1
|
Pioner JM, Pierantozzi E, Coppini R, Rubino EM, Biasci V, Vitale G, Laurino A, Santini L, Scardigli M, Randazzo D, Olianti C, Serano M, Rossi D, Tesi C, Cerbai E, Lange S, Reggiani C, Sacconi L, Poggesi C, Ferrantini C, Sorrentino V. Obscurin deficiency leads to compensated dilated cardiomyopathy and increased arrhythmias. J Gen Physiol 2025; 157:e202413696. [PMID: 40366302 PMCID: PMC12077377 DOI: 10.1085/jgp.202413696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Obscurin is a large muscle protein whose multiple functions include providing mechanical strength to the M-band and linking the sarcomere to the sarcoplasmic reticulum. Mutations in obscurin are linked to various forms of muscle diseases. This study compares cardiac function in a murine model of obscurin deletion (KO) with wild-type (WT) in vivo and ex vivo. Echocardiography showed that KO hearts had larger (+20%) end-diastolic and end-systolic volumes, reduced fractional shortening, and impaired ejection fraction, consistent with dilated cardiomyopathy. However, stroke volume and cardiac output were preserved due to increased end-diastolic volume. Morphological analyses revealed reduced sarcoplasmic reticulum volume, with preserved T-tubule network. While myofilament function was preserved in isolated myofibrils and skinned trabeculae, experiments in intact trabeculae revealed that Obscn KO hearts compared with WT displayed (1) reduced active tension at high frequencies and during resting-state contractions, (2) impaired positive inotropic and lusitropic response to β-adrenergic stimulation (isoproterenol 0.1 μM), and (3) faster mechanical restitution, suggesting reduced sarcoplasmic reticulum refractoriness. Intracellular [Ca2+]i measurements showed reduced peak systolic and increased diastolic levels in KO versus WT cardiomyocytes. Western blot experiments revealed lower SERCA and phospholamban (PLB) expression and reduced PLB phosphorylation in KO mice. While action potential parameters and conduction velocity were unchanged, β-adrenergic stimulation induced more frequent spontaneous Ca2+ waves and increased arrhythmia susceptibility in KO compared with WT. Taken together, these findings suggest that obscurin deletion, in adult mice, is linked to compensated dilated cardiomyopathy, altered E-C coupling, impaired response to inotropic agents, and increased propensity to arrhythmias.
Collapse
Affiliation(s)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Egidio Maria Rubino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Valentina Biasci
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lorenzo Santini
- Department NeuroFarBa, University of Florence, Florence, Italy
| | - Marina Scardigli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Randazzo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Camilla Olianti
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| | - Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Stephan Lange
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Leonardo Sacconi
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
2
|
Sevcikova Tomaskova Z, Mackova K. From function to structure: how myofibrillogenesis influences the transverse-axial tubular system development and its peculiarities. Front Physiol 2025; 16:1576133. [PMID: 40352140 PMCID: PMC12062141 DOI: 10.3389/fphys.2025.1576133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
The transverse-axial tubular system (TATS) is the extension of sarcolemma growing to the cell interior, providing sufficient calcium signaling to induce calcium release from sarcoplasmic reticulum cisternae and stimulate the contraction of neighboring myofibrils. Interestingly, the development of TATS is delayed and matures during the post-partum period. It starts with small invaginations near the sarcolemma, proceeding to grow an irregular network that is later assembled into the notably transversally oriented tubular network. Accumulating evidence supports the idea that the development of TATS is linked to cell dimensions, calcium signaling, and increasing myofibrillar content orchestrated by electromechanical stimulation. However, the overall mechanism has not yet been described. The topic of this review is the development of TATS with an emphasis on the irregular phase of tubule growth. The traditional models of BIN1-related tubulation are also discussed. We summarized the recently described protein interactions during TATS development, mainly mediated by costameric and sarcomeric proteins, supporting the idea of the coupling sites between TATS and the myofibrils. We hypothesize that the formation and final organization of the tubular system is driven by the simultaneous development of the contractile apparatus under cycling electromechanical stimulus.
Collapse
Affiliation(s)
| | - Katarina Mackova
- Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Yu Z, Zhang S, Bogomolovas J, Chen J, Evans SM. Intronic RNAscope probes enable precise identification of cardiomyocyte nuclei and cell cycle activity. Commun Biol 2025; 8:577. [PMID: 40195462 PMCID: PMC11977257 DOI: 10.1038/s42003-025-08012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Cardiac regeneration studies have been plagued by technical challenges in unequivocally identifying cardiomyocyte (CM) nuclei in cardiac sections, crucial for accurate identification of cycling CMs. The use of antibodies to sarcomeric proteins is error-prone, the CM specificity of common nuclear markers is controversial, and utilizing genetically modified mouse models poses risk of inducing unintended cardiac phenotypes. The application of RNAscope intronic probes overcomes the above shortcomings. Intronic probes label intronic RNAs within nuclei and can therefore be utilized as a method for nuclear localization. A Tnnt2 intronic RNAscope probe highly colocalized with Obscurin-H2B-GFP in adult mouse hearts, demonstrating CM specificity. Studies in embryos demonstrated that the Tnnt2 intronic RNAscope probe labeled CM nuclei that had undergone DNA replication, and remained closely associated with CM chromatin at all stages of mitosis, even with nuclear envelope breakdown. The efficiency, accuracy, and perdurance of the Tnnt2 intronic RNAscope probe even with nuclear envelope breakdown facilitated reliable investigation of dynamics of DNA synthesis and potential mitoses in CMs in both border and infarct zones after myocardial infarction (MI). Furthermore, we designed Myl2 and Myl4 intronic RNAscope probes, which labeled ventricular and atrial CM nuclei, respectively, and may help identify CM subtypes generated in vitro.
Collapse
Affiliation(s)
- Zhe Yu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sen Zhang
- Department of Pharmacology & Regenerative Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Julius Bogomolovas
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Fujita K, Desmond P, Blondelle J, Soták M, Rajan MR, Clark M, Estève É, Chan Y, Gu Y, Actis Dato V, Marrocco V, Dalton ND, Ghassemian M, Do A, Klos M, Peterson KL, Sheikh F, Cho Y, Börgeson E, Lange S. Combined Loss of Obsc and Obsl1 in Murine Hearts Results in Diastolic Dysfunction, Altered Metabolism, and Deregulated Mitophagy. Circ Heart Fail 2025; 18:e011867. [PMID: 40066567 PMCID: PMC11995854 DOI: 10.1161/circheartfailure.124.011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/09/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Muscle proteins of the obscurin protein family play important roles in sarcomere organization and sarcoplasmic reticulum and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood. METHODS To investigate the functional roles of Obsc (obscurin) and its close homolog Obsl1 (obscurin-like 1) in the heart, we generated and analyzed knockout mice for Obsc, Obsl1, as well as Obsc/Obsl1 double knockouts. RESULTS We show that double-knockout mice are viable but show postnatal deficits in cardiac muscle sarcoplasmic reticulum and mitochondrial architecture and function at the microscopic, biochemical, and cellular levels. Altered sarcoplasmic reticulum structure resulted in perturbed calcium cycling, whereas mitochondrial ultrastructure deficits were linked to decreased levels of Chchd3 (coiled-coil-helix-coiled-coil-helix domain containing 3), a Micos (mitochondrial contact site and cristae organizing system) complex protein. Hearts of double-knockout mice also show altered levels of Atg4 proteins, novel Obsl1 interactors, resulting in abnormal mitophagy, and increased unfolded protein response. At the physiological level, loss of obscurin and Obsl1 resulted in a profound delay of cardiac relaxation, associated with metabolic signs of heart failure. CONCLUSIONS Taken together, our data suggest that Obsc and Obsl1 play crucial roles in cardiac sarcoplasmic reticulum structure, calcium cycling, mitochondrial function, turnover, and metabolism.
Collapse
Affiliation(s)
- Kyohei Fujita
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Japan (K.F.)
| | - Patrick Desmond
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Jordan Blondelle
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matúš Soták
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Meenu Rohini Rajan
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
| | - Madison Clark
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Éric Estève
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- PhyMedExp, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Regionale Universitaire (CHRU) Montpellier, France (E.E.)
| | - Yunghang Chan
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yusu Gu
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Virginia Actis Dato
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Valeria Marrocco
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Nancy D. Dalton
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry (M.G.), University of California San Diego, La Jolla
| | - Aryanne Do
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Matthew Klos
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Kirk L. Peterson
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Farah Sheikh
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
| | - Emma Börgeson
- Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, University of Gothenburg, Sweden (M.S., M.R.R., E.B.)
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, School of Medicine (K.F., P.D., J.B., M.C., E.E., Y. Chan, Y.G., V.A.D., V.M., N.D.D., A.D., M.K., K.L.P., F.S., Y. Cho, S.L.), University of California San Diego, La Jolla
- Department of Biomedicine, Aarhus University, Denmark (M.C., E.B., S.L.)
- STENO Diabetes Center Aarhus, Denmark (M.C., E.B., S.L.)
| |
Collapse
|
5
|
Sun X, Chen Y, Zhong J, Chen H, Xie J, Wang R. Identification of Compound Heterozygous Variants in OBSCN Gene Associated With Rhabdomyolysis: A Case Report. Mol Genet Genomic Med 2025; 13:e70094. [PMID: 40186404 PMCID: PMC11971531 DOI: 10.1002/mgg3.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The obscurin protein encoded by the OBSCN gene is an important structural protein in the regulation of myocyte sarcoplasmic nodule stability and sarcoplasmic reticulum function and is particularly closely associated with calcium ion (Ca2+) signaling. With increasing genomic studies, pathogenic variants in the OBSCN gene have been shown to be associated with a variety of inherited diseases, such as cardiomyopathy. However, case reports of its variants causing rhabdomyolysis are more limited. METHODS We performed whole exome sequencing on a patient with exercise-induced rhabdomyolysis to identify possible causative gene variants. In addition, functional prediction of the pathogenicity of the variants was performed by combining multiple bioinformatics analysis tools and in-depth analyses with clinical phenotypes and family history. RESULTS The patient carried compound heterozygous variants, including c.21184C>T (nonsense variant) and c.15610+12C>T (intronic splicing variant). The c.21184C>T variant resulted in a premature termination of the protein, was not included in population-based databases, and was supported by multiple prediction tools as a potentially pathogenic variant. The c.15610+12C>T variant was also absent in the gnomAD_EAS database and predicted to disturb normal splicing, potentially creating a novel donor site. The pathogenicity of the variant is further supported by the fact that the patient's mother, with a homozygous OBSCN variant, also exhibited exercise-induced myalgia. Clinically, the patient presented with exercise-induced rhabdomyolysis accompanied by significant serum creatine kinase elevation, muscle pain, and MRI-demonstrated muscle edema of both lower limbs without significant muscle weakness or cardiac abnormalities. CONCLUSION We report the first case of rhabdomyolysis in China caused by OBSCN gene variants. This finding further extends the spectrum of the OBSCN gene variants. It also provides an important basis for genetic counseling and helps in the early diagnosis and management of similar cases.
Collapse
Affiliation(s)
- Xiaolan Sun
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Yong Chen
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Jianmin Zhong
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Hui Chen
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Jihua Xie
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Ruiyan Wang
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| |
Collapse
|
6
|
Li Y, Wright NT, Bloch RJ. The juxtamembrane sequence of small ankyrin 1 mediates the binding of its cytoplasmic domain to SERCA1 and is required for inhibitory activity. J Biol Chem 2025; 301:108216. [PMID: 39863105 PMCID: PMC11927728 DOI: 10.1016/j.jbc.2025.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca2+ in skeletal muscle. Due to its vital importance in regulating Ca2+ homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.5), a 17 kDa muscle-specific isoform of ANK1, binds to SERCA1 directly via both its transmembrane and cytoplasmic domains and inhibits SERCA1's ATPase activity. Here, we characterize the interaction between the cytoplasmic domain of sAnk1 (sAnk1(29-155)) and SERCA1. The binding affinity for sAnk1 (29-155) to SERCA1 was 444 nM by blot overlay, about 7-fold weaker than the binding of sAnk1(29-155) to obscurin, a giant protein of the muscle cytoskeleton. Site-directed mutagenesis identified K38, H39, and H41, in the juxtamembrane region, as residues likely to mediate binding to SERCA1. These residues are not required for obscurin binding. Residues R64-K73, which do contribute to obscurin binding, are also required for binding to SERCA1, but only the hydrophobic residues in this sequence are required, not the positively charged residues necessary for obscurin binding. Circular dichroism analysis of sAnk1(29-155) indicates that most mutants show significant structural changes, with the exception of those containing alanines in place of K38, H39 and H41. Although the cytoplasmic domain of sAnk1 does not inhibit SERCA1's Ca2+-ATPase activity, with or without mutations in the juxtamembrane sequence, the inhibitory activity of full-length sAnk1 requires the WT juxtamembrane sequence. We used these data to model sAnk1 and the sAnk1-SERCA1 complex. Our results suggest that, in addition to its transmembrane domain, sAnk1 uses its juxtamembrane sequence and perhaps part of its obscurin binding site to bind to SERCA1, and that this binding contributes to their robust association in situ, as well as regulation of SERCA1's activity.
Collapse
Affiliation(s)
- Yi Li
- Program in Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
8
|
Matsunaga Y, Qadota H, Ghazal N, Lesanpezeshki L, Dorendorf T, Moody JC, Ahier A, Matheny CJ, Vanapalli SA, Zuryn S, Mayans O, Kwong JQ, Benian GM. Protein kinase 2 of the giant sarcomeric protein UNC-89 regulates mitochondrial morphology and function. Commun Biol 2024; 7:1342. [PMID: 39420071 PMCID: PMC11487192 DOI: 10.1038/s42003-024-07042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
UNC-89 is a giant sarcomeric M-line protein required for sarcomere organization and optimal muscle function. UNC-89 contains two protein kinase domains, PK1 and PK2, separated by an elastic region. Here we show that PK2 is a canonical kinase expected to be catalytically active. C. elegans expressing UNC-89 with a lysine to alanine (KtoA) mutation to inactivate PK2 have normally organized sarcomeres and SR, and normal muscle function. PK2 KtoA mutants have fragmented mitochondria, correlated with more mitochondrially-associated DRP-1. PK2 KtoA mutants have increased ATP levels, increased glycolysis and altered levels of electron transport chain complexes. Muscle mitochondria show increased complex I and decreased complex II basal respiration, each of which cannot be uncoupled. This suggests that mutant mitochondria are already uncoupled, possibly resulting from an increased level of the uncoupling protein, UCP-4. Our results suggest signaling from sarcomeres to mitochondria, to help match energy requirements with energy production.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Nasab Ghazal
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | | | - Till Dorendorf
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Shultz KD, Al Anbari YF, Wright NT. I told you to stop: obscurin's role in epithelial cell migration. Biochem Soc Trans 2024; 52:1947-1956. [PMID: 39051125 DOI: 10.1042/bst20240564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.
Collapse
Affiliation(s)
- Kamrin D Shultz
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Yasmin F Al Anbari
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| |
Collapse
|
10
|
Johnson LG, Zhai C, Prusa KJ, Nair MN, Prenni JE, Chaparro JM, Huff-Lonergan E, Lonergan SM. Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness. J Anim Sci 2024; 102:skae355. [PMID: 39563021 PMCID: PMC11630860 DOI: 10.1093/jas/skae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and nondestructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of ~2-wk aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N = 120) were assigned to one of the four categories (n = 25) based on instrumental star probe value (Category A, x¯ =4.23 kg, 3.43-4.55 kg; Category B, x¯ =4.79 kg, 4.66-5.00 kg; Category C, x¯ =5.43 kg, 5.20-5.64 kg; and Category D, x¯ =6.21 kg, 5.70-7.41 kg). Soluble protein from ~2 wk aged pork loin was prepared using a low-ionic-strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric tandem mass tag reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80% methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using gas chromatography-mass spectrometry. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low-ionic-strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
11
|
Zemorshidi F, Töpf A, Claeys KG, McFarlane A, Patton A, Nafissi S, Straub V. Novel OBSCN variants associated with a risk to exercise-intolerance and rhabdomyolysis. Neuromuscul Disord 2024; 34:83-88. [PMID: 38159459 DOI: 10.1016/j.nmd.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Obscurin, encoded by the OBSCN gene, is a muscle protein consisting of three main splice isoforms, obscurin-A, obscurin-B, and obscurin kinase-only protein (also known as KIAA1639 or Obsc-kin). Obscurin is located at the M-band and Z-disks and interacts with titin and myomesin. It plays an important role in the stability and maintenance of the A- and M-bands and the subsarcolemmal organization of the microtubule network. Furthermore, obscurin is involved in Ca2+ regulation and sarcoplasmic reticulum function and is connected to several other muscle proteins. OBSCN gene variants have been reported to be relatively common in inherited cardiomyopathies. Here we reported two young patients with a history of cramps, myalgia, exercise intolerance, rhabdomyolysis, and myoglobinuria without any evidence of concomitant cardiomyopathy in association with novel OBSCN variants (c.24822C>A and c.2653+1G>C). Obscurin-deficient muscle fibers seem to have increased susceptibility to damage triggered by exercise that may lead to rhabdomyolysis. More studies are needed to clarify the diverse clinical phenotypes and the pathophysiology of OBSCN gene variants.
Collapse
Affiliation(s)
- Fariba Zemorshidi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Iran; Department of Neurology, Shariati Hospital,Tehran University of Medical Sciences, Tehran, Iran; Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Adam McFarlane
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Annabel Patton
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Shahriar Nafissi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Iran; Department of Neurology, Shariati Hospital,Tehran University of Medical Sciences, Tehran, Iran.
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Ouderkirk S, Sedley A, Ong M, Shifflet MR, Harkrider QC, Wright NT, Miller CJ. A Perspective on Developing Modeling and Image Analysis Tools to Investigate Mechanosensing Proteins. Integr Comp Biol 2023; 63:1532-1542. [PMID: 37558388 PMCID: PMC10755202 DOI: 10.1093/icb/icad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
The shift of funding organizations to prioritize interdisciplinary work points to the need for workflow models that better accommodate interdisciplinary studies. Most scientists are trained in a specific field and are often unaware of the kind of insights that other disciplines could contribute to solving various problems. In this paper, we present a perspective on how we developed an experimental pipeline between a microscopy and image analysis/bioengineering lab. Specifically, we connected microscopy observations about a putative mechanosensing protein, obscurin, to image analysis techniques that quantify cell changes. While the individual methods used are well established (fluorescence microscopy; ImageJ WEKA and mTrack2 programs; MATLAB), there are no existing best practices for how to integrate these techniques into a cohesive, interdisciplinary narrative. Here, we describe a broadly applicable workflow of how microscopists can more easily quantify cell properties (e.g., perimeter, velocity) from microscopy videos of eukaryotic (MDCK) adherent cells. Additionally, we give examples of how these foundational measurements can create more complex, customizable cell mechanics tools and models.
Collapse
Affiliation(s)
- Stephanie Ouderkirk
- Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Alex Sedley
- Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA
| | - Mason Ong
- Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA
| | - Mary Ruth Shifflet
- Department of Chemistry, Bridgewater College, Bridgewater, VA 22812, USA
| | - Quinn C Harkrider
- Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Nathan T Wright
- Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA
| |
Collapse
|
13
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
14
|
Martin SCT, Qadota H, Oberhauser AF, Hardin J, Benian GM. FARL-11 (STRIP1/2) is required for sarcomere and sarcoplasmic reticulum organization in C. elegans. Mol Biol Cell 2023; 34:ar86. [PMID: 37314837 PMCID: PMC10398898 DOI: 10.1091/mbc.e23-03-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Protein phosphatase 2A (PP2A) functions in a variety of cellular contexts. PP2A can assemble into four different complexes based on the inclusion of different regulatory or targeting subunits. The B''' regulatory subunit "striatin" forms the STRIPAK complex consisting of striatin, a catalytic subunit (PP2AC), striatin-interacting protein 1 (STRIP1), and MOB family member 4 (MOB4). In yeast and Caenorhabditis elegans, STRIP1 is required for formation of the endoplasmic reticulum (ER). Because the sarcoplasmic reticulum (SR) is the highly organized muscle-specific version of ER, we sought to determine the function of the STRIPAK complex in muscle using C. elegans. CASH-1 (striatin) and FARL-11 (STRIP1/2) form a complex in vivo, and each protein is localized to SR. Missense mutations and single amino acid losses in farl-11 and cash-1 each result in similar sarcomere disorganization. A missense mutation in farl-11 shows no detectable FARL-11 protein by immunoblot, disruption of SR organization around M-lines, and altered levels of the SR Ca+2 release channel UNC-68.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Andres F. Oberhauser
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Jeff Hardin
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
15
|
Pierantozzi E, Raucci L, Buonocore S, Rubino EM, Ding Q, Laurino A, Fiore F, Soldaini M, Chen J, Rossi D, Vangheluwe P, Chen H, Sorrentino V. Skeletal muscle overexpression of sAnk1.5 in transgenic mice does not predispose to type 2 diabetes. Sci Rep 2023; 13:8195. [PMID: 37210436 PMCID: PMC10199891 DOI: 10.1038/s41598-023-35393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Genome-wide association studies (GWAS) and cis-expression quantitative trait locus (cis-eQTL) analyses indicated an association of the rs508419 single nucleotide polymorphism (SNP) with type 2 diabetes (T2D). rs508419 is localized in the muscle-specific internal promoter (P2) of the ANK1 gene, which drives the expression of the sAnk1.5 isoform. Functional studies showed that the rs508419 C/C variant results in increased transcriptional activity of the P2 promoter, leading to higher levels of sAnk1.5 mRNA and protein in skeletal muscle biopsies of individuals carrying the C/C genotype. To investigate whether sAnk1.5 overexpression in skeletal muscle might predispose to T2D development, we generated transgenic mice (TgsAnk1.5/+) in which the sAnk1.5 coding sequence was selectively overexpressed in skeletal muscle tissue. TgsAnk1.5/+ mice expressed up to 50% as much sAnk1.5 protein as wild-type (WT) muscles, mirroring the difference reported between individuals with the C/C or T/T genotype at rs508419. However, fasting glucose levels, glucose tolerance, insulin levels and insulin response in TgsAnk1.5/+ mice did not differ from those of age-matched WT mice monitored over a 12-month period. Even when fed a high-fat diet, TgsAnk1.5/+ mice only presented increased caloric intake, but glucose disposal, insulin tolerance and weight gain were comparable to those of WT mice fed a similar diet. Altogether, these data indicate that sAnk1.5 overexpression in skeletal muscle does not predispose mice to T2D susceptibility.
Collapse
Affiliation(s)
- E Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - L Raucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - S Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - E M Rubino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Q Ding
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - A Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - F Fiore
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - M Soldaini
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - J Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000, Leuven, Belgium
| | - D Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - P Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), 3000, Leuven, Belgium
| | - H Chen
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - V Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy.
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy.
| |
Collapse
|
16
|
Li Q, Lin J, Luo S, Schmitz-Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of SPEG in skeletal muscle biology including its relationship with myospryn complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538136. [PMID: 37162921 PMCID: PMC10168260 DOI: 10.1101/2023.04.24.538136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy. Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes. We identified that SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and SPEG deficiency results in myospryn complex abnormalities. In addition, transcriptional and protein profiles of SPEG-deficient muscle revealed defective mitochondrial function including aberrant accumulation of enlarged mitochondria on electron microscopy. Furthermore, SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites. On analyzing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction and peroxisome proliferator-activated receptors signaling, which may be due to defective triad and mitochondrial abnormalities. In summary, we have elucidated the critical role of SPEG in triad as it works closely with myospryn complex, phosphorylates JPH2 and RyR1, and demonstrated that its deficiency is associated with mitochondrial abnormalities. This study emphasizes the importance of using multi-omics techniques to comprehensively analyze the molecular anomalies of rare diseases. Synopsis We have previously linked mutations in SPEG (striated preferentially expressed protein) with a recessive form of centronuclear myopathy and/or dilated cardiomyopathy and have characterized a striated muscle-specific SPEG-deficient mouse model that recapitulates human disease with disruption of the triad structure and calcium homeostasis in skeletal muscles. In this study, we applied multi-omics approaches (interactomic, proteomic, phosphoproteomic, and transcriptomic analyses) in the skeletal muscles of SPEG-deficient mice to assess the underlying pathways associated with the pathological and molecular abnormalities. SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and its deficiency results in myospryn complex abnormalities.SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites.SPEGα and SPEGβ have different interacting partners suggestive of differential function.Transcriptome analysis indicates dysregulated pathways of ECM-receptor interaction and peroxisome proliferator-activated receptor signaling.Mitochondrial defects on the transcriptome, proteome, and electron microscopy, may be a consequence of defective calcium signaling.
Collapse
|
17
|
Koch D, Kho AL, Fukuzawa A, Alexandrovich A, Vanaanen KJ, Beavil A, Pfuhl M, Rees M, Gautel M. Obscurin Rho GEF domains are phosphorylated by MST-family kinases but do not exhibit nucleotide exchange factor activity towards Rho GTPases in vitro. PLoS One 2023; 18:e0284453. [PMID: 37079638 PMCID: PMC10118190 DOI: 10.1371/journal.pone.0284453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/01/2023] [Indexed: 04/21/2023] Open
Abstract
Obscurin is a giant muscle protein (>800 kDa) featuring multiple signalling domains, including an SH3-DH-PH domain triplet from the Trio-subfamily of guanosine nucleotide exchange factors (GEFs). While previous research suggests that these domains can activate the small GTPases RhoA and RhoQ in cells, in vitro characterization of these interactions using biophysical techniques has been hampered by the intrinsic instability of obscurin GEF domains. To study substrate specificity, mechanism and regulation of obscurin GEF function by individual domains, we successfully optimized recombinant production of obscurin GEF domains and found that MST-family kinases phosphorylate the obscurin DH domain at Thr5798. Despite extensive testing of multiple GEF domain fragments, we did not detect any nucleotide exchange activity in vitro against 9 representative small GTPases. Bioinformatic analyses show that obscurin differs from other Trio-subfamily GEFs in several important aspects. While further research is necessary to evaluate obscurin GEF activity in vivo, our results indicate that obscurin has atypical GEF domains that, if catalytically active at all, are subject to complex regulation.
Collapse
Affiliation(s)
- Daniel Koch
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Atsushi Fukuzawa
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Kutti J. Vanaanen
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Andrew Beavil
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Mark Pfuhl
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Martin Rees
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
Grogan A, Huang W, Brong A, Kane MA, Kontrogianni-Konstantopoulos A. Alterations in cytoskeletal and Ca 2+ cycling regulators in atria lacking the obscurin Ig58/59 module. Front Cardiovasc Med 2023; 10:1085840. [PMID: 37304957 PMCID: PMC10251194 DOI: 10.3389/fcvm.2023.1085840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Obscurin (720-870 kDa) is a giant cytoskeletal and signaling protein that possesses both structural and regulatory functions in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin bind to a diverse set of proteins that are essential for the proper structure and function of the heart, including giant titin, novex-3, and phospholamban (PLN). Importantly, the pathophysiological significance of the Ig58/59 module has been further underscored by the discovery of several mutations within Ig58/59 that are linked to various forms of myopathy in humans. We previously generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and characterized the effects of this deletion on cardiac morphology and function through aging. Our findings demonstrated that Obscn-ΔIg58/59 male animals develop severe arrhythmia, primarily manifesting as episodes of junctional escape and spontaneous loss of regular p-waves, reminiscent of human atrial fibrillation, accompanied by significant atrial enlargement that progresses in severity with aging. Methods and Results To comprehensively characterize the molecular alterations responsible for these pathologies, we performed proteomic and phospho-proteomic analyses in aging Obscn-ΔIg58/59 atria. Our studies revealed extensive and novel alterations in the expression and phosphorylation profile of major cytoskeletal proteins, Ca2+ regulators, and Z-disk associated protein complexes in the Obscn-ΔIg58/59 atria through aging. Discussion These studies implicate obscurin, particularly the Ig58/59 module, as an essential regulator of the Z-disk associated cytoskeleton and Ca2+ cycling in the atria and provide new molecular insights into the development of atrial fibrillation and remodeling.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Annie Brong
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | | |
Collapse
|
19
|
Mauriello GE, Moncure GE, Nowzari RA, Miller CJ, Wright NT. The N-terminus of obscurin is flexible in solution. Proteins 2023; 91:485-496. [PMID: 36306263 DOI: 10.1002/prot.26442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The N-terminal half of the giant cytoskeletal protein obscurin is comprised of more than 50 Ig-like domains, arranged in tandem. Domains 18-51 are connected to each other through short 5-residue linkers, and this arrangement has been previously shown to form a semi-flexible rod in solution. Domains 1-18 generally have slightly longer ~7 residue interdomain linkers, and the multidomain structure and motion conferred by this kind of linker is understudied. Here, we use NMR, SAXS, and MD to show that these longer linkers are associated with significantly more domain/domain flexibility, with the resulting multidomain structure being moderately compact. Further examination of the relationship between interdomain flexibility and linker length shows there is a 5 residue "sweet spot" linker length that results in dual-domain systems being extended, and conversely that both longer or shorter linkers result in a less extended structure. This detailed knowledge of the obscurin N terminus structure and flexibility allowed for mathematical modeling of domains 1-18, which suggests that this region likely forms tangles if left alone in solution. Given how infrequently protein tangles occur in nature, and given the pathological outcomes that occur when tangles do arise, our data suggest that obscurin is likely either significantly scaffolded or else externally extended in the cell.
Collapse
Affiliation(s)
- Gianna E Mauriello
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Grace E Moncure
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Roujon A Nowzari
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, Virginia, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
20
|
Zacharchenko T, Dorendorf T, Locker N, Van Dijk E, Katzemich A, Diederichs K, Bullard B, Mayans O. PK1 from Drosophila obscurin is an inactive pseudokinase with scaffolding properties. Open Biol 2023; 13:220350. [PMID: 37121260 PMCID: PMC10129394 DOI: 10.1098/rsob.220350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Till Dorendorf
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Evert Van Dijk
- Biosynth B.V., Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
| | | | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
21
|
Martin SCT, Qadota H, Oberhauser AF, Hardin J, Benian GM. FARL-11 (STRIP1/2) is Required for Sarcomere and Sarcoplasmic Reticulum Organization in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531173. [PMID: 36945551 PMCID: PMC10028798 DOI: 10.1101/2023.03.05.531173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Protein phosphatase 2A (PP2A) functions in a variety of cellular contexts. PP2A can assemble into four different complexes based on the inclusion of different regulatory or targeting subunits. The B''' regulatory subunit "striatin" forms the STRIPAK complex consisting of striatin, a catalytic subunit (PP2AC), striatin interacting protein 1 (STRIP1), and MOB family member 4 (MOB4). In yeast and C. elegans, STRIP1 is required for formation of the endoplasmic reticulum (ER). Since the sarcoplasmic reticulum (SR) is the highly organized muscle-specific version of ER, we sought to determine the function of the STRIPAK complex in muscle using C. elegans . CASH-1 (striatin) and FARL-11 (STRIP1/2) form a complex in vivo , and each protein is localized to SR. Missense mutations and single amino acid losses in farl-11 and cash-1 each result in similar sarcomere disorganization. A missense mutation in farl-11 shows no detectable FARL-11 protein by immunoblot, disruption of SR organization around M-lines, and altered levels of the SR Ca +2 release channel UNC-68. Summary Protein phosphatase 2A forms a STRIPAK complex when it includes the targeting B''' subunit "striatin" and STRIP1. STRIP1 is required for formation of ER. We show that in muscle STRIP1 is required for organization of SR and sarcomeres.
Collapse
|
22
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
24
|
A novel missense mutation in obscurin gene in a Chinese consanguineous family with left ventricular noncompaction. J Geriatr Cardiol 2022; 19:531-538. [PMID: 35975021 PMCID: PMC9361159 DOI: 10.11909/j.issn.1671-5411.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is an increasingly recognised cardiomyopathy of which a significant percentage are genetic in origin. The purpose of the present study was to identify potential pathogenic mutation leading to disease in a Chinese LVNC family. METHODS A 3-generation family affected by LVNC was recruited. Clinical assessments were performed on available family members, with clinical examination, ECG, echocardiography and cardiac MRI. The proband (I-2), the proband's daughter (II-1, affected) and mother (III-1, unaffected) were selected for WGS. Sanger sequencing were performed in all of the 4 surviving family members. RESULTS Combined whole genome sequencing with linkage analysis identified a novel missense mutation in the giant protein obscurin (OBSCN NM_001098623, c.C19063T), as the only plausible disease-causing variant that segregates with disease among the four surviving individuals, with interrogation of the entire genome excluding other potential causes. This c.C19063T missense mutation resulted in p.R6355W in the encoded OBSCN protein. It affected a highly conserved residue in the C terminus of the obscurin-B-like isoform between the PH and STKc domains, which was predicted to affect the function of the protein by different bioinformatics tools. CONCLUSIONS Here we present clinical and genetic evidence implicating the novel R6355W missense mutation in obscurin as the cause of familial LVNC. This expands the spectrum of obscurin's roles in cardiomyopathies. It furthermore highlights that rare obscurin missense variants, currently often ignored or left uninterpreted, should be considered to be relevant for cardiomyopathies and can be identified by the approach presented here. This study also provided new insights into the molecular basis of OBSCN mutation positive LVNC.
Collapse
|
25
|
Subramaniam J, Yamankurt G, Cunha SR. Obscurin regulates ankyrin macromolecular complex formation. J Mol Cell Cardiol 2022; 168:44-57. [PMID: 35447147 PMCID: PMC11057898 DOI: 10.1016/j.yjmcc.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Obscurin is a large scaffolding protein in striated muscle that maintains sarcolemmal integrity and aligns the sarcoplasmic reticulum with the underlying contractile machinery. Ankyrins are a family of adaptor proteins with some isoforms that interact with obscurin. Previous studies have examined obscurin interacting with individual ankyrins. In this study, we demonstrate that two different ankyrins interact with obscurin's carboxyl terminus via independent ankyrin-binding domains (ABDs). Using in-vitro binding assays, co-precipitation assays, and FLIM-FRET analysis, we show that obscurin interacts with small ankyrin 1.5 (sAnk1.5) and the muscle-specific ankyrin-G isoform (AnkG107). While there is no direct interaction between sAnk1.5 and AnkG107, obscurin connects the two ankyrins both in vitro and in cells. Moreover, AnkG107 recruits β-spectrin to this macromolecular protein complex and mutating obscurin's ABDs disrupts complex formation. To further characterize AnkG107 interaction with obscurin, we measure obscurin-binding to different AnkG107 isoforms expressed in the heart and find that the first obscurin-binding domain in AnkG107 principally mediates this interaction. We also find that AnkG107 does not bind to filamin-C and displays minimal binding to plectin-1 compared to obscurin. Finally, both sAnk1.5-GFP and AnkG107-CTD-RFP are targeted to the M-lines of ventricular cardiomyocytes and mutating their obscurin-binding domains disrupts the M-line localization of these ankyrin constructs. Altogether, these findings support a model in which obscurin can interact via independent binding domains with two different ankyrin protein complexes to target them to the sarcomeric M-line of ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Janani Subramaniam
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Gokay Yamankurt
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Shane R Cunha
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
26
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
27
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
28
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
29
|
Pierantozzi E, Szentesi P, Paolini C, Dienes B, Fodor J, Oláh T, Colombini B, Rassier DE, Rubino EM, Lange S, Rossi D, Csernoch L, Bagni MA, Reggiani C, Sorrentino V. Impaired Intracellular Ca 2+ Dynamics, M-Band and Sarcomere Fragility in Skeletal Muscles of Obscurin KO Mice. Int J Mol Sci 2022; 23:1319. [PMID: 35163243 PMCID: PMC8835721 DOI: 10.3390/ijms23031319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Cecilia Paolini
- Department of Neuroscience, Imaging and Clinical Sciences, University Gabriele d’ Annunzio of Chieti, 66100 Chieti, Italy;
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada;
| | - Egidio Maria Rubino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, La Jolla, CA 92093, USA;
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, 35121 Padova, Italy;
- Science and Research Center Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| |
Collapse
|
30
|
Cabrera-Serrano M, Caccavelli L, Savarese M, Vihola A, Jokela M, Johari M, Capiod T, Madrange M, Bugiardini E, Brady S, Quinlivan R, Merve A, Scalco R, Hilton-Jones D, Houlden H, Ibrahim Aydin H, Ceylaner S, Vockley J, Taylor RL, Folland C, Kelly A, Goullee H, Ylikallio E, Auranen M, Tyynismaa H, Udd B, Forrest ARR, Davis MR, Bratkovic D, Manton N, Robertson T, McCombe P, Laing NG, Phillips L, de Lonlay P, Ravenscroft G. Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain 2021; 145:3985-3998. [DOI: 10.1093/brain/awab484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified ten bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in SR function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in SR Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the SR and/or a decrease in Ca2+ SR storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Unidad de Enfermedades Neuromusculares. Servicio de Neurologia y Neurofisiologia. Hospital Virgen del Rocio, Sevilla, Spain
| | - Laure Caccavelli
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Neurocenter, Department of Neurology, Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Thierry Capiod
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Marine Madrange
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Enrico Bugiardini
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Stefen Brady
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - Ashirwad Merve
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - Renata Scalco
- MRC Centre for Neuromuscular Diseases, University College Hospitals, London, UK
| | - David Hilton-Jones
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | | | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Aasta Kelly
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Hayley Goullee
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Emil Ylikallio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland and Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Drago Bratkovic
- Metabolic Clinic, Women and Children’s Hospital, North Adelaide, SA, Australia
| | - Nicholas Manton
- SA Pathology, Women and Children’s Hospital, North Adelaide, SA, Australia
| | - Thomas Robertson
- Anatomical Pathology, Queensland Pathology, Brisbane, Queensland, Australia
| | - Pamela McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Liza Phillips
- SA Pathology, Women and Children’s Hospital, North Adelaide, SA, Australia
- The University of Adelaide, Adelaide, SA, Australia
| | - Pascale de Lonlay
- Inserm U1151, Institut Necker Enfants-Malades, Reference Center of Inherited Metabolic Diseases and MetabERN, Necker-Enfants-Malades Hospital, Paris University, Paris, France
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
31
|
Biquand A, Spinozzi S, Tonino P, Cosette J, Strom J, Elbeck Z, Knöll R, Granzier H, Lostal W, Richard I. Titin M-line insertion sequence 7 is required for proper cardiac function in mice. J Cell Sci 2021; 134:271843. [PMID: 34401916 DOI: 10.1242/jcs.258684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation-contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation-contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.
Collapse
Affiliation(s)
- Ariane Biquand
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Simone Spinozzi
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaher Elbeck
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - William Lostal
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| |
Collapse
|
32
|
Lieber RL, Binder-Markey B. Biochemical and structural basis of the passive mechanical properties of whole skeletal muscle. J Physiol 2021; 599:3809-3823. [PMID: 34101193 PMCID: PMC8364503 DOI: 10.1113/jp280867] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Passive mechanical properties of whole skeletal muscle are not as well understood as active mechanical properties. Both the structural basis for passive mechanical properties and the properties themselves are challenging to determine because it is not clear which structures within skeletal muscle actually bear passive loads and there are not established standards by which to make mechanical measurements. Evidence suggests that titin bears the majority of the passive load within the single muscle cell. However, at larger scales, such as fascicles and muscles, there is emerging evidence that the extracellular matrix bears the major part of the load. Complicating the ability to quantify and compare across size scales, muscles and species, definitions of muscle passive properties such as stress, strain, modulus and stiffness can be made relative to many reference parameters. These uncertainties make a full understanding of whole muscle passive mechanical properties and modelling these properties very difficult. Future studies defining the specific load bearing structures and their composition and organization are required to fully understand passive mechanics of the whole muscle and develop therapies to treat disorders in which passive muscle properties are altered such as muscular dystrophy, traumatic laceration, and contracture due to upper motor neuron lesion as seen in spinal cord injury, stroke and cerebral palsy.
Collapse
Affiliation(s)
- Richard L. Lieber
- Shirley Ryan AbilityLab
- Departments of Physical Medicine and Rehabilitation and
Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Edward Hines V.A. Medical Center, Hines, IL USA
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences
and School of Biomedical Engineering, Sciences and Health Systems, Drexel
University, Philadelphia, PA USA
| |
Collapse
|
33
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
34
|
Fleming JR, Rani A, Kraft J, Zenker S, Börgeson E, Lange S. Exploring Obscurin and SPEG Kinase Biology. J Clin Med 2021; 10:jcm10050984. [PMID: 33801198 PMCID: PMC7957886 DOI: 10.3390/jcm10050984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Three members of the obscurin protein family that contain tandem kinase domains with important signaling functions for cardiac and striated muscles are the giant protein obscurin, its obscurin-associated kinase splice isoform, and the striated muscle enriched protein kinase (SPEG). While there is increasing evidence for the specific roles that each individual kinase domain plays in cross-striated muscles, their biology and regulation remains enigmatic. Our present study focuses on kinase domain 1 and the adjacent low sequence complexity inter-kinase domain linker in obscurin and SPEG. Using Phos-tag gels, we show that the linker in obscurin contains several phosphorylation sites, while the same region in SPEG remained unphosphorylated. Our homology modeling, mutational analysis and molecular docking demonstrate that kinase 1 in obscurin harbors all key amino acids important for its catalytic function and that actions of this domain result in autophosphorylation of the protein. Our bioinformatics analyses also assign a list of putative substrates for kinase domain 1 in obscurin and SPEG, based on the known and our newly proposed phosphorylation sites in muscle proteins, including obscurin itself.
Collapse
Affiliation(s)
- Jennifer R. Fleming
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: (J.R.F.); (E.B.); (S.L.)
| | - Alankrita Rani
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
| | - Jamie Kraft
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
| | - Sanja Zenker
- Department of Medicine, University of California, San Diego, CA 92093, USA;
| | - Emma Börgeson
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
- Department of Clinical Physiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Correspondence: (J.R.F.); (E.B.); (S.L.)
| | - Stephan Lange
- Centre for Molecular and Translational Medicine, The Wallenberg Laboratory and Wallenberg, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; (A.R.); (J.K.)
- Department of Medicine, University of California, San Diego, CA 92093, USA;
- Correspondence: (J.R.F.); (E.B.); (S.L.)
| |
Collapse
|
35
|
Luo S, Li Q, Lin J, Murphy Q, Marty I, Zhang Y, Kazerounian S, Agrawal PB. SPEG binds with desmin and its deficiency causes defects in triad and focal adhesion proteins. Hum Mol Genet 2020; 29:3882-3891. [PMID: 33355670 DOI: 10.1093/hmg/ddaa276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Striated preferentially expressed gene (SPEG), a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle-specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here, we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amount of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1 and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Quinn Murphy
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Marty
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, 38000 Grenoble, France
| | - Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shideh Kazerounian
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
37
|
Grogan A, Coleman A, Joca H, Granzier H, Russel MW, Ward CW, Kontrogianni-Konstantopoulos A. Deletion of obscurin immunoglobulin domains Ig58/59 leads to age-dependent cardiac remodeling and arrhythmia. Basic Res Cardiol 2020; 115:60. [PMID: 32910221 PMCID: PMC9302192 DOI: 10.1007/s00395-020-00818-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022]
Abstract
Obscurin comprises a family of giant modular proteins that play key structural and regulatory roles in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin mediate binding to essential modulators of muscle structure and function, including canonical titin, a smaller splice variant of titin, termed novex-3, and phospholamban (PLN). Importantly, missense mutations localized within the obscurin-Ig58/59 region that affect binding to titins and/or PLN have been linked to the development of myopathy in humans. To elucidate the pathophysiological role of this region, we generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and determined the consequences of this manipulation on cardiac morphology and function under conditions of acute stress and through the physiological process of aging. Our studies show that young Obscn-ΔIg58/59 mice are susceptible to acute β-adrenergic stress. Moreover, sedentary Obscn-ΔIg58/59 mice develop left ventricular hypertrophy that progresses to dilation, contractile impairment, atrial enlargement, and arrhythmia as a function of aging with males being more affected than females. Experiments in ventricular cardiomyocytes revealed altered Ca2+ cycling associated with changes in the expression and/or phosphorylation levels of major Ca2+ cycling proteins, including PLN, SERCA2, and RyR2. Taken together, our work demonstrates that obscurin-Ig58/59 is an essential regulatory module in the heart and its deletion leads to age- and sex-dependent cardiac remodeling, ventricular dilation, and arrhythmia due to deregulated Ca2+ cycling.
Collapse
MESH Headings
- Action Potentials
- Age Factors
- Animals
- Arrhythmias, Cardiac/enzymology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Calcium Signaling
- Calcium-Binding Proteins/metabolism
- Female
- Gene Deletion
- Heart Rate
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Immunoglobulin Domains
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Rho Guanine Nucleotide Exchange Factors/deficiency
- Rho Guanine Nucleotide Exchange Factors/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sedentary Behavior
- Sex Factors
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrew Coleman
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Humberto Joca
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Henk Granzier
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Mark W Russel
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christopher W Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | |
Collapse
|
38
|
A Region of UNC-89 (Obscurin) Lying between Two Protein Kinase Domains Is a Highly Elastic Spring Required for Proper Sarcomere Organization. J Mol Biol 2020; 432:4799-4814. [PMID: 32645312 DOI: 10.1016/j.jmb.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Abstract
In Caenorhabditis elegans, unc-89 encodes a set of giant multi-domain proteins (up 8081 residues) localized to the M-lines of muscle sarcomeres and required for normal sarcomere organization and whole-animal locomotion. Multiple UNC-89 isoforms contain two protein kinase domains. There is conservation in arrangement of domains between UNC-89 and its two mammalian homologs, obscurin and SPEG: kinase, a non-domain region of 647-742 residues, Ig domain, Fn3 domain and a second kinase domain. In all three proteins, this non-domain "interkinase region" has low sequence complexity, has high proline content, and lacks predicted secondary structure. We report that a major portion of this interkinase (571 residues out of 647 residues) when examined by single molecule force spectroscopy in vitro displays the properties of a random coil and acts as an entropic spring. We used CRISPR/Cas9 to create nematodes carrying an in-frame deletion of the same 571-residue portion of the interkinase. These animals display severe disorganization of all portions of the sarcomere in body wall muscle. Super-resolution microscopy reveals extra, short-A-bands lying close to the outer muscle cell membrane and between normally spaced A-bands. Nematodes with this in-frame deletion show defective locomotion and muscle force generation. We designed our CRISPR-generatedin-frame deletion to contain an HA tag at the N terminus of the large UNC-89 isoforms. This HA tag results in normal organization of body wall muscle, but approximately half the normal levels of the giant UNC-89 isoforms, dis-organization of pharyngeal muscle, small body size, and reduced muscle force, likely due to poor nutritional uptake.
Collapse
|
39
|
Hu LYR, Kontrogianni-Konstantopoulos A. Proteomic Analysis of Myocardia Containing the Obscurin R4344Q Mutation Linked to Hypertrophic Cardiomyopathy. Front Physiol 2020; 11:478. [PMID: 32528308 PMCID: PMC7247546 DOI: 10.3389/fphys.2020.00478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Obscurin is a giant cytoskeletal protein with structural and regulatory roles encoded by the OBSCN gene. Recently, mutations in OBSCN were associated with the development of different forms of cardiomyopathies, including hypertrophic cardiomyopathy (HCM). We previously reported that homozygous mice carrying the HCM-linked R4344Q obscurin mutation develop arrhythmia by 1-year of age under sedentary conditions characterized by increased heart rate, frequent incidents of premature ventricular contractions, and episodes of spontaneous ventricular tachycardia. In an effort to delineate the molecular mechanisms that contribute to the observed arrhythmic phenotype, we subjected protein lysates prepared from left ventricles of 1-year old R4344Q and wild-type mice to comparative proteomics analysis using tandem mass spectrometry; raw data are available via ProteomeXchange with identifier PXD017314. We found that the expression levels of proteins involved in cardiac function and disease, cytoskeletal organization, electropotential regulation, molecular transport and metabolism were significantly altered. Moreover, phospho-proteomic evaluation revealed changes in the phosphorylation profile of Ca2+ cycling proteins, including sAnk1.5, a major binding partner of obscurin localized in the sarcoplasmic reticulum; notably, this is the first report indicating that sAnk1 undergoes phosphorylation. Taken together, our findings implicate obscurin in diverse cellular processes within the myocardium, which is consistent with its multiple binding partners, localization in different subcellular compartments, and disease association.
Collapse
Affiliation(s)
- Li-Yen R Hu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
40
|
Lange S, Pinotsis N, Agarkova I, Ehler E. The M-band: The underestimated part of the sarcomere. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118440. [PMID: 30738787 PMCID: PMC7023976 DOI: 10.1016/j.bbamcr.2019.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The sarcomere is the basic unit of the myofibrils, which mediate skeletal and cardiac Muscle contraction. Two transverse structures, the Z-disc and the M-band, anchor the thin (actin and associated proteins) and thick (myosin and associated proteins) filaments to the elastic filament system composed of titin. A plethora of proteins are known to be integral or associated proteins of the Z-disc and its structural and signalling role in muscle is better understood, while the molecular constituents of the M-band and its function are less well defined. Evidence discussed here suggests that the M-band is important for managing force imbalances during active muscle contraction. Its molecular composition is fine-tuned, especially as far as the structural linkers encoded by members of the myomesin family are concerned and depends on the specific mechanical characteristics of each particular muscle fibre type. Muscle activity signals from the M-band to the nucleus and affects transcription of sarcomeric genes, especially via serum response factor (SRF). Due to its important role as shock absorber in contracting muscle, the M-band is also more and more recognised as a contributor to muscle disease.
Collapse
Affiliation(s)
- Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, San Diego, Medical Sciences Research Bldg, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Irina Agarkova
- InSphero, Wagistrasse 27, CH-8952 Schlieren, Switzerland
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
41
|
Subramaniam J, Yang P, McCarthy MJ, Cunha SR. Identification and characterization of self-association domains on small ankyrin 1 isoforms. J Mol Cell Cardiol 2020; 139:225-237. [PMID: 32035138 PMCID: PMC11042479 DOI: 10.1016/j.yjmcc.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
In striated muscles, the large scaffolding protein obscurin and a small SR-integral membrane protein sAnk1.5 control the retention of longitudinal SR across the sarcomere. How a complex of these proteins facilitates localization of longitudinal SR has yet to be resolved, but we hypothesize that obscurin interacts with a complex of sAnk1.5 proteins. To begin to address this hypothesis, we demonstrate that sAnk1.5 interacts with itself and identify two domains mediating self-association. Specifically, we show by co-precipitation and FLIM-FRET analysis that sAnk1.5 and another small AnkR isoform (sAnk1.6) interact with themselves and each other. We demonstrate that obscurin interacts with a complex of sAnk1.5 proteins and that this complex formation is enhanced by obscurin-binding. Using FLIM-FRET analysis, we show that obscurin interacts with sAnk1.5 alone and with sAnk1.6 in the presence of sAnk1.5. We find that sAnk1.5 self-association is disrupted by mutagenesis of residues Arg64-Arg69, residues previously associated with obscurin-binding. Molecular modeling of two interacting sAnk1.5 monomers facilitated the identification of Gly31-Val36 as an additional site of interaction, which was subsequently corroborated by co-precipitation and FLIM-FRET analysis. In closing, these results support a model in which sAnk1.5 forms large oligomers that interact with obscurin to facilitate the retention of longitudinal SR throughout skeletal and cardiac myocytes.
Collapse
Affiliation(s)
- Janani Subramaniam
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Pu Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Michael J McCarthy
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Shane R Cunha
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
42
|
Lange S, Banerjee I, Carrion K, Serrano R, Habich L, Kameny R, Lengenfelder L, Dalton N, Meili R, Börgeson E, Peterson K, Ricci M, Lincoln J, Ghassemian M, Fineman J, del Álamo JC, Nigam V. miR-486 is modulated by stretch and increases ventricular growth. JCI Insight 2019; 4:125507. [PMID: 31513548 PMCID: PMC6795397 DOI: 10.1172/jci.insight.125507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Perturbations in biomechanical stimuli during cardiac development contribute to congenital cardiac defects such as hypoplastic left heart syndrome (HLHS). This study sought to identify stretch-responsive pathways involved in cardiac development. miRNA-Seq identified miR-486 as being increased in cardiomyocytes exposed to cyclic stretch in vitro. The right ventricles (RVs) of patients with HLHS experienced increased stretch and had a trend toward higher miR-486 levels. Sheep RVs dilated from excessive pulmonary blood flow had 60% more miR-486 compared with control RVs. The left ventricles of newborn mice treated with miR-486 mimic were 16.9%-24.6% larger and displayed a 2.48-fold increase in cardiomyocyte proliferation. miR-486 treatment decreased FoxO1 and Smad signaling while increasing the protein levels of Stat1. Stat1 associated with Gata-4 and serum response factor (Srf), 2 key cardiac transcription factors with protein levels that increase in response to miR-486. This is the first report to our knowledge of a stretch-responsive miRNA that increases the growth of the ventricle in vivo.
Collapse
Affiliation(s)
- Stephan Lange
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
- Institute of Medicine, Department of Molecular and Clinical Medicine, the Wallenberg Laboratory and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Indroneal Banerjee
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Katrina Carrion
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, San Diego, California, USA
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, UCSD, San Diego, USA
| | - Louisa Habich
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Rebecca Kameny
- Department of Pediatrics, UCSF School of Medicine, San Francisco, USA
| | - Luisa Lengenfelder
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Nancy Dalton
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Rudolph Meili
- Department of Mechanical and Aerospace Engineering, UCSD, San Diego, USA
| | - Emma Börgeson
- Institute of Medicine, Department of Molecular and Clinical Medicine, the Wallenberg Laboratory and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kirk Peterson
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Marco Ricci
- Division of Cardiothoracic Surgery and
- Division of Pediatric Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Joy Lincoln
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Jeffery Fineman
- Department of Pediatrics, UCSF School of Medicine, San Francisco, USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, UCSD, San Diego, USA
| | - Vishal Nigam
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, San Diego, California, USA
- Division of Cardiology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
43
|
Pierantozzi E, Szentesi P, Al-Gaadi D, Oláh T, Dienes B, Sztretye M, Rossi D, Sorrentino V, Csernoch L. Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. Int J Mol Sci 2019; 20:ijms20133361. [PMID: 31323924 PMCID: PMC6651408 DOI: 10.3390/ijms20133361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022] Open
Abstract
Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Péter Szentesi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4002 Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary.
| |
Collapse
|
44
|
Pehlivan D, Bayram Y, Gunes N, Coban Akdemir Z, Shukla A, Bierhals T, Tabakci B, Sahin Y, Gezdirici A, Fatih JM, Gulec EY, Yesil G, Punetha J, Ocak Z, Grochowski CM, Karaca E, Albayrak HM, Radhakrishnan P, Erdem HB, Sahin I, Yildirim T, Bayhan IA, Bursali A, Elmas M, Yuksel Z, Ozdemir O, Silan F, Yildiz O, Yesilbas O, Isikay S, Balta B, Gu S, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Boerwinkle E, Gibbs RA, Tsiakas K, Hempel M, Girisha KM, Gul D, Posey JE, Elcioglu NH, Tuysuz B, Lupski JR. The Genomics of Arthrogryposis, a Complex Trait: Candidate Genes and Further Evidence for Oligogenic Inheritance. Am J Hum Genet 2019; 105:132-150. [PMID: 31230720 PMCID: PMC6612529 DOI: 10.1016/j.ajhg.2019.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 01/29/2023] Open
Abstract
Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.
Collapse
Affiliation(s)
- Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nilay Gunes
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Burcu Tabakci
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey
| | - Yavuz Sahin
- Department of Medical Genetics, Necip Fazıl City Hospital, Kahramanmaras 46050, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul 34093, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Ocak
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | | | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hatice Mutlu Albayrak
- Department of Pediatrics, Division of Pediatric Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55270, Turkey
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Ibrahim Sahin
- Department of Medical Genetics, University of Erzurum, School of Medicine, Erzurum 25240, Turkey
| | - Timur Yildirim
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Ilhan A Bayhan
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Aysegul Bursali
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Zafer Yuksel
- Medical Genetics Clinic, Mersin Women and Children Hospital, Mersin 33330, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Onur Yildiz
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, University of Health Sciences, Van Training and Research Hospital, Van 65130, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep 27000, Turkey
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri 38080, Turkey
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey; Eastern Mediterranean University School of Medicine, Cyprus, Mersin 10, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Blondelle J, Marrocco V, Clark M, Desmond P, Myers S, Nguyen J, Wright M, Bremner S, Pierantozzi E, Ward S, Estève E, Sorrentino V, Ghassemian M, Lange S. Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Commun Biol 2019; 2:178. [PMID: 31098411 PMCID: PMC6509138 DOI: 10.1038/s42003-019-0405-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Biological roles of obscurin and its close homolog Obsl1 (obscurin-like 1) have been enigmatic. While obscurin is highly expressed in striated muscles, Obsl1 is found ubiquitously. Accordingly, obscurin mutations have been linked to myopathies, whereas mutations in Obsl1 result in 3M-growth syndrome. To further study unique and redundant functions of these closely related proteins, we generated and characterized Obsl1 knockouts. Global Obsl1 knockouts are embryonically lethal. In contrast, skeletal muscle-specific Obsl1 knockouts show a benign phenotype similar to obscurin knockouts. Only deletion of both proteins and removal of their functional redundancy revealed their roles for sarcolemmal stability and sarcoplasmic reticulum organization. To gain unbiased insights into changes to the muscle proteome, we analyzed tibialis anterior and soleus muscles by mass spectrometry, uncovering additional changes to the muscle metabolism. Our analyses suggest that all obscurin protein family members play functions for muscle membrane systems.
Collapse
Affiliation(s)
- Jordan Blondelle
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Madison Clark
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Patrick Desmond
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Stephanie Myers
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Jim Nguyen
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Matthew Wright
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Samuel Ward
- Department of Orthopedic Surgery, School of Medicine, University of California, San Diego, 92093 CA USA
| | - Eric Estève
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Université Grenoble Alpes, HP2, Grenoble, 38706 France
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, 53100 Italy
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 92093 CA USA
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California, San Diego, 92093 CA USA
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, 413 45 Sweden
| |
Collapse
|
46
|
Wang H, Jing R, Trexler C, Li Y, Tang H, Pan Z, Zhu S, Zhao B, Fang X, Liu J, Chen J, Ouyang K. Deletion of IP 3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. J Gastroenterol 2019; 54:407-418. [PMID: 30382364 PMCID: PMC8109192 DOI: 10.1007/s00535-018-1522-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the membrane of endoplasmic reticulum, which have been shown to play critical roles in various cellular and physiological functions. However, their function in regulating gastrointestinal (GI) tract motility in vivo remains unknown. Here, we investigated the physiological function of IP3R1 in the GI tract using genetically engineered mouse models. METHODS Pdgfrb-Cre mice were bred with homozygous Itpr1 floxed (Itpr1f/f) mice to generate conditional IP3R1 knockout (pcR1KO) mice. Cell lineage tracing was used to determine where Pdgfrb-Cre-mediated gene deletion occurred in the GI tract. Isometric tension recording was used to measure the effects of IP3R1 deletion on muscle contraction. RESULTS In the mouse GI tract, Itpr1 gene deletion by Pdgfrb-Cre occurred in smooth muscle cells, enteric neurons, and interstitial cells of Cajal. pcR1KO mice developed impaired GI motility, with prolonged whole-gut transit time and abdominal distention. pcR1KO mice also exhibited lethality as early as 8 weeks of age and 50% of pcR1KO mice were dead by 40 weeks after birth. The frequency of spontaneous contractions in colonic circular muscles was dramatically decreased and the amplitude of spontaneous contractions was increased in pcR1KO mice. Deletion of IP3R1 in the GI tract also reduced the contractile response to the muscarinic agonist, carbachol, as well as to electrical field stimulation. However, KCl-induced contraction and expression of smooth muscle-specific contractile genes were not significantly altered in pcR1KO mice. CONCLUSIONS Here, we provided a novel mouse model for impaired GI motility and demonstrated that IP3R1 plays a critical role in regulating physiological function of GI tract in vivo.
Collapse
Affiliation(s)
- Hong Wang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ran Jing
- Xiangya Hospital, Central South University, Changsha 410011, China
| | - Christa Trexler
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yali Li
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huayuan Tang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhixiang Pan
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Siting Zhu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Beili Zhao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xi Fang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ju Chen
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
47
|
Whitley JA, Ex-Willey AM, Marzolf DR, Ackermann MA, Tongen AL, Kokhan O, Wright NT. Obscurin is a semi-flexible molecule in solution. Protein Sci 2019; 28:717-726. [PMID: 30666746 DOI: 10.1002/pro.3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
Abstract
Obscurin, a giant modular cytoskeletal protein, is comprised mostly of tandem immunoglobulin-like (Ig-like) domains. This architecture allows obscurin to connect distal targets within the cell. The linkers connecting the Ig domains are usually short (3-4 residues). The physical effect arising from these short linkers is not known; such linkers may lead to a stiff elongated molecule or, conversely, may lead to a more compact and dynamic structure. In an effort to better understand how linkers affect obscurin flexibility, and to better understand the physical underpinnings of this flexibility, here we study the structure and dynamics of four representative sets of dual obscurin Ig domains using experimental and computational techniques. We find in all cases tested that tandem obscurin Ig domains interact at the poles of each domain and tend to stay relatively extended in solution. NMR, SAXS, and MD simulations reveal that while tandem domains are elongated, they also bend and flex significantly. By applying this behavior to a simplified model, it becomes apparent obscurin can link targets more than 200 nm away. However, as targets get further apart, obscurin begins acting as a spring and requires progressively more energy to further elongate.
Collapse
Affiliation(s)
- Jacob A Whitley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Aidan M Ex-Willey
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, Ohio, 43210
| | - Daniel R Marzolf
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, Ohio, 43210
| | - Anthony L Tongen
- Department of Mathematics and Statistics, James Madison University, Harrisonburg, Virginia, 22807
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| |
Collapse
|
48
|
Grogan A, Kontrogianni-Konstantopoulos A. Unraveling obscurins in heart disease. Pflugers Arch 2018; 471:735-743. [PMID: 30099631 DOI: 10.1007/s00424-018-2191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Obscurins, expressed from the single OBSCN gene, are a family of giant, modular, cytoskeletal proteins that play key structural and regulatory roles in striated muscles. They were first implicated in the development of heart disease in 2007 when two missense mutations were found in a patient diagnosed with hypertrophic cardiomyopathy (HCM). Since then, the discovery of over a dozen missense, frameshift, and splicing mutations that are linked to various forms of cardiomyopathy, including HCM, dilated cardiomyopathy (DCM), and left ventricular non-compaction (LVNC), has highlighted OBSCN as a potential disease-causing gene. At this time, the functional consequences of the identified mutations remain largely elusive, and much work has yet to be done to characterize the disease mechanisms of pathological OBSCN variants. Herein, we describe the OBSCN mutations known to date, discuss their potential impact on disease development, and provide future directions in order to better understand the involvement of obscurins in heart disease.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | | |
Collapse
|
49
|
Gonorazky HD, Bönnemann CG, Dowling JJ. The genetics of congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:549-564. [PMID: 29478600 DOI: 10.1016/b978-0-444-64076-5.00036-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Congenital myopathies are a clinically and genetically heterogeneous group of conditions that most commonly present at or around the time of birth with hypotonia, muscle weakness, and (often) respiratory distress. Historically, this group of disorders has been subclassified based on muscle histopathologic characteristics. There has been an explosion of gene discovery, and there are now at least 32 different genetic causes of disease. With this increased understanding of the genetic basis of disease has come the knowledge that the mutations in congenital myopathy genes can present with a wide variety of clinical phenotypes and can result in a broad spectrum of histopathologic findings on muscle biopsy. In addition, mutations in several genes can share the same histopathologic features. The identification of new genes and interpretation of different pathomechanisms at a molecular level have helped us to understand the clinical and histopathologic similarities that this group of disorders share. In this review, we highlight the genetic understanding for each subtype, its pathogenesis, and the future key issues in congenital myopathies.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States
| | - James J Dowling
- Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
50
|
Shu C, Huang H, Xu Y, Rota M, Sorrentino A, Peng Y, Padera RF, Huntoon V, Agrawal PB, Liu X, Perrella MA. Pressure Overload in Mice With Haploinsufficiency of Striated Preferentially Expressed Gene Leads to Decompensated Heart Failure. Front Physiol 2018; 9:863. [PMID: 30042693 PMCID: PMC6048438 DOI: 10.3389/fphys.2018.00863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/18/2018] [Indexed: 01/20/2023] Open
Abstract
Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family of proteins. Constitutive Speg deficient (Speg−/−) mice develop a dilated cardiomyopathy, and the majority of these mice die in utero or shortly after birth. In the present study we assessed the importance of Speg in adult mice. Speg−/− mice that survived to adulthood, or adult striated muscle-specific Speg knockout mice (Speg-KO), demonstrated cardiac dysfunction and evidence of increased left ventricular (LV) internal diameter and heart to body weight ratio. To determine whether heterozygosity of Speg interferes with the response of the heart to pathophysiologic stress, Speg+/− mice were exposed to pressure overload induced by transverse aortic constriction (TAC). At baseline, Speg+/+ and Speg+/− hearts showed no difference in cardiac function. However, 4 weeks after TAC, Speg+/− mice had a marked reduction in LV function. This defect was associated with an increase in LV internal diameter and enhanced heart weight to body weight ratio, compared with Speg+/+ mice after TAC. The response of Speg+/− mice to pressure overload also included increased fibrotic deposition in the myocardium, disruption of transverse tubules, and attenuation in cell contractility, compared with Speg+/+ mice. Taken together, these data demonstrate that Speg is necessary for normal cardiac function and is involved in the complex adaptation of the heart in response to TAC. Haploinsufficiency of Speg results in decompensated heart failure when exposed to pressure overload.
Collapse
Affiliation(s)
- Chang Shu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Respiratory Center, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - He Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anesthesiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Marcello Rota
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Physiology, New York Medical College, Valhalla, NY, United States.,Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrea Sorrentino
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert F Padera
- Division of Health Sciences and Technology, Harvard-MIT Health Sciences and Technology, Cambridge, MA, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Virginia Huntoon
- Divisions of Newborn Medicine and Genetics & Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics & Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|