1
|
Kocgozlu L, Mutschler A, Tallet L, Calligaro C, Knopf-Marques H, Lebaudy E, Mathieu E, Rabineau M, Gribova V, Senger B, Vrana NE, Lavalle P. Cationic homopolypeptides: A versatile tool to design multifunctional antimicrobial nanocoatings. Mater Today Bio 2024; 28:101168. [PMID: 39221202 PMCID: PMC11364137 DOI: 10.1016/j.mtbio.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Postoperative infections are the most common complications faced by surgeons after implant surgery. To address this issue, an emerging and promising approach is to develop antimicrobial coatings using antibiotic substitutes. We investigated the use of polycationic homopolypeptides in a layer-by-layer coating combined with hyaluronic acid (HA) to produce an effective antimicrobial shield. The three peptide-based polycations used to make the coatings, poly(l-arginine) (PAR), poly(l-lysine), and poly(l-ornithine), provided an efficient antibacterial barrier by a contact-killing mechanism against Gram-positive, Gram-negative, and antibiotic-resistant bacteria. Moreover, this activity was higher for homopolypeptides containing 30 amino-acid residues per polycation chain, emphasizing the impact of the polycation chain length and its mobility in the coatings to deploy its contact-killing antimicrobial properties. However, the PAR-containing coating emerged as the best candidate among the three selected polycations, as it promoted cell adhesion and epithelial monolayer formation. It also stimulated nitric oxide production in endothelial cells, thereby facilitating angiogenesis and subsequent tissue regeneration. More interestingly, bacteria did not develop a resistance to PAR and (PAR/HA) also inhibited the proliferation of eukaryotic pathogens, such as yeasts. Furthermore, in vivo investigations on a (PAR/HA)-coated hernia mesh implanted on a rabbit model confirmed that the coating had antibacterial properties without causing chronic inflammation. These impressive synergistic activities highlight the strong potential of PAR/HA coatings as a key tool in combating bacteria, including those resistant to conventional antibiotics and associated to medical devices.
Collapse
Affiliation(s)
- Leyla Kocgozlu
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Angela Mutschler
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Lorène Tallet
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Helena Knopf-Marques
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Eric Mathieu
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Morgane Rabineau
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
2
|
Nowak N, Sas-Nowosielska H, Szymański J. Nuclear Rac1 controls nuclear architecture and cell migration of glioma cells. Biochim Biophys Acta Gen Subj 2024; 1868:130632. [PMID: 38677529 DOI: 10.1016/j.bbagen.2024.130632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Rac1 (Ras-related C3 botulinum toxin substrate 1) protein has been found in the cell nucleus many years ago, however, its nuclear functions are still poorly characterized but some data suggest its nuclear accumulation in cancers. We investigated nuclear Rac1 in glioma cancer cells nuclei and compared its levels and activity to normal astrocytes, and also characterized the studied cells on various nuclear properties and cell migration patterns. Nuclear Rac1 indeed was found accumulated in glioma cells, but only a small percentage of the protein was in active, GTP-bound state in comparison to healthy control. Altering the nuclear activity of Rac1 influenced chromatin architecture and cell motility in GTP-dependent and independent manner. This suggests that the landscape of Rac1 nuclear interactions might be as complicated and wide as its well-known, non-nuclear signaling.
Collapse
Affiliation(s)
- Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland; Institute of Epigenetics, Department of Cell Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jędrzej Szymański
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| |
Collapse
|
3
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
4
|
Deng H, Shu X, Wang Y, Zhang J, Yin Y, Wu F, He J. Matrix Stiffness Regulated Endoplasmic Reticulum Stress-mediated Apoptosis of Osteosarcoma Cell through Ras Signal Cascades. Cell Biochem Biophys 2023; 81:839-850. [PMID: 37789235 DOI: 10.1007/s12013-023-01184-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
The modulating effects of matrix stiffness on spreading and apoptosis of tumor cells have been well recognized. Nevertheless, the detail road map leading to the apoptosis and the underlying mechanisms governing the cell apoptosis have remained to be elucidated. To this aim, we provided a tunable elastic hydrogel matrix that promoted cell adhesion by modifying the surface of polyacrylamide with polydopamine, with stiffness value of 1, 10, 30, and 250 kPa, respectively. While the cell spreading increased and the apoptosis decreased with the matrix stiffness, such modulating effect of matrix on cell spreading exhibited different time evolvement behaviors as a function of stiffness, which likely led to surprisingly similar apoptosis rates for the 30 kPa and 250 kPa samples. Matrix stiffness mediated the spreading and apoptosis of MG-63 cells by regulating cell adhesion to matrix and in particular cytoskeletal organization, which was dependent on Ras, Rap1 and PI3K-Akt signaling pathways and finally led to the apoptosis of cancer cells dominated by endoplasmic reticulum stress pathway. Our results provided an insight into the regulation of tumor cell fate by the mechanical clues of ECM, which would have implication for future cancer research and the design of novel anticancer materials.
Collapse
Affiliation(s)
- Huan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yue Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
5
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
6
|
dos Santos Á, Cook AW, Gough RE, Schilling M, Olszok N, Brown I, Wang L, Aaron J, Martin-Fernandez ML, Rehfeldt F, Toseland CP. DNA damage alters nuclear mechanics through chromatin reorganization. Nucleic Acids Res 2020; 49:340-353. [PMID: 33330932 PMCID: PMC7797048 DOI: 10.1093/nar/gkaa1202] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Martin Schilling
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Nora A Olszok
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Florian Rehfeldt
- Correspondence may also be addressed to Florian Rehfeldt. Tel: +49 921 55 2504;
| | | |
Collapse
|
7
|
Functionalisation of a heat-derived and bio-inert albumin hydrogel with extracellular matrix by air plasma treatment. Sci Rep 2020; 10:12429. [PMID: 32709918 PMCID: PMC7382478 DOI: 10.1038/s41598-020-69301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Albumin-based hydrogels are increasingly attractive in tissue engineering because they provide a xeno-free, biocompatible and potentially patient-specific platform for tissue engineering and drug delivery. The majority of research on albumin hydrogels has focused on bovine serum albumin (BSA), leaving human serum albumin (HSA) comparatively understudied. Different gelation methods are usually employed for HSA and BSA, and variations in the amino acid sequences of HSA and BSA exist; these account for differences in the hydrogel properties. Heat-induced gelation of aqueous HSA is the easiest method of synthesizing HSA hydrogels however hydrogel opacity and poor cell attachment limit their usefulness in downstream applications. Here, a solution to this problem is presented. Stable and translucent HSA hydrogels were created by controlled thermal gelation and the addition of sodium chloride. The resulting bio-inert hydrogel was then subjected to air plasma treatment which functionalised its surface, enabling the attachment of basement membrane matrix (Geltrex). In vitro survival and proliferation studies of foetal human osteoblasts subsequently demonstrated good biocompatibility of functionalised albumin hydrogels compared to untreated samples. Thus, air plasma treatment enables functionalisation of inert heat-derived HSA hydrogels with extracellular matrix proteins and these may be used as a xeno-free platform for biomedical research or cell therapy.
Collapse
|
8
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Zelikin AN, Ehrhardt C, Healy AM. Materials and methods for delivery of biological drugs. Nat Chem 2018; 8:997-1007. [PMID: 27768097 DOI: 10.1038/nchem.2629] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/26/2016] [Indexed: 12/23/2022]
Abstract
Biological drugs generated via recombinant techniques are uniquely positioned due to their high potency and high selectivity of action. The major drawback of this class of therapeutics, however, is their poor stability upon oral administration and during subsequent circulation. As a result, biological drugs have very low bioavailability and short therapeutic half-lives. Fortunately, tools of chemistry and biotechnology have been developed into an elaborate arsenal, which can be applied to improve the pharmacokinetics of biological drugs. Depot-type release systems are available to achieve sustained release of drugs over time. Conjugation to synthetic or biological polymers affords long circulating formulations. Administration of biological drugs through non-parenteral routes shows excellent performance and the first products have reached the market. This Review presents the main accomplishments in this field and illustrates the materials and methods behind existing and upcoming successful formulations and delivery strategies for biological drugs.
Collapse
Affiliation(s)
- Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark.,iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C 8000, Denmark
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.,Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Chromatin de-condensation by switching substrate elasticity. Sci Rep 2018; 8:12655. [PMID: 30140058 PMCID: PMC6107547 DOI: 10.1038/s41598-018-31023-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Mechanical properties of the cellular environment are known to influence cell fate. Chromatin de-condensation appears as an early event in cell reprogramming. Whereas the ratio of euchromatin versus heterochromatin can be increased chemically, we report herein for the first time that the ratio can also be increased by purely changing the mechanical properties of the microenvironment by successive 24 h-contact of the cells on a soft substrate alternated with relocation and growth for 7 days on a hard substrate. An initial contact with soft substrate caused massive SW480 cancer cell death by necrosis, whereas approximately 7% of the cells did survived exhibiting a high level of condensed chromatin (21% heterochromatin). However, four consecutive hard/soft cycles elicited a strong chromatin de-condensation (6% heterochromatin) correlating with an increase of cellular survival (approximately 90%). Furthermore, cell survival appeared to be reversible, indicative of an adaptive process rather than an irreversible gene mutation(s). This adaptation process is associated with modifications in gene expression patterns. A completely new approach for chromatin de-condensation, based only on mechanical properties of the microenvironment, without any drug mediation is presented.
Collapse
|
11
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
12
|
Chahal AS, Schweikle M, Heyward CA, Tiainen H. Attachment and spatial organisation of human mesenchymal stem cells on poly(ethylene glycol) hydrogels. J Mech Behav Biomed Mater 2018; 84:46-53. [PMID: 29734041 DOI: 10.1016/j.jmbbm.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Strategies that enable hydrogel substrates to support cell attachment typically incorporate either entire extracellular matrix proteins or synthetic peptide fragments such as the RGD (arginine-glycine-aspartic acid) motif. Previous studies have carefully analysed how material characteristics can affect single cell morphologies. However, the influence of substrate stiffness and ligand presentation on the spatial organisation of human mesenchymal stem cells (hMSCs) have not yet been examined. In this study, we assessed how hMSCs organise themselves on soft (E = 7.4-11.2 kPa) and stiff (E = 27.3-36.8 kPa) poly(ethylene glycol) (PEG) hydrogels with varying concentrations of RGD (0.05-2.5 mM). Our results indicate that hMSCs seeded on soft hydrogels clustered with reduced cell attachment and spreading area, irrespective of RGD concentration and isoform. On stiff hydrogels, in contrast, cells spread with high spatial coverage for RGD concentrations of 0.5 mM or higher. In conclusion, we identified that an interplay of hydrogel stiffness and the availability of cell attachment motifs are important factors in regulating hMSC organisation on PEG hydrogels. Understanding how cells initially interact and colonise the surface of this material is a fundamental prerequisite for the design of controlled platforms for tissue engineering and mechanobiology studies.
Collapse
Affiliation(s)
- Aman S Chahal
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Manuel Schweikle
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Catherine A Heyward
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway.
| |
Collapse
|
13
|
Akiba U, Minaki D, Anzai JI. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications. Polymers (Basel) 2017; 9:E553. [PMID: 30965853 PMCID: PMC6418643 DOI: 10.3390/polym9110553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL) films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, which causes changes in the physical or chemical properties of the LbL assemblies. Therefore, azobenzene-functionalized LbL films and microcapsules have been used for the construction of photosensitive biomedical devices. For instance, cell adhesion on the surface of a solid can be controlled by UV light irradiation by coating the surface with azobenzene-containing LbL films. In another example, the ion permeability of porous materials coated with LbL films can be regulated by UV light irradiation. Furthermore, azobenzene-containing LbL films and microcapsules have been used as carriers for drug delivery systems sensitive to light. UV light irradiation triggers permeability changes in the LbL films and/or decomposition of the microcapsules, which results in the release of encapsulated drugs and proteins.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502, Japan.
| | - Daichi Minaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
14
|
Li Y, Tang CB, Kilian KA. Matrix Mechanics Influence Fibroblast-Myofibroblast Transition by Directing the Localization of Histone Deacetylase 4. Cell Mol Bioeng 2017; 10:405-415. [PMID: 31719870 PMCID: PMC6816600 DOI: 10.1007/s12195-017-0493-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The propagation of mechanochemical signals from the extracellular matrix to the cell nucleus has emerged as a central feature in regulating cellular differentiation and de-differentiation. This process of outside-in signaling and the associated mechanotransduction pathways have been well described in numerous developmental and pathological contexts. However, it remains less clear how mechanotransduction influences the activity of chromatin modifying enzymes that direct gene expression programs. OBJECTIVES The primary objective of this study was to explore how matrix mechanics and geometric confinement influence histone deacetylase (HDAC) activity in fibroblast culture. METHODS Polyacrylamide hydrogels were formed and functionalized with fibronectin patterns using soft lithography. Primary mouse embryonic fibroblasts (MEFs) were cultured on the islands until confluent, fixed, and immunolabeled for microscopy. RESULTS After 24 h MEFs cultured on soft hydrogels (0.5 kPa) show increased expression of class I HDACs relative to MEFs cultured on stiff hydrogels (100 kPa). A member of the class II family, HDAC4 shows a similar trend; however, there is a pronounced cytoplasmic localization on soft hydrogels suggesting a role in outside-in cytoplasmic signaling. Pharmacological inhibitor studies suggest that the opposing activities of extracellular related kinase 1/2 (ERK) and protein phosphatase 2a (PP2a) influence the localization of HDAC4. MEFs cultured on the soft hydrogels show enhanced expression of markers associated with a fibroblast-myofibroblast transition (Paxillin, αSMA). CONCLUSIONS We show that the phosphorylation state and cellular localization of HDAC4 is influenced by matrix mechanics, with evidence for a role in mechanotransduction and the regulation of gene expression associated with fibroblast-myofibroblast transitions. This work establishes a link between outside-in signaling and epigenetic regulation, which will assist efforts aimed at controlling gene regulation in engineered extracellular matrices.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Claire B. Tang
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristopher A. Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
15
|
Tailored polyelectrolyte thin film multilayers to modulate cell adhesion. Biointerphases 2017; 12:04E403. [DOI: 10.1116/1.5000588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Chang H, Hu M, Zhang H, Ren KF, Li BC, Li H, Wang LM, Lei WX, Ji J. Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14357-14366. [PMID: 27223460 DOI: 10.1021/acsami.6b01870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Endothelialization on the vascular implants is of great importance for prevention of undesired postimplantation symptoms. However, endothelial dysfunction of regenerated endothelial cell (EC) monolayer has been frequently observed, leading to severe complications, such as neointimal hyperplasia, late thrombosis, and neoatherosclerosis. It has significantly impeded long-term success of the therapy. So far, very little attention has been paid on endothelial function of EC monolayer. Bioinspired by the microenvironment of the endothelium in a blood vessel, this study described a soft polyelectrolyte multilayer film (PEM) through layer-by-layer assembly of poly(l-lysine) (PLL) and hyaluronan (HA). The (PLL/HA) PEM was chemically cross-linked and further incorporated with vascular endothelial growth factor. It demonstrated that this approach could promote EC adhesion and proliferation, further inducing formation of EC monolayer. Further, improved endothelial function of the EC monolayer was achieved as shown with the tighter integrity, higher production of nitric oxide, and expression level of endothelial function related genes, compared to EC monolayers on traditional substrates with high stiffness (e.g., glass, tissue culture polystyrene, and stainless steel). Our findings highlighted the influence of substrate stiffness on endothelial function of EC monolayer, giving a new strategy in the surface design of vascular implants.
Collapse
Affiliation(s)
- Hao Chang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Bo-Chao Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Huan Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Li-Mei Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Wen-Xi Lei
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
17
|
Jensen BEB, Dávila I, Zelikin AN. Poly(vinyl alcohol) Physical Hydrogels: Matrix-Mediated Drug Delivery Using Spontaneously Eroding Substrate. J Phys Chem B 2016; 120:5916-26. [PMID: 26958864 PMCID: PMC4939746 DOI: 10.1021/acs.jpcb.6b01381] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Poly(vinyl alcohol) hydrogels have
a long and successful history
of applications in biomedicine. Historically, these matrices were
developed to be nondegradable—limiting their utility to applications
as permanent implants. For tissue engineering and drug delivery, herein
we develop spontaneously eroding physical hydrogels based on PVA.
We characterize in detail a mild, noncryogenic method of producing
PVA physical hydrogels using poly(ethylene glycol) as a gelating agent,
and investigate PVA molar mass as a means to define the kinetics of
erosion of these biomaterials. PVA hydrogels are characterized for
associated inflammatory response in adhering macrophages, antiproliferative
effects mediated through delivery of cytotoxic drugs to myoblasts,
and pro-proliferative activity achieved via presentation of conjugated
growth factors to endothelial cells. Together, these data present
a multiangle characterization of these novel multifunctional matrices
for applications in tissue engineering and drug delivery mediated
by implantable biomaterials.
Collapse
Affiliation(s)
| | - Izaskun Dávila
- Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University , Aarhus, Denmark.,iNANO Interdisciplinary Nanoscience Center, Aarhus University , Aarhus, Denmark
| |
Collapse
|
18
|
Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell 2016; 18:39-52. [PMID: 26748755 PMCID: PMC5409508 DOI: 10.1016/j.stem.2015.12.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biophysical signals act as potent regulators of stem cell function, lineage commitment, and epigenetic status. In recent years, synthetic biomaterials have been used to study a wide range of outside-in signaling events, and it is now well appreciated that material cues modulate the epigenome. Here, we review the role of extracellular signals in guiding stem cell behavior via epigenetic regulation, and we stress the role of physicochemical material properties as an often-overlooked modulator of intracellular signaling. We also highlight promising new research tools for ongoing interrogation of the stem cell-material interface.
Collapse
Affiliation(s)
- Spencer W Crowder
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Thomas Whittaker
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Peter Papathanasiou
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK; Institute for Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
19
|
Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials 2016; 74:217-30. [DOI: 10.1016/j.biomaterials.2015.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
|
20
|
Previtera ML, Sengupta A. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages. PLoS One 2015; 10:e0145813. [PMID: 26710072 PMCID: PMC4692401 DOI: 10.1371/journal.pone.0145813] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages.
Collapse
Affiliation(s)
- Michelle L. Previtera
- JFK Neuroscience Institute, JFK Medical Center, 65 James Street, Edison, New Jersey, 08820, United States of America
- Department of Neuroscience, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey, 07079, United States of America
| | - Amitabha Sengupta
- JFK Neuroscience Institute, JFK Medical Center, 65 James Street, Edison, New Jersey, 08820, United States of America
| |
Collapse
|
21
|
Muzzio NE, Pasquale MA, Gregurec D, Diamanti E, Kosutic M, Azzaroni O, Moya SE. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line. Macromol Biosci 2015; 16:482-95. [DOI: 10.1002/mabi.201500275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/09/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Nicolás E. Muzzio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA); (UNLP, CONICET); Sucursal 4; Casilla de Correo 16; 1900 La Plata Argentina
| | - Miguel A. Pasquale
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA); (UNLP, CONICET); Sucursal 4; Casilla de Correo 16; 1900 La Plata Argentina
| | - Danijela Gregurec
- Soft Matter Nanotechnology Group; CIC biomaGUNE; Paseo Marimón 182 C; 20009 San Sebastián Gipuzkoa Spain
| | - Eleftheria Diamanti
- Soft Matter Nanotechnology Group; CIC biomaGUNE; Paseo Marimón 182 C; 20009 San Sebastián Gipuzkoa Spain
| | - Marija Kosutic
- Soft Matter Nanotechnology Group; CIC biomaGUNE; Paseo Marimón 182 C; 20009 San Sebastián Gipuzkoa Spain
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA); (UNLP, CONICET); Sucursal 4; Casilla de Correo 16; 1900 La Plata Argentina
| | - Sergio E. Moya
- Soft Matter Nanotechnology Group; CIC biomaGUNE; Paseo Marimón 182 C; 20009 San Sebastián Gipuzkoa Spain
| |
Collapse
|
22
|
Jensen BEB, Edlund K, Zelikin AN. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors. Biomaterials 2015; 49:113-24. [PMID: 25725560 DOI: 10.1016/j.biomaterials.2015.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
Growth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized--rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA. The latter have a long and successful history of biomedical applications and approval for diverse use in human patients, but are also characterized with scant opportunities for bioconjugation and functionalization. Herein, we develop the conjugation of growth factors to the micro-structured, spontaneously eroding physical hydrogels based on PVA. Protein conjugation was elaborated using model substrates, albumin and lysozyme, which aided to reveal specificity of chemical reactions and benign, non-harmful nature of the established protocols. Surface-adhered format of hydrogel analyses allowed to quantify bioconjugation reactions and enzymatic activity of the immobilized proteins and to visualize the hydrogels with immobilized cargo. In cell culture, immobilized growth factors were effective in communicating to adhering cells and specifically enhanced proliferation rates of the cells containing the corresponding receptors. At the same time, proliferation of the cells devoid of these receptors was un-altered.
Collapse
Affiliation(s)
| | - Katrine Edlund
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus, Denmark; iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
23
|
Mao Z, Yu S, Gao C. Bioactive and Spatially Organized LbL Films. LAYER‐BY‐LAYER FILMS FOR BIOMEDICAL APPLICATIONS 2015:79-102. [DOI: 10.1002/9783527675869.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Barthes J, Vrana NE, Özçelik H, Gahoual R, François YN, Bacharouche J, Francius G, Hemmerlé J, Metz-Boutigue MH, Schaaf P, Lavalle P. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film. Biomater Sci 2015; 3:1302-11. [DOI: 10.1039/c5bm00172b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular ECM-mimicking coating for cell culture is designed and acts as gel-feeder providing simultaneously ECM components, growth factors, stiffening elements and antimicrobials.
Collapse
|
25
|
Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate. Biomaterials 2015; 37:144-55. [DOI: 10.1016/j.biomaterials.2014.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/02/2014] [Indexed: 12/11/2022]
|
26
|
Panayotov IV, Collart-Dutilleul PY, Salehi H, Martin M, Végh A, Yachouh J, Vladimirov B, Sipos P, Szalontai B, Gergely C, Cuisinier FJG. Sprayed cells and polyelectrolyte films for biomaterial functionalization: the influence of physical PLL-PGA film treatments on dental pulp cell behavior. Macromol Biosci 2014; 14:1771-1782. [PMID: 25212873 DOI: 10.1002/mabi.201400256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/07/2014] [Indexed: 02/05/2023]
Abstract
Further development of biomaterials is expected as advanced therapeutic products must be compliant to good manufacturing practice regulations. A spraying method for building-up polyelectrolyte films followed by the deposition of dental pulp cells by spraying is presented. Physical treatments of UV irradiation and a drying/wetting process are applied to the system. Structural changes and elasticity modifications of the obtained coatings are revealed by atomic force microscopy and by Raman spectroscopy. This procedure results in thicker, rougher and stiffer film. The initially ordered structure composed of mainly α helices is transformed into random/β-structures. The treatment enhanced dental pulp cell adhesion and proliferation, suggesting that this system is promising for medical applications.
Collapse
Affiliation(s)
- Ivan V Panayotov
- EA4203 Laboratoire de Bio-santé et Nano-science, Université Montpellier 1, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Caralt M, Velasco E, Lanas A, Baptista PM. Liver bioengineering: from the stage of liver decellularized matrix to the multiple cellular actors and bioreactor special effects. Organogenesis 2014; 10:250-9. [PMID: 25102189 DOI: 10.4161/org.29892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver bioengineering has been a field of intense research and popular excitement in the past decades. It experiences great interest since the introduction of whole liver acellular scaffolds generated by perfusion decellularization (1-3). Nevertheless, the different strategies developed so far have failed to generate hepatic tissue in vitro bioequivalent to native liver tissue. Even notable novel strategies that rely on iPSC-derived liver progenitor cells potential to self-organize in association with endothelial cells in hepatic organoids are lacking critical components of the native tissue (e.g., bile ducts, functional vascular network, hepatic microarchitecture, etc) (4). Hence, it is vital to understand the strengths and short comes of our current strategies in this quest to re-create liver organogenesis in vitro. To shed some light into these issues, this review describes the different actors that play crucial roles in liver organogenesis and highlights the steps still missing to successfully generate whole livers and hepatic organoids in vitro for multiple applications.
Collapse
Affiliation(s)
- Mireia Caralt
- Vall d'Hebron University Hospital; Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | - Angel Lanas
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| | - Pedro M Baptista
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| |
Collapse
|
28
|
Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 2014; 35:1857-68. [DOI: 10.1016/j.biomaterials.2013.11.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
|
29
|
Vrana NE, Erdemli O, Francius G, Fahs A, Rabineau M, Debry C, Tezcaner A, Keskin D, Lavalle P. Double entrapment of growth factors by nanoparticles loaded into polyelectrolyte multilayer films. J Mater Chem B 2014; 2:999-1008. [DOI: 10.1039/c3tb21304h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Rabineau M, Kocgozlu L, Dujardin D, Senger B, Haikel Y, Voegel JC, Freund JN, Schaaf P, Lavalle P, Vautier D. Contribution of soft substrates to malignancy and tumor suppression during colon cancer cell division. PLoS One 2013; 8:e78468. [PMID: 24167628 PMCID: PMC3805547 DOI: 10.1371/journal.pone.0078468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/13/2013] [Indexed: 01/05/2023] Open
Abstract
In colon cancer, a highly aggressive disease, progression through the malignant sequence is accompanied by increasingly numerous chromosomal rearrangements. To colonize target organs, invasive cells cross several tissues of various elastic moduli. Whether soft tissue increases malignancy or in contrast limits invasive colon cell spreading remains an open question. Using polyelectrolyte multilayer films mimicking microenvironments of various elastic moduli, we revealed that human SW480 colon cancer cells displayed increasing frequency in chromosomal segregation abnormalities when cultured on substrates with decreasing stiffness. Our results show that, although decreasing stiffness correlates with increased cell lethality, a significant proportion of SW480 cancer cells did escape from the very soft substrates, even when bearing abnormal chromosome segregation, achieve mitosis and undergo a new cycle of replication in contrast to human colonic HCoEpiC cells which died on soft substrates. This observation opens the possibility that the ability of cancer cells to overcome defects in chromosome segregation on very soft substrates could contribute to increasing chromosomal rearrangements and tumor cell aggressiveness.
Collapse
Affiliation(s)
- Morgane Rabineau
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Leyla Kocgozlu
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Bernard Senger
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Youssef Haikel
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Jean-Claude Voegel
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Jean-Noel Freund
- Inserm UMR S1113, Université de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Pierre Schaaf
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- CNRS, UPR 22, Institut Charles Sadron, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| | - Dominique Vautier
- Inserm UMR 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Fédération de Médecine Translationnelle, Strasbourg, France
| |
Collapse
|
31
|
Vrana NE, Lavalle P, Dokmeci MR, Dehghani F, Ghaemmaghami AM, Khademhosseini A. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:529-43. [PMID: 23705900 DOI: 10.1089/ten.teb.2012.0603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.
Collapse
Affiliation(s)
- Nihal E Vrana
- 1 Institut National de la Santé et de la Recherche Médicale , INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie," Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
32
|
Lynge ME, Laursen MB, Hosta-Rigau L, Jensen BEB, Ogaki R, Smith AAA, Zelikin AN, Städler B. Liposomes as drug deposits in multilayered polymer films. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2967-75. [PMID: 23514370 DOI: 10.1021/am4006868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ex vivo growth of implantable hepatic or cardiac tissue remains a challenge and novel approaches are highly sought after. We report an approach to use liposomes embedded within multilayered films as drug deposits to deliver active cargo to adherent cells. We verify and characterize the assembly of poly(l-lysine) (PLL)/alginate, PLL/poly(l-glutamic acid), PLL/poly(methacrylic acid) (PMA), and PLL/cholesterol-modified PMA (PMAc) films, and assess the myoblast and hepatocyte adhesion to these coatings using different numbers of polyelectrolyte layers. The assembly of liposome-containing multilayered coatings is monitored by QCM-D, and the films are visualized using microscopy. The myoblast and hepatocyte adhesion to these films using PLL/PMAc or poly(styrenesulfonate) (PSS)/poly(allyl amine hydrochloride) (PAH) as capping layers is evaluated. Finally, the uptake of fluorescent lipids from the surface by these cells is demonstrated and compared. The activity of this liposome-containing coating is confirmed for both cell lines by trapping the small cytotoxic compound thiocoraline within the liposomes. It is shown that the biological response depends on the number of capping layers, and is different for the two cell lines when the compound is delivered from the surface, while it is similar when administered from solution. Taken together, we demonstrate the potential of liposomes as drug deposits in multilayered films for surface-mediated drug delivery.
Collapse
Affiliation(s)
- Martin E Lynge
- iNANO Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Andreasen SØ, Chong SF, Wohl BM, Goldie KN, Zelikin AN. Poly(vinyl alcohol) physical hydrogel nanoparticles, not polymer solutions, exert inhibition of nitric oxide synthesis in cultured macrophages. Biomacromolecules 2013; 14:1687-95. [PMID: 23560438 DOI: 10.1021/bm400369u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogel nanoparticles (HNP) are an emerging tool of biomedicine with unique materials characteristics, scope, and utility. These hydrated, soft colloidal carriers can penetrate through voids with dimensions narrower than the size of the particle, provide stabilization for fragile biological cargo and allow diffusion and exchange of solutes with external phase. However, techniques to assemble HNP are few; solitary examples exist of biocompatible polymers being formulated into HNP; and knowledge on the biomedical properties of HNP remains rather cursory. In this work, we investigate assembly of HNP based on a polymer with decades of prominence in the biomedical field, poly(vinyl alcohol), PVA. We develop a novel method for production of PVA HNP through nanoprecipitation-based assembly of polymer nanoparticles and subsequent physical hydrogelation of the polymer. Polymer nanoparticles and HNP were visualized using scanning electron microscopy and fluorescence imaging, and characterized using dynamic light scattering and zeta potential measurements. Interaction of PVA HNP with mammalian cells was investigated using flow cytometry, viability screening, and measurements of nitric oxide production by cultured macrophages. The latter analyses revealed that PVA administered as a polymer solution or in the form of HNP resulted in no measurable increase in production of the inflammation marker. Unexpectedly, PVA HNP exerted a pronounced inhibition of NO synthesis by stimulated macrophages, that is, had an anti-inflammatory activity. This effect was accomplished with a negligible change in the cell viability and was not observed when PVA was administered as a polymer solution. To the best of our knowledge, this is the first observation of inhibition of NO synthesis in macrophages by administered nanoparticles and specifically hydrogel nanoparticles. Taken together, our results present PVA HNP as promising colloidal hydrogel nanocarriers for biomedical applications, specifically drug delivery and assembly of intracellular biosensors.
Collapse
|
34
|
Chong SF, Smith AAA, Zelikin AN. Microstructured, functional PVA hydrogels through bioconjugation with oligopeptides under physiological conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:942-950. [PMID: 23208951 DOI: 10.1002/smll.201201774] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Indexed: 05/25/2023]
Abstract
In this work, bioconjugation techniques are developed to achieve peptide functionalization of poly(vinyl alcohol), PVA, as both a polymer in solution and within microstructured physical hydrogels, in both cases under physiological conditions. PVA is unique in that it is one of very few polymers with excellent biocompatibility and safety and has FDA approval for clinical uses in humans. However, decades of development have documented only scant opportunities in bioconjugation with PVA. As such, materials derived thereof fail to answer the call for functional biomaterials for advanced cell culture and tissue engineering applications. To address these limitations, PVA is synthesized with terminal thiol groups and conjugated with thiolated peptides using PVA in solution. Further, microstructured, surface-adhered PVA physical hydrogels are assembled, the available conjugation sites within the hydrogels are quantified, and quantitative kinetic data are collected on peptide conjugation to the hydrogels. The success of bioconjugation in the gel phase is quantified through the use of a cell-adhesive peptide and visualization of cell adhesion on PVA hydrogels as cell culture substrates. Taken together, the presented data establish a novel paradigm in bioconjugation and functionalization of PVA physical hydrogels. Coupled with an excellent safety profile of PVA, these results deliver a superior biomaterial for diverse biomedical applications.
Collapse
Affiliation(s)
- Siow-Feng Chong
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|
35
|
Wang B, Sun JY, Qian S, Liu XY, Zhang SL, Dong SJ, Zha GC. Adhesion of osteoblast-like cell on silicon-doped TiO2 film prepared by cathodic arc deposition. Biotechnol Lett 2013; 35:975-82. [PMID: 23436126 DOI: 10.1007/s10529-013-1155-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Silicon-doped TiO2 (Si-TiO2) and pure TiO2 films were deposited on titanium substrates by cathodic arc deposition technique. The surface characteristics of the films, such as surface topography, elemental composition and wettability, were studied. About 4.6 % Si was incorporated into the Si-TiO2 films with a water contact angle of about 83°. The adhesive behaviors of osteoblast-like MG63 cells on both films were investigated through cell counting assay, immunocytochemistry, real-time PCR and western blotting analysis. Cells cultured on the Si-TiO2 films had a greater cellular viability, stronger cytoskeleton and focal adhesion, and more cellular spreading than those on the pure TiO2 films. Moreover, the expression levels of integrin β1 and focal adhesion kinase (FAK) genes, FAK and the phosphorylation of FAK proteins were up-regulated in cells cultured on the Si-TiO2 films. These results indicated that the Si-TiO2 films possess significantly enhanced cytocompatibility and provide potential solutions for the surface modification of implants in the future.
Collapse
Affiliation(s)
- Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang G, Lu Z, Zhao X, Kondyurin A, Zreiqat H. Ordered HAp nanoarchitecture formed on HAp–TCP bioceramics by “nanocarving” and mineralization deposition and its potential use for guiding cell behaviors. J Mater Chem B 2013; 1:2455-2462. [DOI: 10.1039/c3tb20164c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Van Tam JK, Uto K, Ebara M, Pagliari S, Forte G, Aoyagi T. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064205. [PMID: 27877532 PMCID: PMC5099765 DOI: 10.1088/1468-6996/13/6/064205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/01/2012] [Indexed: 06/06/2023]
Abstract
The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Forte
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takao Aoyagi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
38
|
Fejerskov B, Jensen BEB, Jensen NBS, Chong SF, Zelikin AN. Engineering surface adhered poly(vinyl alcohol) physical hydrogels as enzymatic microreactors. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4981-4990. [PMID: 22939117 DOI: 10.1021/am3013467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we characterize physical hydrogels based on poly(vinyl alcohol), PVA, as intelligent biointerfaces for surface-mediated drug delivery. Specifically, we assemble microstructured (μS) surface adhered hydrogels via noncryogenic gelation of PVA, namely polymer coagulation using sodium sulfate (Na(2)SO(4)). We present systematic investigation of concentrations of Na(2)SO(4) as a tool of control over assembly of μS PVA hydrogels and quantify polymer losses and retention within the hydrogels. For polymer quantification, we use custom-made PVA with single terminal thiol group in a form of mixed disulfide with Ellman's reagent which provides for a facile UV-vis assay of polymer content in coagulation baths, subsequent washes in physiological buffer, and within the hydrogel phase. Polymer coagulation using varied concentrations of sodium sulfate afforded biointerfaces with controlled elasticity for potential uses in investigating mechano-sensitive effects of mammalian cell culture. For surface mediated drug delivery, we propose a novel concept termed Substrate Mediated Enzyme Prodrug Therapy (SMEPT) and characterize μS PVA hydrogels as reservoirs for enzymatic cargo. Assembled functional interfaces are used as matrices for cell culture and delivery of anticancer drug achieved through administration of a benign prodrug, its conversion into an active therapeutic within the hydrogel phase, and subsequent internalization by adhered hepatic cells. Taken together, the presented data contribute significantly to the development of novel matrices for surface-mediated drug delivery and other biomedical applications.
Collapse
|
39
|
Amorosi C, Michel M, Avérous L, Toniazzo V, Ruch D, Ball V. Plasma polymer films as an alternative to (PSS-PAH)n or (PSS-PDADMAC)n films to retain active enzymes in exponentially growing polyelectrolyte multilayers. Colloids Surf B Biointerfaces 2012; 97:124-31. [DOI: 10.1016/j.colsurfb.2012.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/14/2012] [Accepted: 04/19/2012] [Indexed: 11/17/2022]
|
40
|
Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics. PLoS One 2012; 7:e38780. [PMID: 22685604 PMCID: PMC3369864 DOI: 10.1371/journal.pone.0038780] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/10/2012] [Indexed: 01/16/2023] Open
Abstract
Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells.
Collapse
|
41
|
Michel M, Toniazzo V, Ruch D, Ball V. Deposition Mechanisms in Layer-by-Layer or Step-by-Step Deposition Methods: From Elastic and Impermeable Films to Soft Membranes with Ion Exchange Properties. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/701695] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The modification of solid-liquid interfaces with polyelectrolyte multilayer films appears as a versatile tool to confer new functionalities to surfaces in environmentally friendly conditions. Indeed such films are deposited by alternate dipping of the substrates in aqueous solutions containing the interacting species or spraying these solutions on the surface of the substrate. Spin coating is more and more used to produce similar films. The aim of this short review article is to provide an unifying picture about the deposition mechanisms of polyelectrolyte multilayer films. Often those films are described as growing either in a linear or in a supralinear growth regime with the number of deposited “layer pairs”. The growth regime of PEM films can be controlled by operational parameters like the temperature or the ionic strength of the used solutions. The control over the growth regime of the films as a function of the number of deposition steps allows to control their functional properties: either hard and impermeable films in the case of linear growth or soft and permeable films in the case of supralinear growth. Such different properties can be obtained with a given combination of interacting species by changing the operational parameters during the film deposition.
Collapse
Affiliation(s)
- Marc Michel
- Advanced Materials and Struct Department, Public Research Center Henri Tudor, 66 Rue de Luxembourg, 4002 Esch-sur-Alzette, Luxembourg
| | - Valérie Toniazzo
- Advanced Materials and Struct Department, Public Research Center Henri Tudor, 66 Rue de Luxembourg, 4002 Esch-sur-Alzette, Luxembourg
| | - David Ruch
- Advanced Materials and Struct Department, Public Research Center Henri Tudor, 66 Rue de Luxembourg, 4002 Esch-sur-Alzette, Luxembourg
| | - Vincent Ball
- Advanced Materials and Struct Department, Public Research Center Henri Tudor, 66 Rue de Luxembourg, 4002 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
42
|
Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2012; 24:854-869. [PMID: 25076811 PMCID: PMC4112380 DOI: 10.1021/cm2032459] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Controlling the bulk and surface properties of materials is a real challenge for bioengineers working in the fields of biomaterials, tissue engineering and biophysics. The layer-by-layer (LbL) deposition method, introduced 20 years ago, consists in the alternate adsorption of polyelectrolytes that self-organize on the material's surface, leading to the formation of polyelectrolyte multilayer (PEM) films.1 Because of its simplicity and versatility, the procedure has led to considerable developments of biological applications within the past 5 years. In this review, we focus our attention on the design of PEM films as surface coatings for applications in the field of physical properties that have emerged as being key points in relation to biological processes. The numerous possibilities for adjusting the chemical, physical, and mechanical properties of PEM films have fostered studies on the influence of these parameters on cellular behaviors. Importantly, PEM have emerged as a powerful tool for the immobilization of biomolecules with preserved bioactivity.
Collapse
Affiliation(s)
- Varvara Gribova
- LMGP-MINATEC, Grenoble Institute of Technology, 3 Parvis Louis Néel, 38016 Grenoble, France
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with University Joseph Fourier, and member of the Institut de Chimie Moléculaire de Grenoble, France
| | - Rachel Auzely-Velty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with University Joseph Fourier, and member of the Institut de Chimie Moléculaire de Grenoble, France
| | - Catherine Picart
- LMGP-MINATEC, Grenoble Institute of Technology, 3 Parvis Louis Néel, 38016 Grenoble, France
| |
Collapse
|
43
|
Howe GA, Addison CL. β1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adh Migr 2012; 6:71-7. [PMID: 22568952 DOI: 10.4161/cam.20077] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Historically, a hallmark of tumorigenesis was the ability to grow in an anchorage-independent manner. Hence, tumors were thought to proliferate and survive independently of integrin attachment to the substratum. However, recent data suggest that integrins regulate not only tumor cell proliferation, survival and migration, but may also influence their response to anti-cancer agents. Interestingly, these influences are largely masked by growth of tumor cells in the standard, yet artificial, environment of 2D cell culture, but are readily apparent under 3D in vitro culture conditions and in tumor growth in vivo. We, and others, have recently demonstrated that the β1 integrin subunit controls the growth and invasion of prostate tumor cells in 3D culture conditions. Recently, the importance of integrins has also been demonstrated using tissue specific conditional knockout strategies in transgenic mouse tumor models, where they control primary tumor growth and dictate the site of metastatic spread. Furthermore, integrin-extracellular matrix interactions may modulate the response of tumors to standard chemotherapy agents or radiation. Taken together, these results highlight the important role of integrins in regulating tumor growth and metastasis; however, point out that the evaluation of their contribution to these processes requires appropriate contextual modeling.
Collapse
Affiliation(s)
- Grant A Howe
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | | |
Collapse
|
44
|
Zelikin AN, Städler B. Intelligent Polymer Thin Films and Coatings for Drug Delivery. INTELLIGENT SURFACES IN BIOTECHNOLOGY 2012:243-290. [DOI: 10.1002/9781118181249.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Ross AM, Jiang Z, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates: topography, roughness, and elasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:336-55. [PMID: 22162324 DOI: 10.1002/smll.201100934] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Indexed: 05/26/2023]
Abstract
The cellular environment impacts a myriad of cellular functions by providing signals that can modulate cell phenotype and function. Physical cues such as topography, roughness, gradients, and elasticity are of particular importance. Thus, synthetic substrates can be potentially useful tools for exploring the influence of the aforementioned physical properties on cellular function. Many micro- and nanofabrication processes have been employed to control substrate characteristics in both 2D and 3D environments. This review highlights strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in-vitro settings. While both hard and soft materials are discussed, emphasis is placed on soft substrates. Moreover, methods for creating synthetic substrates for cell studies, substrate properties, and impact of substrate properties on cell behavior are the main focus of this review.
Collapse
Affiliation(s)
- Aftin M Ross
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
46
|
Tsai SW, Liou HM, Lin CJ, Kuo KL, Hung YS, Weng RC, Hsu FY. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix. PLoS One 2012; 7:e31200. [PMID: 22319618 PMCID: PMC3271086 DOI: 10.1371/journal.pone.0031200] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast-like cells on EC and EG is matrix stiffness and via ROCK-FAK-ERK1/2.
Collapse
Affiliation(s)
- Shiao-Wen Tsai
- Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-Yuan, Taiwan
| | - Hau-Min Liou
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Cheng-Jie Lin
- Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-Yuan, Taiwan
| | - Ko-Liang Kuo
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Sheng Hung
- Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-Yuan, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ru-Chun Weng
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Fu-Yin Hsu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan,
| |
Collapse
|
47
|
|
48
|
Kocgozlu L, Rabineau M, Koenig G, Haikel Y, Schaaf P, Freund JN, Voegel JC, Lavalle P, Vautier D. The control of chromosome segregation during mitosis in epithelial cells by substrate elasticity. Biomaterials 2011; 33:798-809. [PMID: 22041225 DOI: 10.1016/j.biomaterials.2011.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022]
Abstract
Materials of defined elasticity, including synthetic material scaffolds and tissue-derived matrices, can regulate biological responses of cells and in particular adhesion, migration, growth and differentiation which are essential parameters for tissue integration. These responses have been extensively investigated in interphase cells, but little is known whether and how material elasticity affects mitotic cells. We used polyelectrolyte multilayer films as model substrates with elastic modulus ranging from Eap = 0 up to Eap = 500 kPa and mitotic PtK2 epithelial cells to address these important questions. Soft substrates (Eap < 50 kPa) led to abnormal morphology in chromosome segregation, materialized by chromatin bridges and chromosome lagging. Frequency of these damages increased with decreasing substrate stiffness and was correlated with a pro-apoptotic phenotype. Mitotic spindle was not observed on soft substrates where formation of chromatin damages is due to low β1-integrin engagement and decrease of Rac1 activities. This work constitutes the first evidence that soft substrates hinder epithelial cell division. In perspective, our findings emphasize the prime incidence of the material elasticity on the fate of the phenotype, especially of stem cells in the mitotic phase.
Collapse
Affiliation(s)
- Leyla Kocgozlu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 977, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gribova V, Crouzier T, Picart C. A material's point of view on recent developments of polymeric biomaterials: control of mechanical and biochemical properties. JOURNAL OF MATERIALS CHEMISTRY 2011; 21:14354-14366. [PMID: 25067892 PMCID: PMC4111539 DOI: 10.1039/c1jm11372k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells respond to a variety of stimuli, including biochemical, topographical and mechanical signals originating from their micro-environment. Cell responses to the mechanical properties of their substrates have been increasingly studied for about 14 years. To this end, several types of materials based on synthetic and natural polymers have been developed. Presentation of biochemical ligands to the cells is also important to provide additional functionalities or more selectivity in the details of cell/material interaction. In this review article, we will emphasize the development of synthetic and natural polymeric materials with well-characterized and tunable mechanical properties. We will also highlight how biochemical signals can be presented to the cells by combining them with these biomaterials. Such developments in materials science are not only important for fundamental biophysical studies on cell/material interactions but also for the design of a new generation of advanced and highly functional biomaterials.
Collapse
Affiliation(s)
- Varvara Gribova
- LMGP-MINATEC, Grenoble Institute of Technology, 3 parvis Louis Néel 38016 Grenoble, France
| | - Thomas Crouzier
- LMGP-MINATEC, Grenoble Institute of Technology, 3 parvis Louis Néel 38016 Grenoble, France
| | - Catherine Picart
- LMGP-MINATEC, Grenoble Institute of Technology, 3 parvis Louis Néel 38016 Grenoble, France
| |
Collapse
|
50
|
Boudou T, Crouzier T, Nicolas C, Ren K, Picart C. Polyelectrolyte multilayer nanofilms used as thin materials for cell mechano-sensitivity studies. Macromol Biosci 2011; 11:77-89. [PMID: 21038350 DOI: 10.1002/mabi.201000301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three types of multilayer films made from poly(L-lysine)/hyaluronan, chitosan/hyaluronan, and poly(allylamine hydrochloride)/poly(L-glutamic acid), were used to investigate the interplay between film mechano-chemical properties and cell adhesion. We showed that C2C12 myoblast adhesion and proliferation depended on the extent of film cross-linking for all films whatever their internal chemistry. Cell spreading areas were found to correlate with the film's stiffness and to be distributed over a unique curve. Immuno-staining of the cytoskeletal components revealed the formation of F-actin stress fibers and vinculin plaques only on stiff films. Finally, we compared our results with previous studies performed on polyacrylamide and PDMS gels, two recognized materials for mechano-sensitivity studies. We found that the effect of substrate stiffness on cell spreading is material-dependent.
Collapse
Affiliation(s)
- Thomas Boudou
- Minatec, Grenoble Institute of Technology and LMGP, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|