1
|
Sofi S, Coverley D. CIZ1 in Xist seeded assemblies at the inactive X chromosome. Front Cell Dev Biol 2023; 11:1296600. [PMID: 38155839 PMCID: PMC10753822 DOI: 10.3389/fcell.2023.1296600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
There is growing evidence that X-chromosome inactivation is driven by phase-separated supramolecular assemblies. However, among the many proteins recruited to the inactive X chromosome by Xist long non-coding RNA, so far only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been shown to form Xist-seeded protein assemblies, and of these most have not been analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of intrinsically disordered regions in RNA-dependent protein assembly formation at the inactive X chromosome, and 2) enrichment, distribution, and function of proteins within Xist-seeded assemblies.
Collapse
Affiliation(s)
- Sajad Sofi
- Department of Biology, University of York, York, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
2
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Wang X, Xie H, Zhu Z, Zhang J, Xu C. Molecular basis for the recognition of CIZ1 by ERH. FEBS J 2023; 290:712-723. [PMID: 36047590 DOI: 10.1111/febs.16611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Enhancer of rudimentary homologue (ERH), a small protein conserved in eukaryotes, is involved in a wide spectrum of cellular events, including cell cycle progression, piRNA biogenesis, miRNA maturation and gene expression. Human ERH is recruited to replication foci by CDKN1A-interacting zinc finger protein 1 (CIZ1), and plays an important role in cell growth control. However, the molecular basis for CIZ1 recognition by ERH remains unknown. By using GST pull-down experiment, we found that a fragment within CIZ1, upstream of its first zinc finger, is sufficient for binding to ERH. We solved the structure of CIZ1-bound ERH, in which the ERH dimer binds to two CIZ1 fragments to form a 2 : 2 heterotetramer. CIZ1 forms intermolecular antiparallel β-strands with ERH, and its binding surface on ERH is distinct from those of other known ERH-binding ligands. The ERH-CIZ1 interface was further validated by mutagenesis and binding experiments. Our structural study complemented by biochemistry experiments not only provides insights into a previously unidentified ligand-binding mode for ERH but also sheds light on the understanding of evolutionarily conserved roles for ERH orthologs.
Collapse
Affiliation(s)
- Xiaoyang Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huabin Xie
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongliang Zhu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Pauzaite T, Tollitt J, Sopaci B, Caprani L, Iwanowytsch O, Thacker U, Hardy JG, Allinson SL, Copeland NA. Dbf4-Cdc7 (DDK) Inhibitor PHA-767491 Displays Potent Anti-Proliferative Effects via Crosstalk with the CDK2-RB-E2F Pathway. Biomedicines 2022; 10:biomedicines10082012. [PMID: 36009559 PMCID: PMC9405858 DOI: 10.3390/biomedicines10082012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Precise regulation of DNA replication complex assembly requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) activities to activate the replicative helicase complex and initiate DNA replication. Chemical probes have been essential in the molecular analysis of DDK-mediated regulation of MCM2-7 activation and the initiation phase of DNA replication. Here, the inhibitory activity of two distinct DDK inhibitor chemotypes, PHA-767491 and XL-413, were assessed in cell-free and cell-based proliferation assays. PHA-767491 and XL-413 show distinct effects at the level of cellular proliferation, initiation of DNA replication and replisome activity. XL-413 and PHA-767491 both reduce DDK-specific phosphorylation of MCM2 but show differential potency in prevention of S-phase entry. DNA combing and DNA replication assays show that PHA-767491 is a potent inhibitor of the initiation phase of DNA replication but XL413 has weak activity. Importantly, PHA-767491 decreased E2F-mediated transcription of the G1/S regulators cyclin A2, cyclin E1 and cyclin E2, and this effect was independent of CDK9 inhibition. Significantly, the enhanced inhibitory profile of PHA-767491 is mediated by potent inhibition of both DDK and the CDK2-Rb-E2F transcriptional network, that provides the molecular basis for its increased anti-proliferative effects in RB+ cancer cell lines.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - James Tollitt
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Betul Sopaci
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Louise Caprani
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Olivia Iwanowytsch
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Urvi Thacker
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK
| | - Sarah L. Allinson
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Nikki A. Copeland
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
- Correspondence:
| |
Collapse
|
5
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
6
|
Han J, Xu G, Dong Q, Jing G, Liu Q, Liu J. Elevated expression of CDKN1A-interacting zinc finger protein 1 in intimal hyperplasia after endovascular arterial injury. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2024893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ju Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
| | - Guangyan Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Weifang Medical University, Weifang, People’s Republic of China
| | - Qihao Dong
- Department of Neurology, Zibo Central Hospital, Weifang, People’s Republic of China
| | - Guoxian Jing
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
- Shandong First Medical University, Taian, People’s Republic of China
| | - Qiang Liu
- Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Ju Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
- Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Kivrak E, Pauzaite T, Copeland NA, Hardy JG, Kara P, Firlak M, Yardimci AI, Yilmaz S, Palaz F, Ozsoz M. Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. BIOSENSORS-BASEL 2021; 11:bios11010017. [PMID: 33429883 PMCID: PMC7827051 DOI: 10.3390/bios11010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/22/2023]
Abstract
The CRISPR-Cas9 system has facilitated the genetic modification of various model organisms and cell lines. The outcomes of any CRISPR-Cas9 assay should be investigated to ensure/improve the precision of genome engineering. In this study, carbon nanotube-modified disposable pencil graphite electrodes (CNT/PGEs) were used to develop a label-free electrochemical nanogenosensor for the detection of point mutations generated in the genome by using the CRISPR-Cas9 system. Carbodiimide chemistry was used to immobilize the 5'-aminohexyl-linked inosine-substituted probe on the surface of the sensor. After hybridization between the target sequence and probe at the sensor surface, guanine oxidation signals were monitored using differential pulse voltammetry (DPV). Optimization of the sensitivity of the nanogenoassay resulted in a lower detection limit of 213.7 nM. The nanogenosensor was highly specific for the detection of the precisely edited DNA sequence. This method allows for a rapid and easy investigation of the products of CRISPR-based gene editing and can be further developed to an array system for multiplex detection of different-gene editing outcomes.
Collapse
Affiliation(s)
- Ezgi Kivrak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Tekle Pauzaite
- Department of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK; (T.P.); (N.A.C.)
| | - Nikki A. Copeland
- Department of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK; (T.P.); (N.A.C.)
| | - John G. Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK; (J.G.H.); (M.F.)
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - Pinar Kara
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
- Correspondence: (P.K.); (M.O.)
| | - Melike Firlak
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK; (J.G.H.); (M.F.)
- Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey
| | - Atike I. Yardimci
- Department of Chemical Engineering, Izmir Institute of Technology, İzmir 35430, Turkey; (A.I.Y.); (S.Y.)
| | - Selahattin Yilmaz
- Department of Chemical Engineering, Izmir Institute of Technology, İzmir 35430, Turkey; (A.I.Y.); (S.Y.)
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
| | - Mehmet Ozsoz
- Faculty of Engineering, Near East University, Lefkoşa 99138, Turkey
- Correspondence: (P.K.); (M.O.)
| |
Collapse
|
8
|
Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1. Sci Rep 2020; 10:18103. [PMID: 33093612 PMCID: PMC7582970 DOI: 10.1038/s41598-020-75160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action.
Collapse
|
9
|
Dong H, Luo Y, Fan S, Yin B, Weng C, Peng B. Screening Gene Mutations in Chinese Patients With Benign Essential Blepharospasm. Front Neurol 2020; 10:1387. [PMID: 32038460 PMCID: PMC6989602 DOI: 10.3389/fneur.2019.01387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: This study aimed to screen gene mutations in Chinese patients with benign essential blepharospasm (BEB) to understand its etiology. Methods: Twenty BEB patients diagnosed by clinical manifestations between April 2015 and October 2015 were enrolled. All the cases were investigated by questionnaires about general conditions, social behavioral factors, environmental factors, psychological factors, genetic factors, and previous diseases. In each patient, a total of 151 genes related to movement disorders were analyzed by second-generation sequencing. Results: Two patients had a family history of BEB, and they had SYNE1 and Cdkn1A-interacting zinc finger protein 1 (CIZ1) mutation, respectively. We found the SYNE1 mutation in seven patients, the CIZ1 mutation in two patients, the CACNA1A mutation in two patients, the LRRK2 mutation in two patients, and the FUS mutation in two patients. The C10orf2, TPP1, SLC1A3, PNKD, EIF4G1, SETX, PRRT2, SPTBN2, and TTBK2 mutations were found in only one patient, respectively, while not any mutation in the 151 genes were found in two patients. Some patients had mutations in two genes. Conclusion: Genetic factors, especially SYNE1 and CIZ1 mutations, contribute to the etiology of BEB.
Collapse
Affiliation(s)
- Hongjuan Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Huang X, Liu J, Mo X, Liu H, Wei C, Huang L, Chen J, Tian C, Meng Y, Wu G, Xie W, P.C. FJ, Liu Z, Tang W. Systematic profiling of alternative splicing events and splicing factors in left- and right-sided colon cancer. Aging (Albany NY) 2019; 11:8270-8293. [PMID: 31586988 PMCID: PMC6814588 DOI: 10.18632/aging.102319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
Left- and right-sided colon cancer (LC and RC) differ substantially in their molecular characteristics and prognoses, and are thus treated using different strategies. We systematically analyzed alternative splicing (AS) events and splicing factors in LC and RC. RNA-seq data were used for genome-wide profiling of AS events that could distinguish LC from RC. The Exon Skip splicing pattern was more common in RC, while the Retained Intron pattern was more common in LC. The AS events that were upregulated in RC were enriched for genes in the axon guidance pathway, while those that were upregulated in LC were enriched for genes in immune-related pathways. Prognostic models based on differentially expressed AS events were built, and a prognostic signature based on these AS events performed well for risk stratification in colon cancer patients. A correlation network of differentially expressed AS events and differentially expressed splicing factors was constructed, and RBM25 was identified as the hub gene in the network. In conclusion, large differences in AS events may contribute to the phenotypic differences between LC and RC. The differentially expressed AS events reported herein could be used as biomarkers and treatment targets for colon cancer.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jungang Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Chunyin Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Lingxu Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jianhong Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Chao Tian
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Yongsheng Meng
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Guo Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Weishun Xie
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Franco Jeen P.C.
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Zujun Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| |
Collapse
|
11
|
Maintenance of epigenetic landscape requires CIZ1 and is corrupted in differentiated fibroblasts in long-term culture. Nat Commun 2019; 10:460. [PMID: 30692537 PMCID: PMC6484225 DOI: 10.1038/s41467-018-08072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised. The inactive X chromosome (Xi) is a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes. Here the authors show that Xi transiently relocates from the nuclear periphery during replication in a CIZ1-dependent manner, which plays a role in maintaining PRC-mediated repressed chromatin.
Collapse
|
12
|
Swarts DRA, Stewart ER, Higgins GS, Coverley D. CIZ1-F, an alternatively spliced variant of the DNA replication protein CIZ1 with distinct expression and localisation, is overrepresented in early stage common solid tumours. Cell Cycle 2018; 17:2268-2283. [PMID: 30280956 PMCID: PMC6226236 DOI: 10.1080/15384101.2018.1526600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CIZ1 promotes cyclin-dependent DNA replication and resides in sub-nuclear foci that are part of the protein nuclear matrix (NM), and in RNA assemblies that are enriched at the inactive X chromosome (Xi) in female cells. It is subjected to alternative splicing, with specific variants implicated in adult and pediatric cancers. CIZ1-F is characterized by a frame shift that results from splicing exons 8–12 leading to inclusion of a short alternative reading frame (ARF), excluding the previously characterized C-terminal NM anchor domain. Here, we apply a set of novel variant-selective molecular tools targeted to the ARF to profile the expression of CIZ1-F at both transcript and protein levels, with focus on its relationship with the RNA-dependent and -independent fractions of the NM. Unlike full-length CIZ1, CIZ1-F does not accumulate at Xi, though like full-length CIZ1 it does resist extraction with DNase. Notably, CIZ1-F is sensitive to RNase identifying it as part of the RNA-fraction of the NM. In quiescent cells CIZ1-F transcript expression is suppressed and CIZ1-F protein is excluded from the nucleus, with re-expression not observed until the second cell cycle after exit from quiescence. Importantly, CIZ1-F is over-expressed in common solid tumors including colon and breast, pronounced in early stage but not highly-proliferative late stage tumors. Moreover, expression was significantly higher in hormone receptor negative breast tumors than receptor positive tumors. Together these data show that CIZ1-F is expressed in proliferating cells in an unusual cell cycle-dependent manner, and suggest that it may have potential as a tumor biomarker.
Collapse
Affiliation(s)
| | - Emma R Stewart
- a Department of Biology , The University of York , York , UK
| | | | - Dawn Coverley
- a Department of Biology , The University of York , York , UK
| |
Collapse
|
13
|
Xiao J, Khan MM, Vemula S, Tian J, LeDoux MS. Consequences of Cre-mediated deletion of Ciz1 exon 5 in mice. FEBS Lett 2018; 592:3101-3110. [PMID: 30098009 PMCID: PMC6275157 DOI: 10.1002/1873-3468.13221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
CIZ1 plays a role in DNA synthesis at the G1/S checkpoint. Ciz1 gene-trap null mice manifest motor dysfunction, cell-cycle abnormalities, and DNA damage. In contrast, it has previously been reported that mouse embryonic fibroblasts derived from presumed Ciz1 knock-out mice (Ciz1tm1.1Homy/tm1.1Homy ) generated by crossing Cre-expressing mice with exon 5-floxed mice (Ciz1tm1Homy/tm1Homy ) do not exhibit evidence of enhanced DNA damage following γ-irradiation or cell-cycle defects. Here, we report that Ciz1tm1.1Homy/tm1.1Homy mice show loss of Ciz1 exon 5 but are neurologically normal and express abnormal transcripts (Ciz1ΔE5/ΔE5 mice) that are translated into one or more proteins of approximate wild-type size. Therefore, Ciz1tm1.1Homy/tm1.1Homy mice (Ciz1ΔE5/ΔE5 ) lose residues encoded by exon 5 but may gain function from novel amino acid sequences.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Satya Vemula
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jun Tian
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Neurology, Second Affiliated Hospital, School
of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P.R. China
| | - Mark S. LeDoux
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
14
|
Kucherlapati M. Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes. BMC Cancer 2018; 18:818. [PMID: 30107825 PMCID: PMC6092802 DOI: 10.1186/s12885-018-4705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed. Methods Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher’s exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test. Results Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation. Conclusion The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur NRB 160B, Boston, 02115, MA, USA.
| |
Collapse
|
15
|
Zhou X, Liu Q, Wada Y, Liao L, Liu J. CDKN1A-interacting zinc finger protein 1 is a novel biomarker for lung squamous cell carcinoma. Oncol Lett 2017; 15:183-188. [PMID: 29285191 PMCID: PMC5738676 DOI: 10.3892/ol.2017.7282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
CDKN1A-interacting zinc finger protein 1 (CIZ1), a nuclear protein that participates in DNA replication, is involved in the pathogenesis of several types of cancer. However, the role of CIZ1 in lung squamous cell carcinoma (LSCC) is not fully understood. In the present study, the expression of CIZ1 in tissue microarrays and surgical samples of human LSCCs was examined. CIZ1 expression was found to be significantly increased in LSCC tissues compared with adjacent tissues or normal controls, whereas expression of a CIZ1-interacting protein, p21Cip1/Waf1, was decreased. CIZ1 staining intensity and CIZ1-positive vascular invasion were positively correlated with at least two categories of the Tumor-Node-Metastasis (TNM) staging system (T stage, N stage or TNM stage). It was also observed that CIZ1 was specifically expressed in the vascular cells of LSCC tissues. These results indicate that overexpression of CIZ1 may contribute to the growth and angiogenesis of LSCC, thus CIZ1 could represent a biomarker for diagnosis and a target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Isotope Science Center, The University of Tokyo, Tokyo 153-8904, Japan
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
16
|
Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G, Godwin J, Wilson R, Haslam A, Lilley F, Ruigrok R, Bageghni SA, Albadrani G, Mansfield W, Roulson JA, Brockdorff N, Ainscough JFX, Coverley D. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 2017; 31:876-888. [PMID: 28546514 PMCID: PMC5458755 DOI: 10.1101/gad.295907.117] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Here, Ridings-Figueroa et al. show that the nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. Their findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages. The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist. CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.
Collapse
Affiliation(s)
| | - Emma R Stewart
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tatyana B Nesterova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Heather Coker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rose Wilson
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aidan Haslam
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fred Lilley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Renate Ruigrok
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sumia A Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ghadeer Albadrani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom.,Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Kingdom of Saudi Arabia
| | - William Mansfield
- Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Jo-An Roulson
- Leeds Institute of Molecular Medicine (LIMM), University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Justin F X Ainscough
- Department of Biology, University of York, York YO10 5DD, United Kingdom.,Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
17
|
Bageghni SA, Frentzou GA, Drinkhill MJ, Mansfield W, Coverley D, Ainscough JFX. Cardiomyocyte--specific expression of the nuclear matrix protein, CIZ1, stimulates production of mono-nucleated cells with an extended window of proliferation in the postnatal mouse heart. Biol Open 2017; 6:92-99. [PMID: 27934662 PMCID: PMC5278428 DOI: 10.1242/bio.021550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration. Here, we show that cardiomyocyte-specific over-expression of the nuclear-matrix-associated DNA replication protein, CIZ1, extends their window of proliferation during cardiac development, delaying onset of terminal differentiation without compromising function. CIZ1-expressing hearts are enlarged, but the cardiomyocytes are smaller with an overall increase in number, correlating with increased DNA replication after birth and retention of an increased proportion of mono-nucleated cardiomyocytes into adulthood. Furthermore, these CIZ1 induced changes in the heart reduce the impact of myocardial injury, identifying CIZ1 as a putative therapeutic target for cardiac repair. Summary: An inducible mouse model was developed to show that CIZ1 extends the window of cardiomyocyte proliferation and reduces the impact of injury on cardiac function.
Collapse
Affiliation(s)
| | | | | | | | - Dawn Coverley
- Biology Department, University of York, York YO10 5DD, UK
| | - Justin F X Ainscough
- LICAMM, University of Leeds, Leeds LS2 9JT, UK .,Biology Department, University of York, York YO10 5DD, UK
| |
Collapse
|
18
|
Emerging Roles for Ciz1 in Cell Cycle Regulation and as a Driver of Tumorigenesis. Biomolecules 2016; 7:biom7010001. [PMID: 28036012 PMCID: PMC5372713 DOI: 10.3390/biom7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Precise duplication of the genome is a prerequisite for the health and longevity of multicellular organisms. The temporal regulation of origin specification, replication licensing, and firing at replication origins is mediated by the cyclin-dependent kinases. Here the role of Cip1 interacting Zinc finger protein 1 (Ciz1) in regulation of cell cycle progression is discussed. Ciz1 contributes to regulation of the G1/S transition in mammalian cells. Ciz1 contacts the pre-replication complex (pre-RC) through cell division cycle 6 (Cdc6) interactions and aids localization of cyclin A- cyclin-dependent kinase 2 (CDK2) activity to chromatin and the nuclear matrix during initiation of DNA replication. We discuss evidence that Ciz1 serves as a kinase sensor that regulates both initiation of DNA replication and prevention of re-replication. Finally, the emerging role for Ciz1 in cancer biology is discussed. Ciz1 is overexpressed in common tumors and tumor growth is dependent on Ciz1 expression, suggesting that Ciz1 is a driver of tumor growth. We present evidence that Ciz1 may contribute to deregulation of the cell cycle due to its ability to alter the CDK activity thresholds that are permissive for initiation of DNA replication. We propose that Ciz1 may contribute to oncogenesis by induction of DNA replication stress and that Ciz1 may be a multifaceted target in cancer therapy.
Collapse
|
19
|
Xiao J, Vemula SR, Xue Y, Khan MM, Kuruvilla KP, Marquez-Lona EM, Cobb MR, LeDoux MS. Motor phenotypes and molecular networks associated with germline deficiency of Ciz1. Exp Neurol 2016; 283:110-20. [PMID: 27163549 DOI: 10.1016/j.expneurol.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022]
Abstract
A missense mutation in CIZ1 (c.790A>G, p.S264G) was linked to autosomal dominant cervical dystonia in a large multiplex Caucasian pedigree (OMIM614860, DYT23). CIZ1 is a p21((Cip1/Waf1)) -interacting zinc finger protein, widely expressed in neural and extra-neural tissues, and plays a role in DNA synthesis at the G1/S cell-cycle checkpoint. The role of CIZ1 in the nervous system and relative contributions of gain- or loss- of function to the pathogenesis of CIZ1-associated dystonia remain indefinite. Using relative quantitative reverse transcriptase-PCR, cerebellum showed the highest expression levels of Ciz1 in adult mouse brain, over two fold higher than liver, and higher than striatum, midbrain and cerebral cortex. Overall, neural expression of Ciz1 increased with postnatal age. A Ciz1 gene-trap knock-out (KO) mouse model (Ciz1(-/-)) was generated to examine the functional role(s) of CIZ1 in the sensorimotor nervous system and contributions of CIZ1 to cell-cycle control in the mammalian brain. Ciz1 transcripts were absent in Ciz1(-/-) mice and reduced by approximately 50% in Ciz1(+/-) mice. Ciz1(-/-) mice were fertile but smaller than wild-type (WT) littermates. Ciz1(-/-) mice did not manifest dystonia, but exhibited mild motoric abnormalities on balance, open-field activity, and gait. To determine the effects of germline KO of Ciz1 on whole-genome gene expression in adult brain, total RNA from mouse cerebellum was harvested from 6 10-month old Ciz1(-/-) mice and 6 age- and gender- matched WT littermates for whole-genome gene expression analysis. Based on whole-genome gene-expression analyses, genes involved in cellular movement, cell development, cellular growth, cellular morphology and cell-to-cell signaling and interaction were up-regulated in Ciz1(-/-) mice. The top up-regulated pathways were metabolic and cytokine-cytokine receptor interactions. Down-regulated genes were involved in cell cycle, cellular development, cell death and survival, gene expression and cell morphology. Down-regulated networks included those related to metabolism, focal adhesion, neuroactive ligand-receptor interaction, and MAPK signaling. Based on pathway analyses, transcription factor 7-like 2 (TCF7L2), a member of the Wnt/β-catenin signaling pathway, was a major hub for down-regulated genes, whereas NF-κB was a major hub for up-regulated genes. In aggregate, these data suggest that CIZ1 may be involved in the post-mitotic differentiation of neurons in response to external signals and changes in gene expression may compensate, in part, for CIZ1 deficiency in our Ciz1(-/-) mouse model. Although CIZ1 deficiency was associated with mild motor abnormalities, germline loss of Ciz1 was not associated with dystonia on the C57BL/6J background.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Satya R Vemula
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad M Khan
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Korah P Kuruvilla
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Esther M Marquez-Lona
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madison R Cobb
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
The Role of Cdkn1A-Interacting Zinc Finger Protein 1 (CIZ1) in DNA Replication and Pathophysiology. Int J Mol Sci 2016; 17:212. [PMID: 26861296 PMCID: PMC4783944 DOI: 10.3390/ijms17020212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/23/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Cdkn1A-interacting zinc finger protein 1 (CIZ1) was first identified in a yeast-2-hybrid system searching for interacting proteins of CDK2 inhibitor p21Cip1/Waf1. Ciz1 also binds to CDK2, cyclin A, cyclin E, CDC6, PCNA, TCF4 and estrogen receptor-α. Recent studies reveal numerous biological functions of CIZ1 in DNA replication, cell proliferation, and differentiation. In addition, splicing variants of CIZ1 mRNA is associated with a variety of cancers and Alzheimer’s disease, and mutations of the CIZ1 gene lead to cervical dystonia. CIZ1 expression is increased in cancers and rheumatoid arthritis. In this review, we will summarize the biological functions and molecular mechanisms of CIZ1 in these physiological and pathological processes.
Collapse
|
21
|
Wu J, Lei L, Gu D, Liu H, Wang S. CIZ1 is upregulated in hepatocellular carcinoma and promotes the growth and migration of the cancer cells. Tumour Biol 2015; 37:4735-42. [PMID: 26515335 DOI: 10.1007/s13277-015-4309-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, and the prognosis for the HCC remains very poor. Although dys-regulation of CIZ1 (Cip1 interacting zinc finger protein 1) has been observed in various cancer types, its expression and functions in HCC remain unknown. In this study, the mRNA level of CIZ1 in the HCC tissues were examined using real-time polymerase chain reaction, and the effects of CIZ1 on the growth, migration, and metastasis of HCC cells were examined by crystal violet assay, Boyden chamber assay, and in vivo image system, respectively. In addition, the molecular mechanisms were investigated by luciferase assay. Upregulation of CIZ1 in the clinical HCC samples was observed. Forced expression of CIZ1 promoted the growth and migration of HCC cells, while knocking down the expression of CIZ1 inhibited the growth, migration, and metastasis of HCC cells. Molecular mechanism studies revealed that CIZ1 activated YAP/TAZ signaling in HCC cells. Taken together, our study demonstrated the oncogenic roles of CIZ1 in HCC cells and CIZ1 might be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Jinsheng Wu
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Liu Lei
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Dianhua Gu
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Shaochuang Wang
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China.
| |
Collapse
|
22
|
Marriott AS, Copeland NA, Cunningham R, Wilkinson MC, McLennan AG, Jones NJ. Diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication. DNA Repair (Amst) 2015. [PMID: 26204256 DOI: 10.1016/j.dnarep.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.
Collapse
Affiliation(s)
- Andrew S Marriott
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nikki A Copeland
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YG, UK
| | - Ryan Cunningham
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark C Wilkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Nigel J Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
23
|
Linzen U, Lilischkis R, Pandithage R, Schilling B, Ullius A, Lüscher-Firzlaff J, Kremmer E, Lüscher B, Vervoorts J. ING5 is phosphorylated by CDK2 and controls cell proliferation independently of p53. PLoS One 2015; 10:e0123736. [PMID: 25860957 PMCID: PMC4393124 DOI: 10.1371/journal.pone.0123736] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
Inhibitor of growth (ING) proteins have multiple functions in the control of cell proliferation, mainly by regulating processes associated with chromatin regulation and gene expression. ING5 has been described to regulate aspects of gene transcription and replication. Moreover deregulation of ING5 is observed in different tumors, potentially functioning as a tumor suppressor. Gene transcription in late G1 and in S phase and replication is regulated by cyclin-dependent kinase 2 (CDK2) in complex with cyclin E or cyclin A. CDK2 complexes phosphorylate and regulate several substrate proteins relevant for overcoming the restriction point and promoting S phase. We have identified ING5 as a novel CDK2 substrate. ING5 is phosphorylated at a single site, threonine 152, by cyclin E/CDK2 and cyclin A/CDK2 in vitro. This site is also phosphorylated in cells in a cell cycle dependent manner, consistent with it being a CDK2 substrate. Furthermore overexpression of cyclin E/CDK2 stimulates while the CDK2 inhibitor p27KIP1 represses phosphorylation at threonine 152. This site is located in a bipartite nuclear localization sequence but its phosphorylation was not sufficient to deregulate the subcellular localization of ING5. Although ING5 interacts with the tumor suppressor p53, we could not establish p53-dependent regulation of cell proliferation by ING5 and by phospho-site mutants. Instead we observed that the knockdown of ING5 resulted in a strong reduction of proliferation in different tumor cell lines, irrespective of the p53 status. This inhibition of proliferation was at least in part due to the induction of apoptosis. In summary we identified a phosphorylation site at threonine 152 of ING5 that is cell cycle regulated and we observed that ING5 is necessary for tumor cell proliferation, without any apparent dependency on the tumor suppressor p53.
Collapse
Affiliation(s)
- Ulrike Linzen
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Richard Lilischkis
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Ruwin Pandithage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Britta Schilling
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Andrea Ullius
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistrasse 25, 81377, München, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
- * E-mail: (BL); (JV)
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057, Aachen, Germany
- * E-mail: (BL); (JV)
| |
Collapse
|
24
|
Zhang D, Wang Y, Dai Y, Wang J, Suo T, Pan H, Liu H, Shen S, Liu H. CIZ1 promoted the growth and migration of gallbladder cancer cells. Tumour Biol 2015; 36:2583-2591. [PMID: 25427641 DOI: 10.1007/s13277-014-2876-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022] Open
Abstract
Gallbladder cancer (GBC) is one of the most common and aggressive diseases among the gastrointestinal tract malignancies, and the molecular mechanism underlying this disease remains largely unknown. CIZ1 (Cip1 interacting zinc finger protein 1), a binding partner of p21(Cip1/Waf1), has been found to be involved in the tumorigenesis recently. However, the expression pattern and biological functions of CIZ1 in the progression of GBC are not fully understood. In this study, it was found that the expression of CIZ1 was significantly elevated in GBC samples compared to their adjacent normal tissues. Moreover, overexpression of CIZ1 promoted the growth and migration of GBC cells, while knocking down the expression of CIZ1 inhibited the growth, migration, and tumorigenesis of GBC cells in vitro and in vivo. Mechanistically, CIZ1 was found to interact with TCF4 (T-cell factor) and activate beta-catenin/TCF signaling. Our study demonstrated that CIZ1 played an oncogenic role in the progression of GBC and CIZ1 might be a promising target for the treatment of GBC.
Collapse
Affiliation(s)
- Dexiang Zhang
- General Surgery Department, Zhongshan Hospital, General Surgery Institute, Fudan University, 180 Fenglin Rd., 200032, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Copeland NA, Sercombe HE, Wilson RHC, Coverley D. Cyclin A/CDK2 phosphorylation of CIZ1 blocks replisome formation and initiation of mammalian DNA replication. J Cell Sci 2015; 128:1518-27. [DOI: 10.1242/jcs.161919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
Abstract
CIZ1 is a nuclear matrix protein that cooperates with cyclin A/CDK2 to promote mammalian DNA replication. We show here that cyclin A/CDK2 also negatively regulates CIZ1 activity via phosphorylation at threonines 144, 192, and 293. Phosphomimetic mutants do not promote DNA replication in cell-free and cell-based assays, and also have a dominant negative effect on replisome formation at the level of PCNA recruitment. Phosphorylation blocks direct interaction with cyclin A/CDK2, and recruitment of endogenous cyclin A to the nuclear matrix. In contrast, phosphomimetic CIZ1 retains nuclear matrix binding capability, and interaction with CDC6 is not affected. Phospho-threonine 192-specific antibodies confirm that CIZ1 is phosphorylated during S-phase and G2, and show that phosphorylation at this site occurs at post-initiation concentrations of cyclin A/CDK2. Together the data suggest that CIZ1 is a kinase sensor that promotes initiation of DNA replication at low kinase levels, when in a hypophosphorylated state that is permissive for cyclin A-CDK2 interaction and delivery to licensed origins, but blocks delivery at higher kinase levels when it is itself phosphorylated.
Collapse
|
26
|
Weng MT, Luo J. The enigmatic ERH protein: its role in cell cycle, RNA splicing and cancer. Protein Cell 2014; 4:807-12. [PMID: 24078386 DOI: 10.1007/s13238-013-3056-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022] Open
Abstract
Enhancer of rudimentary homolog (ERH) is a small, highly conserved protein among eukaryotes. Since its discovery nearly 20 years ago, its molecular function has remained enigmatic. It has been implicated to play a role in transcriptional regulation and in cell cycle. We recently showed that ERH binds to the Sm complex and is required for the mRNA splicing of the mitotic motor protein CENP-E. Furthermore, cancer cells driven by mutations in the KRAS oncogene are particularly sensitive to RNAi-mediated suppression of ERH function, and ERH expression is inversely correlated with survival in colorectal cancer patients whose tumors harbor KRAS mutation. These recent findings indicate that ERH plays an important role in cell cycle through its mRNA splicing activity and is critically required for genomic stability and cancer cell survival.
Collapse
|
27
|
Han X, Wang Z, Wang W, Bai R, Zhao P, Shang J. Screening on human hepatoma cell line HepG-2 nucleus and cytoplasm protein after CDK2 silencing by RNAi. Cytotechnology 2014; 66:567-74. [PMID: 24801578 DOI: 10.1007/s10616-013-9604-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022] Open
Abstract
The activation of phase-specific cyclin-dependent kinases is associated with ordered cell cycle transitions. Among the mammalian Cdks, Cdk2 is essential for liver cancer cell proliferation. The related cycling protein CDK2 was analyzed by 2D-gel and MALDI-TOF/TOF MS mass assay in liver cancer cells, which CDK2 was silenced. The results showed four significantly different spots in cell ribonucleoprotein (similar to ribosomal protein S12, chaperonin 10-related protein, beta-actin and zinc finger protein 276) and four in plasmosin (aldolase A protein, hCG, anonymous protein and tubulin, gamma complex associated protein 2). In the plasmosin, aldolase A catalyzes the production of tublin and actin. Together they regulate the cell cycle and arrest the cell in the S phage. In the cell ribonucleoprotein, proteins with homology to ribosomal protein S12 and chaperonin 10 play a similar role in cell cycle regulation.
Collapse
Affiliation(s)
- Xiaofang Han
- Department of Clinical Laboratory, Inner Mongolia People's Hospital, Hohhot, 010018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2014; 28:968-81. [PMID: 23893453 DOI: 10.1002/mds.25547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English-language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell-cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Mark S Ledoux
- Department of Neurology, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The dystonias are a common but complex group of disorders that show considerable variation in cause and clinical presentation. The purpose of this review is to highlight the most important discoveries and insights from across the field over the period of the past 18 months. RECENT FINDINGS Five new genes for primary dystonia (PRRT2, CIZ1, ANO3, TUBB4A and GNAL) have made their appearance in the literature. New subtypes of neuronal brain iron accumulation have been delineated and linked to mutations in C19orf12 and WDR45, while a new treatable form of dystonia with brain manganese deposition related to mutations in SLC30A10 has been described. At the same time, the phenotypes of other forms of dystonic syndromes have been expanded or linked together. Finally, there has been increasing recognition of both the extramotor phenotype in dystonia and the part played by the cerebellum in its pathophysiology. SUMMARY Recently, there has been unprecedented change in the scientific landscape with respect to the cause of various dystonic syndromes that is likely to make a direct impact on clinical practice in the near future. Understanding the genetic cause of these syndromes and the often wide phenotypic variation in their presentations will improve diagnosis and treatment. With time, these discoveries may also lead to much-needed progress in elucidating the underlying pathophysiology of dystonia.
Collapse
|
30
|
Vemula SR, Xiao J, Zhao Y, Bastian RW, Perlmutter JS, Racette BA, Paniello RC, Wszolek ZK, Uitti RJ, Van Gerpen JA, Hedera P, Truong DD, Blitzer A, Rudzińska M, Momčilović D, Jinnah HA, Frei K, Pfeiffer RF, LeDoux MS. A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia. Mol Genet Genomic Med 2014; 2:261-72. [PMID: 24936516 PMCID: PMC4049367 DOI: 10.1002/mgg3.67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022] Open
Abstract
Although coding variants in THAP1 have been causally associated with primary dystonia, the contribution of noncoding variants remains uncertain. Herein, we examine a previously identified Intron 1 variant (c.71+9C>A, rs200209986). Among 1672 subjects with mainly adult-onset primary dystonia, 12 harbored the variant in contrast to 1/1574 controls (P < 0.01). Dystonia classification included cervical dystonia (N = 3), laryngeal dystonia (adductor subtype, N = 3), jaw-opening oromandibular dystonia (N = 1), blepharospasm (N = 2), and unclassified (N = 3). Age of dystonia onset ranged from 25 to 69 years (mean = 54 years). In comparison to controls with no identified THAP1 sequence variants, the c.71+9C>A variant was associated with an elevated ratio of Isoform 1 (NM_018105) to Isoform 2 (NM_199003) in leukocytes. In silico and minigene analyses indicated that c.71+9C>A alters THAP1 splicing. Lymphoblastoid cells harboring the c.71+9C>A variant showed extensive apoptosis with relatively fewer cells in the G2 phase of the cell cycle. Differentially expressed genes from lymphoblastoid cells revealed that the c.71+9C>A variant exerts effects on DNA synthesis, cell growth and proliferation, cell survival, and cytotoxicity. In aggregate, these data indicate that THAP1 c.71+9C>A is a risk factor for adult-onset primary dystonia.
Collapse
Affiliation(s)
- Satya R Vemula
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Yu Zhao
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | | | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri
| | - Randal C Paniello
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine St. Louis, Missouri
| | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Jay A Van Gerpen
- Department of Neurology, Mayo Clinic Jacksonville, Florida, 32224
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Nashville, Tennessee
| | - Daniel D Truong
- Parkinson's & Movement Disorder Institute Fountain Valley, California, 92708
| | - Andrew Blitzer
- New York Center for Voice and Swallowing Disorders New York, New York
| | - Monika Rudzińska
- Department of Neurology, Jagiellonian University Medical College in Krakow Kraków, Poland
| | - Dragana Momčilović
- Clinic for Child Neurology and Psychiatry, Medical Faculty University of Belgrade Belgrade, Serbia
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, School of Medicine, Emory University Atlanta, Georgia, 30322
| | - Karen Frei
- Department of Neurology, Loma Linda University Health System Loma Linda, California, 92354
| | - Ronald F Pfeiffer
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| | - Mark S LeDoux
- Departments of Neurology and Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, Tennessee, 38163
| |
Collapse
|
31
|
Yin J, Wang C, Tang X, Sun H, Shao Q, Yang X, Qu X. CIZ1 regulates the proliferation, cycle distribution and colony formation of RKO human colorectal cancer cells. Mol Med Rep 2013; 8:1630-4. [PMID: 24126760 DOI: 10.3892/mmr.2013.1716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/18/2013] [Indexed: 11/06/2022] Open
Abstract
Cip1-interacting zinc finger protein 1 (CIZ1) is a nuclear protein that was observed to bind to p21Cip1/Waf1. p21Cip1/Waf1 regulates the cell cycle and is associated with colorectal cancer (CRC) progression. However, the effect of CIZ1 on CRC cells remains unclear. In the present study, CIZ1 was observed to be highly expressed in RKO human CRC cells. Silencing of CIZ1 using small interfering RNA (siRNA) suppressed RKO cell proliferation. Flow cytometric analysis demonstrated that knockdown of CIZ1 decreased the percentage of cells in the S phase and increased the ratio of cells in the G0/G1 phase in parallel with upregulated cell apoptosis. Moreover, the number and size of RKO cell colonies was repressed by knockdown of the CIZ1 gene. These results suggested that CIZ1 may be involved in colon cancer progression by regulating cell proliferation, cell cycle, apoptosis and colony formation. Furthermore, CIZ1‑siRNA may provide a novel tool for CRC investigation and therapy.
Collapse
Affiliation(s)
- Jing Yin
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | | | | | | | |
Collapse
|
32
|
Nishibe R, Watanabe W, Ueda T, Yamasaki N, Koller R, Wolff L, Honda ZI, Ohtsubo M, Honda H. CIZ1, a p21Cip1/Waf1-interacting protein, functions as a tumor suppressor in vivo. FEBS Lett 2013; 587:1529-35. [PMID: 23583447 DOI: 10.1016/j.febslet.2013.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/16/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
CIZ1 is a nuclear protein involved in DNA replication and is also implicated in human diseases including cancers. To gain an insight into its function in vivo, we generated mice lacking Ciz1. Ciz1-deficient (Ciz1(-/-)) mice grew without any obvious abnormalities, and Ciz1(-/-) mouse embryonic fibroblasts (MEFs) did not show any defects in cell cycle status, cell growth, and DNA damage response. However, Ciz1(-/-) MEFs were sensitive to hydroxyurea-mediated replication stress and susceptible to oncogene-induced cellular transformation. In addition, Ciz1(-/-) mice developed various types of leukemias by retroviral insertional mutagenesis. These results indicate that CIZ1 functions as a tumor suppressor in vivo.
Collapse
Affiliation(s)
- Rio Nishibe
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci U S A 2012; 109:E3128-35. [PMID: 23074256 DOI: 10.1073/pnas.1210107109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is an unmet need for circulating biomarkers that can detect early-stage lung cancer. Here we show that a variant form of the nuclear matrix-associated DNA replication factor Ciz1 is present in 34/35 lung tumors but not in adjacent tissue, giving rise to stable protein quantifiable by Western blot in less than a microliter of plasma from lung cancer patients. In two independent sets, with 170 and 160 samples, respectively, variant Ciz1 correctly identified patients who had stage 1 lung cancer with clinically useful accuracy. For set 1, mean variant Ciz1 level in individuals without diagnosed tumors established a threshold that correctly classified 98% of small cell lung cancers (SCLC) and non-SCLC patients [receiver operator characteristic area under the curve (AUC) 0.958]. Within set 2, comparison of patients with stage 1 non-SCLC with asymptomatic age-matched smokers or individuals with benign lung nodules correctly classified 95% of patients (AUCs 0.913 and 0.905), with overall specificity of 76% and 71%, respectively. Moreover, using the mean of controls in set 1, we achieved 95% sensitivity among patients with stage 1 non-SCLC patients in set 2 with 74% specificity, demonstrating the robustness of the classification. RNAi-mediated selective depletion of variant Ciz1 is sufficient to restrain the growth of tumor cells that express it, identifying variant Ciz1 as a functionally relevant driver of cell proliferation in vitro and in vivo. The data show that variant Ciz1 is a strong candidate for a cancer-specific single marker capable of identifying early-stage lung cancer within at-risk groups without resort to invasive procedures.
Collapse
|
34
|
Greaves EA, Copeland NA, Coverley D, Ainscough JFX. Cancer associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells. J Cell Sci 2012; 125:2466-77. [DOI: 10.1242/jcs.101097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CIZ1 is a nuclear matrix associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro the CIZ1 N-terminus interacts with cyclins E and A via distinct sites, enabling functional cooperation with cyclin A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix imposing spatial constraint on cyclin dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably down-regulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes prior to meiotic division. Sequence analysis identifies at least seven alternatively spliced variants at this time, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells CIZ1 interacts with the germ cell specific cyclin, A1, that has been implicated in DNA double-strand break repair. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply novel post-replicative roles for CIZ1 in germ cell differentiation that may include meiotic recombination, a process intrinsic to genome stability and diversification.
Collapse
|
35
|
Rahman FA, Aziz N, Coverley D. Differential detection of alternatively spliced variants of Ciz1 in normal and cancer cells using a custom exon-junction microarray. BMC Cancer 2010; 10:482. [PMID: 20831784 PMCID: PMC2945943 DOI: 10.1186/1471-2407-10-482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/10/2010] [Indexed: 01/22/2023] Open
Abstract
Background Ciz1 promotes initiation of mammalian DNA replication and is present within nuclear matrix associated DNA replication factories. Depletion of Ciz1 from normal and cancer cells restrains entry to S phase and inhibits cell proliferation. Several alternative splicing events with putative functional consequences have been identified and reported, but many more variants are predicted to exist based on publicly available mRNAs and expressed sequence tags. Methods Here we report the development and validation of a custom exon and exon-junction microarray focused on the human CIZ1 gene, capable of reproducible detection of differential splice-variant expression. Results Using a pair of paediatric cancer cell lines and a pool of eight normal lines as reference, the array identified expected and novel CIZ1 splicing events. One novel variant (delta 8-12) that encodes a predicted protein lacking key functional sites, was validated by quantitative RT-PCR and found to be over-represented in a range of other cancer cell lines, and over half of a panel of primary lung tumours. Conclusions Expression of CIZ1 delta 8-12 appears to be restricted to cancer cells, and may therefore be a useful novel biomarker
Collapse
|