1
|
Feng S, Kong R, Wang C, Hao Q, Xie X, Wang H, Han J, Zhang Y, Elsner J, Mendy D, Haughey M, Krenitsky P, Plantevin-Krenitsky V, Papa P, Mercurio F, Xie W, Zhou X. A highly selective and orally bioavailable casein kinase 1 alpha degrader through p53 signaling pathway targets B-cell lymphoma cells. Leukemia 2025:10.1038/s41375-025-02647-x. [PMID: 40425803 DOI: 10.1038/s41375-025-02647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
The modest reduction in casein kinase 1 alpha (CK1α) by lenalidomide contributes to its clinical effectiveness in treating del(5q) myelodysplastic syndrome. However, the mechanism by which CK1α impacts lymphoma survival remains inadequately defined. We developed INNO-220, a CRBN-dependent CK1α degrader, by leveraging cytokine expression profiling in T cells. Unlike lenalidomide, INNO-220 is a highly selective and potent degrader of CK1α without affecting IKZF1/3. Screening across lymphoma cell lines revealed that cells harboring wild-type p53 and exhibiting constitutive NF-κB signaling were particularly sensitive to CK1α degradation yet resistant to Bruton tyrosine kinase inhibitors. Moreover, INNO-220 suppresses NF-κB signaling and activates p53 pathway, leading to complete inhibition of lymphoma tumor growth in vivo. Mechanistically, INNO-220 disrupts the assembly and function of the CARD11/BCL10/MALT1 complex, thereby inhibiting NF-κB signaling in stimulated T cells and lymphoma cells that harbor an activating mutation in CARD11. Moreover, we observed that activation of wild-type p53 upon INNO-220 treatment was sufficient to induce potent cancer cell death even in the absence of constitutive NF-κB activity. In summary, our findings introduce a selective CK1α degrader as a novel therapeutic approach for lymphoma, providing both mechanistic insights and a potential patient selection strategy in treating lymphoma and possibly other cancers.
Collapse
Affiliation(s)
- Shi Feng
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ran Kong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingbo Hao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyu Xie
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingjing Han
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | - Weilin Xie
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
3
|
Doud EH, Shetty T, Abt M, Mosley AL, Corson TW, Mehta A, Yeh ES. NF-κB Signaling Is Regulated by Fucosylation in Metastatic Breast Cancer Cells. Biomedicines 2020; 8:biomedicines8120600. [PMID: 33322811 PMCID: PMC7763959 DOI: 10.3390/biomedicines8120600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence indicates that the levels of fucosylation correlate with breast cancer progression and contribute to metastatic disease. However, very little is known about the signaling and functional outcomes that are driven by fucosylation. We performed a global proteomic analysis of 4T1 metastatic mammary tumor cells in the presence and absence of a fucosylation inhibitor, 2-fluorofucose (2FF). Of significant interest, pathway analysis based on our results revealed a reduction in the NF-κB and TNF signaling pathways, which regulate the inflammatory response. NF-κB is a transcription factor that is pro-tumorigenic and a prime target in human cancer. We validated our results, confirming that treatment of 4T1 cells with 2FF led to a decrease in NF-κB activity through increased IκBα. Based on these observations, we conclude that fucosylation is an important post-translational modification that governs breast cancer cell signaling.
Collapse
Affiliation(s)
- Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
| | - Trupti Shetty
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
4
|
Gehring T, Erdmann T, Rahm M, Graß C, Flatley A, O'Neill TJ, Woods S, Meininger I, Karayel O, Kutzner K, Grau M, Shinohara H, Lammens K, Feederle R, Hauck SM, Lenz G, Krappmann D. MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells. Cell Rep 2020; 29:873-888.e10. [PMID: 31644910 DOI: 10.1016/j.celrep.2019.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor κB (NF-κB) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1α as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-κB signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-κB activation in lymphocytes and survival of lymphoma cells.
Collapse
Affiliation(s)
- Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Marco Rahm
- Research Unit Protein Science, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Thomas J O'Neill
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Woods
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Isabel Meininger
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Kerstin Kutzner
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Hisaaki Shinohara
- Laboratory for Systems Immunology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University.1-1-1, Daigakudori, Sanyo-onoda City, Yamaguchi 756-0884, Japan
| | - Katja Lammens
- Gene Center, Ludwig-Maximilians University, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
5
|
Thys A, Douanne T, Bidère N. Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma. Front Oncol 2018; 8:498. [PMID: 30474008 PMCID: PMC6237847 DOI: 10.3389/fonc.2018.00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Piracy of the NF-κB transcription factors signaling pathway, to sustain its activity, is a mechanism often deployed in B-cell lymphoma to promote unlimited growth and survival. The aggressive activated B-cell like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) exploits a multi-protein complex of CARMA1, BCL10, and MALT1 (CBM complex), which normally conveys NF-κB signaling upon antigen receptors engagement. Once assembled, the CBM also unleashes MALT1 protease activity to finely tune the immune response. As a result, ABC DLBCL tumors develop a profound addiction to NF-κB and to MALT1 enzyme, leaving open a breach for therapeutics. However, the pleiotropic nature of NF-κB jeopardizes the success of its targeting and urges us to develop new strategies. In this review, we discuss how post-translational modifications, such as phosphorylation and ubiquitination of the CBM components, as well as, MALT1 proteolytic activity, shape the CBM activity in lymphocytes and ABC DLBCL, and may provide new avenues to restore vulnerability in lymphoma.
Collapse
Affiliation(s)
- An Thys
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Tiphaine Douanne
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| |
Collapse
|
6
|
Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL. Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol 2018; 9:2105. [PMID: 30283447 PMCID: PMC6156143 DOI: 10.3389/fimmu.2018.02105] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte activation during the adaptive immune response. Somatic mutations in CARD11 are frequently found in Non-Hodgkin lymphoma, and at least three classes of germline CARD11 mutations have been described as the basis for primary immunodeficiency. In this review, we summarize our current understanding of how CARD11 signals, how its activity is regulated, and how mutations bypass normal regulation to cause disease.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katelynn E Deibel
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shelby M Hutcherson
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler A Jones
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoquan Wang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chao Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong-Kang Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
8
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
9
|
Mitchell CJ, Getnet D, Kim MS, Manda SS, Kumar P, Huang TC, Pinto SM, Nirujogi RS, Iwasaki M, Shaw PG, Wu X, Zhong J, Chaerkady R, Marimuthu A, Muthusamy B, Sahasrabuddhe NA, Raju R, Bowman C, Danilova L, Cutler J, Kelkar DS, Drake CG, Prasad TSK, Marchionni L, Murakami PN, Scott AF, Shi L, Thierry-Mieg J, Thierry-Mieg D, Irizarry R, Cope L, Ishihama Y, Wang C, Gowda H, Pandey A. A multi-omic analysis of human naïve CD4+ T cells. BMC SYSTEMS BIOLOGY 2015; 9:75. [PMID: 26542228 PMCID: PMC4636073 DOI: 10.1186/s12918-015-0225-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
Background Cellular function and diversity are orchestrated by complex interactions of fundamental biomolecules including DNA, RNA and proteins. Technological advances in genomics, epigenomics, transcriptomics and proteomics have enabled massively parallel and unbiased measurements. Such high-throughput technologies have been extensively used to carry out broad, unbiased studies, particularly in the context of human diseases. Nevertheless, a unified analysis of the genome, epigenome, transcriptome and proteome of a single human cell type to obtain a coherent view of the complex interplay between various biomolecules has not yet been undertaken. Here, we report the first multi-omic analysis of human primary naïve CD4+ T cells isolated from a single individual. Results Integrating multi-omics datasets allowed us to investigate genome-wide methylation and its effect on mRNA/protein expression patterns, extent of RNA editing under normal physiological conditions and allele specific expression in naïve CD4+ T cells. In addition, we carried out a multi-omic comparative analysis of naïve with primary resting memory CD4+ T cells to identify molecular changes underlying T cell differentiation. This analysis provided mechanistic insights into how several molecules involved in T cell receptor signaling are regulated at the DNA, RNA and protein levels. Phosphoproteomics revealed downstream signaling events that regulate these two cellular states. Availability of multi-omics data from an identical genetic background also allowed us to employ novel proteogenomics approaches to identify individual-specific variants and putative novel protein coding regions in the human genome. Conclusions We utilized multiple high-throughput technologies to derive a comprehensive profile of two primary human cell types, naïve CD4+ T cells and memory CD4+ T cells, from a single donor. Through vertical as well as horizontal integration of whole genome sequencing, methylation arrays, RNA-Seq, miRNA-Seq, proteomics, and phosphoproteomics, we derived an integrated and comparative map of these two closely related immune cells and identified potential molecular effectors of immune cell differentiation following antigen encounter. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0225-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher J Mitchell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Derese Getnet
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Srikanth S Manda
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Praveen Kumar
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sneha M Pinto
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Mio Iwasaki
- Department of Molecular & Cellular BioAnalysis, Kyoto University, Kyoto, Japan.
| | - Patrick G Shaw
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Raghothama Chaerkady
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Arivusudar Marimuthu
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | | | | | - Rajesh Raju
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Caitlyn Bowman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jevon Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Dhanashree S Kelkar
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Luigi Marchionni
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Peter N Murakami
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Alan F Scott
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Leming Shi
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA.
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.
| | - Rafael Irizarry
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yasushi Ishihama
- Department of Molecular & Cellular BioAnalysis, Kyoto University, Kyoto, Japan.
| | - Charles Wang
- Center for Genomics and Division of Microbiology & Molecular Genetics, Loma Linda University, Loma Linda, CA, USA.
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India.
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, India. .,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014; 13:231. [PMID: 25306547 PMCID: PMC4201705 DOI: 10.1186/1476-4598-13-231] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
Collapse
|
11
|
Participation of the E3-ligase TRIM13 in NF-κB p65 activation and NFAT-dependent activation of c-Rel upon T-cell receptor engagement. Int J Biochem Cell Biol 2014; 54:217-22. [PMID: 25088585 DOI: 10.1016/j.biocel.2014.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023]
Abstract
The nuclear factor κB (NF-κB) family members p65 and c-Rel chiefly orchestrate lymphocytes activation following T-cell receptor (TCR) engagement. In contrast to p65, which is rapidly mobilized, c-Rel activation occurs subsequently as it involves a nuclear factor of activated T-cells (NFAT)-dependent upregulation step. However, how TCR ligation drives p65 and c-Rel activation is not fully understood. Because several ubiquitylated components of NF-κB signaling cascade accumulate in close proximity to membranes, we screened a siRNA library against E3-ligases that contain transmembrane domains on TCR-mediated NF-κB activation. Here, we report the identification of the endoplasmic reticulum resident TRIM13 protein as an enhancer of NF-κB promoter activity. We found that knocking down TRIM13 by RNA interference reduced the activation of p65, while the translocation of c-Rel into the nucleus was blunted. We further observed that c-Rel induction was diminished without TRIM13, as NFAT activation was compromised. These results unveil that TRIM13 is a selective regulator of p65 and of c-Rel activation.
Collapse
|
12
|
Paul S, Traver MK, Kashyap AK, Washington MA, Latoche JR, Schaefer BC. T cell receptor signals to NF-κB are transmitted by a cytosolic p62-Bcl10-Malt1-IKK signalosome. Sci Signal 2014; 7:ra45. [PMID: 24825920 DOI: 10.1126/scisignal.2004882] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antigen-mediated stimulation of the T cell receptor (TCR) triggers activation of nuclear factor κB (NF-κB), a key transcriptional regulator of T cell proliferation and effector cell differentiation. TCR signaling to NF-κB requires both the Carma1-Bcl10-Malt1 (CBM) complex and the inhibitor of κB (IκB) kinase (IKK) complex; however, the molecular mechanisms connecting the CBM complex to activation of IKK are incompletely defined. We found that the active IKK complex is a component of a TCR-dependent cytosolic Bcl10-Malt1 signalosome containing the adaptor protein p62, which forms in effector T cells. Phosphorylated IκBα and NF-κB were transiently recruited to this signalosome before NF-κB translocated to the nucleus. Inhibiting the activity of the kinase TAK1 or IKK blocked the phosphorylation of IKK, but not the formation of p62-Bcl10-Malt1 clusters, suggesting that activation of IKK occurs after signalosome assembly. Furthermore, analysis of T cells from p62-deficient mice demonstrated that the p62-dependent clustering of signaling components stimulated activation of NF-κB in effector T cells. Thus, TCR-stimulated activation of NF-κB requires the assembly of cytosolic p62-Bcl10-Malt1-IKK signalosomes, which may ensure highly regulated activation of NF-κB in response to TCR engagement.
Collapse
Affiliation(s)
- Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Maria K Traver
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Anuj K Kashyap
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael A Washington
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph R Latoche
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA. Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
13
|
Alexia C, Poalas K, Carvalho G, Zemirli N, Dwyer J, Dubois SM, Hatchi EM, Cordeiro N, Smith SS, Castanier C, Le Guelte A, Wan L, Kang Y, Vazquez A, Gavard J, Arnoult D, Bidère N. The endoplasmic reticulum acts as a platform for ubiquitylated components of nuclear factor κB signaling. Sci Signal 2013; 6:ra79. [PMID: 24003256 DOI: 10.1126/scisignal.2004496] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate and adaptive immune responses involve the stimulation of nuclear factor κB (NF-κB) transcription factors through the Lys(63) (K(63))-linked ubiquitylation of specific components of NF-κB signaling pathways. We found that ubiquitylated components of the NF-κB pathway accumulated on the cytosolic leaflet of the endoplasmic reticulum (ER) membrane after the engagement of cell-surface, proinflammatory cytokine receptors or antigen receptors. Through mass spectrometric analysis, we found that the ER-anchored protein metadherin (MTDH) was a partner for these ubiquitylated activators of NF-κB and that it directly bound to K(63)-linked polyubiquitin chains. Knockdown of MTDH inhibited the accumulation of ubiquitylated NF-κB signaling components at the ER, reduced the extent of NF-κB activation, and decreased the amount of proinflammatory cytokines produced. Our observations highlight an unexpected facet of the ER as a key subcellular gateway for NF-κB activation.
Collapse
Affiliation(s)
- Catherine Alexia
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Poalas K, Hatchi EM, Cordeiro N, Dubois SM, Leclair HM, Leveau C, Alexia C, Gavard J, Vazquez A, Bidère N. Negative regulation of NF-κB signaling in T lymphocytes by the ubiquitin-specific protease USP34. Cell Commun Signal 2013; 11:25. [PMID: 23590831 PMCID: PMC3649923 DOI: 10.1186/1478-811x-11-25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/03/2013] [Indexed: 11/15/2022] Open
Abstract
Background NF-κB is a master gene regulator involved in plethora of biological processes, including lymphocyte activation and proliferation. Reversible ubiquitinylation of key adaptors is required to convey the optimal activation of NF-κB. However the deubiquitinylases (DUBs), which catalyze the removal of these post-translational modifications and participate to reset the system to basal level following T-Cell receptor (TCR) engagement continue to be elucidated. Findings Here, we performed an unbiased siRNA library screen targeting the DUBs encoded by the human genome to uncover new regulators of TCR-mediated NF-κB activation. We present evidence that knockdown of Ubiquitin-Specific Protease 34 (USP34) selectively enhanced NF-κB activation driven by TCR engagement, similarly to siRNA against the well-characterized DUB cylindromatosis (CYLD). From a molecular standpoint, USP34 silencing spared upstream signaling but led to a more pronounced degradation of the NF-κB inhibitor IκBα, and culminated with an increased DNA binding activity of the transcription factor. Conclusions Collectively, our data unveils USP34 as a new player involved in the fine-tuning of NF-κB upon TCR stimulation.
Collapse
|
15
|
Paul S, Schaefer BC. A new look at T cell receptor signaling to nuclear factor-κB. Trends Immunol 2013; 34:269-81. [PMID: 23474202 DOI: 10.1016/j.it.2013.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 12/20/2022]
Abstract
Antigen stimulation of T cell receptor (TCR) signaling to nuclear factor (NF)-κB is required for T cell proliferation and differentiation of effector cells. The TCR-to-NF-κB pathway is generally viewed as a linear sequence of events in which TCR engagement triggers a cytoplasmic cascade of protein-protein interactions and post-translational modifications, ultimately culminating in the nuclear translocation of NF-κB. However, recent findings suggest a more complex picture in which distinct signalosomes, previously unrecognized proteins, and newly identified regulatory mechanisms play key roles in signal transmission. In this review, we evaluate recent data and suggest areas of future emphasis in the study of this important pathway.
Collapse
Affiliation(s)
- Suman Paul
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | | |
Collapse
|
16
|
Rossi M, Agostinelli C, Righi S, Sabattini E, Bacci F, Gazzola A, Pileri SA, Piccaluga PP. BCL10 down-regulation in peripheral T-cell lymphomas. Hum Pathol 2012; 43:2266-2273. [PMID: 22818167 DOI: 10.1016/j.humpath.2012.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/17/2022]
Abstract
The BCL10 gene encodes for a T-cell receptor signaling downstream protein involved in nuclear factor κB activation. It is expressed in normal lymphoid tissues and in several B-non Hodgkin lymphomas, its aberrant function being related to the pathogenesis of certain subtypes. Conversely, conflicting data are available concerning BCL10 expression in peripheral T cell lymphomas. We analyzed BCL10 expression in peripheral T cell lymphomas and correlated it with NFκB activation, proliferation, phenotypic aberration, and survival. First, gene expression analysis of 40 peripheral T cell lymphomas (28 peripheral T cell lymphomas/not otherwise specified, 6 anaplastic large cell lymphomas, and 6 angioimmunoblastic lymphomas), 4 reactive lymph nodes, and 20 samples of normal T-lymphocytes, showed significantly lower BCL10 gene expression in all tumors in comparison to normal samples, the lowest values being detected in anaplastic large cell lymphoma. Secondly, we studied the immunohistochemical expression of BCL10 in 52 peripheral T cell lymphomas/not otherwise specified on tissue microarrays. BCL10 was expressed in 10/52 cases (19%), not showing any significant correlation with either expression of Ki-67 and the T-cell markers or NFκB activation. Furthermore, BCL10 expression was not associated with peculiar gene expression profiles. Finally, we did not find significant correlations with progression free survival and overall survival, although a favorable trend was recorded in BCL10(+) cases. In conclusion, BCL10 was commonly down-regulated in peripheral T cell lymphomas, suggest the T-cell receptor signaling cascade for future characterization.
Collapse
Affiliation(s)
- Maura Rossi
- Molecular Pathology Laboratory, Hematopathology Section, Department of Hematology and Oncological Sciences L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Oruganti SR, Edin S, Grundström C, Grundström T. CaMKII targets Bcl10 in T-cell receptor induced activation of NF-κB. Mol Immunol 2011; 48:1448-60. [PMID: 21513986 DOI: 10.1016/j.molimm.2011.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/18/2022]
Abstract
Recognition of antigen by T- or B-cell receptors leads to formation of an immunological synapse and initiation of signalling events that collaborate to determine the nature of the adaptive immune response. Activation of NF-κB transcription factors has a key role in regulation of numerous genes with important functions in immune responses and inflammation and is of great importance for lymphocyte activation and differentiation. The activation of NF-κB depends on changes in intracellular Ca(2+) levels, and both calmodulin (CaM) and a CaM-dependent kinase, CaMKII, help regulate NF-κB activation after T-cell receptor (TCR) stimulation, but the mechanisms are not well characterized. Here we have analyzed the functional role of CaMKII in the signalling pathway from the TCR to activation of IKK, the kinase that phosphorylates the NF-κB inhibitor IκB. We show that CaMKII is recruited to the immunological synapse where it interacts with and phosphorylates the signalling adaptor protein Bcl10. Furthermore, phosphorylation of the CARD domain of Bcl10 by CaMKII regulates the interactions within the important Carma1, Bcl10, Malt1 signalling complex and the essential signal induced ubiquitinations of Bcl10 and IKKγ. We propose a novel mechanism whereby Ca(2+) signals can be integrated at the immunological synapse through CaMKII-dependent phosphorylation of Bcl10.
Collapse
|
18
|
Carvalho G, Poalas K, Demian C, Hatchi E, Vazquez A, Bidère N. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation. PLoS One 2011; 6:e18159. [PMID: 21479189 PMCID: PMC3068181 DOI: 10.1371/journal.pone.0018159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/21/2011] [Indexed: 12/21/2022] Open
Abstract
Background Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR)-mediated activation. Methodology/Principal Findings By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. Conclusions The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.
Collapse
Affiliation(s)
- Gabrielle Carvalho
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
- Université Paris-Sud P11, Orsay 91400, France
| | - Konstantinos Poalas
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
- Université Paris-Sud P11, Orsay 91400, France
| | - Catherine Demian
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
- Université Paris-Sud P11, Orsay 91400, France
| | - Emeline Hatchi
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
- Université Paris-Sud P11, Orsay 91400, France
| | - Aimé Vazquez
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
- Université Paris-Sud P11, Orsay 91400, France
| | - Nicolas Bidère
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif 94800, France
- Université Paris-Sud P11, Orsay 91400, France
- * E-mail:
| |
Collapse
|