1
|
Zhang W, Zhang Y, Mao W, Huang T, Yu X, Qin X, Mi LZ. Unprocessed BMP9 precursor is an intrinsic antagonist for its active growth factor. Structure 2025:S0969-2126(25)00177-7. [PMID: 40412377 DOI: 10.1016/j.str.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
BMP9, a member of the TGFβ superfamily, plays a crucial role in angiogenesis, tissue development, and innate immunity. Dysregulation of BMP9 signaling is implicated in various diseases. Unlike latent TGFβs, BMP9 is produced as a precursor that is processed into an active pro-protein complex. However, the regulatory mechanisms governing the precursor's activity and its biological functions have been largely unexplored. In this study, we demonstrate that the unprocessed BMP9 precursor acts as an intrinsic antagonist to its pro-protein in angiogenesis and osteogenesis. This inhibition occurs through competitive binding to the receptors ENG and ALK1. We also identify structural requirements for the precursor's recognition by these receptors. Our findings reveal previously underappreciated functions of the BMP9 precursor and its regulatory mechanisms in growth factor signaling, with significant implications for developmental biology and clinical interventions.
Collapse
Affiliation(s)
- Weida Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yuanyuan Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Weidong Mao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Tao Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Xinrong Yu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Xiaohong Qin
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, P.R. China.
| | - Li-Zhi Mi
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P.R. China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, P.R. China.
| |
Collapse
|
2
|
Meurer SK, Bronneberg G, Penners C, Kauffmann M, Braunschweig T, Liedtke C, Huber M, Weiskirchen R. TGF-β1 Induces Mucosal Mast Cell Genes and is Negatively Regulated by the IL-3/ERK1/2 Axis. Cell Commun Signal 2025; 23:76. [PMID: 39934802 PMCID: PMC11817834 DOI: 10.1186/s12964-025-02048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Mast cells develop from the myeloid lineage and are released from the bone marrow as immature cells, which then differentiate at the destination tissue based on cues from the local environment. In the liver, mast cells are recruited in diseased states to fibrogenic surroundings rich in TGF-β1. The aim of this study was to investigate TGF-β1 signaling in primary and permanent mast cells to identify common and unique mechanisms. The TGF-β receptor repertoire is similar among mast cells, with high expression of type I and type II receptors and very low expression of type III receptors (Betaglycan and Endoglin). Downstream, TGF-β1 activates the SMAD2/3 signaling axis and also SMAD1/5 with target genes Smad6 and Id1 in a transient manner. Initially, TGF-β1 upregulates the transcription of mucosal mast cell effectors Mcpt1 and Mcpt2 in all analyzed mast cells. This upregulation is reduced in the presence of IL-3, which promotes proliferation. Inhibition of ERK1/2 activation reduces proliferation and mitigates the negative effect of IL-3 on Mcpt1 mRNA and protein expression in the immortalized mast cell line PMC-306 but not in bone marrow-derived mast cells. Therefore, extracellular signal-regulated kinases ERK1/2 are identified as a mutual switch between IL-3-driven proliferation and TGF-β1-promoted mucosal mast cell differentiation in PMC-306. In conclusion, TGF-β1 promotes a mucosal gene signature and inhibits proliferation in mast cells, with these effects being counter-regulated by IL-3/ERK1/2.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Penners
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Anderson-Watters M, Khan IM. BMP9 induces postnatal zonal stratification of immature articular cartilage through reconfiguration of the existing collagen framework. Front Cell Dev Biol 2025; 12:1511908. [PMID: 39935787 PMCID: PMC11810917 DOI: 10.3389/fcell.2024.1511908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 02/13/2025] Open
Abstract
Articular cartilage lines bones in synovial joints, and its main structural element, collagen, has an arcade-like arrangement formed from an initially random network in a process called postnatal maturation. This reshaping of the extracellular matrix is similar across all species and is critical for the lifelong strength and durability of cartilage. Collagen remodelling during maturation is difficult to study because it spans a period of time between birth and puberty, and in larger animals this can be months or years. In this study, we show that growth factor bone morphogenetic protein-9 (BMP9) induces collagen remodelling in intact immature articular cartilage explants within 21 days, generating the characteristic arcade-like structure and zonal anisotropic architecture of adult cartilage. In explants exposed to BMP9, collagen fibrils underwent angular displacement from 19° to 78° with respect to the surface, cell density decreased 1.77-fold, and chondrons were significantly larger. The absence of labelling with anti-COL2¾m, a marker of collagen turnover, showed that the existing fibril network was restructured. We found that stromelysin-1 (metalloproteinase-3, MMP3) gene expression was consistently upregulated, whilst other MMP transcript levels were unchanged or reduced. Remodelling was dependent on proteoglycan turnover and could be inhibited using PD166973. These data suggest a possible mechanism whereby MMP3 induces proteoglycan turnover and depolymerises collagen fibrils enabling them to undergo spatial reorganisation. This process may be driven by tissue swelling, which generates directional strain to align fibrils into an arcade-like pattern. The ability to induce tissue maturation advances the potential for engineering durable and functional cartilage for patients requiring joint repair due to diseases such as osteoarthritis.
Collapse
Affiliation(s)
| | - Ilyas M. Khan
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
4
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Pak B, Kim M, Han O, Lee HW, Dubrac A, Choi W, Yang JM, Boyé K, Cho H, Citrin KM, Kim I, Eichmann A, Bautch VL, Jin SW. ACVR1/ALK2-p21 signaling axis modulates proliferation of the venous endothelium in the retinal vasculature. Angiogenesis 2024; 27:765-777. [PMID: 38955953 DOI: 10.1007/s10456-024-09936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Minjung Kim
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacy, Chosun University, Gwangju, Korea
| | - Alexandre Dubrac
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- CHU Sainte-Justine Research Center, and Department of Pathology and Cellular Biology, Université de Montréal, Montréal, QC, Canada
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jee Myung Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kevin Boyé
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heewon Cho
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Kathryn M Citrin
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria L Bautch
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Suk-Won Jin
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea.
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H, Parikh AS. Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3047. [PMID: 39272905 PMCID: PMC11394608 DOI: 10.3390/cancers16173047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide according to GLOBOCAN estimates from 2022. Current therapy options for recurrent or metastatic disease are limited to conventional cytotoxic chemotherapy and immunotherapy, with few targeted therapy options readily available. Recent single-cell transcriptomic analyses identified TGF-β signaling as an important mediator of functional interplays between cancer-associated fibroblasts and a subset of mesenchymal cancer cells. This signaling was shown to drive invasiveness, treatment resistance, and immune evasion. These data provide renewed interest in the TGF-β pathway as an alternative therapeutic target, prompting a critical review of previous clinical data which suggest a lack of benefit from TGF-β inhibitors. While preclinical data have demonstrated the great anti-tumorigenic potential of TGF-β inhibitors, the underwhelming results of ongoing and completed clinical trials highlight the difficulty actualizing these benefits into clinical practice. This topical review will discuss the relevant preclinical and clinical findings for TGF-β inhibitors in HNSCC and will explore the potential role of patient stratification in the development of this therapeutic strategy.
Collapse
Affiliation(s)
- William R Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Isabel Cioffi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Corinne Stonebraker
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Matthew Spence
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Brian Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
8
|
Yang C, Sun M, Yang Y, Han Y, Wu X, Wu X, Cao H, Chen L, Lei Y, Hu X, Chen Y, Zeng Z, Li J, Shu X, Yang Z, Lu K, Li Y, Wang X, Yi B. Elevated circulating BMP9 aggravates pulmonary angiogenesis in hepatopulmonary syndrome rats through ALK1-Endoglin-Smad1/5/9 signalling. Eur J Clin Invest 2024; 54:e14212. [PMID: 38591651 DOI: 10.1111/eci.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.
Collapse
Affiliation(s)
- Chunyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mei Sun
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yihui Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Han
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiulin Wu
- Institute of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huilin Cao
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuhao Lei
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ziyang Zeng
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhong Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Shu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaobo Wang
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Sun C, Xie K, Yang L, Cai S, Wang M, Zhu Y, Tao B, Zhu Y. HDAC6 Enhances Endoglin Expression through Deacetylation of Transcription Factor SP1, Potentiating BMP9-Induced Angiogenesis. Cells 2024; 13:490. [PMID: 38534334 PMCID: PMC10969049 DOI: 10.3390/cells13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
| | - Kuifang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Lejie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Shengyang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Beibei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yichun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| |
Collapse
|
10
|
Calixto RD, Freitas GP, Souza PG, Ramos JIR, Santos IC, de Oliveira FS, Almeida ALG, Rosa AL, Beloti MM. Effect of the secretome of mesenchymal stem cells overexpressing BMP-9 on osteoblast differentiation and bone repair. J Cell Physiol 2023; 238:2625-2637. [PMID: 37661654 DOI: 10.1002/jcp.31115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The secretome present in the conditioned medium (CM) of mesenchymal stem cells (MSCs) is a promising tool to be used in therapies to promote bone regeneration. Considering the high osteogenic potential of the bone morphogenetic protein 9 (BMP-9), we hypothesized that the secretome of MSCs overexpressing BMP-9 (MSCsBMP-9 ) enhances the osteoblast differentiation of MSCs and the bone formation in calvarial defects. CM of either MSCsBMP-9 (CM-MSCsBMP-9 ) or MSCs without BMP-9 overexpression (CM-MSCsVPR ) were obtained at different periods. As the CM-MSCsBMP-9 generated after 1 h presented the highest BMP-9 concentration, CM-MSCsBMP-9 and CM-MSCsVPR were collected at this time point and used to culture MSCs and to be injected into mouse calvarial defects. The CM-MSCsBMP-9 enhanced the osteoblast differentiation of MSC by upregulating RUNX2, alkaline phosphatase (ALP) and osteopontin protein expression, and ALP activity, compared with CM-MSCsVPR . The CM-MSCsBMP-9 also enhanced the bone repair of mouse calvarial defects, increasing bone volume, bone volume/total volume, bone surface, and trabecular number compared with untreated defects and defects treated with CM-MSCsVPR or even with MSCsBMP-9 themselves. In conclusion, the potential of the MSCBMP-9 -secretome to induce osteoblast differentiation and bone formation shed lights on novel cell-free-based therapies to promote bone regeneration of challenging defects.
Collapse
Affiliation(s)
- Robson Diego Calixto
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paola Gomes Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Isadora Reis Ramos
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Cristine Santos
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Jatzlau J, Mendez PL, Altay A, Raaz L, Zhang Y, Mähr S, Sesver A, Reichenbach M, Mundlos S, Vingron M, Knaus P. Fluid shear stress-modulated chromatin accessibility reveals the mechano-dependency of endothelial SMAD1/5-mediated gene transcription. iScience 2023; 26:107405. [PMID: 37680470 PMCID: PMC10481294 DOI: 10.1016/j.isci.2023.107405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and fluid shear stress (FSS) mediate complementary functions in vascular homeostasis and disease development. It remains to be shown whether altered chromatin accessibility downstream of BMP and FSS offers a crosstalk level to explain changes in SMAD-dependent transcription. Here, we employed ATAC-seq to analyze arterial endothelial cells stimulated with BMP9 and/or FSS. We found that BMP9-sensitive regions harbor non-palindromic GC-rich SMAD-binding elements (GGCTCC) and 69.7% of these regions become BMP-insensitive in the presence of FSS. While GATA and KLF transcription factor (TF) motifs are unique to BMP9- and FSS-sensitive regions, respectively, SOX motifs are common to both. Finally, we show that both SOX(13/18) and GATA(2/3/6) family members are directly upregulated by SMAD1/5. These findings highlight the mechano-dependency of SMAD-signaling by a sequential mechanism of first elevated pioneer TF expression, allowing subsequent chromatin opening to eventually providing accessibility to novel SMAD binding sites.
Collapse
Affiliation(s)
- Jerome Jatzlau
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Paul-Lennard Mendez
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
| | - Aybuge Altay
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lion Raaz
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Yufei Zhang
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sophia Mähr
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Akin Sesver
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Maria Reichenbach
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), 13353 Berlin, Germany
- International Max-Planck Research School for Biology AND Computation (IMPRS-BAC), 14195 Berlin, Germany
| |
Collapse
|
12
|
Alkhathami AG, Abdullah MR, Ahmed M, Hassan Ahmed H, Alwash SW, Muhammed Mahdi Z, Alsaikhan F, Dera AA. Bone morphogenetic protein (BMP)9 in cancer development: mechanistic, diagnostic, and therapeutic approaches? J Drug Target 2023:1-11. [PMID: 37461888 DOI: 10.1080/1061186x.2023.2236330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Bone morphogenetic protein (BMP)-9 is considered a member of the transforming growth factor (TGF)β superfamily. It was first found as an inducer of bone and cartilage formation and then discovered that this factor mediates several physiologic functions and hemostasis. Besides physiological conditions, BMP9 has also been elucidated that it is involved in several pathological situations, especially cancer. In various cancers, dysregulation of BMP9 has raised the issue that BMP9 might play a conflicting role in tumour development. BMP9 binding to its receptors (BMPRs), including ALKs and BMPRII, induces canonical SMAD-dependent and non-canonical PI3K/AKT and MAPK signalling pathways in tumour cells. BMP9, via inducing apoptosis, inhibiting tumour-promoting cell signalling pathways, suppressing epithelial-mesenchymal transition (EMT) process, blocking angiogenesis, and preventing cross-talk in the tumour microenvironment, mainly exerts tumour-suppressive functions. In contrast, BMP9 triggers tumour-supportive signalling pathways, promotes EMT, and enhances angiogenesis, suggesting that BMP9 is also involved in tumour development. It has been demonstrated that modulating BMP9 expression and functions might be a promising approach to cancer treatment. It has also been indicated that evaluating BMP9 expression in cancers might be a biomarker for predicting cancer prognosis. Overall, BMP9 would provide a promising target in cancer management.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Muhjaha Ahmed
- Medical Technical college, Al-Farahidi University, Iraq
| | | | - Sarab W Alwash
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Iraq Hillah
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
13
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
14
|
Ehata S, Miyazono K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front Cell Dev Biol 2022; 10:883523. [PMID: 35693928 PMCID: PMC9174896 DOI: 10.3389/fcell.2022.883523] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, are multifunctional cytokines. BMPs have a broad range of functions, and abnormalities in BMP signaling pathways are involved in cancer progression. BMPs activate the proliferation of certain cancer cells. Malignant phenotypes of cancer cells, such as increased motility, invasiveness, and stemness, are enhanced by BMPs. Simultaneously, BMPs act on various cellular components and regulate angiogenesis in the tumor microenvironment. Thus, BMPs function as pro-tumorigenic factors in various types of cancer. However, similar to TGF-β, which shows both positive and negative effects on tumorigenesis, BMPs also act as tumor suppressors in other types of cancers. In this article, we review important findings published in the recent decade and summarize the pro-oncogenic functions of BMPs and their underlying mechanisms. The current status of BMP-targeted therapies for cancers is also discussed.
Collapse
Affiliation(s)
- Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Shogo Ehata,
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, Pradhan A, Kalin TV, Kalinichenko VV. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun 2022; 13:2080. [PMID: 35440116 PMCID: PMC9019054 DOI: 10.1038/s41467-022-29746-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs. BMP9 receptor, ACVRL1, and its downstream target genes were inhibited in EPCs from Foxf1WT/S52F mutant mice, a model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Expression of ACVRL1 and its targets were reduced in lungs of ACDMPV subjects. Inhibition of FOXF1 transcription factor reduced BMP9/ACVRL1 signaling and decreased angiogenesis in vitro. FOXF1 synergized with ETS transcription factor FLI1 to activate ACVRL1 promoter. Nanoparticle-mediated silencing of ACVRL1 in newborn mice decreased neonatal lung angiogenesis and alveolarization. Treatment with BMP9 restored lung angiogenesis and alveolarization in ACVRL1-deficient and Foxf1WT/S52F mice. Altogether, EPCs promote neonatal lung angiogenesis and alveolarization through FOXF1-mediated activation of BMP9/ACVRL1 signaling.
Collapse
Affiliation(s)
- Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arun Pradhan
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Medina-Jover F, Riera-Mestre A, Viñals F. Rethinking growth factors: the case of BMP9 during vessel maturation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R1-R14. [PMID: 35350597 PMCID: PMC8942324 DOI: 10.1530/vb-21-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation. Alterations in this pathway lead to the development of hereditary haemorrhagic telangiectasias. However, little was known about the BMP9 signalling cascade until the last years. Recent reports have shown that while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance endothelial maturation. In light of this evidence, a new criterion for the classification of cytokines is proposed here, based on the physiological objective of the activation of anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis or to promote a specific function such as matrix formation is a critical characteristic that needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic angiogenesis.
Collapse
Affiliation(s)
- Ferran Medina-Jover
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
17
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Harry JA, Ormiston ML. Novel Pathways for Targeting Tumor Angiogenesis in Metastatic Breast Cancer. Front Oncol 2021; 11:772305. [PMID: 34926282 PMCID: PMC8678517 DOI: 10.3389/fonc.2021.772305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer affecting women and is the second leading cause of cancer related death worldwide. Angiogenesis, the process of new blood vessel development from pre-existing vasculature, has been implicated in the growth, progression, and metastasis of cancer. Tumor angiogenesis has been explored as a key therapeutic target for decades, as the blockade of this process holds the potential to reduce the oxygen and nutrient supplies that are required for tumor growth. However, many existing anti-angiogenic approaches, such as those targeting Vascular Endothelial Growth Factor, Notch, and Angiopoietin signaling, have been associated with severe side-effects, limited survival advantage, and enhanced cancer regrowth rates. To address these setbacks, alternative pathways involved in the regulation of tumor angiogenesis are being explored, including those involving Bone Morphogenetic Protein-9 signaling, the Sonic Hedgehog pathway, Cyclooxygenase-2, p38-mitogen-activated protein kinase, and Chemokine Ligand 18. This review article will introduce the concept of tumor angiogenesis in the context of breast cancer, followed by an overview of current anti-angiogenic therapies, associated resistance mechanisms and novel therapeutic targets.
Collapse
Affiliation(s)
- Jordan A Harry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Tang H, Zhang X, Xue G, Xu F, Wang Q, Yang P, Hong B, Xu Y, Huang Q, Liu J, Zuo Q. The biology of bone morphogenetic protein signaling pathway in cerebrovascular system. Chin Neurosurg J 2021; 7:36. [PMID: 34465399 PMCID: PMC8408949 DOI: 10.1186/s41016-021-00254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Bone morphogenetic protein belongs to transcription growth factor superfamily β; bone morphogenetic protein signal pathway regulates cell proliferation, differentiation, and apoptosis among different tissues. Cerebrovascular system supplies sufficient oxygen and blood into brain to maintain its normal function. The disorder of cerebrovascular system will result into serious cerebrovascular diseases, which is gradually becoming a major threat to human health in modern society. In recent decades, many studies have revealed the underlying biology and mechanism of bone morphogenetic protein signal pathway played in cerebrovascular system. This review will discuss the relationship between the two aspects, aiming to provide new perspective for non-invasive treatment and basic research of cerebrovascular diseases.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Xiaoxi Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Qingsong Wang
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Pengfei Yang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
20
|
Gough NR, Xiang X, Mishra L. TGF-β Signaling in Liver, Pancreas, and Gastrointestinal Diseases and Cancer. Gastroenterology 2021; 161:434-452.e15. [PMID: 33940008 PMCID: PMC8841117 DOI: 10.1053/j.gastro.2021.04.064] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Genetic alterations affecting transforming growth factor-β (TGF-β) signaling are exceptionally common in diseases and cancers of the gastrointestinal system. As a regulator of tissue renewal, TGF-β signaling and the downstream SMAD-dependent transcriptional events play complex roles in the transition from a noncancerous disease state to cancer in the gastrointestinal tract, liver, and pancreas. Furthermore, this pathway also regulates the stromal cells and the immune system, which may contribute to evasion of the tumors from immune-mediated elimination. Here, we review the involvement of the TGF-β pathway mediated by the transcriptional regulators SMADs in disease progression to cancer in the digestive system. The review integrates human genomic studies with animal models that provide clues toward understanding and managing the complexity of the pathway in disease and cancer.
Collapse
Affiliation(s)
- Nancy R. Gough
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, New York; Center for Translational Medicine, Department of Surgery, The George Washington University, Washington, District of Columbia.
| |
Collapse
|
21
|
Yamaguchi A, Hirano I, Narusawa S, Shimizu K, Ariyama H, Yamawaki K, Nagao K, Yamamoto M, Shimizu R. Blockade of the interaction between BMP9 and endoglin on erythroid progenitors promotes erythropoiesis in mice. Genes Cells 2021; 26:782-797. [PMID: 34333851 PMCID: PMC9290798 DOI: 10.1111/gtc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/19/2023]
Abstract
Bone morphogenetic protein‐9 (BMP9), a member of the transforming growth factor β (TGFβ) superfamily, plays important roles in the development and maintenance of various cell lineages via complexes of type I and type II TGFβ receptors. Endoglin is a coreceptor for several TGFβ family members, including BMP9, which is highly expressed in a particular stage of differentiation in erythroid cells as well as in endothelial cells. Although the importance of the interaction between BMP9 and endoglin for endothelial development has been reported, the contribution of BMP9 to endoglin‐expressing erythroid cells remains to be clarified. To address this point, we prepared an anti‐BMP9 antibody that blocks the BMP9‐endoglin interaction. Of note, challenge with the antibody promotes erythropoiesis in wild‐type mice but not in a mouse model of renal anemia in which erythropoietin (EPO) production in the kidneys is genetically ablated. While endoglin‐positive erythroid progenitors are mainly maintained as progenitors when bone marrow‐derived lineage‐negative and cKit‐positive cells are cultured in the presence of EPO and stem cell factor, the erythroid‐biased accumulation of progenitors is impeded by the presence of BMP9. Our findings uncover an unrecognized role for BMP9 in attenuating erythroid differentiation via its interaction with endoglin on erythroid progenitors.
Collapse
Affiliation(s)
- Ayami Yamaguchi
- Nephrology Research Labs., Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., Machida, Japan
| | - Ikuo Hirano
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shiho Narusawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Shimizu
- Nephrology Research Labs., Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., Machida, Japan
| | - Hiroyuki Ariyama
- Nephrology Research Labs., Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., Machida, Japan
| | - Kengo Yamawaki
- Nephrology Research Labs., Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., Machida, Japan
| | - Kenji Nagao
- Nephrology Research Labs., Nephrology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., Machida, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2021; 251:178-197. [PMID: 34240497 DOI: 10.1002/dvdy.395] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are dimeric transforming growth factor ß (TGFß) family cytokines that were first described in bone and cartilage formation but have since been shown to be involved in many pleiotropic functions. In human, there are 15 BMP ligands, which initiate their cellular signaling by forming a complex with two copies of type I receptors and two copies of type II receptors, both of which are transmembrane receptors with an intracellular serine/threonine kinase domain. Within this receptor family, ALK1 (Activin receptor-Like Kinase 1), which is a type I receptor mainly expressed on endothelial cells, and BMPRII (BMP Receptor type II), a type II receptor also highly expressed on endothelial cells, have been directly linked to two rare vascular diseases: hereditary haemorrhagic telangiectasia (HHT), and pulmonary arterial hypertension (PAH), respectively. BMP9 (gene name GDF2) and BMP10, two close members of the BMP family, are the only known ligands for the ALK1 receptor. This specificity gives them a unique role in physiological and pathological angiogenesis and tissue homeostasis. The aim of this current review is to present an overview of what is known about BMP9 and BMP10 on vascular regulation with a particular emphasis on recent results and the many questions that remain unanswered regarding the roles and specificities between BMP9 and BMP10. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Claire Bouvard
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| | - Sabine Bailly
- Laboratory BioSanté, Univ. Grenoble Alpes, INSERM, CEA, Grenoble, France
| |
Collapse
|
23
|
Wang Y, Sima X, Ying Y, Huang Y. Exogenous BMP9 promotes lung fibroblast HFL-1 cell activation via ALK1/Smad1/5 signaling in vitro. Exp Ther Med 2021; 22:728. [PMID: 34007337 PMCID: PMC8120641 DOI: 10.3892/etm.2021.10160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has recently been described as a crucial regulator in modulating fibroblast-type cell activation. Activin receptor-like kinase 1 (ALK1) is a high affinity receptor for BMP9 that exerts its role via Smad1/5. However, the functional roles of BMP9 in activating lung fibroblasts and the underlying signaling pathway are not completely understood. The present study aimed to explore the effect of exogenous BMP9 on human lung fibroblast HFL-1 cell proliferation and differentiation, as well as the potential role of the ALK1/Smad1/5 signaling pathway. In the present study, fibroblast proliferation was assessed using Cell Counting Kit-8 and colony formation assays, and the mRNA and protein expression of target genes was examined using reverse transcription-quantitative PCR and western blot assays, respectively. Compared with the control group, BMP9 treatment increased HFL-1 cell proliferation, mRNA and protein expression of differentiated markers, including α-smooth muscle actin, type I collagen and type III collagen, and the expression of ALK1 and phosphorylated Smad1/5 expression. Furthermore, the effects of BMP9 were partially rescued by dorsomorphin-1, an inhibitor of ALK1. The results indicated that BMP9 may serve as a key inducer of lung fibroblast activation and ALK1/Smad1/5 signaling might be associated with BMP9-mediated effects in HFL-1 cells. Therefore, the present study highlighted that the potential role of the BMP9/ALK1/Smad1/5 signaling pathway in the development of pulmonary fibrosis requires further investigation.
Collapse
Affiliation(s)
- Yaqun Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Graduate College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaonan Sima
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ying Ying
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Bofarid S, Hosman AE, Mager JJ, Snijder RJ, Post MC. Pulmonary Vascular Complications in Hereditary Hemorrhagic Telangiectasia and the Underlying Pathophysiology. Int J Mol Sci 2021; 22:3471. [PMID: 33801690 PMCID: PMC8038106 DOI: 10.3390/ijms22073471] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we discuss the role of transforming growth factor-beta (TGF-β) in the development of pulmonary vascular disease (PVD), both pulmonary arteriovenous malformations (AVM) and pulmonary hypertension (PH), in hereditary hemorrhagic telangiectasia (HHT). HHT or Rendu-Osler-Weber disease is an autosomal dominant genetic disorder with an estimated prevalence of 1 in 5000 persons and characterized by epistaxis, telangiectasia and AVMs in more than 80% of cases, HHT is caused by a mutation in the ENG gene on chromosome 9 encoding for the protein endoglin or activin receptor-like kinase 1 (ACVRL1) gene on chromosome 12 encoding for the protein ALK-1, resulting in HHT type 1 or HHT type 2, respectively. A third disease-causing mutation has been found in the SMAD-4 gene, causing a combination of HHT and juvenile polyposis coli. All three genes play a role in the TGF-β signaling pathway that is essential in angiogenesis where it plays a pivotal role in neoangiogenesis, vessel maturation and stabilization. PH is characterized by elevated mean pulmonary arterial pressure caused by a variety of different underlying pathologies. HHT carries an additional increased risk of PH because of high cardiac output as a result of anemia and shunting through hepatic AVMs, or development of pulmonary arterial hypertension due to interference of the TGF-β pathway. HHT in combination with PH is associated with a worse prognosis due to right-sided cardiac failure. The treatment of PVD in HHT includes medical or interventional therapy.
Collapse
Affiliation(s)
- Sala Bofarid
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Anna E. Hosman
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Johannes J. Mager
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Repke J. Snijder
- Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.E.H.); (J.J.M.); (R.J.S.)
| | - Marco C. Post
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
- Department of Cardiology, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
25
|
Ma J, van der Zon G, Gonçalves MAFV, van Dinther M, Thorikay M, Sanchez-Duffhues G, ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front Cell Dev Biol 2021; 9:616610. [PMID: 33644053 PMCID: PMC7907445 DOI: 10.3389/fcell.2021.616610] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) plays an important role in embryonic development and disease progression. Yet, how different members of the transforming growth factor-β (TGF-β) family regulate EndMT is not well understood. In the current study, we report that TGF-β2, but not bone morphogenetic protein (BMP)9, triggers EndMT in murine endothelial MS-1 and 2H11 cells. TGF-β2 strongly upregulates the transcription factor SNAIL, and the depletion of Snail is sufficient to abrogate TGF-β2-triggered mesenchymal-like cell morphology acquisition and EndMT-related molecular changes. Although SLUG is not regulated by TGF-β2, knocking out Slug also partly inhibits TGF-β2-induced EndMT in 2H11 cells. Interestingly, in addition to SNAIL and SLUG, BMP9 stimulates inhibitor of DNA binding (ID) proteins. The suppression of Id1, Id2, or Id3 expression facilitated BMP9 in inducing EndMT and, in contrast, ectopic expression of ID1, ID2, or ID3 abrogated TGF-β2-mediated EndMT. Altogether, our results show that SNAIL is critical and indispensable for TGF-β2-mediated EndMT. Although SLUG is also involved in the EndMT process, it plays less of a crucial role in it. In contrast, ID proteins are essential for maintaining endothelial traits and repressing the function of SNAIL and SLUG during the EndMT process. These data suggest that the control over endothelial vs. mesenchymal cell states is determined, at least in part, by a balance between the expression of SNAIL/SLUG and ID proteins.
Collapse
Affiliation(s)
- Jin Ma
- Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Gerard van der Zon
- Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Maarten van Dinther
- Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Midory Thorikay
- Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Peter ten Dijke
- Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
28
|
Tutanov O, Proskura K, Kamyshinsky R, Shtam T, Tsentalovich Y, Tamkovich S. Proteomic Profiling of Plasma and Total Blood Exosomes in Breast Cancer: A Potential Role in Tumor Progression, Diagnosis, and Prognosis. Front Oncol 2020. [DOI: 10.3389/fonc.2020.580891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
29
|
Manaud G, Nossent EJ, Lambert M, Ghigna MR, Boët A, Vinhas MC, Ranchoux B, Dumas SJ, Courboulin A, Girerd B, Soubrier F, Bignard J, Claude O, Lecerf F, Hautefort A, Florio M, Sun B, Nadaud S, Verleden SE, Remy S, Anegon I, Bogaard HJ, Mercier O, Fadel E, Simonneau G, Vonk Noordegraaf A, Grünberg K, Humbert M, Montani D, Dorfmüller P, Antigny F, Perros F. Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. Am J Respir Cell Mol Biol 2020; 63:118-131. [PMID: 32209028 DOI: 10.1165/rcmb.2019-0015oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.
Collapse
Affiliation(s)
- Grégoire Manaud
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Esther J Nossent
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Mélanie Lambert
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | | | - Angèle Boët
- Department of Research, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | | | - Benoit Ranchoux
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Sébastien J Dumas
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Audrey Courboulin
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Barbara Girerd
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Florent Soubrier
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Juliette Bignard
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Olivier Claude
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Florence Lecerf
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Aurélie Hautefort
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Monica Florio
- Cardio-Metabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Banghua Sun
- Cardio-Metabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Sophie Nadaud
- INSERM UMR_S 956, Pierre and Marie Curie Université (Paris 06), Paris, France
| | - Stijn E Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases, Metabolism and Ageing KU Leuven, Leuven, Belgium
| | - Séverine Remy
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN et Transgenic Rats and Immunophenomic Platform, Nantes, France; and
| | - Ignacio Anegon
- INSERM UMR 1064, Center for Research in Transplantation and Immunology-ITUN et Transgenic Rats and Immunophenomic Platform, Nantes, France; and
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Olaf Mercier
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Elie Fadel
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Service de Chirurgie Thoracique, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Gérald Simonneau
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Katrien Grünberg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marc Humbert
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - David Montani
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Peter Dorfmüller
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and.,Department of Pathology and.,Department of Pathology, University of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research, Giessen, Germany
| | - Fabrice Antigny
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| | - Frédéric Perros
- Université Paris-Saclay-Faculté de Médecine, Le Kremlin-Bicêtre, France.,AP-HP, Centre de Référence de l'Hypertension Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,UMRS 999, INSERM and Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, and
| |
Collapse
|
30
|
Theilmann AL, Hawke LG, Hilton LR, Whitford MKM, Cole DV, Mackeil JL, Dunham-Snary KJ, Mewburn J, James PD, Maurice DH, Archer SL, Ormiston ML. Endothelial BMPR2 Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling. Arterioscler Thromb Vasc Biol 2020; 40:2605-2618. [PMID: 32998516 PMCID: PMC7571847 DOI: 10.1161/atvbaha.119.313357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. Pulmonary arterial hypertension is a disease of proliferative vascular occlusion that is strongly linked to mutations in BMPR2—the gene encoding the BMPR-II (BMP [bone morphogenetic protein] type II receptor). The endothelial-selective BMPR-II ligand, BMP9, reverses disease in animal models of pulmonary arterial hypertension and suppresses the proliferation of healthy endothelial cells. However, the impact of BMPR2 loss on the antiproliferative actions of BMP9 has yet to be assessed.
Collapse
Affiliation(s)
- Anne L Theilmann
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Lindsey G Hawke
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - L Rhiannon Hilton
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Mara K M Whitford
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Devon V Cole
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Jodi L Mackeil
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Jeffrey Mewburn
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Paula D James
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences (A.L.T., L.G.H., L.R.H., M.K.M.W., D.V.C., J.L.M., D.H.M., M.L.O.), Queen's University, Kingston, Canada
| | - Stephen L Archer
- Department of Medicine (K.J.D.-S., J.M., P.D.J., S.L.A., M.L.O.), Queen's University, Kingston, Canada
| | - Mark L Ormiston
- Department of Surgery (M.L.O.), Queen's University, Kingston, Canada
| |
Collapse
|
31
|
Bosseboeuf E, Raimondi C. Signalling, Metabolic Pathways and Iron Homeostasis in Endothelial Cells in Health, Atherosclerosis and Alzheimer's Disease. Cells 2020; 9:cells9092055. [PMID: 32911833 PMCID: PMC7564205 DOI: 10.3390/cells9092055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells drive the formation of new blood vessels in physiological and pathological contexts such as embryonic development, wound healing, cancer and ocular diseases. Once formed, all vessels of the vasculature system present an endothelial monolayer (the endothelium), lining the luminal wall of the vessels, that regulates gas and nutrient exchange between the circulating blood and tissues, contributing to maintaining tissue and vascular homeostasis. To perform their functions, endothelial cells integrate signalling pathways promoted by growth factors, cytokines, extracellular matrix components and signals from mechanosensory complexes sensing the blood flow. New evidence shows that endothelial cells rely on specific metabolic pathways for distinct cellular functions and that the integration of signalling and metabolic pathways regulates endothelial-dependent processes such as angiogenesis and vascular homeostasis. In this review, we provide an overview of endothelial functions and the recent advances in understanding the role of endothelial signalling and metabolism in physiological processes such as angiogenesis and vascular homeostasis and vascular diseases. Also, we focus on the signalling pathways promoted by the transmembrane protein Neuropilin-1 (NRP1) in endothelial cells, its recently discovered role in regulating mitochondrial function and iron homeostasis and the role of mitochondrial dysfunction and iron in atherosclerosis and neurodegenerative diseases.
Collapse
|
32
|
Tang N, Rao S, Ying Y, Huang Y. New insights into BMP9 signaling in organ fibrosis. Eur J Pharmacol 2020; 882:173291. [DOI: 10.1016/j.ejphar.2020.173291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
|
33
|
Hiepen C, Mendez PL, Knaus P. It Takes Two to Tango: Endothelial TGFβ/BMP Signaling Crosstalk with Mechanobiology. Cells 2020; 9:E1965. [PMID: 32858894 PMCID: PMC7564048 DOI: 10.3390/cells9091965] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGFβ) superfamily of cytokines. While some ligand members are potent inducers of angiogenesis, others promote vascular homeostasis. However, the precise understanding of the molecular mechanisms underlying these functions is still a growing research field. In bone, the tissue in which BMPs were first discovered, crosstalk of TGFβ/BMP signaling with mechanobiology is well understood. Likewise, the endothelium represents a tissue that is constantly exposed to multiple mechanical triggers, such as wall shear stress, elicited by blood flow or strain, and tension from the surrounding cells and to the extracellular matrix. To integrate mechanical stimuli, the cytoskeleton plays a pivotal role in the transduction of these forces in endothelial cells. Importantly, mechanical forces integrate on several levels of the TGFβ/BMP pathway, such as receptors and SMADs, but also global cell-architecture and nuclear chromatin re-organization. Here, we summarize the current literature on crosstalk mechanisms between biochemical cues elicited by TGFβ/BMP growth factors and mechanical cues, as shear stress or matrix stiffness that collectively orchestrate endothelial function. We focus on the different subcellular compartments in which the forces are sensed and integrated into the TGFβ/BMP growth factor signaling.
Collapse
Affiliation(s)
| | | | - Petra Knaus
- Knaus-Lab/Signal Transduction, Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (C.H.); (P.-L.M.)
| |
Collapse
|
34
|
Takahashi K, Akatsu Y, Podyma-Inoue KA, Matsumoto T, Takahashi H, Yoshimatsu Y, Koinuma D, Shirouzu M, Miyazono K, Watabe T. Targeting all transforming growth factor-β isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. J Biol Chem 2020; 295:12559-12572. [PMID: 32631954 DOI: 10.1074/jbc.ra120.012492] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor progression is governed by various growth factors and cytokines in the tumor microenvironment (TME). Among these, transforming growth factor-β (TGF-β) is secreted by various cell types residing in the TME and promotes tumor progression by inducing the epithelial-to-mesenchymal transition (EMT) of cancer cells and tumor angiogenesis. TGF-β comprises three isoforms, TGF-β1, -β2, and -β3, and transduces intracellular signals via TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII). For the purpose of designing ligand traps that reduce oncogenic signaling in the TME, chimeric proteins comprising the ligand-interacting ectodomains of receptors fused with the Fc portion of immunoglobulin are often used. For example, chimeric soluble TβRII (TβRII-Fc) has been developed as an effective therapeutic strategy for targeting TGF-β ligands, but several lines of evidence indicate that TβRII-Fc more effectively traps TGF-β1 and TGF-β3 than TGF-β2, whose expression is elevated in multiple cancer types. In the present study, we developed a chimeric TGF-β receptor containing both TβRI and TβRII (TβRI-TβRII-Fc) and found that TβRI-TβRII-Fc trapped all TGF-β isoforms, leading to inhibition of both the TGF-β signal and TGF-β-induced EMT of oral cancer cells, whereas TβRII-Fc failed to trap TGF-β2. Furthermore, we found that TβRI-TβRII-Fc suppresses tumor growth and angiogenesis more effectively than TβRII-Fc in a subcutaneous xenograft model of oral cancer cells with high TGF-β expression. These results suggest that TβRI-TβRII-Fc may be a promising tool for targeting all TGF-β isoforms in the TME.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, and Pharmaceutical Group, Nippon Kayaku Co. Ltd., Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Hitomi Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
35
|
Tutanov O, Orlova E, Proskura K, Grigor’eva A, Yunusova N, Tsentalovich Y, Alexandrova A, Tamkovich S. Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro. Biomolecules 2020; 10:biom10040495. [PMID: 32218180 PMCID: PMC7226042 DOI: 10.3390/biom10040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. They contribute to the metastatic progression of tumor cells through paracrine signalling. It has been recently discovered that blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. We evaluated the influence of protein cargoes from exosomes from plasma, and exosomes from the total blood of healthy females (HFs) and breast cancer patients (BCPs), on cell motility. We conducted a mass spectrometric analysis of exosomal contents isolated from samples using ultrafiltration and ultracentrifugation approaches and verified their nature using transmission electron microscopy, nanoparticle tracking analysis and flow cytometry. We observed that malignant neoplasm-associated proteins in exosomes from BCP total blood were detected more often than in plasma (66% vs. 59%). FunRich analysis to assess Gene Ontology (GO) enrichment revealed that proteins with catalytic activities, transporter functions and protein metabolism activities were increased in exosomes from BCP blood. Finally, GO analysis revealed that proteomic profiles of exosomes from HF total blood were enriched with proteins inhibiting cell migration and invasion, which explains the low stimulating activity of exosomes from HF total blood on SKBR-3 cancer cell migration velocity. This allows exosomes to act as intermediaries providing intercellular communications through horizontal transfer of RNA and functionally active proteins, potentially affecting the development of both primary neoplasms and distant metastases.
Collapse
Affiliation(s)
- Oleg Tutanov
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
| | - Evgeniya Orlova
- Laboratory of Carcinogenesis Mechanisms, “N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Ksenia Proskura
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
- Department of Mammology, Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Alina Grigor’eva
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
| | - Natalia Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, 634028 Tomsk, Russia;
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Yuri Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, 630090 Novosibirsk, Russia;
| | - Antonina Alexandrova
- Laboratory of Carcinogenesis Mechanisms, “N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Svetlana Tamkovich
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
- Department of Molecular Biology and Biotechnology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
36
|
Chuva de Sousa Lopes SM, Alexdottir MS, Valdimarsdottir G. The TGFβ Family in Human Placental Development at the Fetal-Maternal Interface. Biomolecules 2020; 10:biom10030453. [PMID: 32183218 PMCID: PMC7175362 DOI: 10.3390/biom10030453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.
Collapse
Affiliation(s)
- Susana M. Chuva de Sousa Lopes
- Dept. Anatomy and Embryology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- Dept. Reproductive Medicine Anatomy and Embryology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta S. Alexdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
| | - Gudrun Valdimarsdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
- Correspondence: ; Tel.: +354-5254797
| |
Collapse
|
37
|
Melchert J, Henningfeld KA, Richts S, Lingner T, Jonigk D, Pieler T. The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. Dev Biol 2019; 459:138-148. [PMID: 31846624 DOI: 10.1016/j.ydbio.2019.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
The hormone Erythroferrone (ERFE) is a member of the C1q/TNF-related protein family that regulates iron homeostasis through the suppression of hamp. In a gain of function screen in Xenopus embryos, we identified ERFE as a potent secondary axis-inducing agent. Experiments in Xenopus embryos and ectodermal explants revealed that ERFE functions as a selective inhibitor of the BMP pathway and the conserved C1q domain is not required for this activity. Inhibition occurs at the extracelluar level, through the interaction of ERFE with the BMP ligand. During early Xenopus embryogenesis, erfe is first expressed in the ventral blood islands where initial erythropoiesis occurs and later in circulating blood cells. ERFE knockdown does not alter the expression of etv.2, aplnr and flt1 in tailbud stage embryos indicating endothelial cell specification is independent of ERFE. However, in tadpole embryos, defects of the vascular network and primitive blood circulation are observed as well as edema formation. RNAseq analysis of ERFE morphant embryos also revealed the inhibition of gja4 indicating disruption of dorsal aorta formation.
Collapse
Affiliation(s)
- Juliane Melchert
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| | - Kristine A Henningfeld
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Sven Richts
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Danny Jonigk
- Institut für Pathologie, Medizinische Hochschule Hannover (MHH) Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tomas Pieler
- Institute of Developmental Biochemistry, University Medical Center Göttingen, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
38
|
Logan SM, Storey KB. Angiogenic signaling in the lungs of a metabolically suppressed hibernating mammal ( Ictidomys tridecemlineatus). PeerJ 2019; 7:e8116. [PMID: 31763078 PMCID: PMC6870509 DOI: 10.7717/peerj.8116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
To conserve energy in times of limited resource availability, particularly during cold winters, hibernators suppress even the most basic of physiologic processes. Breathing rates decrease from 40 breaths/minute to less than 1 breath/min as they decrease body temperature from 37 °C to ambient. Nevertheless, after months of hibernation, these incredible mammals emerge from torpor unscathed. This study was conducted to better understand the protective and possibly anti-inflammatory adaptations that hibernator lungs may use to prevent damage associated with entering and emerging from natural torpor. We postulated that the differential protein expression of soluble protein receptors (decoy receptors that sequester soluble ligands to inhibit signal transduction) would help identify inhibited inflammatory signaling pathways in metabolically suppressed lungs. Instead, the only two soluble receptors that responded to torpor were sVEGFR1 and sVEGFR2, two receptors whose full-length forms are bound by VEGF-A to regulate endothelial cell function and angiogenesis. Decreased sVEGFR1/2 correlated with increased total VEGFR2 protein levels. Maintained or increased levels of key γ-secretase subunits suggested that decreased sVEGFR1/2 protein levels were not due to decreased levels of intramembrane cleavage complex subunits. VEGF-A protein levels did not change, suggesting that hibernators may regulate VEGFR1/2 signaling at the level of the receptor instead of increasing relative ligand abundance. A panel of angiogenic factors used to identify biomarkers of angiogenesis showed a decrease in FGF-1 and an increase in BMP-9. Torpid lungs may use VEGF and BMP-9 signaling to balance angiogenesis and vascular stability, possibly through the activation of SMAD signaling for adaptive tissue remodeling.
Collapse
Affiliation(s)
- Samantha M. Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
39
|
Perera N, Ritchie RH, Tate M. The Role of Bone Morphogenetic Proteins in Diabetic Complications. ACS Pharmacol Transl Sci 2019; 3:11-20. [PMID: 32259084 DOI: 10.1021/acsptsci.9b00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/22/2022]
Abstract
The prevalence of diabetes has reached epidemic proportions and is placing a significant burden on healthcare systems globally. Diabetes has a detrimental impact on many organs in the human body, including accelerating the development of micro- and macrovascular complications. Current therapeutic options to treat diabetic complications have their limitations. Importantly, many slow but fail to reverse the progression of diabetic complications. Bone morphogenetic proteins (BMPs) are a highly conserved subgroup of the transforming growth factor β (TGFβ) superfamily, signaling via serine/threonine kinase receptors, that have recently been implicated in glucose homeostasis and insulin resistance in the setting of diabetes. Downstream of the receptors, the signal can be transduced via the canonical Smad-dependent pathway or the noncanonical Smad-independent pathways. BMPs are essential in organ development, tissue homeostasis, and, as expected, disease pathogenesis. In fact, deletion of BMPs can be embryonically lethal or result in severe organ abnormalities. This review outlines the BMP signaling pathway and its relevance to diabetic complications, namely, diabetic nephropathy, diabetes-associated cardiovascular diseases, and diabetic retinopathy. Understanding the complexities of BMP signaling and particularly its tissue-, cellular-, and time-dependent actions will help delineate the underlying pathogenesis of the disease and may ultimately be harnessed in the treatment of diabetes-induced complications. This would replicate progress made in numerous other diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Nimna Perera
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Department of Diabetes, Monash University, Melbourne, Victoria 3800, Australia.,Department of Pharmacology and Department of Diabetes, Monash University, Melbourne, Victoria 3800, Australia
| | - Mitchel Tate
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Department of Diabetes, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
40
|
Li Q, Liu B, Breitkopf-Heinlein K, Weng H, Jiang Q, Dong P, Dooley S, Xu K, Ding H. Adenovirus‑mediated overexpression of bone morphogenetic protein‑9 promotes methionine choline deficiency‑induced non‑alcoholic steatohepatitis in non‑obese mice. Mol Med Rep 2019; 20:2743-2753. [PMID: 31322255 PMCID: PMC6691271 DOI: 10.3892/mmr.2019.10508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Liver inflammation and macrophage infiltration are critical steps in the progression of non‑alcoholic fatty liver to the development of non‑alcoholic steatohepatitis. Bone morphogenetic protein‑9 is a cytokine involved in the regulation of chemokines and lipogenesis. However, the function of bone morphogenetic protein‑9 in non‑alcoholic steatohepatitis is still unknown. The present study hypothesized that bone morphogenetic protein‑9 may contribute to steatohepatitis in mice fed a methionine choline deficiency diet (MCD). C57BL/6 mice overexpressing bone morphogenetic protein‑9 and control mice were fed the MCD diet for 4 weeks. Liver tissue and serum samples were obtained for subsequent measurements. Bone morphogenetic protein‑9 overexpression exacerbated steatohepatitis in mice on the MCD diet, as indicated by liver histopathology, increased serum alanine aminotransferase activity, aspartate transaminase activity, hepatic inflammatory gene expression and M1 macrophage recruitment. Although bone morphogenetic protein‑9 overexpression did not affect the expression of pro‑fibrogenic genes, including Collagen I (α)1 or matrix metalloproteinase (MMP) 9, it did upregulate the expression of transforming growth factor‑β and plasminogen activator inhibitor 1, and downregulated the expression of MMP2. The above results indicate that bone morphogenetic protein‑9 exerts a pro‑inflammatory role in MCD diet‑induced non‑alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Qi Li
- Department of Hepatology and Gastroenterology, Beijing You An Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Beibei Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Honglei Weng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peiling Dong
- Department of Hepatology and Gastroenterology, Beijing You An Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Huiguo Ding
- Department of Hepatology and Gastroenterology, Beijing You An Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
41
|
Yang Y, Yu H, Yang C, Zhang Y, Ai X, Wang X, Lu K, Yi B. Krüppel-like factor 6 mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and is aggravated by bone morphogenetic protein 9. Biol Open 2019; 8:bio.040121. [PMID: 31189661 PMCID: PMC6602319 DOI: 10.1242/bio.040121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular disease derived from chronic liver disease, and its key pathogenesis is angiogenesis. Krüppel-like factor 6 (KLF6) mediates physiological repair and remodeling during vascular injury. However, the role of KLF6 in pulmonary microvascular endothelial cells (PMVECs) during angiogenesis of HPS and its underlying mechanism in HPS have not been investigated. Common bile duct ligation (CBDL) in rats can replicate pulmonary vascular abnormalities of human HPS. Here, we found that advanced pulmonary angiogenesis and pulmonary injury score coincided with the increase of KLF6 level in PMVECs of CBDL rat; KLF6 in PMVECs was also induced while cultured with CBDL rat serum in vitro. Inhibition of KLF6 dramatically suppressed PMVEC-mediated proliferation, migration and tube formation in vivo; this may be related to the downregulation of activin receptor-like kinase-1 (ALK1) and endoglin (ENG), which are transacted by KLF6. Bone morphogenetic protein 9 (BMP9) enhanced the expression of KLF6 in PMVECs and was involved in the angiogenesis of HPS. These results suggest that KLF6 triggers PMVEC-mediated angiogenesis of HPS and is aggravated by BMP9, and the inhibition of the BMP9/KLF6 axis may be an effective strategy for HPS treatment. Summary: Krüppel-like factor 6, which is triggered by pulmonary injury and promoted by bone morphogenetic protein 9, mediates pulmonary angiogenesis in rat experimental hepatopulmonary syndrome and then aggravates lung dysfunction.
Collapse
Affiliation(s)
- Yihui Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China.,Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000 China
| | - Hongfu Yu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Congwen Yang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yunfei Zhang
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China.,Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000 China
| | - Xiangfa Ai
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Xiaobo Wang
- Department of LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Kaizhi Lu
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Bin Yi
- Department of Anaesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
42
|
Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K, Miyazono K, Watabe T. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 2019; 13:1706-1724. [PMID: 31094056 PMCID: PMC6670013 DOI: 10.1002/1878-0261.12504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment contains various components, including cancer cells, tumor vessels, and cancer-associated fibroblasts, the latter of which are comprised of tumor-promoting myofibroblasts and tumor-suppressing fibroblasts. Multiple lines of evidence indicate that transforming growth factor-β (TGF-β) induces the formation of myofibroblasts and other types of mesenchymal (non-myofibroblastic) cells from endothelial cells. Recent reports show that fibroblast growth factor 2 (FGF2) modulates TGF-β-induced mesenchymal transition of endothelial cells, but the molecular mechanisms behind the signals that control transcriptional networks during the formation of different groups of fibroblasts remain largely unclear. Here, we studied the roles of FGF2 during the regulation of TGF-β-induced mesenchymal transition of tumor endothelial cells (TECs). We demonstrated that auto/paracrine FGF signals in TECs inhibit TGF-β-induced endothelial-to-myofibroblast transition (End-MyoT), leading to suppressed formation of contractile myofibroblast cells, but on the other hand can also collaborate with TGF-β in promoting the formation of active fibroblastic cells which have migratory and proliferative properties. FGF2 modulated TGF-β-induced formation of myofibroblastic and non-myofibroblastic cells from TECs via transcriptional regulation of various mesenchymal markers and growth factors. Furthermore, we observed that TECs treated with TGF-β were more competent in promoting in vivo tumor growth than TECs treated with TGF-β and FGF2. Mechanistically, we showed that Elk1 mediated FGF2-induced inhibition of End-MyoT via inhibition of TGF-β-induced transcriptional activation of α-smooth muscle actin promoter by myocardin-related transcription factor-A. Our data suggest that TGF-β and FGF2 oppose and cooperate with each other during the formation of myofibroblastic and non-myofibroblastic cells from TECs, which in turn determines the characteristics of mesenchymal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, Pharmaceutical Group, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Naoya Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Shiori Kimuro
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| |
Collapse
|
43
|
Richter A, Alexdottir MS, Magnus SH, Richter TR, Morikawa M, Zwijsen A, Valdimarsdottir G. EGFL7 Mediates BMP9-Induced Sprouting Angiogenesis of Endothelial Cells Derived from Human Embryonic Stem Cells. Stem Cell Reports 2019; 12:1250-1259. [PMID: 31155507 PMCID: PMC6565989 DOI: 10.1016/j.stemcr.2019.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cells (hESCs) are instrumental in characterizing the molecular mechanisms of human vascular development and disease. Bone morphogenetic proteins (BMPs) play a pivotal role in cardiovascular development in mice, but their importance for vascular cells derived from hESCs has not yet been fully explored. Here, we demonstrate that BMP9 promotes, via its receptor ALK1 and SMAD1/5 activation, sprouting angiogenesis of hESC-derived endothelial cells. We show that the secreted angiogenic factor epidermal growth factor-like domain 7 (EGFL7) is a downstream target of BMP9-SMAD1/5-mediated signaling, and that EGFL7 promotes expansion of endothelium via interference with NOTCH signaling, activation of ERK, and remodeling of the extracellular matrix. CRISPR/Cas9-mediated deletion of EGFL7 highlights the critical role of EGFL7 in BMP9-induced endothelial sprouting and the promotion of angiogenesis. Our study illustrates the complex role of the BMP family in orchestrating hESC vascular development and endothelial sprouting. BMP9/ALK1 signaling induces sprouting of hESC-derived endothelial cells EGFL7 mediates BMP9-induced sprouting angiogenesis of hESC-derived endothelial cells EGFL7 inhibits the NOTCH pathway and activates the ERK pathway in HUVECs EGFL7 affects the extracellular matrix in HUVECs
Collapse
Affiliation(s)
- Anne Richter
- Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Marta S Alexdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Svala H Magnus
- Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Tobias R Richter
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Masato Morikawa
- Ludwig Institute for Cancer Research, Uppsala University, 751 24 Uppsala, Sweden
| | - An Zwijsen
- VIB-KU Leuven Center for Brain and Disease Research, ON4 Herestraat 49, Box 602, 3000 Leuven, Belgium; KU Leuven Department of Cardiovascular Sciences, ON4 Herestraat 49, Box 911, 3000 Leuven, Belgium
| | - Gudrun Valdimarsdottir
- Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland; Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland.
| |
Collapse
|
44
|
Cui X, Shang S, Lv X, Zhao J, Qi Y, Liu Z. Perspectives of small molecule inhibitors of activin receptor‑like kinase in anti‑tumor treatment and stem cell differentiation (Review). Mol Med Rep 2019; 19:5053-5062. [PMID: 31059090 PMCID: PMC6522871 DOI: 10.3892/mmr.2019.10209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/21/2019] [Indexed: 01/03/2023] Open
Abstract
Activin receptor‑like kinases (ALKs), members of the type I activin receptor family, belong to the serine/threonine kinase receptors of the transforming growth factor‑β (TGF‑β) superfamily. ALKs mediate the roles of activin/TGF‑β in a wide variety of physiological and pathological processes, ranging from cell differentiation and proliferation to apoptosis. For example, the activities of ALKs are associated with an advanced tumor stage in prostate cancer and the chondrogenic differentiation of mesenchymal stem cells. Therefore, potent and selective small molecule inhibitors of ALKs would not only aid in investigating the function of activin/TGF‑β, but also in developing treatments for these diseases via the disruption of activin/TGF‑β. In recent studies, several ALK inhibitors, including LY‑2157299, SB‑431542 and A‑83‑01, have been identified and have been confirmed to affect stem cell differentiation and tumor progression in animal models. This review discusses the therapeutic perspective of small molecule inhibitors of ALKs as drug targets in tumor and stem cells.
Collapse
Affiliation(s)
- Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumi Shang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinran Lv
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Zhao
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
45
|
Subileau M, Merdzhanova G, Ciais D, Collin-Faure V, Feige JJ, Bailly S, Vittet D. Bone Morphogenetic Protein 9 Regulates Early Lymphatic-Specified Endothelial Cell Expansion during Mouse Embryonic Stem Cell Differentiation. Stem Cell Reports 2018; 12:98-111. [PMID: 30595547 PMCID: PMC6335586 DOI: 10.1016/j.stemcr.2018.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Exogenous cues involved in the regulation of the initial steps of lymphatic endothelial development remain largely unknown. We have used an in vitro model based on the co-culture of vascular precursors derived from mouse embryonic stem cell (ESC) differentiation and OP9 stromal cells to examine the first steps of lymphatic specification and expansion. We found that bone morphogenetic protein 9 (BMP9) induced a dose-dependent biphasic effect on ESC-derived vascular precursors. At low concentrations, below 1 ng/mL, BMP9 expands the LYVE-1-positive lymphatic progeny and activates the calcineurin phosphatase/NFATc1 signaling pathway. In contrast, higher BMP9 concentrations preferentially enhance the formation of LYVE-1-negative endothelial cells. This effect results from an OP9 stromal cell-mediated VEGF-A secretion. RNA-silencing experiments indicate specific involvement of ALK1 and ALK2 receptors in these different BMP9 responses. BMP9 at low concentrations may be a useful tool to generate lymphatic endothelial cells from stem cells for cell-replacement strategies. Low doses of BMP9 raise lymph-vasculogenesis during ESC differentiation NFATc1 signaling operates in BMP9-induced lymphatic endothelial cell expansion High doses of BMP9 increase LYVE-1-negative endothelial cell formation A specific differential involvement of ALK1 and ALK2 mediates the BMP9 effects
Collapse
Affiliation(s)
- Mariela Subileau
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France
| | | | - Delphine Ciais
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France
| | | | | | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France
| | - Daniel Vittet
- Univ. Grenoble Alpes, Inserm, CEA, BIG-BCI, Grenoble 38000, France.
| |
Collapse
|
46
|
Abdullahi W, Brzica H, Hirsch NA, Reilly BG, Ronaldson PT. Functional Expression of Organic Anion Transporting Polypeptide 1a4 Is Regulated by Transforming Growth Factor- β/Activin Receptor-like Kinase 1 Signaling at the Blood-Brain Barrier. Mol Pharmacol 2018; 94:1321-1333. [PMID: 30262595 PMCID: PMC6207918 DOI: 10.1124/mol.118.112912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) drug delivery can be achieved by targeting drug uptake transporters such as Oatp1a4. In fact, many drugs that can improve neurologic outcomes in CNS diseases [3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (i.e., statins)] are organic anion transporting polypeptide (OATP) transport substrates. To date, transport properties and regulatory mechanisms of Oatp1a4 at the blood-brain barrier (BBB) have not been rigorously studied. Such knowledge is critical to develop Oatp1a4 for optimization of CNS drug delivery and for improved treatment of neurological diseases. Our laboratory has demonstrated that the transforming growth factor-β (TGF-β)/activin receptor-like kinase 1 (ALK1) signaling agonist bone morphogenetic protein 9 (BMP-9) increases functional expression of Oatp1a4 in rat brain microvessels. Here, we expand on this work and show that BMP-9 treatment increases blood-to-brain transport and brain exposure of established OATP transport substrates (i.e., taurocholate, atorvastatin, and pravastatin). We also demonstrate that BMP-9 activates the TGF-β/ALK1 pathway in brain microvessels as indicated by increased nuclear translocation of specific Smad proteins associated with signaling mediated by the ALK1 receptor (i.e., pSmad1/5/8). Furthermore, we report that an activated Smad protein complex comprised of phosphorylated Smad1/5/8 and Smad4 is formed following BMP-9 treatment and binds to the promoter of the Slco1a4 gene (i.e., the gene that encodes Oatp1a4). This signaling mechanism causes increased expression of Slco1a4 mRNA. Overall, this study provides evidence that Oatp1a4 transport activity at the BBB is directly regulated by TGF-β/ALK1 signaling and indicates that this pathway can be targeted for control of CNS delivery of OATP substrate drugs.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Nicholas A Hirsch
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
47
|
Burger RA, Deng W, Makker V, Collins Y, Gray H, Debernardo R, Martin LP, Aghajanian C. Phase II evaluation of dalantercept in the treatment of persistent or recurrent epithelial ovarian cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 2018; 150:466-470. [PMID: 30041929 DOI: 10.1016/j.ygyno.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the efficacy of dalantercept, a soluble ALK1 inhibitor receptor fusion protein, in patients with persistent or recurrent ovarian carcinoma and related malignancies. METHODS Eligibility criteria included measurable disease, 1-2 prior cytotoxic regimens and GOG performance status (PS) ≤2. Dalantercept was administered subcutaneously at 1.2 mg/kg every 3 weeks until disease progression or development of unacceptable toxicity. The primary null hypothesis was the probability of response ≤0.10 and the probability of 6-month progression-free survival without receipt of non-protocol therapy (event-free survival at 6 months, EFS6) ≤0.15, using RECIST 1.1 criteria. RESULTS The first stage was closed after enrollment of 30 participants with median age of 56.5 years, high-grade serous histology in 76.7%, 2 prior regimens in 46.7%, and platinum-free interval <6 months in 73.3%. All participants discontinued dalantercept, 24 (80.0%), 5 (16.7%) and 1 (3.3%) due to progression, toxicity, and other reason, respectively. The median number of treatment cycles per patient was 2 (range 1-29). There were six treatment-related grade 3 AEs and no grade ≥4 AEs. There were no objective responses. EFS6 was reached in 20% (6 out of 30 participants, 90% CI 9.1% to 35.7%). CONCLUSIONS Though safe, dalantercept as administered had limited efficacy in this patient population overall.
Collapse
Affiliation(s)
- Robert A Burger
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Wei Deng
- NRG Oncology, Clinical Trial Development Division, Biostatistics & Bioinformatics, Roswell Park, Buffalo, NY 14263, United States of America.
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer, New York, NY 10065, United States of America.
| | - Yvonne Collins
- Department of Obstetrics & Gynecology, University of Illinois at Chicago CCOP, Chicago, IL 60612, United States of America.
| | - Heidi Gray
- Dept. of OB/GYN, Washington University School of Medicine, Seattle, WA 98195, United States of America.
| | - Robert Debernardo
- Department of Obstetrics & Gynecology, Case Western University Hospital, Cleveland, OH 44106, United States of America.
| | - Lainie P Martin
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, United States of America.
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer, New York, NY 10065, United States of America.
| |
Collapse
|
48
|
Kikkawa Y, Enomoto-Okawa Y, Fujiyama A, Fukuhara T, Harashima N, Sugawara Y, Negishi Y, Katagiri F, Hozumi K, Nomizu M, Ito Y. Internalization of CD239 highly expressed in breast cancer cells: a potential antigen for antibody-drug conjugates. Sci Rep 2018; 8:6612. [PMID: 29700410 PMCID: PMC5919910 DOI: 10.1038/s41598-018-24961-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 01/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are attractive in cancer therapy because they can directly bind to cancer cells and provide anticancer activity. To kill cancer cells with ADCs, the target antigens are required not only to be highly and/or selectively expressed on cancer cells but also internalized by the cells. CD239, also known as the Lutheran blood group glycoprotein (Lu) or basal cell adhesion molecule (B-CAM), is a specific receptor for laminin α5, a major component of basement membranes. Here, we show that CD239 is strongly expressed in a subset of breast cancer cells and internalized into the cells. We also produced a human single-chain variable fragment (scFv) specific to CD239 fused with human IgG1 Fc, called C7-Fc. The binding affinity of the C7-Fc antibody is similar to that of mouse monoclonal antibodies. Although the C7-Fc antibody alone does not influence cellular functions, when conjugated with a fragment of diphtheria toxin lacking the receptor-binding domain (fDT), it can selectively kill breast cancer cells. Interestingly, fDT-bound C7-Fc shows anticancer activity in CD239-highly positive SKBR3 cells, but not in weakly positive cells. Our results show that CD239 is a promising antigen for ADC-based breast cancer therapy.
Collapse
Affiliation(s)
- Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan.
| | - Yurie Enomoto-Okawa
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Aiko Fujiyama
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Takeshi Fukuhara
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan.,Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nozomi Harashima
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yumika Sugawara
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kentaro Hozumi
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065, Japan
| |
Collapse
|
49
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
50
|
Hanna DL, Loupakis F, Yang D, Cremolini C, Schirripa M, Li M, Matsusaka S, Berger MD, Miyamoto Y, Zhang W, Ning Y, Antoniotti C, Salvatore L, Moran M, Zeger G, Astrow SH, Falcone A, Lenz HJ. Prognostic Value of ACVRL1 Expression in Metastatic Colorectal Cancer Patients Receiving First-line Chemotherapy With Bevacizumab: Results From the Triplet Plus Bevacizumab (TRIBE) Study. Clin Colorectal Cancer 2018; 17:e471-e488. [PMID: 29636300 DOI: 10.1016/j.clcc.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND No biomarkers exist to predict benefit from antiangiogenic therapy in metastatic colorectal cancer patients. ACVRL1 (activin receptor like-protein 1) encodes for ALK1, a member of the transforming growth factor-β receptor family, which directs pathologic angiogenesis. We examined the intratumoral expression of ACVRL1 and other angiogenesis pathway-related genes to identify molecular markers in the TRIBE study. MATERIALS AND METHODS Of 503 randomized patients, 228 had sufficient tissue for analysis. Formalin-fixed paraffin-embedded specimens were examined for expression of VEGF-A, VEGF-B, VEGF-C, VEGFR1, VEGFR2, ACVRL1, EphB4, and EGFL7 using reverse transcription polymerase chain reaction. A maximal χ2 approach was used to determine the messenger RNA levels associated with progression-free survival (PFS), overall survival (OS), response rate, early tumor shrinkage, and depth of response. Recursive partitioning trees were constructed to identify composite prognostic biomarker profiles. External validation was conducted in silico using the Oncomine database. RESULTS High ACVRL1 expression was associated with superior OS in both treatment arms (FOLFOXIRI [5-fluorouracil, leucovorin, oxaliplatin, irinotecan]-bevacizumab, 32.7 vs. 13.5 months, hazard ratio [HR], 0.38, P = .023; FOLFIRI [5-fluorouracil, leucovorin, irinotecan]-bevacizumab, 35.1 vs. 22.0 months, HR, 0.36, P = .006) and prolonged PFS (11.7 vs. 5.9 months, multivariate HR, 0.17; P = .001) for patients receiving FOLFOXIRI-bevacizumab on univariate and multivariate analyses. In recursive partitioning analysis, ACVRL1 was the strongest discriminator of the response rate, PFS, and OS in patients receiving FOLFOXIRI-bevacizumab and of OS in patients receiving FOLFIRI-bevacizumab. In silico validation revealed significant associations between ACVRL1 expression, disease recurrence, and 1-year survival (P < .05) among all colorectal cancer stages. CONCLUSION ACVRL1 expression could serve as a prognostic biomarker in metastatic colorectal cancer patients receiving chemotherapy and bevacizumab and warrants further evaluation in prospective studies.
Collapse
Affiliation(s)
- Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA; Hoag Family Cancer Institute, Newport Beach, CA
| | - Fotios Loupakis
- Unito of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Chiara Cremolini
- Unito of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Marta Schirripa
- Unito of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Meng Li
- Health Sciences Bioinformatics Core, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Carlotta Antoniotti
- Unito of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Lisa Salvatore
- Unito of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | | | | | | | - Alfredo Falcone
- Unito of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.
| |
Collapse
|