to the experimentally determined rodent MVP tertiary structures. Then two identical predicted quaternary structures from I-TASSER are analyzed by RosettaDock to test whether a pair-wise association occurs, and hence whether the oligomeric vault complex is likely to form for a given MVP sequence. Positive controls for the method are the experimentally determined rat (Rattus norvegicus) vault X-ray crystal structure and the purple sea urchin (Strongylocentrotus purpuratus) MVP sequence that forms experimentally observed vaults. These and two kinetoplast MVP structural homologs were predicted with high confidence value, and RosettaDock predicted that these MVP sequences would dock laterally and therefore could form oligomeric vaults. As the negative control, I-TASSER did not predict an MVP-like structure from a randomized rat MVP sequence, even when constrained to the rat MVP crystal structure (PDB:2ZUO), thus further validating the method. The protocol identified six putative homologous MVP sequences in the heterobolosean Naegleria gruberi within the excavate kingdom. Two of these sequences are predicted to be structurally similar to rat MVP, despite being in excess of 300 residues shorter. The method can be used generally to help test predictions of homology via structural analysis.
Collapse
Affiliation(s)
- Toni K Daly
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
13
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
14
|
Yang J, Nagasawa DT, Spasic M, Amolis M, Choy W, Garcia HM, Prins RM, Liau LM, Yang I. Endogenous Vaults and Bioengineered Vault Nanoparticles for Treatment of Glioblastomas. Neurosurg Clin N Am 2012; 23:451-8. [DOI: 10.1016/j.nec.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Shaulov L, Gruber R, Cohen I, Harel A. A dominant-negative form of POM121 binds chromatin and disrupts the two separate modes of nuclear pore assembly. J Cell Sci 2011; 124:3822-34. [PMID: 22100917 DOI: 10.1242/jcs.086660] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear pore complexes (NPCs) are formed during two separate stages of the metazoan cell cycle. They are assembled into the re-forming nuclear envelope (NE) at the exit from mitosis and into an intact, expanding NE during interphase. Here, we show that a soluble internal fragment of the membrane nucleoporin POM121 has a dominant-negative effect on both modes of assembly in a cell-free reconstitution system. The soluble POM121 fragment binds chromatin at sites that are distinct from ELYS-Nup107-160 'seeding' sites and prevents membrane enclosure and NPC formation. Importin-β negatively regulates chromatin binding by the POM121 fragment through a conserved NLS motif and is also shown to affect the recruitment of the endogenous membrane protein to chromatin in the full assembly system. When an intact NE is present before the addition of the dominant-negative fragment, NPCs are inserted into the NE but membrane expansion is inhibited. This results in densely packed NPCs with no intervening membrane patches, as visualized by scanning electron microscopy. We conclude that POM121 plays an important role in both modes of assembly and links nuclear membrane formation and expansion to nuclear pore biogenesis.
Collapse
Affiliation(s)
- Lihi Shaulov
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
16
|
Citarelli M, Teotia S, Lamb RS. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 2010; 10:308. [PMID: 20942953 PMCID: PMC2964712 DOI: 10.1186/1471-2148-10-308] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/13/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The poly(ADP-ribose) polymerase (PARP) superfamily was originally identified as enzymes that catalyze the attachment of ADP-ribose subunits to target proteins using NAD+ as a substrate. The family is characterized by the catalytic site, termed the PARP signature. While these proteins can be found in a range of eukaryotes, they have been best studied in mammals. In these organisms, PARPs have key functions in DNA repair, genome integrity and epigenetic regulation. More recently it has been found that proteins within the PARP superfamily have altered catalytic sites, and have mono(ADP-ribose) transferase (mART) activity or are enzymatically inactive. These findings suggest that the PARP signature has a broader range of functions that initially predicted. In this study, we investigate the evolutionary history of PARP genes across the eukaryotes. RESULTS We identified in silico 236 PARP proteins from 77 species across five of the six eukaryotic supergroups. We performed extensive phylogenetic analyses of the identified PARPs. They are found in all eukaryotic supergroups for which sequence is available, but some individual lineages within supergroups have independently lost these genes. The PARP superfamily can be subdivided into six clades. Two of these clades were likely found in the last common eukaryotic ancestor. In addition, we have identified PARPs in organisms in which they have not previously been described. CONCLUSIONS Three main conclusions can be drawn from our study. First, the broad distribution and pattern of representation of PARP genes indicates that the ancestor of all extant eukaryotes encoded proteins of this type. Second, the ancestral PARP proteins had different functions and activities. One of these proteins was similar to human PARP1 and likely functioned in DNA damage response. The second of the ancestral PARPs had already evolved differences in its catalytic domain that suggest that these proteins may not have possessed poly(ADP-ribosyl)ation activity. Third, the diversity of the PARP superfamily is larger than previously documented, suggesting as more eukaryotic genomes become available, this gene family will grow in both number and type.
Collapse
Affiliation(s)
- Matteo Citarelli
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
| | - Sachin Teotia
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
- Molcular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210 USA
| | - Rebecca S Lamb
- Plant Cellular and Molecular Biology Department, Ohio State University, 500 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210 USA
- Molcular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
17
|
Doucet CM, Hetzer MW. Nuclear pore biogenesis into an intact nuclear envelope. Chromosoma 2010; 119:469-77. [DOI: 10.1007/s00412-010-0289-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
18
|
Chadrin A, Hess B, San Roman M, Gatti X, Lombard B, Loew D, Barral Y, Palancade B, Doye V. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. ACTA ACUST UNITED AC 2010; 189:795-811. [PMID: 20498018 PMCID: PMC2878943 DOI: 10.1083/jcb.200910043] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A previously unrecognized pore membrane protein, Pom33, stabilizes the interface between the nuclear envelope and the NPC to facilitate NPC biogenesis and spatial organization. The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope–NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.
Collapse
Affiliation(s)
- Anne Chadrin
- Institut Jacques Monod, UMR 7592, Centre National de la Recherche Scientifique/Université Paris Diderot, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Webster M, Witkin KL, Cohen-Fix O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 2009; 122:1477-86. [PMID: 19420234 DOI: 10.1242/jcs.037333] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nucleus is one of the most prominent cellular organelles, yet surprisingly little is known about how it is formed, what determines its shape and what defines its size. As the nuclear envelope (NE) disassembles in each and every cell cycle in metazoans, the process of rebuilding the nucleus is crucial for proper development and cell proliferation. In this Commentary, we summarize what is known about the regulation of nuclear shape and size, and highlight recent findings that shed light on the process of building a nucleus, including new discoveries related to NE assembly and the relationship between the NE and the endoplasmic reticulum (ER). Throughout our discussion, we note interesting aspects of nuclear structure that have yet to be resolved. Finally, we present an idea - which we refer to as ;the limited flat membrane hypothesis' - to explain the formation of a single nucleus that encompasses of all of the cell's chromosomes following mitosis.
Collapse
Affiliation(s)
- Micah Webster
- The Laboratory of Cellular and Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|