1
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Baguma-Nibasheka M, Feridooni T, Zhang F, Pasumarthi KB. Regulation of Transplanted Cell Homing by FGF1 and PDGFB after Doxorubicin Myocardial Injury. Cells 2021; 10:2998. [PMID: 34831221 PMCID: PMC8616453 DOI: 10.3390/cells10112998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
There is no effective treatment for the total recovery of myocardial injury caused by an anticancer drug, doxorubicin (Dox). In this study, using a Dox-induced cardiac injury model, we compared the cardioprotective effects of ventricular cells harvested from 11.5-day old embryonic mice (E11.5) with those from E14.5 embryos. Our results indicate that tail-vein-infused E11.5 ventricular cells are more efficient at homing into the injured adult myocardium, and are more angiogenic, than E14.5 ventricular cells. In addition, E11.5 cells were shown to mitigate the cardiomyopathic effects of Dox. In vitro, E11.5 ventricular cells were more migratory than E14.5 cells, and RT-qPCR analysis revealed that they express significantly higher levels of cytokine receptors Fgfr1, Fgfr2, Pdgfra, Pdgfrb and Kit. Remarkably, mRNA levels for Fgf1, Fgf2, Pdgfa and Pdgfb were also found to be elevated in the Dox-injured adult heart, as were the FGF1 and PDGFB protein levels. Addition of exogenous FGF1 or PDGFB was able to enhance E11.5 ventricular cell migration in vitro, and, whereas their neutralizing antibodies decreased cell migration. These results indicate that therapies raising the levels of FGF1 and PDGFB receptors in donor cells and or corresponding ligands in an injured heart could improve the efficacy of cell-based interventions for myocardial repair.
Collapse
Affiliation(s)
| | | | | | - Kishore B.S. Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.B.-N.); (T.F.); (F.Z.)
| |
Collapse
|
3
|
MacLean J, Pasumarthi KBS. Characterization of primary adult mouse cardiac fibroblast cultures. Can J Physiol Pharmacol 2020; 98:861-869. [PMID: 32721222 DOI: 10.1139/cjpp-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cardiac fibroblasts (CFs) in disease states has been a focus of cardiovascular research over the past decade. Here, we briefly describe methods for isolation and characterization of CFs from adult mouse ventricles. Primary cultures were stained using antibodies for several marker proteins such as α-smooth muscle actin (αSMA), vimentin, and discoidin domain receptor 2 (DDR2) to confirm the identity of CFs or cardiac myofibroblasts (CMFs). Most cells in primary cultures consisted of CFs, with very low frequencies of endothelial cells, cardiomyocytes, and smooth muscle cells. We compared marker expression between cultures that were not passaged (P0) or passaged for few times (P1-3). When compared with P1-3 cultures, P0 cultures consistently displayed a lower percentage of cells positive for αSMA and DDR2, whereas vimentin expression was significantly higher in P0 cultures compared with P1-3 cultures. P0 cells were also smaller in area than P1-3 cells. Further, P1-3 mouse CFs were found to express both β1 and β2 adrenergic receptors (ARs) and β1ARs were more readily detected on the cell surface compared with β2ARs. In summary, mouse CF cultures underwent phenotype conversion into CMFs after passaging, consistent with what is seen with CF cultures from other species.
Collapse
Affiliation(s)
- Jessica MacLean
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kishore B S Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Locatelli P, Giménez CS, Vega MU, Crottogini A, Belaich MN. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Curr Drug Targets 2018; 20:241-254. [DOI: 10.2174/1389450119666180801122551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Adult mammalian cardiomyocytes (CMs) exhibit limited proliferative capacity, as cell cycle
activity leads to an increase in DNA content, but mitosis and cytokinesis are infrequent. This
makes the heart highly inefficient in replacing with neoformed cardiomyocytes lost contractile cells as
occurs in diseases such as myocardial infarction and dilated cardiomyopathy. Regenerative therapies
based on the implant of stem cells of diverse origin do not warrant engraftment and electromechanical
connection of the new cells with the resident ones, a fundamental condition to restore the physiology
of the cardiac syncytium. Consequently, there is a growing interest in identifying factors playing relevant
roles in the regulation of the CM cell cycle to be targeted in order to induce the resident cardiomyocytes
to divide into daughter cells and thus achieve myocardial regeneration with preservation of
physiologic syncytial performance.
Despite the scientific progress achieved over the last decades, many questions remain unanswered, including
how cardiomyocyte proliferation is regulated during heart development in gestation and neonatal
life. This can reveal unknown cell cycle regulation mechanisms and molecules that may be manipulated
to achieve cardiac self-regeneration.
We hereby revise updated data on CM cell cycle regulation, participating molecules and pathways recently
linked with the cell cycle, as well as experimental therapies involving them.
Collapse
Affiliation(s)
- Paola Locatelli
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Carlos Sebastián Giménez
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Alberto Crottogini
- Laboratorio de Regeneracion Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingenieria (IMETTYB), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Favaloro, Solis 453, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingenieria Genetica y Biologia Celular y Molecular, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET) - Universidad Nacional de Quilmes (UNQ), Roque Saenz Pena 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
5
|
Feridooni T, Hotchkiss A, Baguma-Nibasheka M, Zhang F, Allen B, Chinni S, Pasumarthi KBS. Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation. Am J Physiol Heart Circ Physiol 2017; 312:H919-H931. [PMID: 28283550 DOI: 10.1152/ajpheart.00425.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.
Collapse
Affiliation(s)
- Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brittney Allen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
6
|
Aigha I, Raynaud C. Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge. Glob Cardiol Sci Pract 2016; 2016:e201606. [PMID: 29043256 PMCID: PMC5642835 DOI: 10.21542/gcsp.2016.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapy appears to be a promising area of research for cardiac regeneration following ischemic heart failure. However, in vitro differentiation of cardiomyocytes from pluripotent stem cells, or directly from somatic cells, leads to generation of "immature" cardiomyocytes that differ from their adult counterparts in various ways. This immaturity triggers some challenges for their potential clinical use, and multiple techniques reviewed here have been developed for in vitro maturation of those cells. Nevertheless, full maturity of cardiomyocytes remains elusive and will remain the main challenge for stem cell therapy in the near future.
Collapse
Affiliation(s)
- Idil Aigha
- Qatar Cardiovascular Research Center, Qatar Foundation, Education City, Doha, Qatar
| | - Christophe Raynaud
- Qatar Cardiovascular Research Center, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
7
|
Subramaniam G, Campsteijn C, Thompson EM. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium. Cell Cycle 2015; 14:2129-41. [PMID: 25928155 DOI: 10.1080/15384101.2015.1041690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.
Collapse
Key Words
- CAK, CDK Activating Kinase
- CDK, Cyclin-Dependent Kinase
- CKI, CDK inhibitor
- CREB, CRE Binding protein
- CRM, Chromosome Region Maintenance
- ERK, Extracellular signal-regulated kinases
- G-phase, Gap phase
- GA, Growth Arrest
- GFP, Green Fluorescent Protein
- GSC, Germline Stem Cell
- IdU, 5-Iodo-2′-deoxyuridine.
- M-phase, Mitotic phase
- MAPK p38
- MAPK, Mitogen Activated Protein Kinase
- MSK, Mitogen and Stress activating Kinase
- NLS, Nuclear Localization Sequence
- PCNA, Proliferating cell nuclear antigen
- Rb, Retinoblastoma protein
- S-phase, DNA Synthesis phase
- SCF complex, Skp, Cullin, F-box containing complex
- TOR signaling
- TOR:Target Of Rapamycin
- cyclin D splice variants
- cyclin-dependent kinase inhibitor
- cytoplasmic sequestration
- growth arrest
- niche
- stem cell
- syncytium
- urochordate
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- a Sars International Center for Marine Molecular Biology; University of Bergen ; Bergen , Norway
| | | | | |
Collapse
|
8
|
Hotchkiss A, Feridooni T, Baguma-Nibasheka M, McNeil K, Chinni S, Pasumarthi KBS. Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis. Am J Physiol Cell Physiol 2015; 308:C557-69. [DOI: 10.1152/ajpcell.00323.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/24/2015] [Indexed: 11/22/2022]
Abstract
The biological effects of atrial natriuretic peptide (ANP) are mediated by natriuretic peptide receptors (NPRs), which can either activate guanylyl cyclase (NPRA and NPRB) or inhibit adenylyl cyclase (NPRC) to modulate intracellular cGMP or cAMP, respectively. During cardiac development, ANP serves as an early maker of differentiating atrial and ventricular chamber myocardium. As development proceeds, expression of ANP persists in the atria but declines in the ventricles. Currently, it is not known whether ANP is secreted or the ANP-NPR signaling system plays any active role in the developing ventricles. Thus the primary aims of this study were to 1) examine biological activity of ANP signaling systems in embryonic ventricular myocardium, and 2) determine whether ANP signaling modulates proliferation/differentiation of undifferentiated cardiac progenitor cells (CPCs) and/or cardiomyocytes. Here, we provide evidence that ANP synthesized in embryonic day (E)11.5 ventricular myocytes is actively secreted and processed to its biologically active form. Notably, NPRA and NPRC were detected in E11.5 ventricles and exogenous ANP stimulated production of cGMP in ventricular cell cultures. Furthermore, we showed that exogenous ANP significantly decreased cell number and DNA synthesis of CPCs but not cardiomyocytes and this effect could be reversed by pretreatment with the NPRA receptor-specific inhibitor A71915. ANP treatment also led to a robust increase in nuclear p27 levels in CPCs compared with cardiomyocytes. Collectively, these data provide evidence that in the developing mammalian ventricles ANP plays a local paracrine role in regulating the balance between CPC proliferation and differentiation via NPRA/cGMP-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Kathleen McNeil
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
9
|
Hotchkiss A, Feridooni T, Zhang F, Pasumarthi KBS. The effects of calcium channel blockade on proliferation and differentiation of cardiac progenitor cells. Cell Calcium 2014; 55:238-51. [PMID: 24680380 DOI: 10.1016/j.ceca.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
Cardiogenesis depends on a tightly regulated balance between proliferation and differentiation of cardiac progenitor cells (CPCs) and their cardiomyocyte descendants. While exposure of early mouse embryos to Ca(2+) channel antagonists has been associated with abnormal cardiac morphogenesis, less is known about the consequences of Ca(2+) channel blockade on proliferation and differentiation of CPCs at the cellular level. Here we showed that at embryonic day (E) 11.5, the murine ventricles express several L-type and T-type Ca(2+) channel isoforms, and that the dihydropyridine Ca(2+) channel antagonist, nifedipine, blunts isoproterenol induced increases in intracellular Ca(2+). Nifedipine mediated Ca(2+) channel blockade was associated with a reduction in cell cycle activity of E11.5 CPCs and impaired assembly of the cardiomyocyte contractile apparatus. Furthermore, in cell transplantation experiments, systemic administration of nifedipine to adult mice receiving transplanted E11.5 ventricular cells (containing CPCs and cardiomyocytes) was associated with smaller graft sizes compared to vehicle treated control animals. These data suggest that intracellular Ca(2+) is a critical regulator of the balance between CPC proliferation and differentiation and demonstrate that interactions between pharmacological drugs and transplanted cells could have a significant impact on the effectiveness of cell based therapies for myocardial repair.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
10
|
Gaspard GJ, MacLean J, Rioux D, Pasumarthi KBS. A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. Am J Physiol Cell Physiol 2014; 306:C540-50. [PMID: 24477232 DOI: 10.1152/ajpcell.00206.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cardiac fibrosis, a known risk factor for heart disease, is typically caused by uncontrolled proliferation of fibroblasts and excessive deposition of extracellular matrix proteins in the myocardium. Cyclin-dependent kinase 1 (CDK1) is involved in the control of G2/M transit phase of the cell cycle. Here, we showed that isoproterenol (ISO)-induced cardiac fibrosis is associated with increased levels of CDK1 exclusively in fibroblasts in the adult mouse heart. Treatment of primary embryonic ventricular cell cultures with ISO (a nonselective β-adrenergic receptor agonist) increased CDK1 protein expression in fibroblasts and promoted their cell cycle activity. Quantitative PCR analysis confirmed that ISO increases CDK1 transcription in a transient manner. Further, the ISO-responsive element was mapped to the proximal -100-bp sequence of the CDK1 promoter region using various 5'-flanking sequence deletion constructs. Sequence analysis of the -100-bp CDK1 minimal promoter region revealed two putative nuclear factor-Y (NF-Y) binding elements. Overexpression of the NF-YA subunit in primary ventricular cultures significantly increased the basal activation of the -100-bp CDK1 promoter construct but not the ISO-induced transcription of the minimal promoter construct. In contrast, dominant negative NF-YA expression decreased the basal activity of the minimal promoter construct and ISO treatment fully rescued the dominant negative effects. Furthermore, site-directed mutagenesis of the distal NF-Y binding site in the -100-bp CDK1 promoter region completely abolished both basal and ISO-induced promoter activation of the CDK1 gene. Collectively, our results raise an exciting possibility that targeting CDK1 or NF-Y in the diseased heart may inhibit fibrosis and subsequently confer cardioprotection.
Collapse
Affiliation(s)
- Gerard J Gaspard
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
11
|
Paradis AN, Gay MS, Zhang L. Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today 2013; 19:602-9. [PMID: 24184431 DOI: 10.1016/j.drudis.2013.10.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
Abstract
Cardiomyocytes possess a unique ability to transition from mononucleate to the mature binucleate phenotype in late fetal development and around birth. Mononucleate cells are proliferative, whereas binucleate cells exit the cell cycle and no longer proliferate. This crucial period of terminal differentiation dictates cardiomyocyte endowment for life. Adverse early life events can influence development of the heart, affecting cardiomyocyte number and contributing to heart disease late in life. Although much is still unknown about the mechanisms underlying the binucleation process, many studies are focused on molecules involved in cell cycle regulation and cytokinesis as well as epigenetic modifications that can occur during this transition. Better understanding of these mechanisms could provide a basis for recovering the proliferative capacity of cardiomyocytes.
Collapse
Affiliation(s)
- Alexandra N Paradis
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
12
|
Wafa K, MacLean J, Zhang F, Pasumarthi KBS. Characterization of growth suppressive functions of a splice variant of cyclin D2. PLoS One 2013; 8:e53503. [PMID: 23326442 PMCID: PMC3542336 DOI: 10.1371/journal.pone.0053503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022] Open
Abstract
We have recently cloned a novel splice variant of cyclin D2 termed as cycD2SV. CycD2SV overexpression in several immortalized cell lines led to formation of ubiquitinated protein aggregates accompanied by a significant decrease in cell proliferation. Based on immuno co-localization and ultrastructural analysis experiments, cycD2SV protein aggregates were frequently found in various subcellular compartments such as endosomes, autophagosomes, lysosomes and the microtubule organizing centre. Secondary structure analysis revealed that the amino terminal α-helix in cycD2SV is not tightly packed with the cyclin box suggesting a misfolded conformation compared to other cyclins. Deletion analysis suggests that 1–53 amino acid region of cycD2SV may be required for protein aggregation and 54–136 amino acid region may mediate cell cycle inhibition. Based on co-immunoprecipitation experiments, we have shown that cycD2SV binds to cycD2 as well as CDK4. In addition, gene expression analysis demonstrated an upregulation in GADD45α and dynamin 2 mRNA levels in cycD2SV overexpressing cells. These two proteins are known to play critical roles in the DNA damage response and apoptosis pathways. TUNEL experiments were negative for apoptosis, however, cycD2SV expressing cells were more sensitive to cell death induced by external stressors such as trypsinization. Collectively our results suggest that cycD2SV mediates cell cycle inhibition by sequestering endogenous cell cycle proteins, such as cycD2 and CDK4, and possibly targeting them for ubiquitin mediated protein degradation.
Collapse
Affiliation(s)
- Karim Wafa
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jessica MacLean
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
13
|
Hotchkiss A, Robinson J, MacLean J, Feridooni T, Wafa K, Pasumarthi KBS. Role of D-type cyclins in heart development and disease. Can J Physiol Pharmacol 2012; 90:1197-207. [PMID: 22900666 DOI: 10.1139/y2012-037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defining feature of embryonic cardiomyocytes is their relatively high rates of proliferation. A gradual reduction in proliferative capacity throughout development culminates in permanent cell cycle exit by the vast majority of cardiomyocytes around the perinatal period. Accordingly, the adult heart has severely limited capacity for regeneration in response to injury or disease. The D-type cyclins (cyclin D1, D2, and D3) along with their catalytically active partners, the cyclin dependent kinases, are positive cell cycle regulators that play important roles in regulating proliferation of cardiomyocytes during normal heart development. While expression of D-type cyclins is generally low in the adult heart, expression levels are augmented in association with cardiac hypertrophy, but are uncoupled from myocyte cell division. Accordingly, re-activation of D-type cyclin expression in the adult heart has been implicated in pathophysiological processes via mechanisms distinct from those that drive proliferation during cardiac development. Growth factors and other exogenous agents regulate D-type cyclin production and activity in embryonic and adult cardiomyocytes. Understanding differences in the precise intracellular mediators downstream from these signalling molecules in embryonic versus adult cardiomyocytes could prove valuable for designing strategies to reactivate the cell cycle in cardiomyocytes in the setting of cardiovascular disease in the adult heart.
Collapse
Affiliation(s)
- Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
14
|
SCaMC-1Like a member of the mitochondrial carrier (MC) family preferentially expressed in testis and localized in mitochondria and chromatoid body. PLoS One 2012; 7:e40470. [PMID: 22792342 PMCID: PMC3391283 DOI: 10.1371/journal.pone.0040470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 06/08/2012] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial carriers (MC) form a highly conserved family involved in
solute transport across the inner mitochondrial membrane in eukaryotes. In
mammals, ATP-Mg/Pi carriers, SCaMCs, form the most complex subgroup with four
paralogs, SCaMC-1, -2, -3 and -3L, and several splicing variants. Here, we
report the tissue distribution and subcellular localization of a mammalian-specific
SCaMC paralog, 4930443G12Rik/SCaMC-1Like (SCaMC-1L),
which displays unanticipated new features. SCaMC-1L proteins show higher amino
acid substitution rates than its closest paralog SCaMC-1. In mouse, SCaMC-1L
expression is restricted to male germ cells and regulated during spermatogenesis
but unexpectedly its localization is not limited to mitochondrial structures.
In mature spermatids SCaMC-1L is detected in the mitochondrial sheath but
in previous differentiation stages appears associated to cytosolic granules
which colocalize with specific markers of the chromatoid body (CB) in post-meiotic
round spermatids and inter-mitochondrial cement (IMC) in spermatocytes. The
origin of this atypical distribution was further investigated by transient
expression in cell lines. Similarly to male germ cells, in addition to mitochondrial
and cytosolic distribution, a fraction of SCaMC-1L-expressing COS-7 cells
display cytosolic SCaMC-1L-aggregates which exhibit aggresomal-like features
as the CB. Our results indicate that different regions of SCaMC-1L hinder
its import into mitochondria and this apparently favours the formation of
cytosolic aggregates in COS-7 cells. This mechanism could be also operational
in male germ cells and explain the incorporation of SCaMC-1L into germinal
granules.
Collapse
|
15
|
Feridooni T, Hotchkiss A, Remley-Carr S, Saga Y, Pasumarthi KBS. Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One 2011; 6:e22801. [PMID: 21829519 PMCID: PMC3145765 DOI: 10.1371/journal.pone.0022801] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity.
Collapse
Affiliation(s)
- Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah Remley-Carr
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yumiko Saga
- Mammalian Development Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | |
Collapse
|
16
|
Kajitani K, Wafa K, Pasumarthi KB, Robertson GS. Developmental expression of the cyclin D2 splice variant in postnatal Purkinje cells of the mouse cerebellum. Neurosci Lett 2010; 477:100-4. [DOI: 10.1016/j.neulet.2010.04.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/13/2010] [Accepted: 04/19/2010] [Indexed: 12/21/2022]
|