1
|
Goto A, Komura S, Kato K, Maki R, Hirakawa A, Aoki H, Tomita H, Taguchi J, Ozawa M, Matsushima T, Kishida A, Kimura T, Asahara H, Imai Y, Yamada Y, Akiyama H. PI3K-Akt signalling regulates Scx-lineage tenocytes and Tppp3-lineage paratenon sheath cells in neonatal tendon regeneration. Nat Commun 2025; 16:3734. [PMID: 40254618 PMCID: PMC12010001 DOI: 10.1038/s41467-025-59010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
Tendon injuries are frequently occurring disorders; it is clinically important to enhance tendon regeneration and prevent functional impairment post-injury. While tendon injuries in children heal quickly with minimal scarring, those in adults heal slowly and are accompanied by fibrotic scarring. Therefore, investigating the healing mechanisms after tendon injury, and identifying the factors that regulate the inherent regenerative capacity of tendons are promising approaches to promoting tendon regeneration. Here, we identify that the PI3K-Akt signalling pathway is preferentially upregulated in injured neonatal murine Achilles tendons. Inhibition of PI3K-Akt signalling in a neonatal murine Achilles tendon rupture model decreases cell proliferation and migration in both Scx-lineage intrinsic tenocytes and Tppp3-lineage extrinsic paratenon sheath cells. Moreover, the inhibition of PI3K-Akt signalling decreases stemness and promotes mature tenogenic differentiation in both Scx- and Tppp3-lineage cells. Collectively, these results suggest that PI3K-Akt signalling plays a pivotal role in neonatal tendon regeneration.
Collapse
Affiliation(s)
- Atsushi Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Koki Kato
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rie Maki
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Hirakawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Jumpei Taguchi
- Core Laboratory for Developing Advanced Animal Models, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Manabu Ozawa
- Core Laboratory for Developing Advanced Animal Models, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Akio Kishida
- Department of Material-Based Medical Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Tsuyoshi Kimura
- Materials-based Medical Engineering Laboratory, Department of Biomedical Engineering, Faculty of Life Science, Toyo University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Bourdais A, Viard P, Bormann J, Sesboüé C, Guerrier D, Therville N, Guillermet-Guibert J, Carroll J, Halet G. Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos. Development 2025; 152:dev204398. [PMID: 39982048 DOI: 10.1242/dev.204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.
Collapse
Affiliation(s)
- Anne Bourdais
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Patricia Viard
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jenny Bormann
- Department of Chemical Biology, ZMB, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, 45117 Essen, Germany
| | - Côme Sesboüé
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Guerrier
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Nicole Therville
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centres de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- Université de Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
3
|
Cheng F, Li M, Thorne RF, Liu G, Yuwei Z, Wu M, Liu L. P21-activated kinase 4 Pak4 maintains embryonic stem cell pluripotency via Akt activation. Stem Cells 2022; 40:892-905. [PMID: 35896382 PMCID: PMC9585903 DOI: 10.1093/stmcls/sxac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Exploiting the pluripotent properties of embryonic stem cells (ESCs) holds great promise for regenerative medicine. Nevertheless, directing ESC differentiation into specialized cell lineages requires intricate control governed by both intrinsic and extrinsic factors along with the actions of specific signaling networks. Here, we reveal the involvement of the p21-activated kinase 4 (Pak4), a serine/threonine kinase, in sustaining murine ESC (mESC) pluripotency. Pak4 is highly expressed in R1 ESC cells compared with embryonic fibroblast cells and its expression is progressively decreased during differentiation. Manipulations using knockdown and overexpression demonstrated a positive relationship between Pak4 expression and the clonogenic potential of mESCs. Moreover, ectopic Pak4 expression increases reprogramming efficiency of Oct4-Klf4-Sox2-Myc-induced pluripotent stem cells (iPSCs) whereas Pak4-knockdown iPSCs were largely incapable of generating teratomas containing mesodermal, ectodermal and endodermal tissues, indicative of a failure in differentiation. We further establish that Pak4 expression in mESCs is transcriptionally driven by the core pluripotency factor Nanog which recognizes specific binding motifs in the Pak4 proximal promoter region. In turn, the increased levels of Pak4 in mESCs fundamentally act as an upstream activator of the Akt pathway. Pak4 directly binds to and phosphorylates Akt at Ser473 with the resulting Akt activation shown to attenuate downstream GSK3β signaling. Thus, our findings indicate that the Nanog-Pak4-Akt signaling axis is essential for maintaining mESC self-renewal potential with further importance shown during somatic cell reprogramming where Pak4 appears indispensable for multi-lineage specification.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| | - Mingyue Li
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Guangzhi Liu
- Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Zhang Yuwei
- Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Mian Wu
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan key Laboratory of Stem cell Differentiation and Modification, Henan Provincial People's Hospital, Henan University, Zhengzhou, Henan, China
| | - Lianxin Liu
- Division of Life Sciences and Medicine, the first affiliated hospital of University of Science & Technology of China, and CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network. Hefei, Anhui, China
| |
Collapse
|
4
|
Fath MK, Ebrahimi M, Nourbakhsh E, Hazara AZ, Mirzaei A, Shafieyari S, Salehi A, Hoseinzadeh M, Payandeh Z, Barati G. PI3K/Akt/mTOR Signaling Pathway in Cancer Stem Cells. Pathol Res Pract 2022; 237:154010. [DOI: 10.1016/j.prp.2022.154010] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
|
5
|
Jiang H, Du M, Li Y, Zhou T, Lei J, Liang H, Zhong Z, Al-Lamki RS, Jiang M, Yang J. ID proteins promote the survival and primed-to-naive transition of human embryonic stem cells through TCF3-mediated transcription. Cell Death Dis 2022; 13:549. [PMID: 35701409 PMCID: PMC9198052 DOI: 10.1038/s41419-022-04958-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Inhibition of DNA binding proteins 1 and 3 (ID1 and ID3) are important downstream targets of BMP signalling that are necessary for embryonic development. However, their specific roles in regulating the pluripotency of human embryonic stem cells (hESCs) remain unclear. Here, we examined the roles of ID1 and ID3 in primed and naive-like hESCs and showed that ID1 and ID3 knockout lines (IDs KO) exhibited decreased survival in both primed and naive-like state. IDs KO lines in the primed state also tended to undergo pluripotent dissolution and ectodermal differentiation. IDs KO impeded the primed-to-naive transition (PNT) of hESCs, and overexpression of ID1 in primed hESCs promoted PNT. Furthermore, single-cell RNA sequencing demonstrated that ID1 and ID3 regulated the survival and pluripotency of hESCs through the AKT signalling pathway. Finally, we showed that TCF3 mediated transcriptional inhibition of MCL1 promotes AKT phosphorylation, which was confirmed by TCF3 knockdown in KO lines. Our study suggests that IDs/TCF3 acts through AKT signalling to promote survival and maintain pluripotency of both primed and naive-like hESCs.
Collapse
Affiliation(s)
- Haibin Jiang
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China ,grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingxia Du
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yaning Li
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tengfei Zhou
- grid.414906.e0000 0004 1808 0918Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Jia Lei
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongqing Liang
- grid.13402.340000 0004 1759 700XDivision of Human Reproduction and Developmental Genetics, Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Zhen Zhong
- grid.13402.340000 0004 1759 700XDepartment of human anatomy and histoembryology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Rafia S. Al-Lamki
- grid.5335.00000000121885934Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ming Jiang
- grid.13402.340000 0004 1759 700XDepartment of Gastroenterology of The Children’s Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jun Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Thibault B, Ramos‐Delgado F, Pons‐Tostivint E, Therville N, Cintas C, Arcucci S, Cassant‐Sourdy S, Reyes‐Castellanos G, Tosolini M, Villard AV, Cayron C, Baer R, Bertrand‐Michel J, Pagan D, Ferreira Da Mota D, Yan H, Falcomatà C, Muscari F, Bournet B, Delord J, Aksoy E, Carrier A, Cordelier P, Saur D, Basset C, Guillermet‐Guibert J. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Mol Med 2021; 13:e13502. [PMID: 34033220 PMCID: PMC8261517 DOI: 10.15252/emmm.202013502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.
Collapse
Affiliation(s)
- Benoit Thibault
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Fernanda Ramos‐Delgado
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Elvire Pons‐Tostivint
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Nicole Therville
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Celia Cintas
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Silvia Arcucci
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Stephanie Cassant‐Sourdy
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | | | - Marie Tosolini
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Amelie V Villard
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Coralie Cayron
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Romain Baer
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | | | - Delphine Pagan
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Dina Ferreira Da Mota
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Hongkai Yan
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Chiara Falcomatà
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Fabrice Muscari
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Jean‐Pierre Delord
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Ezra Aksoy
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Dieter Saur
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Celine Basset
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Julie Guillermet‐Guibert
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| |
Collapse
|
7
|
Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity. Neurotoxicology 2021; 85:33-46. [PMID: 33964343 DOI: 10.1016/j.neuro.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Methylmercury (MeHg) is a long-lasting organic environmental pollutant that poses a great threat to human health. Ingestion of seafood containing MeHg is the most important way by which it comes into contact with human body, where the central nervous system (CNS) is the primary target of MeHg toxicity. During periods of pre-plus postnatal, in particular, the brain of offspring is vulnerable to specific developmental insults that result in abnormal neurobehavioral development, even without symptoms in mothers. While many studies on neurotoxic effects of MeHg on the developing brain have been conducted, the mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity is less clear. Hitherto, no single process can explain the many effects observed in MeHg-induced neurodevelopmental toxicity. This review summarizes the possible mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity, highlighting modulation of Nrf2/Keap1/Notch1, PI3K/AKT, and PKC/MAPK molecular pathways as well as some preventive drugs, and thus contributes to the discovery of endogenous and exogenous molecules that can counteract MeHg-induced neurodevelopmental toxicity.
Collapse
|
8
|
Afify SM, Oo AKK, Hassan G, Seno A, Seno M. How can we turn the PI3K/AKT/mTOR pathway down? Insights into inhibition and treatment of cancer. Expert Rev Anticancer Ther 2021; 21:605-619. [PMID: 33857392 DOI: 10.1080/14737140.2021.1918001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a fundamental regulator of cell proliferation and survival. Dysregulation in this pathway leads to the development of cancer. Accumulating evidence indicates that dysregulation in this pathway is involved in cancer initiation, progression, and recurrence. However, the pathway consists of various signal transducing factors related with cellular events, such as transformation, tumorigenesis, cancer progression, and drug resistance. Therefore, it is very important to determine the targets in this pathway for cancer therapy. Although many drugs inhibiting this signaling pathway are in clinical trials or have been approved for treating solid tumors and hematologic malignancies, further understanding of the signaling mechanism is required to achieve better therapeutic efficacy.Areas covered: In this review, we have describe the PI3K/AKT/mTOR pathway in detail, along with its critical role in cancer stem cells, for identifying potential therapeutic targets. We also summarize the recent developments in different types of signaling inhibitors.Expert opinion: Downregulation of the PI3K/AKT/mTOR pathway is very important for treating all types of cancers. Thus, further studies are required to establish novel prognostic factors to support the current progress in cancer treatment with emphasis on this pathway.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin, El Kom-Menoufia, Egypt
| | - Aung Ko Ko Oo
- Department of Biotechnology, Mandalay Technological University, Mandalay, Myanmar
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Runx proteins mediate protective immunity against Leishmania donovani infection by promoting CD40 expression on dendritic cells. PLoS Pathog 2020; 16:e1009136. [PMID: 33370418 PMCID: PMC7793297 DOI: 10.1371/journal.ppat.1009136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2021] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The level of CD40 expression on dendritic cells (DCs) plays a decisive role in disease protection during Leishmania donovani (LD) infection. However, current understanding of the molecular regulation of CD40 expression remains elusive. Using molecular, cellular and functional approaches, we identified a role for Runx1 and Runx3 transcription factors in the regulation of CD40 expression in DCs. In response to lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα) or antileishmanial drug sodium antimony gluconate (SAG), both Runx1 and Runx3 translocated to the nucleus, bound to the CD40 promoter and upregulated CD40 expression on DCs. These activities of Runx proteins were mediated by the upstream phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Notably, LD infection attenuated LPS- or TNFα-induced CD40 expression in DCs by inhibiting PI3K-Akt-Runx axis via protein tyrosine phosphatase SHP-1. In contrast, CD40 expression induced by SAG was unaffected by LD infection, as SAG by blocking LD-induced SHP-1 activation potentiated PI3K-Akt signaling to drive Runx-mediated CD40 upregulation. Adoptive transfer experiments further showed that Runx1 and Runx3 play a pivotal role in eliciting antileishmanial immune response of SAG-treated DCs in vivo by promoting CD40-mediated type-1 T cell responses. Importantly, antimony-resistant LD suppressed SAG-induced CD40 upregulation on DCs by blocking the PI3K-Akt-Runx pathway through sustained SHP-1 activation. These findings unveil an immunoregulatory role for Runx proteins during LD infection.
Collapse
|
10
|
Dai R, Chen W, Hua W, Xiong L, Li Y, Li L. Comparative transcriptome analysis of transcultured human skin-derived precursors (tSKPs) from adherent monolayer culture system and tSKPs-derived fibroblasts (tFBs) by RNA-Seq. Biosci Trends 2020; 14:104-114. [PMID: 32321899 DOI: 10.5582/bst.2019.01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcultured human skin derived precursors (tSKPs) from adherent monolayer culture system have similar characteristics as traditional skin derived precursors (SKPs), making tSKPs a suitable candidate for regenerative medicine. tSKPs can differentiate into fibroblasts. However, little is known about the molecular mechanism of the transition from tSKPs to fibroblasts. Here, we compared the transcriptional profiles of human tSKPs and tSKPs-derived fibroblasts (tFBs) by RNA-Sequence aiming to determine the candidate genes and pathways involving in the differentiation process. A total of 1042 differentially expressed genes (DEGs) were identified between tSKPs and tFBs, with 490 genes up-regulated and 552 genes down-regulated. Our study showed that these DEGs were significantly enriched in tumor necrosis factor signaling pathway, focal adhesion, extracellular matrix-receptor interaction and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway. A further transcription factors (TFs) analysis of DEGs revealed the significantly down-expressed TFs (p21, Foxo1and Foxc1) in tFBs were mostly the downstream nodes of PI3K-Akt signaling pathway, which suggested PI3K-Akt signaling pathway might play an important role in tSKPs differentiation. The results of our study are useful for investigating the molecular mechanisms in tSKPs differentiation into tFBs, making it possible to take advantage of their potential application in regenerative medicine.
Collapse
Affiliation(s)
- Ru Dai
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Dermatology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Chen
- Department of Medical Cosmetology, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Hua
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lidan Xiong
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
CD9 induces cellular senescence and aggravates atherosclerotic plaque formation. Cell Death Differ 2020; 27:2681-2696. [PMID: 32346137 DOI: 10.1038/s41418-020-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
CD9, a 24 kDa tetraspanin membrane protein, is known to regulate cell adhesion and migration, cancer progression and metastasis, immune and allergic responses, and viral infection. CD9 is upregulated in senescent endothelial cells, neointima hyperplasia, and atherosclerotic plaques. However, its role in cellular senescence and atherosclerosis remains undefined. We investigated the potential mechanism for CD9-mediated cellular senescence and its role in atherosclerotic plaque formation. CD9 knockdown in senescent human umbilical vein endothelial cells significantly rescued senescence phenotypes, while CD9 upregulation in young cells accelerated senescence. CD9 regulated cellular senescence through a phosphatidylinositide 3 kinase-AKT-mTOR-p53 signal pathway. CD9 expression increased in arterial tissues from humans and rats with age, and in atherosclerotic plaques in humans and mice. Anti-mouse CD9 antibody noticeably prevented the formation of atherosclerotic lesions in ApoE-/- mice and Ldlr-/- mice. Furthermore, CD9 ablation in ApoE-/- mice decreased atherosclerotic lesions in aorta and aortic sinus. These results suggest that CD9 plays critical roles in endothelial cell senescence and consequently the pathogenesis of atherosclerosis, implying that CD9 is a novel target for prevention and treatment of vascular aging and atherosclerosis.
Collapse
|
12
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
13
|
Magalhães-Novais S, Bermejo-Millo JC, Loureiro R, Mesquita KA, Domingues MR, Maciel E, Melo T, Baldeiras I, Erickson JR, Holy J, Potes Y, Coto-Montes A, Oliveira PJ, Vega-Naredo I. Cell quality control mechanisms maintain stemness and differentiation potential of P19 embryonic carcinoma cells. Autophagy 2019; 16:313-333. [PMID: 30990357 DOI: 10.1080/15548627.2019.1607694] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs). Differentiation of P19SCs resulted in alterations in parameters involved in cell survival and protein homeostasis, including the redox system, cardiolipin and lipid profiles, unfolded protein response, ubiquitin-proteasome and lysosomal systems, and signaling pathways controlling cell growth. In addition, P19SCs pluripotency was correlated with stronger antioxidant protection, modulation of apoptosis, and activation of macroautophagy, which all contributed to preserve SCs quality by increasing the threshold for cell death activation. Furthermore, our findings identify critical roles for the PI3K-AKT-MTOR pathway, as well as autophagic flux and apoptosis regulation in the maintenance of P19SCs pluripotency and differentiation potential.Abbreviations: 3-MA: 3-methyladenine; AKT/protein kinase B: thymoma viral proto-oncogene; AKT1: thymoma viral proto-oncogene 1; ATG: AuTophaGy-related; ATF6: activating transcription factor 6; BAX: BCL2-associated X protein; BBC3/PUMA: BCL2 binding component 3; BCL2: B cell leukemia/lymphoma 2; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CASP8: caspase 8; CASP9: caspase 9; CL: cardiolipin; CTSB: cathepsin B; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DNM1L/DRP1: dynamin 1-like; DRAM1: DNA-damage regulated autophagy modulator 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2, subunit alpha; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; ESCs: embryonic stem cells; KRT8/TROMA-1: cytokeratin 8; LAMP2A: lysosomal-associated membrane protein 2A; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NANOG: Nanog homeobox; NAO: 10-N-nonyl acridine orange; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; OPA1: OPA1, mitochondrial dynamin like GTPase; P19dCs: P19 differentiated cells; P19SCs: P19 stem cells; POU5F1/OCT4: POU domain, class 5, transcription factor 1; PtdIns3K: phosphatidylinositol 3-kinase; RA: retinoic acid; ROS: reactive oxygen species; RPS6KB1/p70S6K: ribosomal protein S6 kinase, polypeptide 1; SCs: stem cells; SOD: superoxide dismutase; SHC1-1/p66SHC: src homology 2 domain-containing transforming protein C1, 66 kDa isoform; SOX2: SRY (sex determining region Y)-box 2; SQSTM1/p62: sequestosome 1; SPTAN1/αII-spectrin: spectrin alpha, non-erythrocytic 1; TOMM20: translocase of outer mitochondrial membrane 20; TRP53/p53: transformation related protein 53; TUBB3/betaIII-tubulin: tubulin, beta 3 class III; UPR: unfolded protein response; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Juan C Bermejo-Millo
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rute Loureiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Katia A Mesquita
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal.,Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal.,School of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jenna R Erickson
- Department of Biomedical Sciences, University of Minnesota-Duluth, Duluth, MN, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota-Duluth, Duluth, MN, USA
| | - Yaiza Potes
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Ignacio Vega-Naredo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
14
|
Faulds KJ, Egelston JN, Sedivy LJ, Mitchell MK, Garimella S, Kozlowski H, D'Alessandro A, Hansen KC, Balsbaugh JL, Phiel CJ. Glycogen synthase kinase-3 (GSK-3) activity regulates mRNA methylation in mouse embryonic stem cells. J Biol Chem 2018; 293:10731-10743. [PMID: 29777057 DOI: 10.1074/jbc.ra117.001298] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) activity regulates multiple signal transduction pathways and is also a key component of the network responsible for maintaining stem cell pluripotency. Genetic deletion of Gsk-3α and Gsk-3β or inhibition of GSK-3 activity via small molecules promotes stem cell pluripotency, yet the mechanism underlying the role for GSK-3 in this process remains ambiguous. Another cellular process that has been shown to affect stem cell pluripotency is mRNA methylation (m6A). Here, we describe an intersection between these components, the regulation of m6A by GSK-3. We find that protein levels for the RNA demethylase, FTO (fat mass and obesity-associated protein), are elevated in Gsk-3α;Gsk-3β-deficient mouse embryonic stem cells (ESCs). FTO is normally phosphorylated by GSK-3, and MS identified the sites on FTO that are phosphorylated in a GSK-3-dependent fashion. GSK-3 phosphorylation of FTO leads to polyubiquitination, but in Gsk-3 knockout ESCs, that process is impaired, resulting in elevated levels of FTO protein. As a consequence of altered FTO protein levels, mRNAs in Gsk-3 knockout ESCs have 50% less m6A than WT ESCs, and m6A-Seq analysis reveals the specific mRNAs that have reduced m6A modifications. Taken together, we provide the first evidence for how m6A demethylation is regulated in mammalian cells and identify a putative novel mechanism by which GSK-3 activity regulates stem cell pluripotency.
Collapse
Affiliation(s)
- Kelsie J Faulds
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Jennifer N Egelston
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Laura J Sedivy
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Matthew K Mitchell
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Sanjana Garimella
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Hanna Kozlowski
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Angelo D'Alessandro
- the Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Kirk C Hansen
- the Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Jeremy L Balsbaugh
- the Mass Spectrometry Core Facility, Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309
| | - Christopher J Phiel
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204,
| |
Collapse
|
15
|
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2017; 143:3050-60. [PMID: 27578176 DOI: 10.1242/dev.137075] [Citation(s) in RCA: 785] [Impact Index Per Article: 98.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
Collapse
Affiliation(s)
- Jason S L Yu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
16
|
The crosstalk between long non-coding RNAs and PI3K in cancer. Med Oncol 2017; 34:39. [PMID: 28176240 DOI: 10.1007/s12032-017-0897-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are able to positively or negatively regulate other genes expression in cis or in trans. Their effect can be achieved through RNA-protein, RNA-DNA, or RNA-RNA interactions. They can recruit transcription factors and act as scaffolds or guides for chromatin-modifying enzymes. PI3K kinases transform external stimuli to intracellular signals regulating cell growth, differentiation, proliferation, survival, intracellular trafficking, cytoskeletal changes, cell migration and motility, and metabolism. PI3K is activated in cancer and affects several aspects of oncogenesis. LncRNAs and PI3K have been shown to be interconnected in several different cancer subtypes enhancing aberrant cell proliferation, epithelial-to-mesenchymal transition, migration and invasion, and also cancer cell metabolism. In this review, we have assembled recent data describing the interaction between lncRNAs and PI3K and the results of such interaction.
Collapse
|
17
|
Jones NM, Rowe MR, Shepherd PR, McConnell MJ. Targeted inhibition of dominant PI3-kinase catalytic isoforms increase expression of stem cell genes in glioblastoma cancer stem cell models. Int J Oncol 2016; 49:207-16. [PMID: 27176780 DOI: 10.3892/ijo.2016.3510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSC) exhibit therapy resistance and drive self-renewal of the tumour, making cancer stem cells an important target for therapy. The PI3K signalling pathway has been the focus of considerable research effort, including in glioblastoma (GBM), a cancer that is notoriously resistant to conventional therapy. Different isoforms of the catalytic sub-unit have been associated with proliferation, migration and differentiation in stem cells and cancer stem cells. Blocking these processes in CSC would improve patient outcome. We examined the effect of isoform specific PI3K inhibitors in two models of GBM CSC, an established GBM stem cell line 08/04 and a neurosphere formation model. We identified the dominant catalytic PI3K isoform for each model, and inhibition of the dominant isoform blocked AKT phosphorylation, as did pan-PI3K/mTOR inhibition. Analysis of SOX2, OCT4 and MSI1 expression revealed that inhibition of the dominant p110 subunit increased expression of cancer stem cell genes, while pan-PI3K/mTOR inhibition caused a similar, though not identical, increase in cancer stem cell gene expression. This suggested that PI3K inhibition enhanced, rather than blocked, CSC activity. Careful analysis of the response to specific isoform inhibition will be necessary before specific subunit inhibitors can be successfully deployed against GBM CSC.
Collapse
Affiliation(s)
- Nicole M Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Matthew R Rowe
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
18
|
Bekhite MM, Müller V, Tröger SH, Müller JP, Figulla HR, Sauer H, Wartenberg M. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells. Cell Tissue Res 2015; 364:159-74. [PMID: 26553657 DOI: 10.1007/s00441-015-2303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 09/28/2015] [Indexed: 02/02/2023]
Abstract
The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration.
Collapse
Affiliation(s)
- Mohamed M Bekhite
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Veronika Müller
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Sebastian H Tröger
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Reiner Figulla
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Maria Wartenberg
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| |
Collapse
|
19
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) are central regulators of cellular responses to extracellular stimuli, and are involved in growth, proliferation, migration, and metabolism. The Class I PI3Ks are activated by Receptor Tyrosine Kinases (RTKs) or G Protein-Coupled Receptors (GPCRs), and their signaling is commonly deregulated in disease conditions. Among the class I PI3Ks, the p110β isoform is unique in being activated by both RTKs and GPCRs, and its ability to bind Rho-GTPases and Rab5. Recent studies have characterized these p110β interacting partners, defining the binding mechanisms and regulation, and thus provide insight into the function of this kinase in physiology and disease. This review summarizes the developments in p110β research, focusing on the interacting partners and their role in p110β-mediated signaling.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
20
|
Hishida T, Nakachi Y, Mizuno Y, Katano M, Okazaki Y, Ema M, Takahashi S, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Hishida-Nozaki Y, Vazquez-Ferrer E, Sancho-Martinez I, Carlos Izpisua Belmonte J, Okuda A. Functional Compensation Between Myc and PI3K Signaling Supports Self-Renewal of Embryonic Stem Cells. Stem Cells 2015; 33:713-25. [DOI: 10.1002/stem.1893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Tomoaki Hishida
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Yutaka Nakachi
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Miyuki Katano
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masatsugu Ema
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Satoru Takahashi
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Radioisotope Experimental Laboratory; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | | | | | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
| |
Collapse
|
21
|
Huang HJ, Zhang M. Downregulation of PI3Kcb utilizing adenovirus-mediated transfer of siRNA attenuates bone cancer pain. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8127-35. [PMID: 25550861 PMCID: PMC4270548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/23/2014] [Indexed: 06/04/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in intracellular signal transduction pathways involved in chronic pain states. PI3K is implicated in pathomechanisms of enhanced synaptic strength, such as wind-up and central sensitization in the spinal dorsal horn. The PI3Kcb gene encoding the class 1A PI3K catalytic subunit p110beta is one of the most important molecular of the P13K signaling pathway. Here, we used small interfering RNA (siRNA) targeted to PI3Kcb by adenovirus-mediated transfer, to determine whether inhibition of PI3Kcb was a potential therapeutic target for bone cancer pain (BCP). In this study, treatment of BCP model in rats with PI3Kcb-specific siRNA resulted in inhibited pain-related behavior. Depletion of PI3Kcb decreased the protein levels of spinal PI3Kcb and phospho-Akt (P-Akt)-downstream targets of PI3K. Knockdown of PI3Kcb by siRNA also induced decreased expression of GFAP and OX42, suggesting that the upregulation of spinal PI3Kcb may increase glia excitability, at least in part by regulating glia message. Our findings suggest that siRNA-mediated gene silencing of PI3Kcb may be a useful therapeutic strategy for BCP.
Collapse
Affiliation(s)
- Huan-Jun Huang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, PR China
| | - Mei Zhang
- Department of Neurology, Wuhan Central HospitalWuhan 430014, Hubei, PR China
| |
Collapse
|
22
|
Storm MP, Kumpfmueller B, Bone HK, Buchholz M, Sanchez Ripoll Y, Chaudhuri JB, Niwa H, Tosh D, Welham MJ. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS One 2014; 9:e89821. [PMID: 24594919 PMCID: PMC3940611 DOI: 10.1371/journal.pone.0089821] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022] Open
Abstract
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.
Collapse
Affiliation(s)
- Michael P. Storm
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Benjamin Kumpfmueller
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Heather K. Bone
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Michael Buchholz
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Yolanda Sanchez Ripoll
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Julian B. Chaudhuri
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Hitoshi Niwa
- RIKEN Centre for Developmental Biology, Kobe, Hyogo, Japan
| | - David Tosh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Melanie J. Welham
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Tang Y, Tian XC. JAK-STAT3 and somatic cell reprogramming. JAKSTAT 2013; 2:e24935. [PMID: 24470976 PMCID: PMC3894236 DOI: 10.4161/jkst.24935] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/19/2023] Open
Abstract
Reprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is central in maintaining the ground state pluripotency of mouse embryonic stem cells (ESCs) and iPSCs by activating the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway. Characterizing and understanding this pathway holds the key to generate naïve pluripotent human iPSCs which will facilitate the development of patient-specific stem cell therapy. Here we review the historical and recent developments on how LIF signaling pathway regulates ESC pluripotency maintenance and somatic cell reprogramming, with a focus on JAK-STAT3.
Collapse
Affiliation(s)
- Yong Tang
- Center for Regenerative Biology; Department of Animal Science; University of Connecticut; Storrs, CT USA
| | - Xiuchun Cindy Tian
- Center for Regenerative Biology; Department of Animal Science; University of Connecticut; Storrs, CT USA
| |
Collapse
|
24
|
Kingham E, Oreffo ROC. Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS NANO 2013; 7:1867-81. [PMID: 23414366 PMCID: PMC3610401 DOI: 10.1021/nn3037094] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/25/2013] [Indexed: 05/26/2023]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research.
Collapse
Affiliation(s)
- Emmajayne Kingham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom.
| | | |
Collapse
|
25
|
Ling LS, Voskas D, Woodgett JR. Activation of PDK-1 maintains mouse embryonic stem cell self-renewal in a PKB-dependent manner. Oncogene 2013; 32:5397-408. [PMID: 23455320 PMCID: PMC3898101 DOI: 10.1038/onc.2013.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 12/04/2012] [Accepted: 01/11/2013] [Indexed: 12/20/2022]
Abstract
The phosphatidylinositol 3′ kinase (PI3K) pathway is involved in many cellular processes including cell proliferation, survival and glucose transport, and is implicated in various disease states, such as cancer and diabetes. Although there have been numerous studies dissecting the role of PI3K signaling in different cell types and disease models, the mechanism by which PI3K signaling regulates embryonic stem (ES) cell fate remains unclear. It is believed that in addition to proliferation and tumorigenesis, PI3K activity may also be important for ES cell self-renewal. Paling et al. reported that the inhibition of PI3K led to a reduction in the ability of leukemia inhibitory factor to maintain self-renewal, causing cells to differentiate. Studies in our lab have revealed that ES cells completely lacking glycogen synthase kinase-3 (GSK-3) remain undifferentiated compared with wild-type ES cells. GSK-3 is negatively regulated by PI3K, suggesting that PI3K may have a vital role in maintaining pluripotency in ES cells through GSK-3. By using a modified Flp recombinase system, we expressed activated alleles of 3-phosphoinositide-dependent protein kinase-1 and protein kinase B to create stable, isogenic ES cell lines to further study the role of the PI3K signaling pathway in stem cell fate determination. In vitro characterization of the transgenic cell lines revealed a strong tendency toward the maintenance of pluripotency, and this phenotype was found to be independent of canonical Wnt signal transduction. In summary, PI3K signaling is sufficient to maintain the self-renewal and survival of stem cells. As this pathway is frequently mutationally activated in cancers, its effect on suppressing differentiation may contribute to its oncogenicity.
Collapse
Affiliation(s)
- L S Ling
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Orlando L, Sanchez-Ripoll Y, Foster J, Bone H, Giachino C, Welham MJ. Differential coupling of self-renewal signaling pathways in murine induced pluripotent stem cells. PLoS One 2012; 7:e30234. [PMID: 22291922 PMCID: PMC3264619 DOI: 10.1371/journal.pone.0030234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/12/2011] [Indexed: 01/26/2023] Open
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs), exhibiting properties similar to those of embryonic stem cells (ESCs), has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K) signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors.
Collapse
Affiliation(s)
- Luca Orlando
- Centre for Regenerative Medicine, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Suppression of the PI3K subunit p85α delays embryoid body development and inhibits cell adhesion. J Cell Biochem 2011; 112:3573-81. [DOI: 10.1002/jcb.23285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Welham MJ, Kingham E, Sanchez-Ripoll Y, Kumpfmueller B, Storm M, Bone H. Controlling embryonic stem cell proliferation and pluripotency: the role of PI3K- and GSK-3-dependent signalling. Biochem Soc Trans 2011; 39:674-8. [PMID: 21428960 DOI: 10.1042/bst0390674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ESCs (embryonic stem cells) are derived from the inner cell mass of pre-implantation embryos and are pluripotent, meaning they can differentiate into all of the cells that make up the adult organism. This property of pluripotency makes ESCs attractive as a model system for studying early development and for the generation of specific cell types for use in regenerative medicine and drug screening. In order to harness their potential, the molecular mechanisms regulating ESC pluripotency, proliferation and differentiation (i.e. cell fate) need to be understood so that pluripotency can be maintained during expansion, while differentiation to specific lineages can be induced accurately when required. The present review focuses on the potential roles that PI3K (phosphoinositide 3-kinase) and GSK-3 (glycogen synthase kinase 3)-dependent signalling play in the co-ordination and integration of mouse ESC pluripotency and proliferation and contrast this with our understanding of their functions in human ESCs.
Collapse
Affiliation(s)
- Melanie J Welham
- Centre for Regenerative Medicine, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Ciraolo E, Morello F, Hobbs RM, Wolf F, Marone R, Iezzi M, Lu X, Mengozzi G, Altruda F, Sorba G, Guan K, Pandolfi PP, Wymann MP, Hirsch E. Essential role of the p110beta subunit of phosphoinositide 3-OH kinase in male fertility. Mol Biol Cell 2010; 21:704-11. [PMID: 20053680 PMCID: PMC2828958 DOI: 10.1091/mbc.e09-08-0744] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3K) are key molecular players in male fertility. However, the specific roles of different p110 PI3K catalytic subunits within the spermatogenic lineage have not been characterized so far. Herein, we report that male mice expressing a catalytically inactive p110beta develop testicular hypotrophy and impaired spermatogenesis, leading to a phenotype of oligo-azoospermia and defective fertility. The examination of testes from p110beta-defective tubules demonstrates a widespread loss in spermatogenic cells, due to defective proliferation and survival of pre- and postmeiotic cells. In particular, p110beta is crucially needed in c-Kit-mediated spermatogonial expansion, as c-Kit-positive cells are lost in the adult testis and activation of Akt by SCF is blocked by a p110beta inhibitor. These data establish that activation of the p110beta PI3K isoform by c-Kit is required during spermatogenesis, thus opening the way to new treatments for c-Kit positive testicular cancers.
Collapse
Affiliation(s)
- Elisa Ciraolo
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnston PG, Zucker I. Lability and diversity of circadian rhythms of cotton rats Sigmodon hispidus. Sci Rep 1983; 9:236. [PMID: 30659204 PMCID: PMC6338744 DOI: 10.1038/s41598-018-35619-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor initiating cells (TIC) have been suggested as a mechanism for driving chemoresistance and tumor recurrence in human cancers including triple negative breast cancer (TNBC). Significant progress has been made in targeting TICs. However, methods for simultaneously targeting heterogeneous TIC populations are lacking. In this study, we found that treating TNBC cells with chemotherapeutic agents led to a significant accumulation of the ALDH+ TIC population. Treating TNBC cells with a disulfiram and copper mixture (DSF/Cu) specifically decreased the ALDH+ TIC population and treatment with BKM120, a pan-PI3K inhibitor, significantly decreased the CD44+/CD24− TIC population. Furthermore, treatment with DSF/Cu or BKM120 induced higher levels of apoptosis in ALDH+ or CD44+/CD24− populations, respectively, than in bulk tumor cells. Combining DSF/Cu and BKM120 treatment simultaneously decreased the ALDH+ and CD44+/CD24− TICs. Using a TNBC tumor xenograft mouse model, we found that DSF/BKM in combination with Taxol significantly reduced the tumor burden and delayed tumor recurrence compared to Taxol treatment alone. Our study is the first of its kind to use two different drugs to abolish two major TIC subtypes simultaneously and inhibit tumor recurrence. These results lay a foundation for developing a novel therapy that can improve chemotherapeutic efficacy.
Collapse
|