1
|
Amita H, Subair Z, Mora T, Dudhe PE, Dhanasekaran K. Betrayal From the Core: Centriolar and Cytoskeletal Subversion by Infectious Pathogens. Cytoskeleton (Hoboken) 2025. [PMID: 39902598 DOI: 10.1002/cm.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Microbes and parasites have evolved several means to evade and usurp the host cellular machinery to mediate pathogenesis. Being the major microtubule-organizing center (MTOC) of the cell, the centrosome is targeted by multiple viral and nonviral pathogens to mediate their assembly and trafficking within the host cell. This review examines the consequence of such targeting to the centrosome and associated cytoskeletal machinery. We have also amassed a substantial body of evidence of viruses utilizing the cilia within airway epithelium to mediate infection and the hijacking of host cytoskeletal machinery for efficient entry, replication, and egress. While infections have been demonstrated to induce structural, functional, and numerical aberrations in centrosomes, and induce ciliary dysfunction, current literature increasingly supports the notion of a pro-viral role for these organelles. Although less explored, the impact of bacterial and parasitic pathogens on these structures has also been addressed very briefly. Mechanistically, the molecular pathways responsible for these effects remain largely uncharacterized in many instances. Future research focusing on the centriolar triad comprising the centrosome, cilia, and centriolar satellites will undoubtedly provide vital insights into the tactics employed by infectious agents to subvert the host centriole and cytoskeleton-based machinery.
Collapse
Affiliation(s)
- Himanshi Amita
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Zidhan Subair
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Tulasiram Mora
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Pranay Eknath Dudhe
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Karthigeyan Dhanasekaran
- Laboratory of Centrosome and Cilia Biology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| |
Collapse
|
2
|
Kapplusch F, Schulze F, Reinke S, Russ S, Linge M, Kulling F, Kriechling F, Höhne K, Winkler S, Hartmann H, Rösen-Wolff A, Anastassiadis K, Hedrich CM, Hofmann SR. RIP2-deficiency induces inflammation in response to SV40 Large T induced genotoxic stress through altered ROS homeostasis. Clin Immunol 2022; 238:108998. [DOI: 10.1016/j.clim.2022.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
|
3
|
Gravemeyer J, Spassova I, Verhaegen ME, Dlugosz AA, Hoffmann D, Lange A, Becker JC. DNA-methylation patterns imply a common cellular origin of virus- and UV-associated Merkel cell carcinoma. Oncogene 2022; 41:37-45. [PMID: 34667274 PMCID: PMC8724008 DOI: 10.1038/s41388-021-02064-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Merkel cell carcinoma (MCC) is a neuroendocrine tumor either induced by integration of the Merkel cell polyomavirus into the cell genome or by accumulation of UV-light-associated mutations (VP-MCC and UV-MCC). Whether VP- and UV-MCC have the same or different cellular origins is unclear; with mesenchymal or epidermal origins discussed. DNA-methylation patterns have a proven utility in determining cellular origins of cancers. Therefore, we used this approach to uncover evidence regarding the cell of origin of classical VP- and UV-MCC cell lines, i.e., cell lines with a neuroendocrine growth pattern (n = 9 and n = 4, respectively). Surprisingly, we observed high global similarities in the DNA-methylation of UV- and VP-MCC cell lines. CpGs of lower methylation in VP-MCC cell lines were associated with neuroendocrine marker genes such as SOX2 and INSM1, or linked to binding sites of EZH2 and SUZ12 of the polycomb repressive complex 2, i.e., genes with an impact on carcinogenesis and differentiation of neuroendocrine cancers. Thus, the observed differences appear to be rooted in viral compared to mutation-driven carcinogenesis rather than distinct cells of origin. To test this hypothesis, we used principal component analysis, to compare DNA-methylation data from different epithelial and non-epithelial neuroendocrine cancers and established a scoring model for epithelial and neuroendocrine characteristics. Subsequently, we applied this scoring model to the DNA-methylation data of the VP- and UV-MCC cell lines, revealing that both clearly scored as epithelial cancers. In summary, our comprehensive analysis of DNA-methylation suggests a common epithelial origin of UV- and VP-MCC cell lines.
Collapse
Affiliation(s)
- Jan Gravemeyer
- Translational Skin Cancer Research (TSCR), University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research (TSCR), University Duisburg-Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Hoffmann
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Anja Lange
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research (TSCR), University Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
4
|
Furey C, Astar H, Walsh D. Human Cytomegalovirus Exploits TACC3 To Control Microtubule Dynamics and Late Stages of Infection. J Virol 2021; 95:e0082121. [PMID: 34191581 PMCID: PMC8387038 DOI: 10.1128/jvi.00821-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
While it is well established that microtubules (MTs) facilitate various stages of virus replication, how viruses actively control MT dynamics and functions remains less well understood. Recent work has begun to reveal how several viruses exploit End-Binding (EB) proteins and their associated microtubule plus-end tracking proteins (+TIPs), in particular to enable loading of viral particles onto MTs for retrograde transport during early stages of infection. Distinct from other viruses studied to date, at mid- to late stages of its unusually protracted replication cycle, human cytomegalovirus (HCMV) increases the expression of all three EB family members. This occurs coincident with the formation of a unique structure, termed the assembly compartment (AC), which serves as a Golgi-derived MT organizing center. Together, the AC and distinct EB proteins enable HCMV to increase the formation of dynamic and acetylated microtubule subsets to regulate distinct aspects of the viral replication cycle. Here, we reveal that HCMV also exploits EB-independent +TIP pathways by specifically increasing the expression of transforming acidic coiled coil protein 3 (TACC3) to recruit the MT polymerase, chTOG, from initial sites of MT nucleation in the AC out into the cytosol, thereby increasing dynamic MT growth. Preventing TACC3 increases or depleting chTOG impaired MT polymerization, resulting in defects in early versus late endosome organization in and around the AC as well as defects in viral trafficking and spread. Our findings provide the first example of a virus that actively exploits EB-independent +TIP pathways to regulate MT dynamics and control late stages of virus replication. IMPORTANCE Diverse viruses rely on host cell microtubule networks to transport viral particles within the dense cytoplasmic environment and to control the broader architecture of the cell to facilitate their replication. However, precisely how viruses regulate the dynamic behavior and function of microtubule filaments remains poorly defined. We recently showed that the assembly compartment (AC) formed by human cytomegalovirus (HCMV) acts as a Golgi-derived microtubule organizing center. Here, we show that at mid- to late stages of infection, HCMV increases the expression of transforming acidic coiled coil protein 3 (TACC3) to control the localization of the microtubule polymerase, chTOG. This, in turn, enables HCMV to generate dynamic microtubule subsets that organize endocytic vesicles in and around the AC and facilitate the transport of new viral particles released into the cytosol. Our findings reveal the first instance of viral targeting of TACC3 to control microtubule dynamics and virus spread.
Collapse
Affiliation(s)
- Colleen Furey
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus Infection. Viruses 2020; 12:E121. [PMID: 31963741 PMCID: PMC7019765 DOI: 10.3390/v12010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.
Collapse
Affiliation(s)
| | | | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic; (L.H.); (K.B.)
| |
Collapse
|
6
|
Abstract
Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.
Collapse
|
7
|
Sterigmatocystin induces G1 arrest in primary human esophageal epithelial cells but induces G2 arrest in immortalized cells: key mechanistic differences in these two models. Arch Toxicol 2014; 89:2015-25. [DOI: 10.1007/s00204-014-1362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/04/2014] [Indexed: 01/03/2023]
|
8
|
Ha GH, Kim JL, Breuer EKY. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336:24-33. [PMID: 23624299 DOI: 10.1016/j.canlet.2013.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
9
|
Takayama KI, Inoue S. Transcriptional network of androgen receptor in prostate cancer progression. Int J Urol 2013; 20:756-68. [DOI: 10.1111/iju.12146] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/21/2013] [Indexed: 02/06/2023]
|
10
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
11
|
Takayama KI, Horie-Inoue K, Suzuki T, Urano T, Ikeda K, Fujimura T, Takahashi S, Homma Y, Ouchi Y, Inoue S. TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer. Mol Endocrinol 2012; 26:748-61. [PMID: 22456197 DOI: 10.1210/me.2011-1242] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the existence of effective antiandrogen therapy for prostate cancer, the disease often progresses to castration-resistant states. Elucidation of the molecular mechanisms underlying the resistance for androgen deprivation in terms of the androgen receptor (AR)-regulated pathways is a requisite to manage castration-resistant prostate cancer (CRPC). Using a ChIP-cloning strategy, we identified functional AR binding sites (ARBS) in the genome of prostate cancer cells. We discovered that a centrosome- and microtubule-interacting gene, transforming acidic coiled-coil protein 2 (TACC2), is a novel androgen-regulated gene. We identified a functional AR-binding site (ARBS) including two canonical androgen response elements in the vicinity of TACC2 gene, in which activated hallmarks of histone modification were observed. Androgen-dependent TACC2 induction is regulated by AR, as confirmed by AR knockdown or its pharmacological inhibitor bicalutamide. Using long-term androgen-deprived cells as cellular models of CRPC, we demonstrated that TACC2 is highly expressed and contributes to hormone-refractory proliferation, as small interfering RNA-mediated knockdown of TACC2 reduced cell growth and cell cycle progression. By contrast, in TACC2-overexpressing cells, an acceleration of the cell cycle was observed. In vivo tumor formation study of prostate cancer in castrated immunocompromised mice revealed that TACC2 is a tumor-promoting factor. Notably, the clinical significance of TACC2 was demonstrated by a correlation between high TACC2 expression and poor survival rates. Taken together with the critical roles of TACC2 in the cell cycle and the biology of prostate cancer, we infer that the molecule is a potential therapeutic target in CRPC as well as hormone-sensitive prostate cancer.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol 2010; 84:10888-906. [PMID: 20702633 DOI: 10.1128/jvi.00431-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because they are obligate intracellular parasites, all viruses are exclusively and intimately dependent upon host cells for replication. Viruses, in turn, induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays, which measure the cellular "transcriptome." Until recently, it has not been possible to extend comparable types of studies to globally examine all the host cellular proteins, which are the actual effector molecules. We have used stable isotope labeling by amino acids in cell culture (SILAC), combined with high-throughput two-dimensional (2-D) high-performance liquid chromatography (HPLC)/mass spectrometry, to determine quantitative differences in host proteins after infection of human lung A549 cells with human influenza virus A/PR/8/34 (H1N1) for 24 h. Of the 4,689 identified and measured cytosolic protein pairs, 127 were significantly upregulated at >95% confidence, 153 were significantly downregulated at >95% confidence, and a total of 87 proteins were upregulated or downregulated more than 5-fold at >99% confidence. Gene ontology and pathway analyses indicated differentially regulated proteins and included those involved in host cell immunity and antigen presentation, cell adhesion, metabolism, protein function, signal transduction, and transcription pathways.
Collapse
|
13
|
Liu M, Schmidt EE, Halford WP. ICP0 dismantles microtubule networks in herpes simplex virus-infected cells. PLoS One 2010; 5:e10975. [PMID: 20544015 PMCID: PMC2882321 DOI: 10.1371/journal.pone.0010975] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/13/2010] [Indexed: 01/18/2023] Open
Abstract
Infected-cell protein 0 (ICP0) is a RING finger E3 ligase that regulates herpes simplex virus (HSV) mRNA synthesis, and strongly influences the balance between latency and replication of HSV. For 25 years, the nuclear functions of ICP0 have been the subject of intense scrutiny. To obtain new clues about ICP0's mechanism of action, we constructed HSV-1 viruses that expressed GFP-tagged ICP0. To our surprise, both GFP-tagged and wild-type ICP0 were predominantly observed in the cytoplasm of HSV-infected cells. Although ICP0 is exclusively nuclear during the immediate-early phase of HSV infection, further analysis revealed that ICP0 translocated to the cytoplasm during the early phase where it triggered a previously unrecognized process; ICP0 dismantled the microtubule network of the host cell. A RING finger mutant of ICP0 efficiently bundled microtubules, but failed to disperse microtubule bundles. Synthesis of ICP0 proved to be necessary and sufficient to disrupt microtubule networks in HSV-infected and transfected cells. Plant and animal viruses encode many proteins that reorganize microtubules. However, this is the first report of a viral E3 ligase that regulates microtubule stability. Intriguingly, several cellular E3 ligases orchestrate microtubule disassembly and reassembly during mitosis. Our results suggest that ICP0 serves a dual role in the HSV life cycle, acting first as a nuclear regulator of viral mRNA synthesis and acting later, in the cytoplasm, to dismantle the host cell's microtubule network in preparation for virion synthesis and/or egress.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Edward E. Schmidt
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - William P. Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| |
Collapse
|