1
|
Pillaiyar T, Laufer S. A patent review of CXCR7 modulators (2019-present). Expert Opin Ther Pat 2025:1-27. [PMID: 40122070 DOI: 10.1080/13543776.2025.2477475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment. AREAS COVERED This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages. EXPERT OPINION ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Dietz A, Senf K, Neuhaus EM. ACKR3 in olfactory glia cells shapes the immune defense of the olfactory mucosa. Glia 2024; 72:1183-1200. [PMID: 38477581 DOI: 10.1002/glia.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.
Collapse
Affiliation(s)
- André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eva M Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Martin Gil C, Raoof R, Versteeg S, Willemen HLDM, Lafeber FPJG, Mastbergen SC, Eijkelkamp N. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav Immun 2024; 116:203-215. [PMID: 38070625 DOI: 10.1016/j.bbi.2023.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.
Collapse
Affiliation(s)
- Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanneke L D M Willemen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Catalano M, Limatola C, Trettel F. Non-neoplastic astrocytes: key players for brain tumor progression. Front Cell Neurosci 2024; 17:1352130. [PMID: 38293652 PMCID: PMC10825036 DOI: 10.3389/fncel.2023.1352130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Astrocytes are highly plastic cells whose activity is essential to maintain the cerebral homeostasis, regulating synaptogenesis and synaptic transmission, vascular and metabolic functions, ions, neuro- and gliotransmitters concentrations. In pathological conditions, astrocytes may undergo transient or long-lasting molecular and functional changes that contribute to disease resolution or exacerbation. In recent years, many studies demonstrated that non-neoplastic astrocytes are key cells of the tumor microenvironment that contribute to the pathogenesis of glioblastoma, the most common primary malignant brain tumor and of secondary metastatic brain tumors. This Mini Review covers the recent development of research on non-neoplastic astrocytes as tumor-modulators. Their double-edged capability to promote cancer progression or to represent potential tools to counteract brain tumors will be discussed.
Collapse
Affiliation(s)
- Myriam Catalano
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Flavia Trettel
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
6
|
Yang MH, Ha IJ, Ahn J, Kim CK, Lee M, Ahn KS. Potential function of loliolide as a novel blocker of epithelial-mesenchymal transition in colorectal and breast cancer cells. Cell Signal 2023; 105:110610. [PMID: 36707041 DOI: 10.1016/j.cellsig.2023.110610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Loliolide (LL), a naturally occurring monoterpenoid lactone isolated from Vicia tenuifolia Roth, can exhibit numerous pharmacological effects such as those related to anti-Parkinson, anti-oxidant, anti-cholinesterase, and anti-depressant. Epithelial-mesenchymal transition (EMT) plays a pivotal role in regulating tumor metastasis. CXCR4 and CXCR7 are G-protein-coupled receptors (GPRs), which can be stimulated by CXCL12. CXCL12/CXCR4/CXCXR7 axis can cause activation of multiple pathways including MAPKs, JAK/STAT pathway, and manganese superoxide dismutase (MnSOD) signaling. These events can initiate EMT process and induce cell invasion and migration. Here, we investigated whether LL can modulate the CXCR4 and CXCR7 and EMT process in colon cancer and breast cancer cells. We found that LL suppressed levels of CXCR4 and CXCR7, and exerted an inhibitory effect on these chemokines even after stimulation by CXCL12. LL suppressed expression of MnSOD and mesenchymal markers, whereas induced epithelial markers. In addition, LL significantly attenuated cellular invasion, migration, and metastasis. We noted that LL inhibited CXCR4/7 and EMT process even after stimulation of CXCL12 and MnSOD overexpression. Therefore, in this study, we provide evidences that targeting CXCR4/7 and MnSOD could inhibit the invasion, migration, and metastasis of cancer cells as well as negatively regulate the EMT process. Overall, our study suggested that LL might act as a potent suppressor of EMT process against colon and breast cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeongjun Ahn
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Republic of Korea.
| | - Chang-Kwon Kim
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Republic of Korea.
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Republic of Korea.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
Inhibition of Angiogenesis by MiR-524-5p through Suppression of AKT and ERK Activation by Targeting CXCR7 in Colon Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:7224840. [DOI: 10.1155/2022/7224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Increasing evidence shows that alterations in microRNA (miRNA) expression are involved in the occurrence and development of various malignant tumors, including colon cancer. MiRNA-524-5p has been reported to have anticancer activity in colon cancer. This study explored the influence of the miRNA-524-5p/CXCR7 axis on angiogenesis using colon cancer cells and further studied the mechanisms involved. We found that changing the expression of miRNA-524-5p can affect colonic proliferation, migration, and angiogenesis. Furthermore, angiogenesis induced by miRNA-524-5p overexpression was reversed by overexpression of CXCR7 in HT-29 cells, while the opposite was observed in Caco-2 cells. Furthermore, miRNA-524-5p inhibited the activation of AKT and ERK signaling by targeting CXCR7. Overall, our results indicated that the miRNA-524-5p/CXCR7 axis regulated angiogenesis in colon cancer cells through the AKT and ERK pathways.
Collapse
|
8
|
Jung YY, Um JY, Sethi G, Ahn KS. Potential Application of Leelamine as a Novel Regulator of Chemokine-Induced Epithelial-to-Mesenchymal Transition in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23179848. [PMID: 36077241 PMCID: PMC9456465 DOI: 10.3390/ijms23179848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/15/2022] Open
Abstract
CXCR7 and CXCR4 are G protein-coupled receptors (GPCRs) that can be stimulated by CXCL12 in various human cancers. CXCR7/4–CXCL12 binding can initiate activation of multiple pathways including JAK/STAT and manganese superoxide dismutase (MnSOD) signaling, and initiate epithelial–mesenchymal transition (EMT) process. It is established that cancer cell invasion and migration are caused because of these events. In particular, the EMT process is an important process that can determine the prognosis for cancer. Since the antitumor effect of leelamine (LEE) has been reported in various previous studies, here, we have evaluated the influence of LEE on the CXCR7/4 signaling axis and EMT processes. We first found that LEE suppressed expression of CXCR7 and CXCR4 both at the protein and mRNA levels, and showed inhibitory effects on these chemokines even after stimulation by CXCL12 ligand. In addition, LEE also reduced the level of MnSOD and inhibited the EMT process to attenuate the invasion and migration of breast cancer cells. In addition, phosphorylation of the JAK/STAT pathway, which acts down-stream of these chemokines, was also abrogated by LEE. It was also confirmed that LEE can induce an imbalance of GSH/GSSG and increases ROS, thereby resulting in antitumor activity. Thus, we establish that targeting CXCR7/4 in breast cancer cells can not only inhibit the invasion and migration of cancer cells but also can affect JAK/STAT, EMT process, and production of ROS. Overall, the findings suggest that LEE can function as a novel agent affecting the breast cancer.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (G.S.); (K.S.A.); Tel.: +65-6516-3267 (G.S.); +82-2-961-2316 (K.S.A.)
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (G.S.); (K.S.A.); Tel.: +65-6516-3267 (G.S.); +82-2-961-2316 (K.S.A.)
| |
Collapse
|
9
|
Goldman JE. Alzheimer Type I Astrocytes: Still Mysterious Cells. J Neuropathol Exp Neurol 2022; 81:588-595. [PMID: 35689655 DOI: 10.1093/jnen/nlac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 100 years ago, von Hösslein and Alzheimer described enlarged and multinucleated astrocytes in the brains of patients with Wilson disease. These odd astrocytes, now well known to neuropathologists, are present in a large variety of neurological disorders, and yet the mechanisms underlying their generation and their functional attributes are still not well understood. They undergo abnormal mitoses and fail to accomplish cytokinesis, resulting in multinucleation. Oxidative stress, hypoxia, and inflammation may be contributing pathologies to generate these astrocytes. The abnormal mitoses occur from changes in cell shape, the accumulation of cytoplasmic proteins, and the mislocalization of many of the important molecules whose coordination is necessary for proper mitotic spindle formation. Modern technologies will be able to characterize their abnormalities and solve century old questions of their form and function.
Collapse
Affiliation(s)
- James E Goldman
- From the Division of Neuropathology, Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and The Taub Institute for Research on Alzheimer's Disease and Aging, NY-Presbyterian Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Van Loy T, De Jonghe S, Castermans K, Dheedene W, Stoop R, Verschuren L, Versele M, Chaltin P, Luttun A, Schols D. Stimulation of the atypical chemokine receptor 3 (ACKR3) by a small-molecule agonist attenuates fibrosis in a preclinical liver but not lung injury model. Cell Mol Life Sci 2022; 79:293. [PMID: 35562519 PMCID: PMC9106635 DOI: 10.1007/s00018-022-04317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
Atypical chemokine receptor 3 (ACKR3, formerly CXC chemokine receptor 7) is a G protein-coupled receptor that recruits β-arrestins, but is devoid of functional G protein signaling after receptor stimulation. In preclinical models of liver and lung fibrosis, ACKR3 was previously shown to be upregulated after acute injury in liver sinusoidal and pulmonary capillary endothelial cells, respectively. This upregulation was linked with a pro-regenerative and anti-fibrotic role for ACKR3. A recently described ACKR3-targeting small molecule agonist protected mice from isoproterenol-induced cardiac fibrosis. Here, we aimed to evaluate its protective role in preclinical models of liver and lung fibrosis. After confirming its in vitro pharmacological activity (i.e., ACKR3-mediated β-arrestin recruitment and receptor binding), in vivo administration of this ACKR3 agonist led to increased mouse CXCL12 plasma levels, indicating in vivo interaction of the agonist with ACKR3. Whereas twice daily in vivo administration of the ACKR3 agonist lacked inhibitory effect on bleomycin-induced lung fibrosis, it had a modest, but significant anti-fibrotic effect in the carbon tetrachloride (CCl4)-induced liver fibrosis model. In the latter model, ACKR3 stimulation affected the expression of several fibrosis-related genes and led to reduced collagen content as determined by picro-sirius red staining and hydroxyproline quantification. These data confirm that ACKR3 agonism, at least to some extent, attenuates fibrosis, although this effect is rather modest and heterogeneous across various tissue types. Stimulating ACKR3 alone without intervening in other signaling pathways involved in the multicellular crosstalk leading to fibrosis will, therefore, most likely not be sufficient to deliver a satisfactory clinical outcome.
Collapse
Affiliation(s)
- Tom Van Loy
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | | - Wouter Dheedene
- Endothelial Cell Biology Unit, Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Reinout Stoop
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | | | - Patrick Chaltin
- CISTIM, Gaston Geenslaan 2, 3001, Leuven, Belgium
- Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Belgium
| | - Aernout Luttun
- Endothelial Cell Biology Unit, Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
11
|
He J, Jiang Z, Lei J, Zhou W, Cui Y, Luo B, Zhang M. Prognostic Value and Therapeutic Perspectives of CXCR Members in the Glioma Microenvironment. Front Genet 2022; 13:787141. [PMID: 35571062 PMCID: PMC9091590 DOI: 10.3389/fgene.2022.787141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: CXCR (CXC Chemokine Receptor) is a complex of the immune-associated protein involved in tumor activation, invasion, migration, and angiogenesis through various chemical signals in the tumor microenvironment (TME). However, significant prognostic characteristics of CXCR members and their impact on the occurrence and progression of glioma have not yet been fully elucidated. Methods: In this research, we used Oncomine, TCGA, GTEx, and CGGA databases to analyze the transcription and survival data of glioma patients. Afterward, the influence of CXCR members on the TME was explored using comprehensive bioinformatics analysis. Results: The mRNA expression levels of CXCR1/2/3/4/7 were significantly up-regulated in glioma than in normal samples, whereas the mRNA expression level of CXCR5 was decreased. We then summarized the genetic alteration landscape of CXCR and identified two molecular subtypes based on CXCR expression patterns in glioma. The characteristics of CXCRs were also investigated, including the clinicopathological parameters, TME cell infiltration, and prognosis of patients with glioma. After Lasso and multivariable Cox regression, a CR-Score for predicting overall survival (OS) was constructed and the predictive performance of the signature was validated. The high-risk group was a significantly poorer prognostic group than the low-risk group as judged by the CR-Score (TCGA cohort, p < 0.001, CGGA cohort, p < 0.001). Moreover, the CR-Score was significantly correlated to the tumor-immune infiltration and cancer stem cell (CSC) index. A risk scale-based nomogram incorporating clinical factors for individual risk estimation was established thereby. Conclusion: These findings may pave the way for enhancing our understanding of CXCR modification patterns and developing better immune therapeutic approaches for glioma.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongzhong Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiawei Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biao Luo
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Duval V, Alayrac P, Silvestre JS, Levoye A. Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Front Endocrinol (Lausanne) 2022; 13:906586. [PMID: 35846294 PMCID: PMC9276939 DOI: 10.3389/fendo.2022.906586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Chemokines, and their receptors play a crucial role in the pathophysiology of cardiovascular diseases (CVD). Chemokines classically mediate their effects by binding to G-protein-coupled receptors. The discovery that chemokines can also bind to atypical chemokine receptors (ACKRs) and initiate alternative signaling pathways has changed the paradigm regarding chemokine-related functions. Among these ACKRs, several studies have highlighted the exclusive role of ACKR3, previously known as C-X-C chemokine receptor type 7 (CXCR7), in CVD. Indeed, ACKR3 exert atheroprotective, cardioprotective and anti-thrombotic effects through a wide range of cells including endothelial cells, platelets, inflammatory cells, fibroblasts, vascular smooth muscle cells and cardiomyocytes. ACKR3 functions as a scavenger receptor notably for the pleiotropic chemokine CXCL12, but also as a activator of different pathways such as β-arrestin-mediated signaling or modulator of CXCR4 signaling through the formation of ACKR3-CXCR4 heterodimers. Hence, a better understanding of the precise roles of ACKR3 may pave the way towards the development of novel and improved therapeutic strategies for CVD. Here, we summarize the structural determinant characteristic of ACKR3, the molecules targeting this receptor and signaling pathways modulated by ACKR3. Finally, we present and discuss recent findings regarding the role of ACKR3 in CVD.
Collapse
Affiliation(s)
- Vincent Duval
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Paul Alayrac
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Jean-Sébastien Silvestre
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
| | - Angélique Levoye
- Université Paris Cité, Institut National de la Santé Et Recherche Médicale (INSERM), Paris Cardiovascular Research Center PARCC, Paris, France
- UFR Santé Médecine Biologie Humaine, Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Angélique Levoye,
| |
Collapse
|
13
|
Cellular, synaptic, and network effects of chemokines in the central nervous system and their implications to behavior. Pharmacol Rep 2021; 73:1595-1625. [PMID: 34498203 PMCID: PMC8599319 DOI: 10.1007/s43440-021-00323-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence highlights chemokines as key mediators of the bidirectional crosstalk between neurons and glial cells aimed at preserving brain functioning. The multifaceted role of these immune proteins in the CNS is mirrored by the complexity of the mechanisms underlying its biological function, including biased signaling. Neurons, only in concert with glial cells, are essential players in the modulation of brain homeostatic functions. Yet, attempts to dissect these complex multilevel mechanisms underlying coordination are still lacking. Therefore, the purpose of this review is to summarize the current knowledge about mechanisms underlying chemokine regulation of neuron-glia crosstalk linking molecular, cellular, network, and behavioral levels. Following a brief description of molecular mechanisms by which chemokines interact with their receptors and then summarizing cellular patterns of chemokine expression in the CNS, we next delve into the sequence and mechanisms of chemokine-regulated neuron-glia communication in the context of neuroprotection. We then define the interactions with other neurotransmitters, neuromodulators, and gliotransmitters. Finally, we describe their fine-tuning on the network level and the behavioral relevance of their modulation. We believe that a better understanding of the sequence and nature of events that drive neuro-glial communication holds promise for the development of new treatment strategies that could, in a context- and time-dependent manner, modulate the action of specific chemokines to promote brain repair and reduce the neurological impairment.
Collapse
|
14
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
15
|
Santagata S, Ieranò C, Trotta AM, Capiluongo A, Auletta F, Guardascione G, Scala S. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front Oncol 2021; 11:591386. [PMID: 33937018 PMCID: PMC8082172 DOI: 10.3389/fonc.2021.591386] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors (GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression, targeting cell proliferation and migration, while orchestrating the recruitment of immune and stromal cells within the TME. CXCL12 excludes T cells from TME through a concentration gradient that inhibits immunoactive cells access and promotes tumor vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer components. CXCR4/CXCR7 antagonism should prevent the development of metastases by interfering with tumor cell growth, migration and chemotaxis and favoring the frequency of T cells in TME. Herein, we discuss the current understanding on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In addition, we consider emerging approaches that coordinately target both immune checkpoints and CXCL12/CXCR4/CXCR7 axis.
Collapse
Affiliation(s)
- Sara Santagata
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Caterina Ieranò
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Trotta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Anna Capiluongo
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Federica Auletta
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppe Guardascione
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Napoli, Italy
| |
Collapse
|
16
|
Pouzol L, Baumlin N, Sassi A, Tunis M, Marrie J, Vezzali E, Farine H, Mentzel U, Martinic MM. ACT-1004-1239, a first-in-class CXCR7 antagonist with both immunomodulatory and promyelinating effects for the treatment of inflammatory demyelinating diseases. FASEB J 2021; 35:e21431. [PMID: 33595155 DOI: 10.1096/fj.202002465r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Current strategies for the treatment of demyelinating diseases such as multiple sclerosis (MS) are based on anti-inflammatory or immunomodulatory drugs. Those drugs have the potential to reduce the frequency of new lesions but do not directly promote remyelination in the damaged central nervous system (CNS). Targeting CXCR7 (ACKR3) has been postulated as a potential therapeutic approach in demyelinating diseases, leading to both immunomodulation by reducing leukocyte infiltrates and promyelination by enhancing myelin repair. ACT-1004-1239 is a potent, selective, insurmountable, and orally available first-in-class CXCR7 receptor antagonist. The effect of ACT-1004-1239 was evaluated in the myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and the cuprizone-induced demyelination mouse models. In addition, ACT-1004-1239 was assessed in a rat oligodendrocyte precursor cell (OPC) differentiation assay in vitro. In the MOG-induced EAE model, ACT-1004-1239 treatment (10-100 mg/kg, twice daily, orally) showed a significant dose-dependent reduction in disease clinical scores, resulting in increased survival. At the highest dose tested (100 mg/kg, twice daily), ACT-1004-1239 delayed disease onset and significantly reduced immune cell infiltrates into the CNS and plasma neurofilament light chain concentration. Treatment with ACT-1004-1239 dose-dependently increased plasma CXCL12 concentration, which correlated with a reduction of the cumulative disease score. Furthermore, in the cuprizone model, ACT-1004-1239 treatment significantly increased the number of mature myelinating oligodendrocytes and enhanced myelination in vivo. In vitro, ACT-1004-1239 promoted the maturation of OPCs into myelinating oligodendrocytes. These results provide evidence that ACT-1004-1239 both reduces neuroinflammation and enhances myelin repair substantiating the rationale to explore its therapeutic potential in a clinical setting.
Collapse
Affiliation(s)
| | | | - Anna Sassi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Mélanie Tunis
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Julia Marrie
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - Hervé Farine
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | |
Collapse
|
17
|
Nguyen HT, Reyes-Alcaraz A, Yong HJ, Nguyen LP, Park HK, Inoue A, Lee CS, Seong JY, Hwang JI. CXCR7: a β-arrestin-biased receptor that potentiates cell migration and recruits β-arrestin2 exclusively through Gβγ subunits and GRK2. Cell Biosci 2020; 10:134. [PMID: 33292475 PMCID: PMC7686738 DOI: 10.1186/s13578-020-00497-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Some chemokine receptors referred to as atypical chemokine receptors (ACKRs) are thought to non-signaling decoys because of their inability to activate typical G-protein signaling pathways. CXCR7, also known as ACKR3, binds to only two chemokines, SDF-1α and I-TAC, and recruits β-arrestins. SDF-1α also binds to its own conventional receptor, CXCR4, involving in homeostatic modulation such as development and immune surveillance as well as pathological conditions such as inflammation, ischemia, and cancers. Recently, CXCR7 is suggested as a key therapeutic target together with CXCR4 in such conditions. However, the molecular mechanisms underlying cellular responses and functional relation with CXCR7 and CXCR4 have not been elucidated, despite massive studies. Therefore, we aimed to reveal the molecular networks of CXCR7 and CXCR4 and compare their effects on cell migration. METHODS Base on structural complementation assay using NanoBiT technology, we characterized the distinct mechanisms underlying β-arrestin2 recruitment by both CXCR4 and CXCR7. Crosslinking and immunoprecipitation were conducted to analyze complex formation of the receptors. Gene deletion using CRISPR and reconstitution of the receptors were applied to analysis of ligand-dependent ERK phosphorylation and cell migration. All experiments were performed in triplicate and repeated more than three times. Unpaired Student's t-tests or ANOVA using PRISM5 software were employed for statistical analyses. RESULTS Ligand binding to CXCR7 does not result in activation of typical signaling pathways via Gα subunits but activation of GRK2 via βγ subunits and receptor phosphorylation with subsequent β-arrestin2 recruitment. In contrast, CXCR4 induced Gαi activation and recruited β-arrestin2 through C-terminal phosphorylation by both GRK2 and GRK5. SDF-1α-stimulated ERK phosphorylation was facilitated by CXCR4, but not CXCR7. Heterodimerization of CXCR4 and CXCR7 was not confirmed in this study, while homodimerization of them was verified by crosslinking experiment and NanoBiT assay. Regarding chemotaxis, SDF-1α-stimulated cell migration was mediated by both CXCR4 and CXCR7. CONCLUSION This study demonstrates that SDF-1α-stimulated CXCR7 mediates β-arrestin2 recruitment via different molecular networking from that of CXCR4. CXCR7 may be neither a simple scavenger nor auxiliary receptor but plays an essential role in cell migration through cooperation with CXCR4.
Collapse
Affiliation(s)
- Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | - Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Laiva AL, O'Brien FJ, Keogh MB. SDF-1α gene-activated collagen scaffold drives functional differentiation of human Schwann cells for wound healing applications. Biotechnol Bioeng 2020; 118:725-736. [PMID: 33064302 DOI: 10.1002/bit.27601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/03/2023]
Abstract
Enhancing angiogenesis is the prime target of current biomaterial-based wound healing strategies. However, these approaches largely overlook the angiogenic role of the cells of the nervous system. Therefore, we explored the role of a collagen-chondroitin sulfate scaffold functionalized with a proangiogenic gene stromal-derived factor-1α (SDF-1α)-an SDF-1α gene-activated scaffold on the functional regulation of human Schwann cells (SCs). A preliminary 2D study was conducted by delivering plasmids encoding for the SDF-1α gene into a monolayer of SCs using polyethyleneimine-based nanoparticles. The delivery of the SDF-1α gene into the SCs enhanced the production of proangiogenic vascular endothelial growth factor (VEGF). Subsequently, we investigated the impact of SDF-1α gene-activated scaffold (3D) on the SCs for 2 weeks, using a gene-free scaffold as control. The transfection of the SCs within the gene-activated scaffold resulted in transient overexpression of SDF-1α transcripts and triggered the production of bioactive VEGF that enhanced endothelial angiogenesis. The overexpression of SDF-1α also caused transient activation of the transcription factor c-Jun and supported the differentiation of SCs towards a repair phenotype. This was characterized by elevated expression of neurotrophin receptor p75NGFR. During this developmental stage, the SCs also performed an extensive remodelling of the basement matrix (fibronectin, collagen IV, and laminin) to enrich their environment with the pro-neurogenic matrix protein laminin, revealing an enhanced pro-neurogenic behavior. Together, this study shows that SDF-1α gene-activated scaffold is a highly bioinstructive scaffold capable of enhancing proangiogenic regenerative response in human SCs for improved wound healing.
Collapse
Affiliation(s)
- Ashang L Laiva
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Biomedical Science, Royal College of Surgeons in Ireland, Bahrain, Adliya, Kingdom of Bahrain
| | - Fergal J O'Brien
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael B Keogh
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Biomedical Science, Royal College of Surgeons in Ireland, Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
19
|
Koch C, Engele J. Functions of the CXCL12 Receptor ACKR3/CXCR7-What Has Been Perceived and What Has Been Overlooked. Mol Pharmacol 2020; 98:577-585. [PMID: 32883765 DOI: 10.1124/molpharm.120.000056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
The CXCL12 system is central to the development of many organs and is further crucially engaged in pathophysiological processes underlying cancer, inflammation, and cardiovascular disorders. This disease-associated role presently focuses major interest on the two CXCL12 receptors, CXCR4 and atypical chemokine receptor 3 (ACKR3)/CXCR7, as promising therapeutic targets. Major obstacles in these ongoing efforts are confusing reports on the differential use of either ACKR3/CXCR7 and/or CXCR4 across various cells as well as on the specific function(s) of ACKR3/CXCR7. Although basically no doubts remain that CXCR4 represents a classic chemokine receptor, functions assigned to ACKR3/CXCR7 range from those of a strictly silent scavenger receptor eventually modulating CXCR4 signaling to an active and independent signaling receptor. In this review, we depict a thorough analysis of our present knowledge on different modes of organization and functions of the cellular CXCL12 system. We further highlight the potential role of ACKR3/CXCR7 as a "crosslinker" of different receptor systems. Finally, we discuss mechanisms with the potency to impinge on the cellular organization of the CXCL12 system and hence might represent additional future therapeutic targets. SIGNIFICANCE STATEMENT: Delineating the recognized functions of atypical chemokine receptor 3 and CXCR4 in CXCL12 signaling is central to the more detailed understanding of the role of the CXCL12 system in health and disease and will help to guide future research efforts.
Collapse
Affiliation(s)
- Christian Koch
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| |
Collapse
|
20
|
Smit MJ, Schlecht-Louf G, Neves M, van den Bor J, Penela P, Siderius M, Bachelerie F, Mayor F. The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting. Annu Rev Pharmacol Toxicol 2020; 61:541-563. [PMID: 32956018 DOI: 10.1146/annurev-pharmtox-010919-023340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.
Collapse
Affiliation(s)
- Martine J Smit
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Maria Neves
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France.,Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jelle van den Bor
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marco Siderius
- Department of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, Netherlands;
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC/UAM), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
21
|
Huynh C, Dingemanse J, Meyer Zu Schwabedissen HE, Sidharta PN. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res 2020; 161:105092. [PMID: 32758634 DOI: 10.1016/j.phrs.2020.105092] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The impact of the C-X-C receptor (CXCR) 7 and its close co-player CXCR4 in different physiological and pathophysiological processes has been extensively investigated within the last decades. Following activation by their shared ligand C-X-C ligand (CXCL) 12, both chemokine receptors can induce various routes of cell signaling and/or scavenge CXCL12 from the extracellular environment. This contributes to organ development and maintenance of homeostasis. Alterations of the CXCR4/CXCR7-CXCL12 axis have been detected in diseases such as cancer, central nervous system and cardiac disorders, and autoimmune diseases. These alterations include changes of the expression pattern, distribution, or downstream effects. The progression of the diseases can be regulated in preclinical models by the use of various modulators suggesting that this axis serves as a promising therapeutic target. It is therefore of great interest to investigate CXCR4/CXCR7/CXCL12 modulators in clinical development, with several CXCR4 and CXCL12 modulators such as plerixafor, ulocuplumab, balixafortide, and olaptesed pegol having already reached this stage. An overview is presented of the most important diseases whose outcomes can be positively or negatively regulated by the CXCR4/CXCR7-CXCL12 axis and summarizes preclinical and clinical data of modulators of that axis. Contrary to CXCR4 and CXCL12 modulators, CXCR7 modulators have, thus far, not been extensively studied. Therefore, more (pre)clinical investigations are needed.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | | | - Patricia N Sidharta
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland.
| |
Collapse
|
22
|
Li T, Liu T, Chen X, Li L, Feng M, Zhang Y, Wan L, Zhang C, Yao W. Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. J Neuroinflammation 2020; 17:211. [PMID: 32665021 PMCID: PMC7362409 DOI: 10.1186/s12974-020-01891-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Activated astrocytes play important roles in chronic post-surgical pain (CPSP). Recent studies have shown reactive astrocytes are classified into A1 and A2 phenotypes, but their precise roles in CPSP remain unknown. In this study, we investigated the roles of spinal cord A1 and A2 astrocytes and related mechanisms in CPSP. Methods We used a skin/muscle incision and retraction (SMIR) model to establish a rat CPSP model. Microglia, CXCR7, and the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathways were regulated by intrathecal injections of minocycline (a non-specific microglial inhibitor), AMD3100 (a CXCR7 agonist), and LY294002 (a specific PI3K inhibitor), respectively. Mechanical allodynia was detected with von Frey filaments. The changes in microglia, A1 astrocytes, A2 astrocytes, CXCR7, and PI3K/Akt signaling pathways were examined by enzyme-linked immunosorbent assay (ELISA), western blot, and immunofluorescence. Results Microglia were found to be activated, with an increase in interleukin-1 alpha (IL-1α), tumor necrosis factor alpha (TNFα), and complement component 1q (C1q) in the spinal cord at an early stage after SMIR. On day 14 after SMIR, spinal cord astrocytes were also activated; these were mainly of the A1 phenotype and less of the A2 phenotype. Intrathecal injection of minocycline relieved SMIR-induced mechanical allodynia and reverted the ratio of A1/A2 reactive astrocytes. The expression of CXCR7 and PI3K/Akt signaling was decreased after SMIR, while they were increased after treatment with minocycline. Furthermore, intrathecal injection of AMD3100 also relieved SMIR-induced mechanical allodynia, reverted the ratio of A1/A2 reactive astrocytes, and activated the PI3K/Akt signaling pathway, similar to the effects produced by minocycline. However, intrathecal injection of AMD3100 did not increase the analgesic effect of minocycline. Last, LY294002 inhibited the analgesic effect and A1/A2 transformation induced by minocycline and AMD3100 after SMIR. Conclusion Our results indicated that microglia induce the transformation of astrocytes to the A1 phenotype in the spinal cord via downregulation of the CXCR7/PI3K/Akt signaling pathway during CPSP. Reverting A1 reactive astrocytes to A2 may represent a new strategy for preventing CPSP.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Tongtong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, People's Republic of China
| | - Miaomiao Feng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
23
|
Xin Q, Sun Q, Zhang CS, Zhang Q, Li CJ. Functions and mechanisms of chemokine receptor 7 in tumors of the digestive system. World J Clin Cases 2020; 8:2448-2463. [PMID: 32607322 PMCID: PMC7322425 DOI: 10.12998/wjcc.v8.i12.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7), recently termed ACKR3, belongs to the G protein-coupled cell surface receptor family, binds to stromal cell-derived factor-1 [SDF-1, or chemokine (C-X-C motif) ligand 12] or chemokine (C-X-C motif) ligand 11, and is the most common chemokine receptor expressed in a variety of cancer cells. SDF-1 binds to its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and regulates cell proliferation, survival, angiogenesis and migration. In recent years, another new receptor for SDF-1, CXCR7, has been discovered, and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells. Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells. Unlike CXCR4, CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca2+ release following ligand binding, which is essential for recruiting and activating G proteins. CXCR7 is generally thought to work in three ways: (1) Recruiting β-arrestin 2; (2) Heterodimerizing with CXCR4; and (3) Acting as a “scavenger” of SDF-1, thus lowering the level of SDF-1 to weaken the activity of CXCR4. In the present review, the expression and role of CXCR7, as well as its prognosis in cancers of the digestive system, were investigated.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Quan Sun
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| |
Collapse
|
24
|
Wu SH, Zhang F, Yao S, Tang L, Zeng HT, Zhu LP, Yang Z. Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. Stem Cells Int 2020; 2020:5939530. [PMID: 32399044 PMCID: PMC7210539 DOI: 10.1155/2020/5939530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Shear stress is an effective modulator of endothelial progenitor cells (EPCs) and has been suggested to play an important role in angiogenesis. The phosphatase and tensin homolog (PTEN)/Akt and guanosine triphosphate cyclohydrolase (GTPCH)/tetrahydrobiopterin (BH4) pathways regulate the function of early EPCs. However, the role of these pathways in the shear stress-induced angiogenesis of late EPCs remains poorly understood. Therefore, we aim to investigate whether shear stress could upregulate the angiogenesis capacity of late EPCs and to further explore the possible underlying mechanisms. METHODS Late EPCs were subjected to laminar shear stress (LSS), and their in vitro migration, proliferation, and tube formation capacity were determined. In addition, the in vivo angiogenesis capacity was explored, along with the expression of molecules involved in the PTEN/Akt and GTPCH/BH4 pathways. RESULTS LSS elevated the in vitro activities of late EPCs, which were accompanied by downregulated PTEN expression, accelerated Akt phosphorylation, and GTPCH/BH4 pathway activation (all P < 0.05). Following Akt inhibition, LSS-induced upregulated GTPCH expression, BH4, and NO level of EPCs were suppressed. LSS significantly improved the migration, proliferation, and tube formation ability (15 dyn/cm2 LSS vs. stationary: 72.2 ± 5.5 vs. 47.3 ± 7.3, 0.517 ± 0.05 vs. 0.367 ± 0.038, and 1.664 ± 0.315 vs. 1 ± 0, respectively; all P < 0.05) along with the in vivo angiogenesis capacity of late EPCs, contributing to the recovery of limb ischemia. These effects were also blocked by Akt inhibition or GTPCH knockdown (P < 0.05, respectively). CONCLUSIONS This study provides the first evidence that shear stress triggers angiogenesis in late EPCs via the PTEN/Akt/GTPCH/BH4 pathway, providing a potential nonpharmacologic therapeutic strategy for promoting angiogenesis in ischemia-related diseases.
Collapse
Affiliation(s)
- Shao-Hong Wu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, 58 2nd Zhongshan Road, Guangzhou, China 510080
| | - Feng Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China 410008
| | - Shun Yao
- Department of Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China 510080
| | - Lu Tang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China 410008
| | - Hai-Tao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, 58, 2nd Village Cross Road, Guangzhou, China 510080
| | - Ling-Ping Zhu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China 410008
| | - Zhen Yang
- Division of Emergency Medicine, Department of General Internal Medicine, Department of Emergency Intensive Care Unit & Department of Cardiology & Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated Hospital, Sun Yet-Sen University, 58 2nd Zhongshan Road, Guangzhou, China 510080
| |
Collapse
|
25
|
Neves M, Fumagalli A, van den Bor J, Marin P, Smit MJ, Mayor F. The Role of ACKR3 in Breast, Lung, and Brain Cancer. Mol Pharmacol 2019; 96:819-825. [PMID: 30745320 DOI: 10.1124/mol.118.115279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Recent reports regarding the significance of chemokine receptors in disease have put a spotlight on atypical chemokine receptor 3 (ACKR3). This atypical chemokine receptor is overexpressed in numerous cancer types and has been involved in the modulation of tumor cell proliferation and migration, tumor angiogenesis, or resistance to drugs, thus contributing to cancer progression and metastasis occurrence. Here, we focus on the clinical significance and potential mechanisms underlying the pathologic role of ACKR3 in breast, lung, and brain cancer and discuss its possible relevance as a prognostic factor and potential therapeutic target in these contexts.
Collapse
Affiliation(s)
- Maria Neves
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Amos Fumagalli
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Jelle van den Bor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Philippe Marin
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Martine J Smit
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma Madrid, Madrid, Spain (M.N., F.M.); Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (J.B., M.J.S.); and CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (F.M.)
| |
Collapse
|
26
|
Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ, Mayor F, Smit MJ, Marin P. CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Mol Pharmacol 2019; 96:794-808. [PMID: 30837297 DOI: 10.1124/mol.118.115360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
The C-X-C motif chemokine receptor type 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3/CXCR7) are class A G protein-coupled receptors (GPCRs). Accumulating evidence indicates that GPCR subcellular localization, trafficking, transduction properties, and ultimately their pathophysiological functions are regulated by both interacting proteins and post-translational modifications. This has encouraged the development of novel techniques to characterize the GPCR interactome and to identify residues subjected to post-translational modifications, with a special focus on phosphorylation. This review first describes state-of-the-art methods for the identification of GPCR-interacting proteins and GPCR phosphorylated sites. In addition, we provide an overview of the current knowledge of CXCR4 and ACKR3 post-translational modifications and an exhaustive list of previously identified CXCR4- or ACKR3-interacting proteins. We then describe studies highlighting the importance of the reciprocal influence of CXCR4/ACKR3 interactomes and phosphorylation states. We also discuss their impact on the functional status of each receptor. These studies suggest that deeper knowledge of the CXCR4/ACKR3 interactomes along with their phosphorylation and ubiquitination status would shed new light on their regulation and pathophysiological functions.
Collapse
Affiliation(s)
- Amos Fumagalli
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Aurélien Zarca
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Maria Neves
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Birgit Caspar
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Stephen J Hill
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Federico Mayor
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Martine J Smit
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| |
Collapse
|
27
|
Quinn KE, Mackie DI, Caron KM. Emerging roles of atypical chemokine receptor 3 (ACKR3) in normal development and physiology. Cytokine 2019; 109:17-23. [PMID: 29903572 DOI: 10.1016/j.cyto.2018.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
The discovery that atypical chemokine receptors (ACKRs) can initiate alternative signaling pathways rather than classical G-protein coupled receptor (GPCR) signaling has changed the paradigm of chemokine receptors and their roles in modulating chemotactic responses. The ACKR family has grown over the years, with discovery of new functions and roles in a variety of pathophysiological conditions. However, the extent to which these receptors regulate normal physiology is still continuously expanding. In particular, atypical chemokine receptor 3 (ACKR3) has proven to be an important receptor in mediating normal biological functions, including cardiac development and migration of cortical neurons. In this review, we illustrate the versatile and intriguing role of ACKR3 in physiology.
Collapse
Affiliation(s)
- K E Quinn
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - D I Mackie
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | - K M Caron
- Department of Cell Biology and Physiology, 111 MasonFarm Rd., 6312B MBRB CB# 7545, The University of North Carolina, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
28
|
Lanjakornsiripan D, Pior BJ, Kawaguchi D, Furutachi S, Tahara T, Katsuyama Y, Suzuki Y, Fukazawa Y, Gotoh Y. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat Commun 2018; 9:1623. [PMID: 29691400 PMCID: PMC5915416 DOI: 10.1038/s41467-018-03940-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 03/23/2018] [Indexed: 12/22/2022] Open
Abstract
Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.
Collapse
Affiliation(s)
- Darin Lanjakornsiripan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Baek-Jun Pior
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shohei Furutachi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, W1T 4JG, UK.
| | - Tomoaki Tahara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 277-8561, Japan
| | - Yugo Fukazawa
- Graduate School of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
29
|
Deng L, Zheng W, Dong X, Liu J, Zhu C, Lu D, Zhang J, Song L, Wang Y, Deng D. Chemokine receptor CXCR7 is an independent prognostic biomarker in glioblastoma. Cancer Biomark 2018; 20:1-6. [PMID: 28759950 DOI: 10.3233/cbm-151430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and most fatal primary brain cancer in adults. Due to the complex nature of GBM, its pathogenesis still remain unclear. Accumulating evidence suggest that chemokine receptor CXCR7 contribute to the development of various types of tumors. OBJECTIVE We aim to examine the prognostic significance of CXCR7 in GBM. METHODS CXCR7 were first detected by Immunohistochemistry. The association between CXCR7 and overall survival (OS) were examined. Moreover, multivariate analyses were conducted to evaluate the prognostic factors in GBM. RESULTS Of all 146 GBM patients recruited, 77 were in the high-expression subgroup, the rest 69 were in low-expression subgroup. There are no differences between these two subgroups in terms of age, gender, family history of cancer, extent of surgery, chemotherapy, radiotherapy, KPS, MGMT methylation status and tumor size. However, high CXCR7 expression was robustly correlated with poor OS in GBM. Multivariate analysis confirmed age, KPS scores, chemotherapy, IDH1 mutation, MGMT methylation and CXCR7 were independent factors in survival prognosis. CONCLUSIONS CXCR7 may involve in the clinical GBM progression, and CXCR7 could be a valuable prognostic marker in the treatment of GBM.
Collapse
Affiliation(s)
- Lina Deng
- Department of Surgery, Daqing Longnan Hospital, Daqing, Heilongjiang, China.,Department of Surgery, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Wenxin Zheng
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China.,Department of Surgery, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| | - Xueshuang Dong
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jianghua Liu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Chunyu Zhu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Dan Lu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jin Zhang
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Laijun Song
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yuchao Wang
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Dan Deng
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
30
|
Xin Q, Zhang N, Wen LK, Zhang Q, Zhang CS. Chemokine receptor CXCR7 promotes gastric cancer growth via VEGF. Shijie Huaren Xiaohua Zazhi 2018; 26:639-647. [DOI: 10.11569/wcjd.v26.i11.639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of CXCR7 on the invasion of human gastric cancer cell line SGC-7901, and to explore the effect of blocking CXCR7 on gastric cancer growth and the underlying molecular mechanism.
METHODS A lentiviral vector overexpressing CXCR7 was transfected into SGC-7901 cells, and RT-PCR and Western blot were used to confirm if transfection was successful. The effect of CXCR7 overexpression on cell invasion and adhesion as well as vascular endothelial growth factor (VEGF) secretion was also assessed. Immunohistochemistry and immunofluorescence double staining were performed to assess the expression of CXCR7 in the vascular endothelium of human gastric cancer tissues. After blocking CXCR7 in nude mice carrying tumors, new blood vessels were detected by immunohistochemical staining for CD31 and microvessel density was calculated to reveal the relationship between CXCR7 and vascular density. The expression of VEGF was also detected.
RESULTS In vitro, CXCR7 was found to induce cell invasion and adhesion and VEGF secretion in SGC-7901 cells. CXCR7 was expressed in blood vessels of human gastric cancer tissues. In vivo, tumor growth (volume: F = 5.487, P = 0.047; weight: F = 5.364, P = 0.049) and angiogenesis (F = 6.438, P = 0.035) were suppressed, and VEGF was down-regulated (F = 87.211, P = 0.000) by CCX711.
CONCLUSION CXCR7 can significantly promote SGC-7901 cell invasion, adhesion, and angiogenesis. CXCR7 antagonist can inhibit tumor growth by inhibiting the secretion of VEGF and reducing angiogenesis, suggesting the value of CXCR7 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Third Central Hospital; Tianjin Research Institute of Hepatobiliary Disease; Tianjin Key Laboratory of Artificial Cells; Research Center of Artificial Cell Engineering Technology of the Ministry of Health, Tianjin 300170, China
| | - Na Zhang
- Tianjin Third Central Hospital; Tianjin Research Institute of Hepatobiliary Disease; Tianjin Key Laboratory of Artificial Cells; Research Center of Artificial Cell Engineering Technology of the Ministry of Health, Tianjin 300170, China,Department of Pathology, Tianjin Binhai New Area Dagang Hospital, Tianjin 300270, China
| | - Li-Kun Wen
- Tianjin Third Central Hospital; Tianjin Research Institute of Hepatobiliary Disease; Tianjin Key Laboratory of Artificial Cells; Research Center of Artificial Cell Engineering Technology of the Ministry of Health, Tianjin 300170, China
| | - Qin Zhang
- Tianjin Third Central Hospital; Tianjin Research Institute of Hepatobiliary Disease; Tianjin Key Laboratory of Artificial Cells; Research Center of Artificial Cell Engineering Technology of the Ministry of Health, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Tianjin Third Central Hospital; Tianjin Research Institute of Hepatobiliary Disease; Tianjin Key Laboratory of Artificial Cells; Research Center of Artificial Cell Engineering Technology of the Ministry of Health, Tianjin 300170, China
| |
Collapse
|
31
|
Zhang Y, Zhang H, Lin S, Chen X, Yao Y, Mao X, Shao B, Zhuge Q, Jin K. SDF-1/CXCR7 Chemokine Signaling is Induced in the Peri-Infarct Regions in Patients with Ischemic Stroke. Aging Dis 2018; 9:287-295. [PMID: 29896417 PMCID: PMC5963349 DOI: 10.14336/ad.2017.1112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022] Open
Abstract
Stromal-derived factor-1 (SDF-1, also known as CXCL12) and its receptors CXCR4 and CXCR7 play important roles in brain repair after ischemic stroke, as SDF-1/ CXCR4/CXCR7 chemokine signaling is critical for recruiting stem cells to sites of ischemic injury. Upregulation of SDF-1/CXCR4/CXCR7 chemokine signaling in the ischemic regions has been well-documented in the animal models of ischemic stroke, but not in human ischemic brain. Here, we found that protein expression of SDF-1 and CXCR7, but not CXCR4, were significantly increased in the cortical peri-infarct regions (penumbra) after ischemic stroke in human, compared with adjacent normal tissues and control subjects. Double-label fluorescence immunohistochemistry shows that SDF-1 and CXCR4 proteins were expressed in neuronal cells and astrocytes in the normal brain tissue and peri-infarct regions. CXCR7 protein was also observed in neuronal cells and astrocytes in the normal cortical regions, but predominantly in astrocytes in the penumbra of ischemic brain. Our data suggest that ischemic stroke in human leads to an increase in the expression of SDF-1 and CXCR7, but not CXCR4, in the peri-infarct cerebral cortex. Our findings suggest that chemokine SFD-1 is expressed not only in animal models of stroke, but also in the human brain after an ischemic injury. In addition, unlike animals, CXCR7 may be the primary receptor of SDF-1 in human stroke brain.
Collapse
Affiliation(s)
- Yu Zhang
- 1Department of Neurosurgery, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongxia Zhang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Siyang Lin
- 3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- 3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Yao
- 4Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - XiaoOu Mao
- 5Buck Institute for Age Research, Novato, California 94945, USA
| | - Bei Shao
- 3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qichuan Zhuge
- 1Department of Neurosurgery, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA.,3Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
32
|
The 5T4 oncofetal glycoprotein does not act as a general organizer of the CXCL12 system in cancer cells. Exp Cell Res 2018; 364:175-183. [PMID: 29408206 DOI: 10.1016/j.yexcr.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/07/2023]
Abstract
The chemokine, CXCL12, promotes cancer growth and metastasis through interaction with either CXCR4 and/or CXCR7. This tumor-specific organization of the CXCL12 system obscures current therapeutic approaches, aiming at the selective inactivation of CXCL12 receptors. Since it has been previously suggested that the cellular use of CXCR4 or CXCR7 is dictated by the 5T4 oncofetal glycoprotein, we have now tested whether 5T4 would represent a general and reliable marker for the organization of the CXCL12 system in cancer cells. The CXCR4 antagonist, AMD3100, as well as the CXCR7 antagonist, CCX771, demonstrated that the cancer cell lines A549, C33A, DLD-1, MDA-231, and PC-3 use either CXCR7 and/or CXCR4 for mediating CXCL12-induced chemotaxis and cell proliferation. The use of CXCL12 receptors as well as their subcellular localization remained unchanged in most cell lines following siRNA-mediated depletion of 5T4. In distinct cell lines, inhibition of 5T4 expression, however, modulated tumor cell migration and proliferation per se. Collectively our analyses fail to demonstrate general organizational influences of 5T4 of the CXCL12 system in different cancer cell lines, and, hence, dismiss its future use as a diagnostic marker.
Collapse
|
33
|
Astrocytic expression of the CXCL12 receptor, CXCR7/ACKR3 is a hallmark of the diseased, but not developing CNS. Mol Cell Neurosci 2017; 85:105-118. [DOI: 10.1016/j.mcn.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
|
34
|
Fex Svenningsen Å, Löring S, Sørensen AL, Huynh HUB, Hjæresen S, Martin N, Moeller JB, Elkjær ML, Holmskov U, Illes Z, Andersson M, Nielsen SB, Benedikz E. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1. Cell Mol Life Sci 2017; 74:4561-4572. [PMID: 28726057 PMCID: PMC5663815 DOI: 10.1007/s00018-017-2592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.
Collapse
Affiliation(s)
- Åsa Fex Svenningsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark.
| | - Svenja Löring
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Anna Lahn Sørensen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Ha Uyen Buu Huynh
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Simone Hjæresen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Nellie Martin
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Jesper Bonnet Moeller
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Weill Cornell Medicine, Cornell University, 413 East 69th Street, New York, 10021, USA
| | - Maria Louise Elkjær
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 59, 751 24, Uppsala, Sweden
| | - Solveig Beck Nielsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Eirikur Benedikz
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Faculty of Health, University College Zealand, Parkvej 190, 4700, Næstved, Denmark
| |
Collapse
|
35
|
Cheng X, Wang H, Zhang X, Zhao S, Zhou Z, Mu X, Zhao C, Teng W. The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Front Neurosci 2017; 11:590. [PMID: 29123467 PMCID: PMC5662889 DOI: 10.3389/fnins.2017.00590] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023] Open
Abstract
Stromal cell-derived factor-1 is a chemoattractant produced by bone marrow stromal cell lines. It is recognized as a critical factor in the immune and central nervous systems (CNSs) as well as exerting a role in cancer. SDF-1 activates two G protein-coupled receptors, CXCR4 and CXCR7; these are expressed in both developing and mature CNSs and participate in multiple physiological and pathological events, e.g., inflammatory response, neurogenesis, angiogenesis, hematopoiesis, cancer metastasis, and HIV infection. After an ischemic stroke, SDF-1 levels robustly increase in the penumbra regions and participate in adult neural functional repair. Here we will review recent findings about SDF-1 and its receptor, analyse their functions in neurogeneration after brain ischemic injury: i.e., how the system promotes the proliferation, differentiation and migration of neural precursor cells and mediates axonal elongation and branching.
Collapse
Affiliation(s)
- Xi Cheng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Huibin Wang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Weiyu Teng
- Neurology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Sowa JE, Ślusarczyk J, Trojan E, Chamera K, Leśkiewicz M, Regulska M, Kotarska K, Basta-Kaim A. Prenatal stress affects viability, activation, and chemokine signaling in astroglial cultures. J Neuroimmunol 2017; 311:79-87. [DOI: 10.1016/j.jneuroim.2017.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/18/2017] [Indexed: 01/04/2023]
|
37
|
Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. α 1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 2017; 6:JAHA.117.006575. [PMID: 28862946 PMCID: PMC5586474 DOI: 10.1161/jaha.117.006575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Recently, we provided evidence that α1‐adrenergic receptors (ARs) in vascular smooth muscle are regulated by chemokine (C‐X‐C motif) receptor (CXCR) 4 and atypical chemokine receptor 3 (ACKR3). While we showed that CXCR4 controls α1‐ARs through formation of heteromeric receptor complexes in human vascular smooth muscle cells (hVSMCs), the molecular basis underlying cross‐talk between ACKR3 and α1‐ARs is unknown. Methods and Results We show that ACKR3 agonists inhibit inositol trisphosphate production in hVSMCs on stimulation with phenylephrine. In proximity ligation assays and co‐immunoprecipitation experiments, we observed that recombinant and endogenous ACKR3 form heteromeric complexes with α1A/B/D‐AR. While small interfering RNA knockdown of ACKR3 in hVSMCs reduced α1B/D‐AR:ACKR3, CXCR4:ACKR3, and α1B/D‐AR:CXCR4 complexes, small interfering RNA knockdown of CXCR4 reduced α1B/D‐AR:ACKR3 heteromers. Phenylephrine‐induced inositol trisphosphate production from hVSMCs was abolished after ACKR3 and CXCR4 small interfering RNA knockdown. Peptide analogs of transmembrane domains 2/4/7 of ACKR3 showed differential effects on heteromerization between ACKR3, α1A/B/D‐AR, and CXCR4. While the transmembrane domain 2 peptide interfered with α1B/D‐AR:ACKR3 and CXCR4:ACKR3 heteromerization, it increased heteromerization between CXCR4 and α1A/B‐AR. The transmembrane domain 2 peptide inhibited ACKR3 but did not affect α1b‐AR in β‐arrestin recruitment assays. Furthermore, the transmembrane domain 2 peptide inhibited phenylephrine‐induced inositol trisphosphate production in hVSMCs and attenuated phenylephrine‐induced constriction of mesenteric arteries. Conclusions α1‐ARs form hetero‐oligomeric complexes with the ACKR3:CXCR4 heteromer, which is required for α1B/D‐AR function, and activation of ACKR3 negatively regulates α1‐ARs. G protein–coupled receptor hetero‐oligomerization is a dynamic process, which depends on the relative abundance of available receptor partners. Endogenous α1‐ARs function within a network of hetero‐oligomeric receptor complexes.
Collapse
Affiliation(s)
- Lauren J Albee
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Jonathan M Eby
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Abhishek Tripathi
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Heather M LaPorte
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Xianlong Gao
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL .,Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| |
Collapse
|
38
|
Bai YP, Xiao S, Tang YB, Tan Z, Tang H, Ren Z, Zeng H, Yang Z. Shear stress-mediated upregulation of GTP cyclohydrolase/tetrahydrobiopterin pathway ameliorates hypertension-related decline in reendothelialization capacity of endothelial progenitor cells. J Hypertens 2017; 35:784-797. [PMID: 28033126 DOI: 10.1097/hjh.0000000000001216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Guanosine triphosphate cyclohydrolase/tetrahydrobiopterin (GTPCH)/(BH4) pathway has been proved to regulate the function of endothelial progenitor cells (EPCs) in deoxycorticosterone acetate-salt hypertensive mice, indicating that GTPCH/BH4 pathway may be an important repair target for hypertension-related endothelial injury. Shear stress is an important nonpharmacologic strategy to modulate the function of EPCs. Here, we investigated the effects of laminar shear stress on the GTPCH/BH4 pathway and endothelial repair capacity of circulating EPCs in hypertension. METHOD Laminar shear stress was loaded on the human EPCs from hypertensive patients and normotensive patients. The in-vitro function, in-vivo reendothelialization capacity and GTPCH/BH4 pathway of human EPCs were evaluated. RESULTS Both in-vitro function and reendothelialization capacity of EPCs were lower in hypertensive patients than that in normotensive patients. The GTPCH/BH4 pathway of EPCs was downregulated in hypertensive patients. Shear stress increased in-vitro function and reendothelialization capacity of EPCs from hypertensive patients and normotensive patients. Furthermore, shear stress upregulated the expression of GTPCH I and levels of BH4, nitric oxide, and cGMP of EPCs, and reduced thrombospondin-1 expression. With treatment of GTPCH knockdown or nitroarginine methyl ester inhibition, shear stress-induced increased levels of BH4, nitric oxide and cGMP of EPCs was suppressed. When GTPCH/BH4 pathway of EPCs was blocked, the effects of shear stress on in-vitro function and reendothelialization capacity of EPCs were inhibited. CONCLUSION The study demonstrates for the first time that shear stress-induced upregulation of the GTPCH/BH4 pathway ameliorates hypertension-related decline in endothelial repair capacity of EPCs. These findings provide novel nonpharmacologic therapeutic approach for hypertension-related endothelial repair.
Collapse
Affiliation(s)
- Yong-Ping Bai
- aDepartment of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan bDepartment of Neurology, Sun Yat-Sen Memorial Hospital cDepartment of Pharmacology, Zhongshan School of Medicine dDepartment of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University eSun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine fCenter for Reproductive Medicine, The Sixth Affiliated Hospital gDepartment of Hypertension & Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist 2017; 23:627-648. [PMID: 29283028 DOI: 10.1177/1073858416685690] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.
Collapse
Affiliation(s)
- Tianci Chu
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B E Shields
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yi Ping Zhang
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Shi-Qing Feng
- 3 Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Jun Cai
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
40
|
Early pancreatic cancer lesions suppress pain through CXCL12-mediated chemoattraction of Schwann cells. Proc Natl Acad Sci U S A 2016; 114:E85-E94. [PMID: 27986950 DOI: 10.1073/pnas.1606909114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells (PCC) have an exceptional propensity to metastasize early into intratumoral, chemokine-secreting nerves. However, we hypothesized the opposite process, that precancerous pancreatic cells secrete chemokines that chemoattract Schwann cells (SC) of nerves and thus induce ready-to-use routes of dissemination in early carcinogenesis. Here we show a peculiar role for the chemokine CXCL12 secreted in early PDAC and for its receptors CXCR4/CXCR7 on SC in the initiation of neural invasion in the cancer precursor stage and the resulting delay in the onset of PDAC-associated pain. SC exhibited cancer- or hypoxia-induced CXCR4/CXCR7 expression in vivo and in vitro and migrated toward CXCL12-expressing PCC. Glia-specific depletion of CXCR4/CXCR7 in mice abrogated the chemoattraction of SC to PCC. PDAC mice with pancreas-specific CXCL12 depletion exhibited diminished SC chemoattraction to pancreatic intraepithelial neoplasia and increased abdominal hypersensitivity caused by augmented spinal astroglial and microglial activity. In PDAC patients, reduced CXCR4/CXCR7 expression in nerves correlated with increased pain. Mechanistically, upon CXCL12 exposure, SC down-regulated the expression of several pain-associated targets. Therefore, PDAC-derived CXCL12 seems to induce tumor infiltration by SC during early carcinogenesis and to attenuate pain, possibly resulting in delayed diagnosis in PDAC.
Collapse
|
41
|
Ma DM, Luo DX, Zhang J. SDF-1/CXCR7 axis regulates the proliferation, invasion, adhesion, and angiogenesis of gastric cancer cells. World J Surg Oncol 2016; 14:256. [PMID: 27716367 PMCID: PMC5052806 DOI: 10.1186/s12957-016-1009-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/17/2016] [Indexed: 12/16/2022] Open
Abstract
Background More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of gastric cancer cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in gastric cancer cell lines and to evaluate the role of CXCR7 in the proliferation, invasion, adhesion, and angiogenesis of gastric cancer cells. Methods Real-time PCR and Western blotting were used to examine the mRNA and protein levels of CXCR4 and CXCR7 in five gastric cancer cell lines (HGC-27, MGC-803, BGC-823, SGC-7901, and MKN-28). CXCR7-expressing shRNA was constructed and subsequently stably transfected into the human gastric cancer cells. In addition, the effect of CXCR7 inhibition on cell proliferation, invasion, adhesion, VEGF secretion, and tube formation was evaluated. Results The mRNA and protein of CXCR7 were expressed in all five gastric cancer cell lines; in particular, the expression of CXCR7 was the highest in SGC-7901 cells. Stromal cell-derived factor-1 (SDF-1) was found to induce proliferation, invasion, adhesion, and tube formation. Moreover, the VEGF secretion in SGC-7901 cells was also enhanced by SDF-1 stimulation. These biological effects were inhibited by the silencing of CXCR7 in SGC-7901 cells. Conclusions Increased CXCR7 expression was found in gastric cancer cells. Knockdown of CXCR7 expression by transfection with CXCR7shRNA significantly inhibits SGC-7901 cells’ proliferation, invasion, adhesion, and angiogenesis. This study provides new insights into the significance of CXCR7 in the invasion and angiogenesis of gastric cancer.
Collapse
Affiliation(s)
- De-Min Ma
- Department of Hepatobiliary and Vascular Surgery, People's Hospital of Dezhou, Dezhou, Shandong Province, 253014, People's Republic of China
| | - Dian-Xi Luo
- Department of Gastrointestinal Surgery, People's Hospital of Dezhou, 1751 Xin Hu Road, Dezhou, Shandong Province, 253014, People's Republic of China
| | - Jie Zhang
- Department of Gastrointestinal Surgery, People's Hospital of Dezhou, 1751 Xin Hu Road, Dezhou, Shandong Province, 253014, People's Republic of China.
| |
Collapse
|
42
|
Parravicini C, Daniele S, Palazzolo L, Trincavelli ML, Martini C, Zaratin P, Primi R, Coppolino G, Gianazza E, Abbracchio MP, Eberini I. A promiscuous recognition mechanism between GPR17 and SDF-1: Molecular insights. Cell Signal 2016; 28:631-42. [PMID: 26971834 DOI: 10.1016/j.cellsig.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 01/19/2023]
Abstract
Recent data and publications suggest a promiscuous behaviour for GPR17, a class-A GPCR operated by different classes of ligands, such as uracil nucleotides, cysteinyl-leukotrienes and oxysterols. This observation, together with the ability of several class-A GPCRs to form homo- and hetero-dimers, is likely to unveil new pathophysiological roles and novel emerging pharmacological properties for some of these GPCRs, including GPR17. This receptor shares structural, phylogenetic and functional properties with some chemokine receptors, CXCRs. Both GPR17 and CXCR2 are operated by oxysterols, and both GPR17 and CXCR ligands have been demonstrated to have a role in orchestrating inflammatory responses and oligodendrocyte precursor cell differentiation to myelinating cells in acute and chronic diseases of the central nervous system. Here, by combining in silico modelling data with in vitro validation in (i) a classical reference pharmacological assay for GPCR activity and (ii) a model of maturation of primary oligodendrocyte precursor cells, we demonstrate that GPR17 can be activated by SDF-1, a ligand of chemokine receptors CXCR4 and CXCR7, and investigate the underlying molecular recognition mechanism. We also demonstrate that cangrelor, a GPR17 orthosteric antagonist, can block the SDF-1-mediated activation of GPR17 in a concentration-dependent manner. The ability of GPR17 to respond to different classes of GPCR ligands suggests that this receptor modifies its function depending on the extracellular mileu changes occurring under specific pathophysiological conditions and advocates it as a strategic target for neurodegenerative diseases with an inflammatory/immune component.
Collapse
Affiliation(s)
- Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Simona Daniele
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | - Claudia Martini
- Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Paola Zaratin
- Fondazione Italiana Sclerosi Multipla, Via Operai 40, 16149 Genova, Italy.
| | - Roberto Primi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Giusy Coppolino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Maria P Abbracchio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Via Gian Battista Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
43
|
Kremer D, Cui QL, Göttle P, Kuhlmann T, Hartung HP, Antel J, Küry P. CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation. PLoS One 2016; 11:e0146503. [PMID: 26741980 PMCID: PMC4704822 DOI: 10.1371/journal.pone.0146503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
Differentiation of oligodendroglial precursor cells (OPCs), a crucial prerequisite for central nervous system (CNS) remyelination in diseases such as Multiple Sclerosis (MS), is modulated by a multitude of extrinsic and intrinsic factors. In a previous study we revealed that the chemokine CXCL12 stimulates rodent OPC differentiation via activation of its receptor CXCR7. We could now demonstrate that CXCR7 is also expressed on NogoA- and Nkx2.2-positive oligodendroglial cells in human MS brains and that stimulation of cultured primary fetal human OPCs with CXCL12 promotes their differentiation as measured by surface marker expression and morphologic complexity. Pharmacological inhibition of CXCR7 effectively blocks these CXCL12-dependent effects. Our findings therefore suggest that a specific activation of CXCR7 could provide a means to promote oligodendroglial differentiation facilitating endogenous remyelination activities.
Collapse
Affiliation(s)
- David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| | - Qiao-Ling Cui
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
44
|
Vacchini A, Locati M, Borroni EM. Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 2016; 99:883-92. [PMID: 26740381 DOI: 10.1189/jlb.2mr1015-477r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/12/2015] [Indexed: 12/17/2022] Open
Abstract
Chemokines modulate immune responses through their ability to orchestrate the migration of target cells. Chemokines directly induce cell migration through a distinct set of 7 transmembrane domain G protein-coupled receptors but are also recognized by a small subfamily of atypical chemokine receptors, characterized by their inability to support chemotactic activity. Atypical chemokine receptors are now emerging as crucial regulatory components of chemokine networks in a wide range of physiologic and pathologic contexts. Although a new nomenclature has been approved recently to reflect their functional distinction from their conventional counterparts, a systematic view of this subfamily is still missing. This review discusses their biochemical and immunologic properties to identify potential unifying themes in this emerging family.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, and Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
45
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
46
|
Wang H, Tao L, Qi KE, Zhang H, Feng D, Wei W, Kong H, Chen T, Lin Q, Chen D. CXCR7 functions in colon cancer cell survival and migration. Exp Ther Med 2015; 10:1720-1724. [PMID: 26640542 PMCID: PMC4665345 DOI: 10.3892/etm.2015.2748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022] Open
Abstract
C-X-C chemokine receptor 7 (CXCR7) is a known promoter of tumor progression and metastasis; however, little is known about its role in colon cancer. The aim of the present study was to investigate the function of CXCR7 in human colon cancer cells. CXCR7 mRNA levels were examined in HT-29 and SW-480 human colon cancer cell lines using a quantitative polymerase chain reaction. CXCR7-knockdown was performed with small interfering RNA and lentiviral-mediated gene delivery. Immunofluorescence (IF) was conducted to examine CXCR7 expression and localization in colon cancer cells. Cell survival and migration were evaluated using MTT and migration assays, respectively. HT-29 cells expressed higher levels of CXCR7 mRNA and were therefore used in subsequent experiments. IF staining revealed that the CXCR7 protein was expressed on the cell membrane, and its expression decreased following CXCR7-short hairpin RNA lentiviral transfection. Lentiviral CXCR7-knockdown resulted in decreased cell survival and migration; however, MTT assays revealed that the lentiviral vector itself was cytotoxic. This cytotoxicity was indicated as the cell survival of the negative control group cells was significantly decreased compared with that of the blank control group cells (P<0.05). In conclusion, it is becoming increasingly evident that CXCR7 plays a role in colon cancer promotion, suggesting that CXCR7 is a promising biomarker for chemokine receptor-based drug development. Furthermore, the fact that CXCR7 is expressed on the membrane and not intracellularly makes it a prime target for drug-based intervention.
Collapse
Affiliation(s)
- Hongxian Wang
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Linyu Tao
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - K E Qi
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Haoyun Zhang
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Duo Feng
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Wenjun Wei
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Heng Kong
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Tianwen Chen
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Qiusheng Lin
- Department of Surgery, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Daojin Chen
- Department of Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
47
|
Regulation of subventricular zone-derived cells migration in the adult brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:1-21. [PMID: 25895704 DOI: 10.1007/978-3-319-16537-0_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subventricular zone of the lateral ventricles (SVZ) is the largest source of neural stem cells (NSCs) in the adult mammalian brain. Newly generated neuroblasts from the SVZ form cellular chains that migrate through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they become mature neurons. Migration through the RMS is a highly regulated process of intrinsic and extrinsic factors, orchestrated to achieve direction and integration of neuroblasts into OB circuitry. These factors include internal cytoskeletal and volume regulators, extracellular matrix proteins, and chemoattractant and chemorepellent proteins. All these molecules direct the cells away from the SVZ, through the RMS, and into the OB guaranteeing their correct integration. Following brain injury, some neuroblasts escape the RMS and migrate into the lesion site to participate in regeneration, a phenomenon that is also observed with brain tumors. This review focuses on factors that regulate the migration of SVZ precursor cells in the healthy and pathologic brain. A better understanding of the factors that control the movement of newly generated cells may be crucial for improving the use of NSC-replacement therapy for specific neurological diseases.
Collapse
|
48
|
Nakagawa Y, Chiba K. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014; 7:1028-48. [PMID: 25429645 PMCID: PMC4276905 DOI: 10.3390/ph7121028] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/27/2022] Open
Abstract
Psychiatric disorders such as schizophrenia and major depressive disorder were thought to be caused by neurotransmitter abnormalities. Patients with these disorders often experience relapse and remission; however the underlying molecular mechanisms of relapse and remission still remain unclear. Recent advanced immunological analyses have revealed that M1/M2 polarization of macrophages plays an important role in controlling the balance between promotion and suppression in inflammation. Microglial cells share certain characteristics with macrophages and contribute to immune-surveillance in the central nervous system (CNS). In this review, we summarize immunoregulatory functions of microglia and discuss a possible role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. M1 polarized microglia can produce pro-inflammatory cytokines, reactive oxygen species, and nitric oxide, suggesting that these molecules contribute to dysfunction of neural network in the CNS. Alternatively, M2 polarized microglia express cytokines and receptors that are implicated in inhibiting inflammation and restoring homeostasis. Based on these aspects, we propose a possibility that M1 and M2 microglia are related to relapse and remission, respectively in psychiatric disorders and diseases. Consequently, a target molecule skewing M2 polarization of microglia may provide beneficial therapies for these disorders and diseases in the CNS.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Research Strategy and Planning Department, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan.
| | - Kenji Chiba
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan.
| |
Collapse
|
49
|
CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression. Cell Death Dis 2014; 5:e1488. [PMID: 25341042 PMCID: PMC4649507 DOI: 10.1038/cddis.2014.392] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023]
Abstract
The CXCL12/CXCR4 axis has been posited widely to have significant roles in many primary tumors and metastases. It is known that CXCR7 can also be engaged by CXCL12, but the exact function of CXCR7 is controversial. This prompted us to investigate the expression, specific function and signal transduction of CXCR7 in hepatocellular carcinoma (HCC). In this study, CXCR7 and CXCR4 were differentially expressed in nine cell lines of HCC, and that elevated expression of both CXCR7 and CXCL4 were correlated with highly metastatic ability of HCC cells. Moreover, CXCR7 expression was significantly upregulated in metastatic HCC samples compared with the non-metastatic ones by staining of high-density tissue microarrays constructed from a cohort of 48 human HCC specimens. CXCR7 overexpression enhanced cell growth and invasiveness in vitro, and tumorigenicity and lung metastasis in vivo. By contrast, CXCR7 stable knockdown markedly reduced these malignant behaviors. In addition, it was observed that alterations in CXCR7 expression were positively correlated with the phosphorylation levels of mitogen-activated protein kinase (MAPK) pathway proteins. Targeting extracellular regulated kinase pathway by using U0126 inhibitor or using CCX771, a selective CXCR7 antagonist, drastically reduced CXCR7-mediated cell proliferation. Importantly, by using human biotin-based antibody arrays, several differentially expressed proteins were identified in CXCR7-overexpression and depletion groups. Comparative analysis indicated that upstream regulators including TP53 and IL-6 were involved in CXCR7 signal transduction. CXCR7 expression was further proved to regulate expression of vascular endothelial growth factor A and galectin-3, which may contribute to tumor angiogenesis and invasiveness. Consequently, elevated expression of CXCR7 contributes to HCC growth and invasiveness via activation of MAPK and angiogenesis signaling pathways. Targeting CXCR7 may prevent metastasis and provide a potential therapeutic strategy for HCC.
Collapse
|
50
|
Wei SG, Zhang ZH, Yu Y, Felder RB. Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling. Am J Physiol Heart Circ Physiol 2014; 307:H1643-54. [PMID: 25260613 DOI: 10.1152/ajpheart.00432.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and mechanisms mediating its sympatho-excitatory effects. In urethane anesthetized rats, a 4-h intracerebroventricular (ICV) infusion of angiotensin II (ANG II) or tumor necrosis factor-α (TNF-α) in doses that increase mean blood pressure (MBP) and sympathetic drive increased the expression of SDF-1 in PVN. ICV administration of SDF-1 increased the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), JNK, and p38 MAPK in PVN, along with MBP, heart rate (HR), and renal sympathetic nerve activity (RSNA), but did not affect total p44/42 MAPK, JNK, and p38 MAPK levels. ICV pretreatment with the selective p44/42 MAPK inhibitor PD98059 prevented the SDF-1-induced increases in MBP, HR, and RSNA; ICV pretreatment with the selective JNK and p38 MAPK inhibitors attenuated but did not block these SDF-1-induced excitatory responses. ICV PD98059 also prevented the sympatho-excitatory response to bilateral PVN microinjections of SDF-1. ICV pretreatment with SDF-1 short-hairpin RNA significantly reduced ANG II- and TNF-α-induced phosphorylation of p44/42 MAPK in PVN. These findings identify TNF-α and ANG II as drivers of SDF-1 expression in PVN and suggest that the full expression of their cardiovascular and sympathetic effects depends upon SDF-1-mediated activation of p44/42 MAPK signaling.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Zhi-Hua Zhang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; and Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|