1
|
Tsutsumi-Arai C, Tran A, Arai Y, Ono W, Ono N. Mandibular Condylar Cartilage in Development and Diseases: A PTHrP-Centric View. Orthod Craniofac Res 2025. [PMID: 40251915 DOI: 10.1111/ocr.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 12/25/2024] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
The mandibular condylar cartilage (MCC) is a dual-function component of the temporomandibular joint (TMJ), acting as both articular cartilage for jaw movement and growth cartilage for vertical growth of the mandibular condyle. Parathyroid hormone-related protein (PTHrP) plays a critical role in orchestrating chondrogenesis in the long bone, and its importance is also highlighted in both MCC development and TMJ function. Here, we discuss the role of PTHrP in the development, growth and diseases of the MCC. PTHrP is a key morphogen in the MCC that regulates chondrogenesis by promoting chondrocyte proliferation and preventing premature hypertrophic differentiation. Exclusively expressed in the superficial layer, PTHrP diffuses across the MCC and targets chondrocytes in deeper layers, regulating transcription factors such as RUNX2 and SOX9. PTHrP regulates chondrocyte differentiation through two main pathways: the PTHrP-PTH1R signalling pathway, which suppresses hypertrophy and the PTHrP-Ihh negative feedback loop, which balances proliferation and hypertrophy. In the postnatal murine MCC, PTHrP levels are high early on and decrease after the onset of mastication around P21. Altered mechanical environments, such as those therapeutically induced as mandibular advancement, increase PTHrP expression, promoting chondrocyte proliferation and delaying hypertrophy. PTHrP also plays a dual role in adult TMJ diseases, particularly in osteoarthritis (OA); PTHrP expression transiently increases during the early stages of TMJ-OA to promote cell proliferation, but its eventual decrease contributes to the progression of the disease. This highlights the complex role of PTHrP in maintaining MCC homeostasis and its potential involvement in TMJ-OA pathology. The MCC combines the characteristics of growth and articular cartilage and functions distinctively in three phases: development before occlusion, growth after the occlusion is established, and maintenance after the growth is complete. While PTHrP plays a multifaceted role in all phases, further research is needed to fully understand how it regulates MCC development, growth and diseases.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Amy Tran
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
2
|
Lan H, Wu B, Jin K, Chen Y. Beyond boundaries: unraveling innovative approaches to combat bone-metastatic cancers. Front Endocrinol (Lausanne) 2024; 14:1260491. [PMID: 38260135 PMCID: PMC10800370 DOI: 10.3389/fendo.2023.1260491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Evidence demonstrated that bones, liver, and lungs are the most common metastasis sites in some human malignancies, especially in prostate and breast cancers. Bone is the third most frequent target for spreading tumor cells among these organs and tissues. Patients with bone-metastatic cancers face a grim prognosis characterized by short median survival time. Current treatments have proven insufficient, as they can only inhibit metastasis or tumor progression within the bone tissues rather than providing a curative solution. Gaining a more profound comprehension of the interplay between tumor cells and the bone microenvironment (BME) is of utmost importance in tackling this issue. This knowledge will pave the way for developing innovative diagnostic and therapeutic approaches. This review summarizes the mechanisms underlying bone metastasis and discusses the clinical aspects of this pathologic condition. Additionally, it highlights emerging therapeutic interventions aimed at enhancing the quality of life for patients affected by bone-metastatic cancers. By synthesizing current research, this review seeks to shed light on the complexities of bone metastasis and offer insights for future advancements in patient care.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bo Wu
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Tsutsumi-Arai C, Arai Y, Tran A, Salinas M, Nakai Y, Orikasa S, Ono W, Ono N. A PTHrP Gradient Drives Mandibular Condylar Chondrogenesis via Runx2. J Dent Res 2024; 103:91-100. [PMID: 38058151 PMCID: PMC10734211 DOI: 10.1177/00220345231208175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
The mandibular condylar cartilage (MCC) is an essential component of the temporomandibular joint, which orchestrates the vertical growth of the mandibular ramus through endochondral ossification with distinctive modes of cell differentiation. Parathyroid hormone-related protein (PTHrP) is a master regulator of chondrogenesis; in the long bone epiphyseal growth plate, PTHrP expressed by resting zone chondrocytes promotes chondrocyte proliferation in the adjacent layer. However, how PTHrP regulates chondrogenesis in the MCC remains largely unclear. In this study, we used a Pthrp-mCherry knock-in reporter strain to map the localization of PTHrP+ cells in the MCC and define the function of PTHrP in the growing mandibular condyle. In the postnatal MCC of PthrpmCherry/+ mice, PTHrP-mCherry was specifically expressed by cells in the superficial layer immediately adjacent to RUNX2-expressing cells in the polymorphic layer. PTHrP ligands diffused across the polymorphic and chondrocyte layers where its cognate receptor PTH1R was abundantly expressed. We further analyzed the mandibular condyle of PthrpmCherry/mCherry mice lacking functional PTHrP protein (PTHrP-KO). At embryonic day (E) 18.5, the condylar process and MCC were significantly truncated in the PTHrP-KO mandible, which was associated with a significant reduction in cell proliferation across the polymorphic layer and a loss of SOX9+ cells in the chondrocyte layers. The PTHrP-KO MCC showed a transient increase in the number of Col10a1+ hypertrophic chondrocytes at E15.5, followed by a significant loss of these cells at E18.5, indicating that superficial layer-derived PTHrP prevents premature chondrocyte exhaustion in the MCC. The expression of Runx2, but not Sp7, was significantly reduced in the polymorphic layer of the PTHrP-KO MCC. Therefore, PTHrP released from cells in the superficial layer directly acts on cells in the polymorphic layer to promote proliferation of chondrocyte precursor cells and prevent their premature differentiation by maintaining Runx2 expression, revealing a unique PTHrP gradient-directed mechanism that regulates MCC chondrogenesis.
Collapse
Affiliation(s)
- C. Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Y. Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - A. Tran
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - M. Salinas
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Y. Nakai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - S. Orikasa
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - W. Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - N. Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
4
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Lu K, Zhang M, Wei G, Xiao G, Tong L, Chen D. Multiple cullin-associated E3 ligases regulate cyclin D1 protein stability. eLife 2023; 12:e80327. [PMID: 37943017 PMCID: PMC10651173 DOI: 10.7554/elife.80327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/08/2023] [Indexed: 11/10/2023] Open
Abstract
Cyclin D1 is a key regulator of cell cycle progression, which forms a complex with CDK4/6 to regulate G1/S transition during cell cycle progression. Cyclin D1 has been recognized as an oncogene since it was upregulated in several different types of cancers. It is known that the post-translational regulation of cyclin D1 is controlled by ubiquitination/proteasome degradation system in a phosphorylation-dependent manner. Several cullin-associated F-box E3 ligases have been shown to regulate cyclin D1 degradation; however, it is not known if additional cullin-associated E3 ligases participate in the regulation of cyclin D1 protein stability. In this study, we have screened an siRNA library containing siRNAs specific for 154 ligase subunits, including F-box, SOCS, BTB-containing proteins, and DDB proteins. We found that multiple cullin-associated E3 ligases regulate cyclin D1 activity, including Keap1, DDB2, and WSB2. We found that these E3 ligases interact with cyclin D1, regulate cyclin D1 ubiquitination and proteasome degradation in a phosphorylation-dependent manner. These E3 ligases also control cell cycle progression and cell proliferation through regulation of cyclin D1 protein stability. Our study provides novel insights into the regulatory mechanisms of cyclin D1 protein stability and function.
Collapse
Affiliation(s)
- Ke Lu
- Research Center for Computer-aided Drug Discovery, Chinese Academy of SciencesShenzhenChina
| | - Ming Zhang
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Guizheng Wei
- Research Center for Computer-aided Drug Discovery, Chinese Academy of SciencesShenzhenChina
| | - Guozhi Xiao
- Department of Biochemistry, Southern University of Science and TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Chinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
6
|
Huang A, Li L, Liu X, Lian Q, Guo G, Xu T, Lu X, Ma L, Ma H, Yu Y, Yao L. Hedgehog signaling is a potential therapeutic target for vascular calcification. Gene 2023; 872:147457. [PMID: 37141952 DOI: 10.1016/j.gene.2023.147457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) suffered from vascular calcification (VC), one major contributor for their increased mortality rate. Hedgehog (Hh) signaling plays a crucial role in physiological bone mineralization and is associated with several cardiovascular diseases. However, the molecular changes underlying VC is ill defined and it remains unclear whether Hh signaling intervention affects VC. METHODS We constructed human primary vascular smooth muscle cell (VSMC) calcification model and performed RNA sequencing. Alizarin red staining and calcium content assay were conducted to identify the occurrence of VC. Three different R packages were applied to determine differentially expressed genes (DEGs). Enrichment analysis and protein-protein interaction (PPI) network analysis were carried out to explore the biological roles of DEGs. qRT-PCR assay was then applied to validate the expression of key genes. By using Connectivity Map (CMAP) analysis, several small molecular drugs targeting these key genes were obtained, including SAG (Hedgehog signaling activator) and cyclopamine (CPN) (Hedgehog signaling inhibitor), which were subsequently used to treat VSMC. RESULTS Obvious Alizarin red staining and increased calcium content identified the occurrence of VC. By integrating results from three R packages, we totally obtained 166 DEGs (86 up-regulated and 80 down-regulated), which were significantly enriched in ossification, osteoblast differentiation, and Hh signaling. PPI network analysis identified 10 key genes and CMAP analysis predicted several small molecular drugs targeting these key genes including chlorphenamine, isoeugenol, CPN and phenazopyridine. Notably, our in vitro experiment showed that SAG markedly alleviated VSMC calcification, whereas CPN significantly exacerbated VC. CONCLUSIONS Our research provided deeper insight to the pathogenesis of VC and indicated that targeting Hh signaling pathway may represent a potential and effective therapy for VC.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Lu Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoxu Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Qiuting Lian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Haiying Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China; Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
7
|
RUNX3 Meets the Ubiquitin-Proteasome System in Cancer. Cells 2023; 12:cells12050717. [PMID: 36899853 PMCID: PMC10001085 DOI: 10.3390/cells12050717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
RUNX3 is a transcription factor with regulatory roles in cell proliferation and development. While largely characterized as a tumor suppressor, RUNX3 can also be oncogenic in certain cancers. Many factors account for the tumor suppressor function of RUNX3, which is reflected by its ability to suppress cancer cell proliferation after expression-restoration, and its inactivation in cancer cells. Ubiquitination and proteasomal degradation represent a major mechanism for the inactivation of RUNX3 and the suppression of cancer cell proliferation. On the one hand, RUNX3 has been shown to facilitate the ubiquitination and proteasomal degradation of oncogenic proteins. On the other hand, RUNX3 can be inactivated through the ubiquitin-proteasome system. This review encapsulates two facets of RUNX3 in cancer: how RUNX3 suppresses cell proliferation by facilitating the ubiquitination and proteasomal degradation of oncogenic proteins, and how RUNX3 is degraded itself through interacting RNA-, protein-, and pathogen-mediated ubiquitination and proteasomal degradation.
Collapse
|
8
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
9
|
Rajagopal K, Ramesh S, Madhuri V. Early Addition of Parathyroid Hormone-Related Peptide Regulates the Hypertrophic Differentiation of Mesenchymal Stem Cells. Cartilage 2021; 13:143S-152S. [PMID: 31896268 PMCID: PMC8804866 DOI: 10.1177/1947603519894727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Chondrogenic differentiation of mesenchymal stem cells (MSCs) into hyaline cartilage is complicated by terminal hypertrophic differentiation. In growth plate, parathyroid hormone-related peptide (1-34) (PTHrP) plays a crucial role in maintaining chondrocytes in their proliferation state by counteracting the hypertrophic differentiation. This study aims to test the effect of PTHrP supplementation at different time points on chondrogenic differentiation of MSCs and assess the final quality of differentiated chondrocytes. METHODS Human periosteum and bone marrow MSCs isolated from 3 patient samples (donor unmatched) were characterized by flow cytometry and multilineage differentiation. The cells were differentiated into chondrocytes in the presence of transforming growth factor-β (TGF-β) and the PTHrP (1-34) was added from 4th or 14th day of culture. The outcome was analyzed by histology, immunohistochemistry, and gene expression. RESULTS Flow cytometry and multilineage differentiation confirmed that the cells isolated from periosteum and bone marrow exhibited the phenotype of MSCs. During chondrogenic differentiation, pellets that received PTHrP from the 4th day of culture showed a significant reduction in hypertrophic markers (COL10A1 and RUNX) than the addition of PTHrP from the 14th day and TGF-β alone treated samples. Furthermore, 4th day supplementation of PTHrP significantly improved the expression of cartilage-specific markers (COL2A1, SOX9, ACAN) in both periosteum and bone marrow-derived MSCs. Histology and immunostaining with collagen type X data corroborated the gene expression outcomes. CONCLUSION The outcome showed that supplementing PTHrP from the 4th day of chondrogenic differentiation produced better chondrocytes with less hypertrophic markers in both bone marrow and periosteal-derived MSCs.
Collapse
Affiliation(s)
- Karthikeyan Rajagopal
- Centre for Stem Cell Research, a Unit of
InStem Bengaluru, Christian Medical College, Bagayam, Vellore, Tamil Nadu,
India,Department of Paediatric Orthopaedics,
Christian Medical College, Vellore, Tamil Nadu, India
| | - Sowmya Ramesh
- Centre for Stem Cell Research, a Unit of
InStem Bengaluru, Christian Medical College, Bagayam, Vellore, Tamil Nadu,
India,Department of Paediatric Orthopaedics,
Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Centre for Stem Cell Research, a Unit of
InStem Bengaluru, Christian Medical College, Bagayam, Vellore, Tamil Nadu,
India,Department of Paediatric Orthopaedics,
Christian Medical College, Vellore, Tamil Nadu, India,Vrisha Madhuri, Professor, Department of
Paediatric Orthopaedics, Christian Medical College, First Floor, Paul Brand
Building, Vellore 632004, Tamil Nadu, India.
| |
Collapse
|
10
|
Che X, Park NR, Jin X, Jung YK, Han MS, Park CY, Chun JS, Kim SG, Jin J, Kim HJ, Lian JB, Stein JL, Stein GS, Choi JY. Hypoxia-inducible factor 2α is a novel inhibitor of chondrocyte maturation. J Cell Physiol 2021; 236:6963-6973. [PMID: 33748969 PMCID: PMC8662706 DOI: 10.1002/jcp.30356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Hypoxic environment is essential for chondrocyte maturation and longitudinal bone growth. Although hypoxia-inducible factor 1 alpha (Hif-1α) has been known as a key player for chondrocyte survival and function, the function of Hif-2α in cartilage is mechanistically and clinically relevant but remains unknown. Here we demonstrated that Hif-2α was a novel inhibitor of chondrocyte maturation through downregulation of Runx2 stability. Mechanistically, Hif-2α binding to Runx2 inhibited chondrocyte maturation by Runx2 degradation through disrupting Runx2/Cbfβ complex formation. The Hif-2α-mediated-Runx2 degradation could be rescued by Cbfβ transfection due to the increase of Runx2/Cbfβ complex formation. Consistently, mesenchymal cells derived from Hif-2α heterozygous mice were more rapidly differentiated into hypertrophic chondrocytes than those of wild-type mice in a micromass culture system. Collectively, these findings demonstrate that Hif-2α is a novel inhibitor for chondrocyte maturation by disrupting Runx2/Cbfβ complex formation and consequential regulatory activity.
Collapse
Affiliation(s)
- Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| | - Na-Rae Park
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| | - Youn-Kwan Jung
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| | - Min-Su Han
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| | - Clara Yongjoo Park
- Department of Food and Nutrition, Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jang-Soo Chun
- Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Jingchun Jin
- Department of Immunology of Yanbian University Hospital, 133000, Yanji, Jilin Province, China
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Brulington, VT 05405, U.S.A
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Brulington, VT 05405, U.S.A
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Brulington, VT 05405, U.S.A
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu 41944 Korea
| |
Collapse
|
11
|
Abstract
Hypertrophic chondrocytes are the master regulators of endochondral ossification; however, their ultimate cell fates cells remain largely elusive due to their transient nature. Historically, hypertrophic chondrocytes have been considered as the terminal state of growth plate chondrocytes, which are destined to meet their inevitable demise at the primary spongiosa. Chondrocyte hypertrophy is accompanied by increased organelle synthesis and rapid intracellular water uptake, which serve as the major drivers of longitudinal bone growth. This process is delicately regulated by major signaling pathways and their target genes, including growth hormone (GH), insulin growth factor-1 (IGF-1), indian hedgehog (Ihh), parathyroid hormone-related protein (PTHrP), bone morphogenetic proteins (BMPs), sex determining region Y-box 9 (Sox9), runt-related transcription factors (Runx) and fibroblast growth factor receptors (FGFRs). Hypertrophic chondrocytes orchestrate endochondral ossification by regulating osteogenic-angiogenic and osteogenic-osteoclastic coupling through the production of vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metallopeptidases-9/13 (MMP-9/13). Hypertrophic chondrocytes also indirectly regulate resorption of the cartilaginous extracellular matrix, by controlling formation of a special subtype of osteoclasts termed "chondroclasts". Notably, hypertrophic chondrocytes may possess innate potential for plasticity, reentering the cell cycle and differentiating into osteoblasts and other types of mesenchymal cells in the marrow space. We may be able to harness this unique plasticity for therapeutic purposes, for a variety of skeletal abnormalities and injuries. In this review, we discuss the morphological and molecular properties of hypertrophic chondrocytes, which carry out important functions during skeletal growth and regeneration.
Collapse
Affiliation(s)
- Shawn A Hallett
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
| |
Collapse
|
12
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
13
|
Aldrich ED, Cui X, Murphy CA, Lim KS, Hooper GJ, McIlwraith CW, Woodfield TBF. Allogeneic mesenchymal stromal cells for cartilage regeneration: A review of in vitro evaluation, clinical experience, and translational opportunities. Stem Cells Transl Med 2021; 10:1500-1515. [PMID: 34387402 PMCID: PMC8550704 DOI: 10.1002/sctm.20-0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
The paracrine signaling, immunogenic properties and possible applications of mesenchymal stromal cells (MSCs) for cartilage tissue engineering and regenerative medicine therapies have been investigated through numerous in vitro, animal model and clinical studies. The emerging knowledge largely supports the concept of MSCs as signaling and modulatory cells, exerting their influence through trophic and immune mediation rather than as a cell replacement therapy. The virtues of allogeneic cells as a ready‐to‐use product with well‐defined characteristics of cell surface marker expression, proliferative ability, and differentiation capacity are well established. With clinical applications in mind, a greater focus on allogeneic cell sources is evident, and this review summarizes the latest published and upcoming clinical trials focused on cartilage regeneration adopting allogeneic and autologous cell sources. Moreover, we review the current understanding of immune modulatory mechanisms and the role of trophic factors in articular chondrocyte‐MSC interactions that offer feasible targets for evaluating MSC activity in vivo within the intra‐articular environment. Furthermore, bringing labeling and tracking techniques to the clinical setting, while inherently challenging, will be extremely informative as clinicians and researchers seek to bolster the case for the safety and efficacy of allogeneic MSCs. We therefore review multiple promising approaches for cell tracking and labeling, including both chimerism studies and imaging‐based techniques, that have been widely explored in vitro and in animal models. Understanding the distribution and persistence of transplanted MSCs is necessary to fully realize their potential in cartilage regeneration techniques and tissue engineering applications.
Collapse
Affiliation(s)
- Ellison D Aldrich
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - C Wayne McIlwraith
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
14
|
Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H, Lee SH. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics 2021; 13:pharmaceutics13081139. [PMID: 34452101 PMCID: PMC8400409 DOI: 10.3390/pharmaceutics13081139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.
Collapse
Affiliation(s)
- Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Alvin Bello
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Hansoo Park
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Correspondence: ; Tel.: +82-31-961-5153; Fax: +82-31-961-5108
| |
Collapse
|
15
|
Dou P, He Y, Yu B, Duan J. Downregulation of microRNA-29b by DNMT3B decelerates chondrocyte apoptosis and the progression of osteoarthritis via PTHLH/CDK4/RUNX2 axis. Aging (Albany NY) 2020; 13:7676-7690. [PMID: 33177241 PMCID: PMC7993672 DOI: 10.18632/aging.103778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
The correlation between DNA methyltransferases (DNMTs) and microRNAs (miRNAs) has been well-established, but its interaction in osteoarthritis (OA) has been barely clarified. This study aimed to analyze the relationship between DNMT3B and miR-29b as well as their implications in OA. Our results revealed that DNMT3B was downregulated while miR-29b was upregulated in OA cartilage tissues relative to normal cartilage tissues. Hypermethylation of specific CpG sites in the miR-29b promoter region induced by DNMT3B contributed to downregulation of miR-29b in OA chondrocytes. Furthermore, luciferase activity determination demonstrated that miR-29b targeted and negatively regulated the parathyroid hormone-like hormone (PTHLH). Moreover, the PTHLH upregulation induced by miR-29b methylation led to the enhancement of chondrocyte growth and suppression of their apoptosis and extracellular matrix degradation, which was achieved by the upregulation cyclin-dependent kinase 4 (CDK4) expression. Co-IP suggested that CDK4 induced ubiquitination of RUNX2, which could be enhanced by DNMT3B. In the OA mouse model induced by destabilization of the medial meniscus, overexpression of DNMT3B was observed to downregulate the expression of RUNX2 whereby preventing OA-induced loss of chondrocytes. Hence, the DNMT3B/miR-29b/PTHLH/CDK4/RUNX2 axis was found to be involved in the apoptosis of chondrocytes induced by OA, highlighting a novel mechanism responsible for OA progression.
Collapse
Affiliation(s)
- Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Yu He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Bo Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| |
Collapse
|
16
|
Lee DS, Roh SY, Choi H, Park JC. NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development. Mol Cells 2020; 43:739-748. [PMID: 32759468 PMCID: PMC7468589 DOI: 10.14348/molcells.2020.2272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth- plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.
Collapse
Affiliation(s)
- Dong-Seol Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Song Yi Roh
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Hojae Choi
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- Present address: Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ 8506, USA
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Yu W, Zheng Y, Li H, Lin H, Chen Z, Tian Y, Chen H, Zhang P, Xu X, Shen Y. The Toll-like receptor ligand, CpG oligodeoxynucleotides, regulate proliferation and osteogenic differentiation of osteoblast. J Orthop Surg Res 2020; 15:327. [PMID: 32795334 PMCID: PMC7427903 DOI: 10.1186/s13018-020-01844-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the regulation of CpG oligodeoxynucleotides (ODNs) on proliferation and osteogenic differentiation of MC3T3 cells. METHODS The laser co-focusing and flow cytometry assay were employed to detect cell uptake of CpG ODN 2006. Twelve ODNs were sythesized, and their effects on proliferation and differentiation were detected by MTT and alkaline phosphatase (ALP) activity assay. Flow cytometry assay was used to examine the regulation of CpG ODN on cell cycle. Quantitative real-time PCR (qRT-PCR) and western blot were used to evaluate the regulation of CpG ODN on mRNA and protein expression of osteogenic differentiation genes. RESULTS The phosphorothioate CpG ODN 2006 could efficiently enter the MC3T3 cells in 1 h and locate in the cytoplasm. The MTT assay demonstrated CpG ODNs could promote MC3T3 cell proliferation and differentiation in the early stage, and gradually attenuated along with the increase of treating time, except for BW001 and FC001. qRT-PCR assay demonstrated that all the 12 CpG ODNs could promote the relative expression level of osteogenic differentiated genes, SP7 and OCN. In addition, western blot analysis suggested the CpG ODNs of BW001 and FC001 could increase the protein expression of P27Kip1 and Runx2 and decrease the protein expression of cyclin D1. CONCLUSION The selected CpGODNs may be a potential gene therapy for bone regeneration of periodontitis.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
- Department of Orthodontics, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction; Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, 75 Dagu North Road, Tianjin, 300041, China
| | - Yi Zheng
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Hongyan Li
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Hongbing Lin
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Zhen Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Yue Tian
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Huishan Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Peipei Zhang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Xiaowei Xu
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Yuqin Shen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China.
| |
Collapse
|
18
|
Lin Z, Chen L, Chen X, Zhong Y, Yang Y, Xia W, Liu C, Zhu W, Wang H, Yan B, Yang Y, Liu X, Sternang Kvie K, Røed KH, Wang K, Xiao W, Wei H, Li G, Heller R, Gilbert MTP, Qiu Q, Wang W, Li Z. Biological adaptations in the Arctic cervid, the reindeer ( Rangifer tarandus). Science 2020; 364:364/6446/eaav6312. [PMID: 31221829 DOI: 10.1126/science.aav6312] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 12/23/2022]
Abstract
The reindeer is an Arctic species that exhibits distinctive biological characteristics, for which the underlying genetic basis remains largely unknown. We compared the genomes of reindeer against those of other ruminants and nonruminant mammals to reveal the genetic basis of light arrhythmicity, high vitamin D metabolic efficiency, the antler growth trait of females, and docility. We validate that two reindeer vitamin D metabolic genes (CYP27B1 and POR) show signs of positive selection and exhibit higher catalytic activity than those of other ruminants. A mutation upstream of the reindeer CCND1 gene endows an extra functional binding motif of the androgen receptor and thereby may result in female antlers. Furthermore, a mutation (proline-1172→threonine) in reindeer PER2 results in loss of binding ability with CRY1, which may explain circadian arrhythmicity in reindeer.
Collapse
Affiliation(s)
- Zeshan Lin
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xianqing Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yue Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenhao Xia
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chang Liu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenbo Zhu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Biyao Yan
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yifeng Yang
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kjersti Sternang Kvie
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Knut Håkon Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haijun Wei
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Guangyu Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim 7491, Norway
| | - Qiang Qiu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhipeng Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
19
|
Yang K, Chen G, Wang X. Promotion of G1/S Transition and Inhibition of Inflammatory Cytokine Production by Hydroxypyridinone-Coumarin in Osteoarthritis Rats. Med Sci Monit 2020; 26:e920784. [PMID: 32124869 PMCID: PMC7069328 DOI: 10.12659/msm.920784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Osteoarthritis is a joint disorder characterized by articular cartilage degradation leading to joint stiffness and pain. The present study investigated the effect of hydroxypyridinone-coumarin on proliferation of chondrocytes. MATERIAL AND METHODS Chondrocyte proliferation was assessed by MTT assay, and distribution of cells in various phases of the cell cycle was determined using flow cytometry. RT-PCR and Western blot assays were used for assessment of mRNA and protein levels, respectively. Osteoarthritis was induced in the rats by injecting monosodium iodoacetate (5 mg/kg) by the intra-articular route. The rats in the treatment groups were intraperitoneally injected with 5, 10, or 15 mg/kg doses of hydroxypyridinone-coumarin alternately for 1 month. RESULTS The proliferation of chondrocytes was increased significantly (P<0.05) by treatment with hydroxypyridinone-coumarin in a concentration-based manner. The increase in chondrocyte proliferation by hydroxypyridinone-coumarin was maximum at 50 µM. Treatment with hydroxypyridinone-coumarin markedly increased chondrocyte population in S and G2/M phases, with subsequent reduction in G0/G1 phase. The cyclin D1, CDK4, and CDK6 levels in the chondrocytes were increased by treatment with hydroxypyridinone-coumarin. The production of IL-6, TNF-alpha, and IL-1ß in the osteoarthritis rats was markedly suppressed by hydroxypyridinone-coumarin. Treatment of the OA rats with hydroxypyridinone-coumarin markedly reduced the expression of IkappaB-alpha and NF-kappaB p65. CONCLUSIONS The present study revealed that the proliferative potential of chondrocytes is increased by hydroxypyridinone-coumarin through acceleration of G1/S transition. Moreover, hydroxypyridinone-coumarin treatment reduced inflammatory cytokine production in the osteoarthritis rats. Therefore, hydroxypyridinone-coumarin should be evaluated further for possible use in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kai Yang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Gang Chen
- Department of Orthopedics, Binzhou People's Hospital, Binzhou, Shandong, China (mainland)
| | - Xiongxun Wang
- Department of Spine Surgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
20
|
Wang L, Wang L, Wei S, Wang X, Shen D. The Effects of (11R)-13-(6-Nitroindazole)-11,13-Dihydroludartin on Human Prostate Carcinoma Cells and Mouse Tumor Xenografts. Med Sci Monit 2020; 26:e920389. [PMID: 32036379 PMCID: PMC7032533 DOI: 10.12659/msm.920389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effects of the 6-nitroindazole compound and amino analog of ludartin, (11R)-13-(6-nitroindazole)-11,13-dihydroludartin (NDHL), on human prostate carcinoma cells in vitro and in mouse tumor xenografts in vivo. MATERIAL AND METHODS DU-145 and LNCaP human prostate carcinoma cells were cultured with increasing concentrations of NDHL. Cell viability was measured using the MTT assay, and cell apoptosis was measured by fluorescence flow cytometry. Mouse tumor xenografts were created by implanting 2×10⁶ of DU-145 cells subcutaneously in the left flank. On the second day following DU-145 cell implantation, the mice in the treatment groups were injected intraperitoneally with 2, 5, and 10 mg/kg of NDHL. RESULTS Treatment of DU-145 and LNCaP cells with NDHL (range, 2.5-20.0 μM) significantly reduced cell proliferation in vitro (P<0.05). The proliferation rate of DU-145 and LNCaP cells was reduced to 27% and 24%, respectively, following treatment with 20.0 μM of NDHL. Treatment with NDHL significantly increased cell apoptosis and the formation of reactive oxygen species (ROS) formation in DU-145 cells at 48 h (P<0.05). NDHL significantly increased the proportion of DU-145 cells in the G1 phase of the cell cycle and significantly increased the expression of cyclin D1 and p21 (P<0.05). Treatment of the mice in the xenograft tumor model with NDHL significantly increased survival and suppressed tumor growth (P<0.02). CONCLUSIONS NDHL inhibited cell proliferation, increased apoptosis, and caused cell cycle arrest in human prostate carcinoma cells in vitro and inhibited mouse tumor xenograft growth in vivo.
Collapse
Affiliation(s)
- Longning Wang
- Department of Urology, Bin Zhou People's Hospital, Binzhou, Shandong, China (mainland)
| | - Lei Wang
- Department of Urology, Bin Zhou People's Hospital, Binzhou, Shandong, China (mainland)
| | - Sen Wei
- Department of Urology, Bin Zhou People's Hospital, Binzhou, Shandong, China (mainland)
| | - Xiaodong Wang
- Department of Urology, Bin Zhou People's Hospital, Binzhou, Shandong, China (mainland)
| | - Daqing Shen
- Medical College, Jining Medical University, Jining, Shandong, China (mainland).,Department of Urology, The Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| |
Collapse
|
21
|
Abbasi Pashaki P, Rahim F, Habibi Roudkenar M, Razavi-Toosi S, Ebrahimi A. MicroRNA Tough Decoy Knockdowns miR-195 and Represses Hypertrophy in Chondrocytes. Appl Biochem Biotechnol 2020; 191:1056-1071. [PMID: 31956957 DOI: 10.1007/s12010-020-03229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Cartilage hypertrophy is a condition in which the cells are completely differentiated, and new morphological changes and mineralization prevent proper cellular functions. The occurrence of hypertrophy during differentiation fails current regenerative strategies for treatment. Strategies to minimize hypertrophy in chondrocytes are categorized into two levels of protein and gene. Among these strategies, one way to affect multiple pathways involved in the development of hypertrophy is to manage microRNA activity in cells. Recent miRNA profiling studies have shown that miR-195-5p upregulates through the transition from chondrogenic to hypertrophic state. Bioinformatics assessment of microRNA targets also indicates that several genes repressed by miR-195-5p play important roles in processes related to hypertrophy. The aim of this study was to develop a microRNA Tough Decoy to suppress miR-195-5p and investigate whether it can prevent a hypertrophic state in chondrocytes. The Tough Decoy (TUD) was designed and evaluated bioinformatically and then cloned into the pLVX-Puro plasmid. The TUD function was validated by Dual-Luciferase assay and qRT-PCR. After delivering TUD to C28/I2 chondrocytes cultured in a hypertrophic medium, hypertrophic differentiation was assessed by histochemical staining, quantitative RT-PCR of hypertrophy marker genes, and alkaline phosphatase activity. Results showed that the TUD could inhibit miRNA efficiently and downregulate hypertrophic markers such as RUNX2, alkaline phosphatase, and collagen 10 significantly compared with the control group. Alcian blue and alizarin red staining also demonstrated the optimal effect of gene constructs on tissue properties and mineralization of the TUD group. Delivering the miR-195-5p Tough Decoy to the cartilage cells can prevent the occurrence of hypertrophy in chondrocytes and could be considered as a candidate for the treatment of other diseases such as osteoarthritis.
Collapse
Affiliation(s)
| | - Fakher Rahim
- Thalassemia and Hemoglobinopathy Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehryar Habibi Roudkenar
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Smt Razavi-Toosi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran. .,Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
22
|
Wei H, Lian W, Wang C. 3,6-diazabicyclo[3.3.1]heptanes Induces Apoptosis and Arrests Cell Cycle in Prostate Cancer Cells. Med Sci Monit 2020; 26:e920266. [PMID: 31919338 PMCID: PMC6977617 DOI: 10.12659/msm.920266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Prostate cancer, non-cutaneous malignant tumor, is the second common cause of cancer related mortalities in American men and is responsible for 13% of deaths related to cancer. The present study investigated the anti-cancer effects of 3,6-diazabicyclo[3.3.1]heptane on LNCaP and PC3 prostate cancer cells in vitro and on tumor growth in vivo in BALB/C nude mice. Material/Methods Reduction of cell viability by 3,6-diazabicyclo[3.3.1]heptane was evaluated by sulphorhodamine-B staining and apoptosis onset using annexin V and propidium iodide (PI) staining. The 2′,7′-dichlorofluorescein-diacetate stain was used for assessment of reactive oxygen species (ROS) formation while as western blotting for analysis of protein expression. Results The viability of LNCaP and PC3 cells was reduced significantly (P<0.05) by 3,6-diazabicyclo[3.3.1]heptane in dose-based manner. At 30 μM of 3,6-diazabicyclo[3.3.1]heptane the viability of LNCaP and PC3 cells was reduced to 32 and 28%, respectively. The 3,6-diazabicyclo[3.3.1]heptane treatment increased apoptosis in LNCaP cells to 43.31% at 30 μM. The cell cycle in LNCaP cells was arrested in G1 phase on treatment with 3,6-diazabicyclo[3.3.1]heptane. The expression of cyclin D1 and p21 proteins was significantly increased by 3,6-diazabicyclo[3.3.1]heptane in LNCaP and PC3 cells. The growth of prostate tumor was also suppressed in vivo in mice by 3,6-diazabicyclo[3.3.1]heptane treatment. Conclusions In summary, the study demonstrated that LNCaP and PC3 prostate cancer cell viability is suppressed by 3,6-diazabicyclo[3.3.1]heptane treatment. The suppression of prostate cancer cell viability by 3,6-diazabicyclo[3.3.1]heptane involves apoptosis induction, cell cycle arrest and upregulation of p21 expression. Therefore, 3,6-diazabicyclo[3.3.1]heptane can be a potential chemotherapeutic agent for prostate cancer.
Collapse
Affiliation(s)
- Hongjian Wei
- Second Department of Urology, Baoding First Central Hospital, Baoding, Hebei, China (mainland)
| | - Wenfeng Lian
- Second Department of Urology, Baoding First Central Hospital, Baoding, Hebei, China (mainland)
| | - Chong Wang
- First Department of Urology, Baoding First Central Hospital, Baoding, Hebei, China (mainland)
| |
Collapse
|
23
|
Parathyroid Hormone-Related Protein (PTHrP) Accelerates Soluble RANKL Signals for Downregulation of Osteogenesis of Bone Mesenchymal Stem Cells. J Clin Med 2019; 8:jcm8060836. [PMID: 31212822 PMCID: PMC6616973 DOI: 10.3390/jcm8060836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 01/17/2023] Open
Abstract
A recent study reported the expression of receptor activator of nuclear factor-κB (RANK) in mesenchymal stem cells (MSCs) surface that negatively regulates osteogenesis of MSCs. Empirical evidence from the previous study confirmed the role of parathyroid hormone-related protein (PTHrP) in osteoblastogenesis. However, it is necessary to understand the paracrine role of PTHrP and RANKL for osteogenesis in order to explore the hidden secrets in bone biology. Considering the above concept, paracrine cues of soluble-receptor activator of nuclear factor-κB ligand (sRANKL) and PTHrP in osteogenic differentiation of MSCs were investigated. Our results confirmed that sRANKL increased the expression of surface-RANK in MSCs at the earlier stage of osteogenesis, which was downregulated later in differentiated MSCs. In contrast, RANKL expression was low at the earlier stage of MSCs proliferation and high at the differentiation stage of MSCs, which may play a fundamental role in osteoclast formation. sRANKL downregulated osteogenesis of MSCs by decreasing progressive ankylosis (ANK) protein expression while PTHrP upregulated the osteogenic exploitive effect of sRANKL. Interestingly, when they were co-cultured with MSCs, T-lymphocytes expressed high membrane-RANKL levels that contribute to osteogenesis inhibition during MSC differentiation. Thus, our results disclose that sRANKL treatment downregulates osteogenesis of MSCs by increasing RANK expression at the earlier stage of differentiation and by inhibiting ANK. Further, we demonstrated that PTHrP accelerated the downregulating osteogenic effect of sRANKL.
Collapse
|
24
|
Lee JW, Kim DM, Jang JW, Park TG, Song SH, Lee YS, Chi XZ, Park IY, Hyun JW, Ito Y, Bae SC. RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restriction-point. Nat Commun 2019; 10:1897. [PMID: 31015486 PMCID: PMC6479060 DOI: 10.1038/s41467-019-09810-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
The cellular decision regarding whether to undergo proliferation or death is made at the restriction (R)-point, which is disrupted in nearly all tumors. The identity of the molecular mechanisms that govern the R-point decision is one of the fundamental issues in cell biology. We found that early after mitogenic stimulation, RUNX3 binds to its target loci, where it opens chromatin structure by sequential recruitment of Trithorax group proteins and cell-cycle regulators to drive cells to the R-point. Soon after, RUNX3 closes these loci by recruiting Polycomb repressor complexes, causing the cell to pass through the R-point toward S phase. If the RAS signal is constitutively activated, RUNX3 inhibits cell cycle progression by maintaining R-point-associated genes in an open structure. Our results identify RUNX3 as a pioneer factor for the R-point and reveal the molecular mechanisms by which appropriate chromatin modifiers are selectively recruited to target loci for appropriate R-point decisions. The transcription factor RUNX3 plays a key role in the restriction point of cell cycle. Here the authors showed that RUNX3 binds and opens chromatin structure of restriction point associated genes, by sequential recruitment of chromatin remodeling complex, transcription complex and cell cycle regulators.
Collapse
Affiliation(s)
- Jung-Won Lee
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - Da-Mi Kim
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - Ju-Won Jang
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - Tae-Geun Park
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - Soo-Hyun Song
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - You-Soub Lee
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - Xin-Zi Chi
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, South Korea
| | - Jin-Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, Singapore, 117599
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
25
|
PTH decreases in vitro human cartilage regeneration without affecting hypertrophic differentiation. PLoS One 2019; 14:e0213483. [PMID: 30947269 PMCID: PMC6449021 DOI: 10.1371/journal.pone.0213483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1–34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes. Healthy human articular cartilage-derived chondrocytes (n = 6 donors) were cultured on type II collagen-coated transwells with/without 0.1 or 1.0 μM PTH from day 0, 9, or 21 until the end of culture (day 28). Extracellular matrix production, (pre)hypertrophy and PTH signaling were assessed by RT-qPCR and/or immunohistochemistry for collagen type I, II, X, RUNX2, MMP13, PTHR1 and IHH and by determining glycosaminoglycan production and DNA content. The Bern score assessed cartilage quality by histology. Regardless of the concentration and initiation of supplementation, PTH treatment significantly decreased DNA and glycosaminoglycan content and reduced the Bern score compared with controls. Type I collagen deposition was increased, whereas PTHR1 expression and type II collagen deposition were decreased by PTH supplementation. Expression of the (pre)hypertrophic markers MMP13, RUNX2, IHH and type X collagen were not affected by PTH. In conclusion, PTH supplementation to healthy human articular chondrocytes did not affect hypertrophic differentiation, but negatively influenced cartilage quality, the tissues’ extracellular matrix and cell content. Although PTH may be an effective inhibitor of hypertrophic differentiation in MSC-based cartilage repair, care may be warranted in applying accessory PTH treatment due to its effects on articular chondrocytes.
Collapse
|
26
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
付 洪. Research Advances of the Long Non-Coding RNA RMRP RNA Promoting the Osteoblastic Differentiation. Biophysics (Nagoya-shi) 2019. [DOI: 10.12677/biphy.2019.73005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
28
|
Lee JY, Matthias N, Pothiawala A, Ang BK, Lee M, Li J, Sun D, Pigeot S, Martin I, Huard J, Huang Y, Nakayama N. Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage. Stem Cell Reports 2018; 11:440-453. [PMID: 30057264 PMCID: PMC6092881 DOI: 10.1016/j.stemcr.2018.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023] Open
Abstract
Cartilage pellets generated from ectomesenchymal progeny of human pluripotent stem cells (hPSCs) in vitro eventually show signs of commitment of chondrocytes to hypertrophic differentiation. When transplanted subcutaneously, most of the surviving pellets were fully mineralized by 8 weeks. In contrast, treatment with the adenylyl cyclase activator, forskolin, in vitro resulted in slightly enlarged cartilage pellets containing an increased proportion of proliferating immature chondrocytes that expressed very low levels of hypertrophic/terminally matured chondrocyte-specific genes. Forskolin treatment also enhanced hyaline cartilage formation by reducing type I collagen gene expression and increasing sulfated glycosaminoglycan accumulation in the developed cartilage. Chondrogenic mesoderm from hPSCs and dedifferentiated nasal chondrocytes responded similarly to forskolin. Furthermore, forskolin treatment in vitro increased the frequency at which the cartilage pellets maintained unmineralized chondrocytes after subcutaneous transplantation. Thus, the post-transplantational fate of chondrocytes originating from hPSC-derived chondroprogenitors can be controlled during their genesis in vitro. Forskolin/cAMP suppresses/delays BMP-induced chondrocyte maturation in vitro Forskolin supports chondrocyte proliferation and hyaline chondrogenesis in vitro Forskolin suppresses osteogenesis and BMP signaling gene expression in cartilage In vitro forskolin treatment improves in vivo maintenance of uncalcified cartilage
Collapse
Affiliation(s)
- John Y Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Nadine Matthias
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Azim Pothiawala
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Bryan K Ang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA
| | - Minjung Lee
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Jia Li
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Deqiang Sun
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sebastien Pigeot
- Department of Biomedicine, University Hospital Basel, Basel CH-4031, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, Basel CH-4031, Switzerland
| | - Johnny Huard
- Department of Orthopaedic Surgery, UTHealth Medical School, Houston, TX 77030, USA
| | - Yun Huang
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Naoki Nakayama
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler St., Houston, TX 77030, USA; Department of Orthopaedic Surgery, UTHealth Medical School, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Fatima Z, Guo P, Huang D, Lu Q, Wu Q, Dai M, Cheng G, Peng D, Tao Y, Ayub M, Ul Qamar MT, Ali MW, Wang X, Yuan Z. The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology 2018; 400-401:28-39. [PMID: 29567467 DOI: 10.1016/j.tox.2018.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is a worldwide trichothecenetoxin and can cause various toxicities.T-2 toxin is involved in G1 phase arrest in several cell lines but molecular mechanism is still not clear. In present study, we used rat pituitary GH3 cells to investigate the mechanism involved in cell cycle arrest against T-2 toxin (40 nM) for 12, 24, 36 and 48 h as compared to control cells. GH3 cells showed a considerable increase in reactive oxygen species (ROS) as well as loss in mitochondrial membrane potential (△Ym) upon exposure to the T-2 toxin. Flow cytometry showed a significant time-dependent increase in percentage of apoptotic cells and gel electrophoresis showed the hallmark of apoptosis oligonucleosomal DNA fragmentation. Additionally, T-2 toxin-induced oxidative stress and DNA damage with a time-dependent significant increased expression of p53 favors the apoptotic process by the activation of caspase-3 in T-2 toxin treated cells. Cell cycle analysis by flow cytometry revealed a time-dependent increase ofG1 cell population along with the significant time-dependent up-regulation of mRNA and protein expression of p16 and p21 and significant down-regulation of cyclin D1, CDK4, and p-RB levels further verify the G1 phase arrest in GH3 cells. Morphology of GH3 cells by TEM clearly showed the damage and dysfunction to mitochondria and the cell nucleus. These findings for the first time demonstrate that T-2 toxin induces G1 phase cell cycle arrest by the involvement of p16/Rb pathway, along with ROS mediated oxidative stress and DNA damage with p53 and caspase cascade interaction, resulting in apoptosis in GH3 cells.
Collapse
Affiliation(s)
- Zainab Fatima
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Pu Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | | | | | - Muhammad Waqar Ali
- College of Plant Sciences, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| |
Collapse
|
30
|
Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36:533-545. [PMID: 28901584 PMCID: PMC5839937 DOI: 10.1002/jor.23732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
The primary cilium is a solitary, antenna-like sensory organelle with many important roles in cartilage and bone development, maintenance, and function. The primary cilium's potential role as a signaling nexus in the growth plate makes it an attractive therapeutic target for diseases and disorders associated with bone development and maintenance. Many signaling pathways that are mediated by the cilium-such as Hh, Wnt, Ihh/PTHrP, TGFβ, BMP, FGF, and Notch-are also known to influence endochondral ossification, primarily by directing growth plate formation and chondrocyte behavior. Although a few studies have demonstrated that these signaling pathways can be directly tied to the primary cilium, many pathways have yet to be evaluated in context of the cilium. This review serves to bridge this knowledge gap in the literature, as well as discuss the cilium's importance in the growth plate's ability to sense and respond to chemical and mechanical stimuli. Furthermore, we explore the importance of using the appropriate mechanism to study the cilium in vivo and suggest IFT88 deletion is the best available technique. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:533-545, 2018.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| | - Christopher R. Jacobs
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| |
Collapse
|
31
|
Prasadam I, Akuien A, Friis TE, Fang W, Mao X, Crawford RW, Xiao Y. Mixed cell therapy of bone marrow-derived mesenchymal stem cells and articular cartilage chondrocytes ameliorates osteoarthritis development. J Transl Med 2018; 98:106-116. [PMID: 29035380 DOI: 10.1038/labinvest.2017.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/14/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Of the many cell-based treatments that have been tested in an effort to regenerate osteoarthritic articular cartilage, none have ever produced cartilage that compare with native hyaline cartilage. Studies show that different cell types lead to inconsistent results and for cartilage regeneration to be considered successful, there must be an absence of fibrotic tissue. Here we report of a series of experiments in which bone marrow-derived stem cells (BMSCs) and articular cartilage chondrocytes (ACCs) were mixed in a 1:1 ratio and tested for their ability to enhance cartilage regeneration in three different conditions: (1) in an in vitro differentiation model; (2) in an ex vivo cartilage defect model implanted subcutaneously in mice; and (3) as an intra-articular injection in a meniscectomy-induced OA model in rats. The mixed cells were compared with monocultures of BMSCs and ACCs. In all three experimental models there was significantly enhanced cartilage regeneration and decreased fibrosis in the mixed BMSCs+ACCs group compared with the monocultures. Molecular analysis showed a reduction in vascularization and hypertrophy, coupled with higher chondrogenic gene expression resulting from the BMSCs+ACCs treatment. Together, our data suggest that mixed BMSCs+ACCs treatment is highly chondro-protective and is more effective in regenerating damaged cartilage in both the ex vivo cartilage defect and post-trauma OA disease models. The results from this approach could potentially be used for regeneration of cartilage in OA patients.
Collapse
Affiliation(s)
- Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Akoy Akuien
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thor E Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wei Fang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xinzhan Mao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Orthopaedic Surgery, The Second Xiangya Hospital, Changsha, China.,Department of Rheumatism, The Xiangya Hospital, Central-South University, Changsha, China
| | - Ross W Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Prince Charles Hospital, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Ma L, Wu J, Jin QH. The association between parathyroid hormone 1‑34 and the Wnt/β‑catenin signaling pathway in a rat model of osteoarthritis. Mol Med Rep 2017; 16:8799-8807. [PMID: 29039525 PMCID: PMC5779958 DOI: 10.3892/mmr.2017.7762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/01/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to determine the effect of parathyroid hormone (PTH) 1‑34 on cartilage degeneration, and the association between PTH 1‑34 and factors associated with the Wnt/β‑catenin pathway following anterior cruciate ligament and medial meniscectomy‑induced osteoarthritis (OA) in rats. A total of 64 Sprague‑Dawley rats were randomly divided into the following four groups: Sham‑operated rats with normal saline (NS)‑treatment (n=16); anterior cruciate ligament transection with partial medial meniscectomy (ACLT + MMx) rats with NS‑treatment (n=16); sham‑operated rats treated with PTH 1‑34 (n=16); and ACLT + MMx rats treated with PTH 1‑34 (n=16). PTH (15 µg/kg/day) was administered via subcutaneous injection 5 days per week from the first postoperative day for 2 or 6 weeks. Staining with hematoxylin and eosin and safranin O, and a scoring system modified by Mankin were used to assess the histopathological features of cartilage. The present study detected the expression of PTH 1 receptor (PTH1R), sclerostin, dickkopf Wnt signaling pathway inhibitor 1 (DKK1), β‑catenin and runt‑related transcription factor 2 (RUNX2) in cartilage by immunohistochemical analysis to determine the association between PTH 1‑34 and factors associated with the Wnt/β‑catenin pathway. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to detect the mRNA expression levels of PTH1R and β‑catenin in cartilage. Histological analysis demonstrated that cartilage degeneration was present post‑surgery and gradually increased over time. PTH 1‑34 reduced the Mankin scores in ACLT + MMx rats compared with the NS‑treated ACLT + MMx rats. Immunohistochemistry and RT‑qPCR analysis demonstrated that, in cartilage, PTH 1‑34 treatment increased the mRNA expression and protein levels of PTH1R and β‑catenin, and decreased protein levels of sclerostin, DKK1 and RUNX2 in ACLT + MMx rats compared with the NS‑treated ACLT + MMx group. The present study demonstrated that PTH 1‑34 upregulated the Wnt/β‑catenin signaling pathway and that PTH1‑34 downregulated RUNX2 through an alternative pathway to the Wnt/β‑catenin signaling pathway, in a rat model of OA.
Collapse
Affiliation(s)
- Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qun Hua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
33
|
Critchley SE, Kelly DJ. Bioinks for bioprinting functional meniscus and articular cartilage. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3D bioprinting can potentially enable the engineering of biological constructs mimicking the complex geometry, composition, architecture and mechanical properties of different tissues and organs. Integral to the successful bioprinting of functional articular cartilage and meniscus is the identification of suitable bioinks and cell sources to support chondrogenesis or fibrochondrogenesis, respectively. Such bioinks must also possess the appropriate rheological properties to be printable and support the generation of complex geometries. This review will outline the parameters required to develop bioinks for such applications and the current recent advances in 3D bioprinting of functional meniscus and articular cartilage. The paper will conclude by discussing key scientific and technical hurdles in this field and by defining future research directions for cartilage and meniscus bioprinting.
Collapse
Affiliation(s)
- Susan E Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Erickson AG, Laughlin TD, Romereim SM, Sargus-Patino CN, Pannier AK, Dudley AT. A Tunable, Three-Dimensional In Vitro Culture Model of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds. Tissue Eng Part A 2017; 24:94-105. [PMID: 28525313 DOI: 10.1089/ten.tea.2017.0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Defining the final size and geometry of engineered tissues through precise control of the scalar and vector components of tissue growth is a necessary benchmark for regenerative medicine, but it has proved to be a significant challenge for tissue engineers. The growth plate cartilage that promotes elongation of the long bones is a good model system for studying morphogenetic mechanisms because cartilage is composed of a single cell type, the chondrocyte; chondrocytes are readily maintained in culture; and growth trajectory is predominately in a single vector. In this cartilage, growth is generated via a differentiation program that is spatially and temporally regulated by an interconnected network composed of long- and short-range signaling mechanisms that together result in the formation of functionally distinct cellular zones. To facilitate investigation of the mechanisms underlying anisotropic growth, we developed an in vitro model of the growth plate cartilage by using neonatal mouse growth plate chondrocytes encapsulated in alginate hydrogel beads. In bead cultures, encapsulated chondrocytes showed high viability, cartilage matrix deposition, low levels of chondrocyte hypertrophy, and a progressive increase in cell proliferation over 7 days in culture. Exogenous factors were used to test functionality of the parathyroid-related protein-Indian hedgehog (PTHrP-IHH) signaling interaction, which is a crucial feedback loop for regulation of growth. Consistent with in vivo observations, exogenous PTHrP stimulated cell proliferation and inhibited hypertrophy, whereas IHH signaling stimulated chondrocyte hypertrophy. Importantly, the treatment of alginate bead cultures with IHH or thyroxine resulted in formation of a discrete domain of hypertrophic cells that mimics tissue architecture of native growth plate cartilage. Together, these studies are the first demonstration of a tunable in vitro system to model the signaling network interactions that are required to induce zonal architecture in growth plate chondrocytes, which could also potentially be used to grow cartilage cultures of specific geometries to meet personalized patient needs.
Collapse
Affiliation(s)
- Alek G Erickson
- 1 Department of Genetics, Cell Biology, and Anatomy, University Nebraska Medical Center , Omaha, Nebraska
| | - Taylor D Laughlin
- 2 Department of Biological Systems Engineering, University Nebraska Lincoln , Lincoln, Nebraska
| | - Sarah M Romereim
- 1 Department of Genetics, Cell Biology, and Anatomy, University Nebraska Medical Center , Omaha, Nebraska.,3 Department of Animal Science, University Nebraska Lincoln , Lincoln, Nebraska
| | | | - Angela K Pannier
- 2 Department of Biological Systems Engineering, University Nebraska Lincoln , Lincoln, Nebraska
| | - Andrew T Dudley
- 1 Department of Genetics, Cell Biology, and Anatomy, University Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
35
|
Sobacchi C, Palagano E, Villa A, Menale C. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Front Bioeng Biotechnol 2017; 5:32. [PMID: 28567372 PMCID: PMC5434159 DOI: 10.3389/fbioe.2017.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Eleonora Palagano
- Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Ciro Menale
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| |
Collapse
|
36
|
Fu C, Zheng C, Lin J, Ye J, Mei Y, Pan C, Wu G, Li X, Ye H, Liu X. Cibotium barometz polysaccharides stimulate chondrocyte proliferation in vitro by promoting G1/S cell cycle transition. Mol Med Rep 2017; 15:3027-3034. [PMID: 28358416 PMCID: PMC5428555 DOI: 10.3892/mmr.2017.6412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
Cibotium barometz polysaccharides (CBPS) are one of the most important bioactive components extracted from the Cibotium barometz plant, which belongs to the Dicksoniaceae family. It has been widely used for the treatment of orthopedic diseases in traditional Chinese medicine. However, the molecular mechanisms behind the therapeutic effects of CBPS remain to be clarified. In the present study, the concentration of CBPS was detected by phenol-vitriol colorimetry. Furthermore, the effects stimulated by CBPS on the viability and G1/S cell cycle transition in primary chondrocytes from Sprague-Dawley rats were investigated. A cell viability assay demonstrated that chondrocyte proliferation may be enhanced by CBPS in a dose- and time-dependent manner. The mechanism underlying the promotion of chondrocyte cell cycle was suggested to involve the stimulation of G1 to S phase transition. To further confirm the results, reverse transcription-quantitative polymerase chain reaction and western blot analyses were used to detect the expression of mRNA and protein levels of cyclin D1, cyclin-dependent kinase 4 and retinoblastoma protein. The results suggested that CBPS may stimulate chondrocyte proliferation via promoting G1/S cell cycle transition. Since osteoarthritis is characterized by deficient proliferation in chondrocytes, the present study indicates that CBPS may potentially serve as a novel method for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Chunsong Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jie Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinxia Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yangyang Mei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Caibin Pan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
37
|
Li Z, Luo Q, Xu H, Zheng M, Abdalla BA, Feng M, Cai B, Zhang X, Nie Q, Zhang X. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 ( MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication. Front Cell Infect Microbiol 2017; 7:17. [PMID: 28194372 PMCID: PMC5276853 DOI: 10.3389/fcimb.2017.00017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 (MDA5) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro, overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated (P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway.
Collapse
Affiliation(s)
- Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Min Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Xiaocui Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China
| |
Collapse
|
38
|
de Andrés MC, Takahashi A, Oreffo ROC. Demethylation of an NF-κB enhancer element orchestrates iNOS induction in osteoarthritis and is associated with altered chondrocyte cell cycle. Osteoarthritis Cartilage 2016; 24:1951-1960. [PMID: 27307355 DOI: 10.1016/j.joca.2016.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the methylation profile of the nuclear factor (NF)-κB enhancer region at -5.8 kb of inducible nitric oxide synthase (iNOS) and the subsequent role in the induction of osteoarthritis (OA) via cell cycle regulation. METHODS Percentage methylation was determined by pyrosequencing, gene expression by qRT-PCR and cell proliferation was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Transient transfections were induced to determine the effect of the NF-κB enhancer region on cell proliferation and the influence of DNA methylation. RESULTS In vitro de-methylation with 5-aza-dC showed decreased levels of DNA methylation at CpG sites localised at -5.8 kb, which correlated with higher levels of iNOS expression. In vitro methylation of the NF-κB enhancer region at -5.8 kb increased the percentage of cells at G0/G1 cell cycle phase. Loss of methylation within this region correlated with, enhanced proliferation and increased number of cells at G2/M phase. OA chondrocytes demonstrated up-regulation of the G0/G1 cell cycle progression markers Cyclin D1 and CDK6 in contrast to control cells. We demonstrate the loss of methylation that occurs at specific CpG sites localised at the -5.8 kb NF-κB enhancer region of the iNOS gene in OA chondrocytes permits the binding of this transcription factor activating the expression of iNOS. This results in subsequent altered cell cycle regulation, altered proliferative phenotype and transmission of the pathogenic phenotype to daughter cells. CONCLUSIONS This study indicates that inhibition of cell cycle progression by iNOS enhancer hypermethylation is capable of reducing pro-inflammatory responses via down-regulation of NF-κB with important therapeutic implications in OA.
Collapse
Affiliation(s)
- M C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK
| | - A Takahashi
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK; Department of Orthopaedic Surgery, Tohoku University Hospital, Sendai, Japan
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK.
| |
Collapse
|
39
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
40
|
Kerkhofs J, Leijten J, Bolander J, Luyten FP, Post JN, Geris L. A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy. PLoS One 2016; 11:e0162052. [PMID: 27579819 PMCID: PMC5007039 DOI: 10.1371/journal.pone.0162052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023] Open
Abstract
Differentiation of chondrocytes towards hypertrophy is a natural process whose control is essential in endochondral bone formation. It is additionally thought to play a role in several pathophysiological processes, with osteoarthritis being a prominent example. We perform a dynamic analysis of a qualitative mathematical model of the regulatory network that directs this phenotypic switch to investigate the influence of the individual factors holistically. To estimate the stability of a SOX9 positive state (associated with resting/proliferation chondrocytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two measures. The robustness of the state in canalisation (size of the attractor basin) is assessed by a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational analysis of the attractor. Through qualitative predictions, these measures allow for an in silico screening of the effect of the modelled factors on chondrocyte maintenance and hypertrophy. We show how discrepancies between experimental data and the model’s results can be resolved by evaluating the dynamic plausibility of alternative network topologies. The findings are further supported by a literature study of proposed therapeutic targets in the case of osteoarthritis.
Collapse
Affiliation(s)
- Johan Kerkhofs
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
| | - Jeroen Leijten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Johanna Bolander
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Janine N. Post
- Developmental BioEngineering, MIRA Institute for biomedical technology and technical medicine, University of Twente, Enschede, The Netherlands
| | - Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium
- Biomechanics section, KU Leuven, Leuven, Belgium
- Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
41
|
Wei X, Hu M, Mishina Y, Liu F. Developmental Regulation of the Growth Plate and Cranial Synchondrosis. J Dent Res 2016; 95:1221-9. [PMID: 27250655 DOI: 10.1177/0022034516651823] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long bones and the cranial base are both formed through endochondral ossification. Elongation of long bones is primarily through the growth plate, which is a cartilaginous structure at the end of long bones made up of chondrocytes. Growth plate chondrocytes are organized in columns along the longitudinal axis of bone growth. The cranial base is the growth center of the neurocranium. Synchondroses, consisting of mirror-image growth plates, are critical for cranial base elongation and development. Over the last decade, considerable progress has been made in determining the roles of the parathyroid hormone-related protein, Indian hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling pathways in various aspects of skeletal development. Furthermore, recent evidence indicates the important role of the primary cilia signaling pathway in bone elongation. Here, we review the development of the growth plate and cranial synchondrosis and the regulation by the above-mentioned signaling pathways, highlighting the similarities and differences between these 2 structures.
Collapse
Affiliation(s)
- X Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - M Hu
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Y Mishina
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - F Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Li T, Shi HY, Hua YX, Gao C, Xia Q, Yang G, Li B. Effects of allicin on the proliferation and cell cycle of chondrocytes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12525-12532. [PMID: 26722440 PMCID: PMC4680385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
The present study demonstrates the effect of allicin on the proliferation and the cell cycle distribution of the chondrocytes. MTT assay and flow cytometry were used for the evaluation of the effect of allicin on cell proliferative and the cell cycle distribution, respectively of the chondrocytes. The reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis were respectively used for the analysis of mRNA and protein expression levels of cyclin D1, CDK4 and CDK6. The results revealed that exposure of the chondrocytes to allicin at a concentration of 40 µM significantly promoted the cell viability. Treatment of the cells with 10, 20, 30, 40, and 50 μg/mL of allicin enhanced the cell viability by 2.5.47 ± 0.86, 5.43 ± 0.66, 10.74 ± 1.48, 35.89 ± 3.78, and 32.21 ± 2.92%, respectively after 36 h compared to control cells. Allicin exposure caused a marked decrease in the percentage of cells in G0/G1 phase with a subsequent increase in the S phase population. Furthermore, allicin treatment enhanced the expression of cyclin D1, CDK4 and CDK6. Therefore, allicin treatment enhances the proliferation of chondrocytes by promoting the transition from G1 to S phase of the cell cycle through increase in the expression of cyclin D1, CDK4 and CDK6 levels.
Collapse
Affiliation(s)
- Tao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| | - Hong-Yan Shi
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Yong-Xin Hua
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Chen Gao
- Medical Devices Department, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Qing Xia
- Medical Devices Department, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Guang Yang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| | - Bin Li
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| |
Collapse
|
43
|
Zhong L, Huang X, Karperien M, Post JN. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Int J Mol Sci 2015; 16:19225-47. [PMID: 26287176 PMCID: PMC4581295 DOI: 10.3390/ijms160819225] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.
Collapse
Affiliation(s)
- Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
44
|
Vimalraj S, Arumugam B, Miranda P, Selvamurugan N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 2015; 78:202-8. [PMID: 25881954 DOI: 10.1016/j.ijbiomac.2015.04.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023]
|
45
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
46
|
CHEN JIASHOU, LIU GUOZHONG, WENG XIAPING, LIU FAYUAN, LIN PINGDONG, LI HUITING, CHEN WENLIE, HUANG YUNMEI, LIU XIANXIANG, YE HONGZHI, LI XIHAI. Tougu Xiaotong formula induces chondrogenic differentiation in association with transforming growth factor-β1 and promotes proliferation in bone marrow stromal cells. Int J Mol Med 2014; 35:747-54. [DOI: 10.3892/ijmm.2014.2049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/08/2014] [Indexed: 11/06/2022] Open
|
47
|
Shen J, Li J, Wang B, Jin H, Wang M, Zhang Y, Yang Y, Im HJ, O'Keefe R, Chen D. Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. ACTA ACUST UNITED AC 2014; 65:3107-19. [PMID: 23982761 DOI: 10.1002/art.38122] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 08/01/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE While transforming growth factor β (TGFβ) signaling plays a critical role in chondrocyte metabolism, the TGFβ signaling pathways and target genes involved in cartilage homeostasis and the development of osteoarthritis (OA) remain unclear. Using an in vitro cell culture method and an in vivo mouse genetic approach, we undertook this study to investigate TGFβ signaling in chondrocytes and to determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling. METHODS TGFβ receptor type II (TGFβRII)-conditional knockout (KO) (TGFβRII(Col2ER)) mice were generated by breeding TGFβRII(flox/flox) mice with Col2-CreER-transgenic mice. Histologic, histomorphometric, and gene expression analyses were performed. In vitro TGFβ signaling studies were performed using chondrogenic rat chondrosarcoma cells. To determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling, TGFβRII/matrix metalloproteinase 13 (MMP-13)- and TGFβRII/ADAMTS-5-double-KO mice were generated and analyzed. RESULTS Inhibition of TGFβ signaling (deletion of the Tgfbr2 gene in chondrocytes) resulted in up-regulation of Runx2, Mmp13, and Adamts5 expression in articular cartilage tissue and progressive OA development in TGFβRII(Col2ER) mice. Deletion of the Mmp13 or Adamts5 gene significantly ameliorated the OA-like phenotype induced by the loss of TGFβ signaling. Treatment of TGFβRII(Col2ER) mice with an MMP-13 inhibitor also slowed OA progression. CONCLUSION Mmp13 and Adamts5 are critical downstream target genes involved in the TGFβ signaling pathway during the development of OA.
Collapse
Affiliation(s)
- Jie Shen
- Rush University Medical Center, Chicago, Illinois; University of Rochester School of Medicine, Rochester, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu G, Chen W, Fan H, Zheng C, Chu J, Lin R, Ye J, Xu H, Li X, Huang Y, Ye H, Liu X, Wu M. Duhuo Jisheng Decoction promotes chondrocyte proliferation through accelerated G1/S transition in osteoarthritis. Int J Mol Med 2013; 32:1001-10. [PMID: 24009074 DOI: 10.3892/ijmm.2013.1481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/17/2013] [Indexed: 11/05/2022] Open
Abstract
Duhuo Jisheng Decoction (DHJSD), a well known traditional Chinese folk medicine, is used for eliminating stagnation, removing blood stasis, promoting blood circulation and alleviating pain; it is commonly used for the treatment of various diseases, including osteoarthritis (OA). However, the molecular mechanisms behind the therapeutic effects of OA remain unclear. In the present study, the effects of DHJSD on the morphology of articular cartilage and the G1/S cell cycle progression in chondrocytes, as well as the underlying mechanisms, were investigated. A total of 27 two‑month‑old male Sprague Dawley rats were randomly divided into 3 groups: the control group (no papain-induced OA; received an equivalent amount of saline only), the model group (papain-induced OA; received an equivalent amount of saline only) and the DHJSD group [papain-induced OA; received a clinical oral dose of DHJSD (9.3 g/kg/day)]. After 8 consecutive weeks of treatment, the morphological changes in articular cartilage were observed under an optical microscope and by transmission electron microscopy (TEM) and the mRNA and protein expression levels of cyclin D1, CDK4, CDK6, retinoblastoma protein (Rb) and p16 were measured by RT‑PCR and immunohistochemistry, respectively. Treatment with DHJSD significantly improved the arrangement of collagen fibers in the articular cartilage, as well as its structure and reduced cell degeneration compared with the model group. The mRNA and protein expression levels of cyclin D1, CDK4, CDK6 and Rb in the DHJSD‑treated group were significantly increased compared with those in the model group, whereas p16 expression was significantly downregulated. Taken together, these results indicate that DHJSD treatment promotes chondrocyte proliferation by promoting the G1/S checkpoint transition in the cell cycle and by upregulating the expression of cyclin D1, CDK4, CDK6 and Rb and downregulating the expression of p16 and this may, in part, explain its clinical efficacy in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol 2013; 9:573-83. [DOI: 10.1038/nrrheum.2013.121] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Guo B, Wang ST, Duan CC, Li DD, Tian XC, Wang QY, Yue ZP. Effects of PTHrP on chondrocytes of sika deer antler. Cell Tissue Res 2013; 354:451-60. [DOI: 10.1007/s00441-013-1670-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 12/27/2022]
|