1
|
Wang QR, Liu LL, Gou XJ, Liu Y, Zhao Y, Zhang T, Jiang YH, Zhou JJ, Li JL, Zhang J, Xie Y. HnRNPR promotes non-small cell lung cancer progression by protecting XB130 mRNA from XRN1- and DIS3L2-mediated degradation. Cell Signal 2025; 132:111816. [PMID: 40268079 DOI: 10.1016/j.cellsig.2025.111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
The adaptor protein XB130 is critically implicated in tumorigenesis. However, the mechanisms regulating its expression in tumors are not well understood. Our previous studies have identified hnRNPR as a potential binding protein of XB130 3'UTR in non-small cell lung cancer (NSCLC). This study aimed to clarify hnRNPR's role in NSCLC progression and its specific mechanisms regulating XB130 expression. The expression of hnRNPR in NSCLC and normal tissues was assessed using NSCLC tissue microarray and the TCGA database. Subsequently, in vitro and in vivo experiments were conducted to investigate the impact of hnRNPR on NSCLC cell proliferation and epithelial-mesenchymal transition (EMT) by modulating XB130 expression. The underlying molecular mechanisms of hnRNPR regulating XB130 expression were explored utilizing a range of molecular biology techniques including Western blotting, Real-time quantitative PCR, Immunohistochemistry, Dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation. We identified the overexpression of hnRNPR in NSCLC, with heightened hnRNPR levels significantly associated with poor prognosis in patients with lung adenocarcinoma. Functionally, hnRNPR overexpression promoted NSCLC cell proliferation and EMT and activated the Akt signaling pathway. Mechanistically, hnRNPR protected XB130 mRNA from XRN1- and DIS3L2-mediated degradation by binding to specific regions within XB130 3'UTR, consequently elevating XB130 expression. Lastly, XB130 overexpression counteracted the effects of hnRNPR silencing on NSCLC cells. Overall, our study unveils the potential of targeting the hnRNPR/XB130 axis as a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Qin-Rong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Ling-Ling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Xuan-Jing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Yin-Hui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Jian-Jiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | - Jiang-Lun Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou 550004, PR China.
| | - Jian Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou 550004, PR China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|
2
|
Wang Q, Gou X, Liu L, Deng D, Zhao Y, Zhou J, Xie Y, Jiang Y, Li J, Zhang J, Liu Y. Heterogeneous nuclear ribonucleoprotein C promotes non-small cell lung cancer progression by enhancing XB130 mRNA stability and translation. Cancer Cell Int 2025; 25:10. [PMID: 39800708 PMCID: PMC11727598 DOI: 10.1186/s12935-025-03638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood. Heterogeneous nuclear ribonucleoprotein C (hnRNPC), as an RNA-binding protein, is known to modulate multiple aspects of RNA metabolism and has been implicated in the pathogenesis of various cancers. We have previously discovered that hnRNPC is one of the candidate proteins that interact with the 3' untranslated region (3'UTR) of XB130 in non-small cell lung cancer (NSCLC). Therefore, this study aims to comprehensively elucidate how hnRNPC regulates the expression of XB130 in NSCLC. MATERIALS AND METHODS We evaluated the expression of hnRNPC in cancer and assessed the correlation between hnRNPC expression and prognosis in cancer patients using public databases. Subsequently, several stable cell lines were constructed. The proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of these cells were detected through Real-time cellular analysis, adherent colony formation, wound healing assay, invasion assay, and Western blotting. The specific regulatory manner between hnRNPC and XB130 was investigated by Real-time quantitative PCR, Western blotting, RNA pull‑down assay, dual‑luciferase reporter assay, RNA immunoprecipitation, and Co-Immunoprecipitation. RESULTS We identified that hnRNPC expression is significantly elevated in NSCLC and correlates with poor prognosis in patients with lung adenocarcinoma. HnRNPC overexpression in NSCLC cells increased the expression of XB130, subsequently activating the PI3K/Akt signaling pathway and ultimately promoting cell proliferation and EMT. Additionally, overexpressing XB130 in hnRNPC-silenced cells partially restored cell proliferation and EMT. Mechanistically, hnRNPC specifically bound to the 3'UTR segments of XB130 mRNA, enhancing mRNA stability by inhibiting the recruitment of nucleases 5'-3' exoribonuclease 1 (XRN1) and DIS3-like 3'-5' exoribonuclease 2 (DIS3L2). Furthermore, hnRNPC simultaneously interacted with the eukaryotic initiation factor 4E (eIF4E), a component of the eIF4F complex, facilitating the circularization of XB130 mRNA and thereby increasing its translation efficiency. CONCLUSIONS HnRNPC overexpression promotes NSCLC progression by enhancing XB130 mRNA stability and translation, suggesting that hnRNPC might be a potential therapeutic and prognostic target for NSCLC.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Daolan Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Jianglun Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| | - Jian Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| |
Collapse
|
3
|
Chang Y, Kong K, Tong Z, Qiao H, Jin M, Wu X, Ouyang Z, Zhang J, Zhai Z, Li H. TiO2 nanotube topography enhances osteogenesis through filamentous actin and XB130-protein-mediated mechanotransduction. Acta Biomater 2024; 177:525-537. [PMID: 38360291 DOI: 10.1016/j.actbio.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
TiO2 nanotube topography, as nanomechanical stimulation, can significantly promote osteogenesis and improve the osteointegration on the interface of implants and bone tissue. However, the underlying mechanism has not been fully elucidated. XB130 is a member of the actin filament-associated protein family and is involved in the regulation of cytoskeleton and tyrosine kinase-mediated signalling as an adaptor protein. Whether XB130 is involved in TiO2 nanotubes-induced osteogenic differentiation and how it functions in mechano-biochemical signalling transduction remain to be elucidated. In this study, the role of XB130 on TiO2 nanotube-induced osteogenesis and mechanotransduction was systematically investigated. TiO2 nanotube topography was fabricated via anodic oxidation and characterized. The osteogenic effect was significantly accelerated by the TiO2 nanotube surface in vitro and vivo. XB130 was significantly upregulated during this process. Moreover, XB130 overexpression significantly promoted osteogenic differentiation, whereas its knockdown inhibited it. Filamentous actin depolymerization could change the expression and distribution of XB130, thus affecting osteogenic differentiation. Mechanistically, XB130 could interact with Src and result in the activation of the downstream PI3K/Akt/GSK-3β/β-catenin pathway, which accounts for the regulation of osteogenesis. This study for the first time showed that the enhanced osteogenic effect of TiO2 nanotubes could be partly due to the filamentous actin and XB130 mediated mechano-biochemical signalling transduction, which might provide a reference for guiding the design and modification of prostheses to promote bone regeneration and osseointegration. STATEMENT OF SIGNIFICANCE: TiO2 nanotubes topography can regulate cytoskeletal rearrangement and thus promote osteogenic differentiation of BMSCs. However, how filamentous actin converts mechanical stimulus into biochemical activity remains unclear. XB130 is a member of actin filament-associated protein family and involves in the regulation of tyrosine kinase-mediated signalling. Therefore, we hypothesised that XB130 might bridge the mechano-biochemical signalling transduction during TiO2 nanotubes-induced osteogenic differentiation. For the first time, this study shows that TiO2 nanotubes enhance osteogenesis through filamentous actin and XB130 mediated mechanotransduction, which provides new theoretical basis for guiding the design and modification of prostheses to promote bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Keyu Kong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Zhicheng Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hua Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Minghao Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xinru Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Zhengxiao Ouyang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
4
|
Wang Q, Liu L, Gou X, Zhang T, Zhao Y, Xie Y, Zhou J, Liu Y, Song K. The 3'‑untranslated region of XB130 regulates its mRNA stability and translational efficiency in non‑small cell lung cancer cells. Oncol Lett 2023; 26:427. [PMID: 37720672 PMCID: PMC10502931 DOI: 10.3892/ol.2023.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Silencing XB130 inhibits cell proliferation and epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC), suggesting that downregulating XB130 expression may impede NSCLC progression. However, the molecular mechanism underlying the regulation of XB130 expression remains unclear. In the present study, the role of the 3'-untranslated region (3'-UTR) in the regulation of XB130 expression was investigated. Recombinant psiCHECK-2 vectors with wild-type, truncated, or mutant XB130 3'-UTR were constructed, and the effects of these insertions on reporter gene expression were examined using a dual-luciferase reporter assay and reverse transcription-quantitative PCR. Additionally, candidate proteins that regulated XB130 expression by binding to critical regions of the XB130 3'-UTR were screened for using an RNA pull-down assay, followed by mass spectrometry and western blotting. The results revealed that insertion of the entire XB130 3'-UTR (1,218 bp) enhanced reporter gene expression. Positive regulatory elements were primarily found in nucleotides 113-989 of the 3'-UTR, while negative regulatory elements were found in the 1-112 and 990-1,218 regions of the 3'-UTR. Deletion analyses identified nucleotides 113-230 and 503-660 of the 3'-UTR as two major fragments that likely promote XB130 expression by increasing mRNA stability and translation rate. Additionally, a U-rich element in the 970-1,053 region of the 3'-UTR was identified as a negative regulatory element that inhibited XB130 expression by suppressing translation. Furthermore, seven candidate proteins that potentially regulated XB130 expression by binding to the 113-230, 503-660, and 970-1,053 regions of the 3'-UTR were identified, shedding light on the regulatory mechanism of XB130 expression. Collectively, these results suggested that complex sequence integrations in the mRNA 3'-UTR variably affected XB130 expression in NSCLC cells.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Sport and Health, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
5
|
Zhu XL, Hu DY, Zeng ZX, Jiang WW, Chen TY, Chen TC, Liao WQ, Lei WZ, Fang WJ, Pan WH. XB130 inhibits healing of diabetic skin ulcers through the PI3K/Akt signalling pathway. World J Diabetes 2023; 14:1369-1384. [PMID: 37771334 PMCID: PMC10523235 DOI: 10.4239/wjd.v14.i9.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Diabetic skin ulcers, a significant global healthcare burden, are mainly caused by the inhibition of cell proliferation and impaired angiogenesis. XB130 is an adaptor protein that regulates cell proliferation and migration. However, the role of XB130 in the development of diabetic skin ulcers remains unclear. AIM To investigate whether XB130 can regulate the inhibition of proliferation and vascular damage induced by high glucose. Additionally, we aim to determine whether XB130 is involved in the healing process of diabetic skin ulcers, along with its molecular mechanisms. METHODS We conducted RNA-sequencing analysis to identify the key genes involved in diabetic skin ulcers. We investigated the effects of XB130 on wound healing using histological analyses. In addition, we used reverse transcription-quantitative polymerase chain reaction, Western blot, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, immunofluorescence, wound healing, and tubule formation experiments to investigate their effects on cellular processes in human umbilical vein endothelial cells (HUVECs) stimulated with high glucose. Finally, we performed functional analysis to elucidate the molecular mechanisms underlying diabetic skin ulcers. RESULTS RNA-sequencing analysis showed that the expression of XB130 was up-regulated in the tissues of diabetic skin ulcers. Knockdown of XB130 promoted the healing of skin wounds in mice, leading to an accelerated wound healing process and shortened wound healing time. At the cellular level, knockdown of XB130 alleviated high glucose-induced inhibition of cell proliferation and angiogenic impairment in HUVECs. Inhibition of the PI3K/Akt pathway removed the proliferative effects and endothelial protection mediated by XB130. CONCLUSION The findings of this study indicated that the expression of XB130 is up-regulated in high glucose-stimulated diabetic skin ulcers and HUVECs. Knockdown of XB130 promotes cell proliferation and angiogenesis via the PI3K/Akt signalling pathway, which accelerates the healing of diabetic skin ulcers.
Collapse
Affiliation(s)
- Xin-Lin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Dong-Ying Hu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 20003, China
| | - Wei-Wei Jiang
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tian-Yang Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tian-Cheng Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wan-Qing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Zhi Lei
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wen-Jie Fang
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei-Hua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
6
|
Pan HJ, Lee CW, Wu LY, Hsu HH, Tung YC, Liao WY, Lee CH. A 3D culture system for evaluating the combined effects of cisplatin and anti-fibrotic drugs on the growth and invasion of lung cancer cells co-cultured with fibroblasts. APL Bioeng 2023; 7:016117. [PMID: 37006781 PMCID: PMC10060027 DOI: 10.1063/5.0115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Fibrosis and fibroblast activation usually occur in the tissues surrounding a malignant tumor; therefore, anti-fibrotic drugs are used in addition to chemotherapy. A reliable technique for evaluating the combined effects of anti-fibrotic drugs and anticancer drugs would be beneficial for the development of an appropriate treatment strategy. In this study, we manufactured a three-dimensional (3D) co-culture system of fibroblasts and lung cancer cell spheroids in Matrigel supplemented with fibrin (fibrin/Matrigel) that simulated the tissue microenvironment around a solid tumor. We compared the efficacy of an anticancer drug (cisplatin) with or without pretreatments of two anti-fibrotic drugs, nintedanib and pirfenidone, on the growth and invasion of cancer cells co-cultured with fibroblasts. The results showed that the addition of nintedanib improved cisplatin's effects on suppressing the growth of cancer cell spheroids and the invasion of cancer cells. In contrast, pirfenidone did not enhance the anticancer activity of cisplatin. Nintedanib also showed higher efficacy than pirfenidone in reducing the expression of four genes in fibroblasts associated with cell adhesion, invasion, and extracellular matrix degradation. This study demonstrated that the 3D co-cultures in fibrin/Matrigel would be useful for assessing the effects of drug combinations on tumor growth and invasion.
Collapse
Affiliation(s)
- Huei-Jyuan Pan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wei Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Li-Yu Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Yu Liao
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
7
|
Cho HR, Sugihara J, Shimizu H, Xiang YY, Bai X, Wang Y, Liao XH, Asa SL, Refetoff S, Liu M. Pathogenesis of Multinodular Goiter in Elderly XB130-Deficient Mice: Alteration of Thyroperoxidase Affinity with Iodide and Hydrogen Peroxide. Thyroid 2022; 32:385-396. [PMID: 34915750 PMCID: PMC9048175 DOI: 10.1089/thy.2021.0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Multinodular goiter (MNG) is the most common disorder of the thyroid gland. Aging and genetic mutations that impair thyroid hormone (TH) production have been implicated in the development of MNG. XB130 is an adaptor/scaffold protein predominantly expressed in the thyroid gland. XB130 deficiency leads to transient postnatal growth retardation in mice due to congenital hypothyroidism. We studied the formation of MNG and possible mechanisms in elderly mice. Methods: Thyroid glands of male and female Xb130-knockout (Xb130-/-), heterozygous (Xb130+/-), and wild-type (Xb130+/+) mice at the ages of 12-20 months were harvested for visual examination, histopathological, and immunohistological analyses. Blood and thyroid samples were collected after feeding elderly mice with a low iodine diet for 125I uptake and perchlorate discharge assay. The activity of thyroperoxidase (Tpo) was examined by spectrophotometric evaluation of iodide oxidation. Results: While moderate MNG was seen in Xb130+/+ and Xb130+/- mice, severe MNG, characterized by multiple nodules intermixed with dilated colloid-rich macrofollicles, was found only in Xb130-/- mice at 18 months. Thyrocyte cytoskeletal structure and cell adhesion molecules were disorganized, and TH production was significantly reduced. Reduced iodide organification was seen in elderly Xb130+/+ mice and further enhanced in Xb130-/- mice. In Xb130+/+ mice, Tpo shows high affinity with hydrogen peroxide (H2O2) throughout aging, but reduced affinity with iodide in an age-dependent manner. By contrast, in elderly Xb130-/- mice, the affinity of Tpo for iodide remained high, but the affinity of Tpo for H2O2 was reduced. Conclusions: The pathophysiological features in the thyroid glands of aged Xb130-/- mice closely resemble the features of MNG in humans. Moderate MNG in elderly mice was dramatically aggravated by XB130 deficiency. Reduced affinity of Tpo for H2O2 may contribute to MNG development via oxidative stress. This could be specific to XB130 deficiency but also could be a common mechanism in MNG. Its clinical relevance should be further investigated.
Collapse
Affiliation(s)
- Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Hiroki Shimizu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sylvia L. Asa
- Department of Pathology, University Health Network, Toronto, Canada
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Surgery and Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Address correspondence to: Mingyao Liu, MD, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower 2-814, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
8
|
Wang Y, Shimizu H, Xiang YY, Sugihara J, Lu WY, Liao XH, Cho HR, Toba H, Bai XH, Asa SL, Arvan P, Refetoff S, Liu M. XB130 Deficiency Causes Congenital Hypothyroidism in Mice due to Disorganized Apical Membrane Structure and Function of Thyrocytes. Thyroid 2021; 31:1650-1661. [PMID: 34470464 PMCID: PMC8917886 DOI: 10.1089/thy.2021.0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Congenital hypothyroidism is often caused by genetic mutations that impair thyroid hormone (TH) production, resulting in growth and development defects. XB130 (actin filament associated protein 1 like 2) is an adaptor/scaffold protein that plays important roles in cell proliferation, migration, intracellular signal transduction, and tumorigenesis. It is highly expressed in thyrocytes, however, its function in the thyroid remains largely unexplored. Methods:Xb130-/- mice and their littermates were studied. Postnatal growth and growth hormone levels were measured, and responses to low or high-iodine diet, and levothyroxine treatment were examined. TH and thyrotropin in the serum and TH in the thyroid glands were quantified. Structure and function of thyrocytes in embryos and postnatal life were studied with histology, immunohistochemistry, immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction. Results:Xb130-/- mice exhibited transient growth retardation postnatally, due to congenital hypothyroidism with reduced TH synthesis and secretion, which could be rescued by exogenous thyroxine supplementation. The thyroid glands of Xb130-/- mice displayed diminished thyroglobulin iodination and release at both embryonic and early postnatal stages. XB130 was found mainly on the apical membrane of thyroid follicles. Thyroid glands of embryonic and postnatal Xb130-/- mice exhibited disorganized apical membrane structure, delayed folliculogenesis, and abnormal formation of thyroid follicle lumina. Conclusion: XB130 critically regulates folliculogenesis by maintaining apical membrane structure and function of thyrocytes, and its deficiency leads to congenital hypothyroidism.
Collapse
Affiliation(s)
- Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Hiroki Shimizu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Sylvia L. Asa
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel Refetoff
- Department of Medicine and Chicago, Illinois, USA
- Department of Pediatrics; and Chicago, Illinois, USA
- Department of Committee on Genetics; The University of Chicago, Chicago, Illinois, USA
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, and University of Toronto, Toronto, Ontario, Canada
- Department of Medicine; and University of Toronto, Toronto, Ontario, Canada
- Department of Institute of Medical Science; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Address correspondence to: Mingyao Liu, MD, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room: PMCRT2-814, Toronto M5G 1L7, Canada
| |
Collapse
|
9
|
Basak S, Srinivas V, Mallepogu A, Duttaroy AK. Curcumin stimulates angiogenesis through VEGF and expression of HLA‐G in first‐trimester human placental trophoblasts. Cell Biol Int 2020; 44:1237-1251. [DOI: 10.1002/cbin.11324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sanjay Basak
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | | | - Aswani Mallepogu
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
| |
Collapse
|
10
|
Wang Q, Yang G, Jiang Y, Luo M, Li C, Zhao Y, Xie Y, Song K, Zhou J. XB130, regulated by miR-203, miR-219, and miR-4782-3p, mediates the proliferation and metastasis of non-small-cell lung cancer cells. Mol Carcinog 2020; 59:557-568. [PMID: 32159887 DOI: 10.1002/mc.23180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/09/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
XB130 is a novel adapter protein that behaves as a tumor promoter or suppressor mediating cell proliferation and metastasis in the development of different human tumors. Altered expression of XB130 has been verified in human non-small cell-lung cancer (NSCLC). However, the exact effect of XB130 on NSCLC is not well-understood. In this study, we investigated the biological function and posttranscriptional regulation of XB130 in NSCLC. First, the effects of XB130 silence on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were examined. Then the targeting relationship between XB130 and miR-203, miR-219, or miR-4782-3p was demonstrated by dual-luciferase reporter assay. Finally, the effects of miR-203, miR-219, and miR-4782-3p on NSCLC cell function were studied, respectively. We found that XB130 silence significantly inhibited cell growth, migration and invasion, and reversed EMT. Furthermore, XB130 was posttranscriptionally regulated by miR-203, miR-219, and miR-4782-3p. Overexpression of miR-203, miR-219, or miR-4782-3p inhibited cell growth, migration and invasion, and reversed EMT, just like the role of XB130 in NSCLC cells, whereas the suppressive effects of microRNA (miRNA) overexpression were weakened by miRNA inhibitors or ectopic expression of XB130 in NSCLC cells. These data demonstrate that XB130 is posttranscriptionally regulated by miR-203, miR-219, and miR-4782-3p and mediates the proliferation and metastasis of NSCLC cells.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Guohui Yang
- Department of Medical Intensive Care Unit, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Mei Luo
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Kewei Song
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China.,Department of Sport and Health, Guizhou Medical University, Guiyang, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Cho HR, Wang Y, Bai X, Xiang YY, Lu C, Post A, Al Habeeb A, Liu M. XB130 deficiency enhances carcinogen-induced skin tumorigenesis. Carcinogenesis 2019; 40:1363-1375. [DOI: 10.1093/carcin/bgz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractXB130 is an adaptor protein that functions as a mediator of multiple tyrosine kinases important for regulating cell proliferation, survival, migration and invasion. Formerly predicted as an oncogene, alterations of its expression are documented in various human cancers. However, the exact role of XB130 in tumorigenesis is unknown. To address its function in skin tumorigenesis, a two-stage dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) study was performed on XB130 knockout (KO), heterozygous (HZ) and wild-type (WT) littermate mice. DMBA/TPA-treated XB130 KO and HZ males developed a significantly higher number of epidermal tumors that were notably larger in size than did WT mice. Interestingly, DMBA/TPA-treated female mice did not show any difference in tumor multiplicity regardless of the genotypes. The skin tumor lesions of XB130 KO males were more progressed with an increased frequency of keratoacanthoma. Deficiency of XB130 dramatically increased epidermal tumor cell proliferation. The responses to DMBA and TPA stimuli were also individually investigated to elucidate the mechanistic role of XB130 at different stages of tumorigenesis. DMBA-treated male XB130 KO mice showed compensatory p53-mediated stress response. TPA-treated XB130 KO males demonstrated more skin ulceration with more severe edema, enhanced cell proliferation, accumulation of infiltrating neutrophils and increased production of pro-inflammatory cytokine genes compared with WT mice. Enhanced activities of nuclear factor-kappa B pathway, increased protein expression of metalloproteinase-9 and ERK1/2 phosphorylation were found in these KO mice. These findings demonstrate that XB130 acts as a tumor suppressor in carcinogen-induced skin tumorigenesis that may be mediated through inhibiting inflammation.
Collapse
Affiliation(s)
- Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Christina Lu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Alexander Post
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Ayman Al Habeeb
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Moodley S, Derouet M, Bai XH, Xu F, Kapus A, Yang BB, Liu M. Stimulus-dependent dissociation between XB130 and Tks5 scaffold proteins promotes airway epithelial cell migration. Oncotarget 2018; 7:76437-76452. [PMID: 27835612 PMCID: PMC5363521 DOI: 10.18632/oncotarget.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Repair of airway epithelium after injury requires migration of neighboring epithelial cells to injured areas. However, the molecular mechanisms regulating airway epithelial cell migration is not well defined. We have previously shown that XB130, a scaffold protein, is required for airway epithelial repair and regeneration in vivo, and interaction between XB130 and another scaffold protein, Tks5, regulates cell proliferation and survival in human bronchial epithelial cells. The objective of the present study was to determine the role of XB130 and Tks5 interaction in airway epithelial cell migration. Interestingly, we found that XB130 only promotes lateral cell migration, whereas, Tks5 promotes cell migration/invasion via proteolysis of extracellular matrix. Upon stimulation with EGF, PKC activator phorbol 12, 13-dibutyrate or a nicotinic acetylcholine receptor ligand, XB130 and Tks5 translocated to the cell membrane in a stimulus-dependent manner. The translocation and distribution of XB130 is similar to lamellipodial marker, WAVE2; whereas Tks5 is similar to podosome marker, N-WASP. Over-expression of XB130 or Tks5 alone enhances cell migration, whereas co-expression of both XB130 and Tks5 inhibits cell migration processes and signaling. Furthermore, XB130 interacts with Rac1 whereas Tks5 interacts with Cdc42 to promote Rho GTPase activity. Our results suggest that dissociation between XB130 and Tks5 may facilitate lateral cell migration via XB130/Rac1, and vertical cell migration via Tks5/Cdc42. These molecular mechanisms will help our understanding of airway epithelial repair and regeneration.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Mathieu Derouet
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Feng Xu
- Advanced Optical Microscopy Facility, UHN, Toronto, Canada
| | - Andras Kapus
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Burton B Yang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mingyao Liu
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
13
|
Chen B, Liao M, Wei Q, Liu F, Zeng Q, Wang W, Liu J, Hou J, Yu X, Liu J. XB130 is overexpressed in prostate cancer and involved in cell growth and invasion. Oncotarget 2018; 7:59377-59387. [PMID: 27509056 PMCID: PMC5312318 DOI: 10.18632/oncotarget.11074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
XB130 is a cytosolic adaptor protein involved in various physiological processes and oncogenesis of certain malignancies, but its role in the development of prostate cancer remains unclear. In current study, we examined XB130 expression in prostate cancer tissues and found that XB130 expression was remarkably increased in prostate cancer tissues and significantly correlated with increased prostate specific antigen (PSA), free PSA (f-PSA), prostatic acid phosphatase (PAP) and T classification. Patients with highly expressed XB130 had significantly decreased survival, which suggested XB130 as a possible prognostic indicator for prostate cancer. In vitro experiments showed that reduced XB130 expression restrained tumor growth both in vitro and in vivo. Furthermore, XB130 knockdown hindered transition of G1 to S phase in prostate cancer cell line DU145 and LNCap, which might contribute to the inhibition of cellular proliferation. Results from transwell assay demonstrated that downregulation of XB130 may attenuate invasion and metastasis of prostate cancer. Semiquantitative analysis of Western blot suggested that decreased XB130 expression was accompanied by diminished Akt signaling and EMT process. Thus, above observations suggest that XB130 may be a novel molecular marker and potent therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Bin Chen
- Department of Science and Training, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China.,Guangzhou Huabo Biopharmaceutical Research Institute, Guangzhou, Guangdong, China
| | - Mengying Liao
- Department Of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qinsong Zeng
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | | | - Xinpei Yu
- Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support and Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Guangzhou, Guangdong, China.,Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Jian Liu
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Wang M, Han X, Sun W, Li X, Jing G, Zhang X. Actin Filament-Associated Protein 1-Like 1 Mediates Proliferation and Survival in Non-Small Cell Lung Cancer Cells. Med Sci Monit 2018; 24:215-224. [PMID: 29323101 PMCID: PMC5772338 DOI: 10.12659/msm.905900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The actin filament-associated protein (AFAP) family consists of 3 novel adaptor proteins: AFAP1, AFAP1L1, and AFAP1L2/XB130. Although evidence shows that AFAP1 and AFAP1L2 play an oncogenic role, the effect of AFAP1L1 on tumor cell behavior has not been fully elucidated, and it remains unknown whether AFAP1L1 could be a prognostic marker and/or therapeutic target of lung cancer. MATERIAL AND METHODS Human A549 non-small cell lung cancer (NSCLC) cells were used in this study. AFAP1L1 gene was knocked down by AFAP1L1 short hairpin RNA (shRNA) transfection. Cell proliferation was analyzed using Celigo image cytometry and MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay, cell cycle progression was assessed with flow cytometry, and cell apoptosis was determined by flow cytometry after annexin-n staining. The PathScan intracellular signaling array was used to investigate cancer-related signaling proteins influenced by knocking down AFAP1L1 in A549. RESULTS AFAP1L1 gene expression was successfully inhibited by the AFAP1L1-shRNA transfection. Cell proliferation was inhibited and cell proportions in G1 and G2/M phases were increased, and cell apoptosis was increased in the AFAP1L1-shRNA transfected cells as compared with negative control shRNA transfected cells. Using the PathScan intracellular signaling array, we found that downregulation of AFAP1L1 significantly activated P38 and caspase 3, and inhibited PRAS40 activation. CONCLUSIONS Our data show that AFAP1L1 promotes cell proliferation, accelerates cell cycle progression, and prevents cell apoptosis in lung cancer cells. Therefore, AFAP1L1 might play an oncogenic role in NSCLC.
Collapse
Affiliation(s)
- Meng Wang
- Graduate School, Tianjin Medical University, Tianjin, China (mainland).,Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Xingpeng Han
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Wei Sun
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Xin Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Guohui Jing
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| |
Collapse
|
15
|
Toba H, Tomankova T, Wang Y, Bai X, Cho HR, Guan Z, Adeyi OA, Tian F, Keshavjee S, Liu M. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury. Oncotarget 2018; 7:25420-31. [PMID: 27029000 PMCID: PMC5041914 DOI: 10.18632/oncotarget.8326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/08/2016] [Indexed: 01/03/2023] Open
Abstract
XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Tomankova
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zhehong Guan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele A Adeyi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Tian
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Vaysse A, Fang S, Brossard M, Wei Q, Chen WV, Mohamdi H, Vincent-Fetita L, Margaritte-Jeannin P, Lavielle N, Maubec E, Lathrop M, Avril MF, Amos CI, Lee JE, Demenais F. A comprehensive genome-wide analysis of melanoma Breslow thickness identifies interaction between CDC42 and SCIN genetic variants. Int J Cancer 2016; 139:2012-20. [PMID: 27347659 PMCID: PMC5116391 DOI: 10.1002/ijc.30245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
Breslow thickness (BT) is a major prognostic factor of cutaneous melanoma (CM), the most fatal skin cancer. The genetic component of BT has only been explored by candidate gene studies with inconsistent results. Our objective was to uncover the genetic factors underlying BT using an hypothesis-free genome-wide approach. Our analysis strategy integrated a genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) for BT followed by pathway analysis of GWAS outcomes using the gene-set enrichment analysis (GSEA) method and epistasis analysis within BT-associated pathways. This strategy was applied to two large CM datasets with Hapmap3-imputed SNP data: the French MELARISK study for discovery (966 cases) and the MD Anderson Cancer Center study (1,546 cases) for replication. While no marginal effect of individual SNPs was revealed through GWAS, three pathways, defined by gene ontology (GO) categories were significantly enriched in genes associated with BT (false discovery rate ≤5% in both studies): hormone activity, cytokine activity and myeloid cell differentiation. Epistasis analysis, within each significant GO, identified a statistically significant interaction between CDC42 and SCIN SNPs (pmeta-int =2.2 × 10(-6) , which met the overall multiple-testing corrected threshold of 2.5 × 10(-6) ). These two SNPs (and proxies) are strongly associated with CDC42 and SCIN gene expression levels and map to regulatory elements in skin cells. This interaction has important biological relevance since CDC42 and SCIN proteins have opposite effects in actin cytoskeleton organization and dynamics, a key mechanism underlying melanoma cell migration and invasion.
Collapse
Affiliation(s)
- Amaury Vaysse
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Myriam Brossard
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wei V. Chen
- Laboratory Informatics System, Department of Clinical Applications & Support, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hamida Mohamdi
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Patricia Margaritte-Jeannin
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nolwenn Lavielle
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eve Maubec
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- AP-HP, Service de Dermatologie, Hôpital Avicenne et Université Paris 13, Bobigny, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | | | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel College of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Florence Demenais
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Toba H, Wang Y, Bai X, Zamel R, Cho HR, Liu H, Lira A, Keshavjee S, Liu M. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration. Oncotarget 2016; 6:30803-17. [PMID: 26360608 PMCID: PMC4741569 DOI: 10.18632/oncotarget.5062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Hongmei Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Alonso Lira
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Wu Q, Nadesalingam J, Moodley S, Bai X, Liu M. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells. Oncotarget 2016; 6:18050-65. [PMID: 25980441 PMCID: PMC4627235 DOI: 10.18632/oncotarget.3777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 01/02/2023] Open
Abstract
Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.
Collapse
Affiliation(s)
- Qifei Wu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jeya Nadesalingam
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Zhang R, Zhang J, Wu Q, Meng F, Liu C. XB130: A novel adaptor protein in cancer signal transduction. Biomed Rep 2016; 4:300-306. [PMID: 26998266 DOI: 10.3892/br.2016.588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Adaptor proteins are functional proteins that contain two or more protein-binding modules to link signaling proteins together, which affect cell growth and shape and have no enzymatic activity. The actin filament-associated protein (AFAP) family is an important member of the adaptor proteins, including AFAP1, AFAP1L1 and AFAP1L2/XB130. AFAP1 and AFAP1L1 share certain common characteristics and function as an actin-binding protein and a cSrc-activating protein. XB130 exhibits certain unique features in structure and function. The mRNA of XB130 is expressed in human spleen, thyroid, kidney, brain, lung, pancreas, liver, colon and stomach, and the most prominent disease associated with XB130 is cancer. XB130 has a controversial effect on cancer. Studies have shown that XB130 can promote cancer progression and downregulation of XB130-reduced growth of tumors derived from certain cell lines. A higher mRNA level of XB130 was shown to be associated with a better survival in non-small cell lung cancer. Previous studies have shown that XB130 can regulate cell growth, migration and invasion and possibly has the effect through the cAMP-cSrc-phosphoinositide 3-kinase/Akt pathway. Except for cancer, XB130 is also associated with other pathological or physiological procedures, such as airway repair and regeneration.
Collapse
Affiliation(s)
- Ruiyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Fandi Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| |
Collapse
|
20
|
Yamanaka D, Akama T, Chida K, Minami S, Ito K, Hakuno F, Takahashi SI. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells. Front Endocrinol (Lausanne) 2016; 7:89. [PMID: 27462298 PMCID: PMC4939424 DOI: 10.3389/fendo.2016.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830-840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250-1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and plays an important role in endocytosis.
Collapse
Affiliation(s)
- Daisuke Yamanaka
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory of Food and Physiological Models, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama, Japan
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Takeshi Akama
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuhiro Chida
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Shiro Minami
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Koichi Ito
- Laboratory of Food and Physiological Models, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- *Correspondence: Fumihiko Hakuno, ; Shin-Ichiro Takahashi,
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- *Correspondence: Fumihiko Hakuno, ; Shin-Ichiro Takahashi,
| |
Collapse
|
21
|
Moodley S, Hui Bai X, Kapus A, Yang B, Liu M. XB130/Tks5 scaffold protein interaction regulates Src-mediated cell proliferation and survival. Mol Biol Cell 2015; 26:4492-502. [PMID: 26446840 PMCID: PMC4666142 DOI: 10.1091/mbc.e15-07-0483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Tks5, like XB130, plays a role in cell proliferation and cell survival, and the interaction between XB130 and Tks5 is critical for regulation of Src-mediated cell proliferation and survival. The scaffold protein XB130 regulates cell growth, survival, and migration. Yeast two-hybrid screening suggests that XB130 interacts with another scaffold protein, Tks5. We hypothesized that XB130 and Tks5 form a macromolecular complex to mediate signal transduction cascades for the regulation of cell growth and survival. Coimmunoprecipitation demonstrated that XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Structure–function studies showed that the fifth SH3 domain of Tks5 binds to the N-terminus of XB130, which contains polyproline-rich motifs. Cell growth and survival studies revealed that down-regulation of XB130 and/or Tks5 reduced cell proliferation, resulting in cell cycle inhibition at the G1 phase and increased caspase 3 activity and apoptosis. Moreover, cell proliferation and survival were increased by overexpression of XB130 or Tks5 but decreased when XB130/Tks5 binding was disrupted by overexpression of XB130 N-terminal deleted mutant and/or Tks5 fifth SH3 domain W1108A mutant. Furthermore, down-regulation of XB130 and/or Tks5 inhibited serum- and growth factor–induced Src activation and downstream phosphorylation of PI3K and Akt. Our results suggest that Tks5, similar to XB130, plays a role in cell proliferation and cell survival and that the interaction between XB130 and Tks5 appears to be critical for regulation of Src-mediated cellular homeostasis.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andras Kapus
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Burton Yang
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mingyao Liu
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
22
|
Regulation of sarcoma cell migration, invasion and invadopodia formation by AFAP1L1 through a phosphotyrosine-dependent pathway. Oncogene 2015. [DOI: 10.1038/onc.2015.272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Brossard M, Fang S, Vaysse A, Wei Q, Chen WV, Mohamdi H, Maubec E, Lavielle N, Galan P, Lathrop M, Avril MF, Lee JE, Amos CI, Demenais F. Integrated pathway and epistasis analysis reveals interactive effect of genetic variants at TERF1 and AFAP1L2 loci on melanoma risk. Int J Cancer 2015; 137:1901-1909. [PMID: 25892537 DOI: 10.1002/ijc.29570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.
Collapse
Affiliation(s)
- Myriam Brossard
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amaury Vaysse
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical center and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Wei V Chen
- Laboratory Informatics System, Department of Clinical Applications & Support, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Hamida Mohamdi
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Eve Maubec
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Bichat, Service de Dermatologie, Université Paris Diderot, Paris, France
| | - Nolwenn Lavielle
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Pilar Galan
- INSERM, UMR U557; Institut national de la Recherche Agronomique,U1125; Conservatoire national des arts et métiers, Centre de Recherche en Nutrition Humaine, Ile de France, Bobigny, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | | | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher I Amos
- Department of Community and Family Medicine, Geisel College of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Florence Demenais
- INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| |
Collapse
|
24
|
Zhao J, Wang Y, Wakeham A, Hao Z, Toba H, Bai X, Keshavjee S, Mak TW, Liu M. XB130 deficiency affects tracheal epithelial differentiation during airway repair. PLoS One 2014; 9:e108952. [PMID: 25272040 PMCID: PMC4182764 DOI: 10.1371/journal.pone.0108952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022] Open
Abstract
The repair and regeneration of airway epithelium is important for maintaining homeostasis of the respiratory system. XB130 is an adaptor protein involved in the regulation of cell proliferation, survival and migration. In the human trachea, XB130 is expressed on the apical site of ciliated epithelial cells. We hypothesize that XB130 may play a role in epithelial repair and regeneration after injury. Xb130 knockout (KO) mice were generated, and a mouse isogenic tracheal transplantation model was used. Adult Xb130 KO mice did not show any significant anatomical and physiological phenotypes in comparison with their wild type (WT) littermates. The tracheal epithelium in Xb130 KO mice, however, was significantly thicker than that in WT mice. Severe ischemic epithelial injury was observed immediately after the tracheal transplantation, which was followed by epithelial cell flattening, proliferation and differentiation. No significant differences were observed in terms of initial airway injury and apoptosis. However, at Day 10 after transplantation, the epithelial layer was significantly thicker in Xb130 KO mice, and associated with greater proliferative (Ki67+) and basal (CK5+) cells, as well as thickening of the connective tissue and fibroblast layer between the epithelium and tracheal cartilages. These results suggest that XB130 is involved in the regulation of airway epithelial differentiation, especially during airway repair after injury.
Collapse
Affiliation(s)
- Jinbo Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Tangdu Hospital, Forth Military Medical University, Xi’an, Shaanxi, China
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrew Wakeham
- Advanced Medical Discovery Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhenyue Hao
- Advanced Medical Discovery Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tak W. Mak
- Advanced Medical Discovery Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Bai XH, Cho HR, Moodley S, Liu M. XB130-A Novel Adaptor Protein: Gene, Function, and Roles in Tumorigenesis. SCIENTIFICA 2014; 2014:903014. [PMID: 24995146 PMCID: PMC4068053 DOI: 10.1155/2014/903014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Several adaptor proteins have previously been shown to play an important role in the promotion of tumourigenesis. XB130 (AFAP1L2) is an adaptor protein involved in many cellular functions, such as cell survival, cell proliferation, migration, and gene and miRNA expression. XB130's functional domains and motifs enable its interaction with a multitude of proteins involved in several different signaling pathways. As a tyrosine kinase substrate, tyrosine phosphorylated XB130 associates with the p85 α regulatory subunit of phosphoinositol-3-kinase (PI3K) and subsequently affects Akt activity and its downstream signalling. Tumourigenesis studies show that downregulation of XB130 expression by RNAi inhibits tumor growth in mouse xenograft models. Furthermore, XB130 affects tumor oncogenicity by regulating the expression of specific tumour suppressing miRNAs. The expression level and pattern of XB130 has been studied in various human tumors, such as thyroid, esophageal, and gastric cancers, as well as, soft tissue tumors. Studies show the significant effects of XB130 in tumourigenesis and suggest its potential as a diagnostic biomarker and therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, Canada M5G 1L7 ; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 ; Department of Surgery, Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
26
|
Wang Z, Jiang B, Chen L, Di J, Cui M, Liu M, Ma Y, Yang H, Xing J, Zhang C, Yao Z, Zhang N, Dong B, Ji J, Su X. GOLPH3 predicts survival of colorectal cancer patients treated with 5-fluorouracil-based adjuvant chemotherapy. J Transl Med 2014; 12:15. [PMID: 24444035 PMCID: PMC4029222 DOI: 10.1186/1479-5876-12-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
Background Golgi phosphoprotein 3 (GOLPH3) has been validated as a potent oncogene involved in the progression of many types of solid tumors, and its overexpression is associated with poor clinical outcome in many cancers. However, it is still unknown the association of GOLPH3 expression with the prognosis of colorectal cancer (CRC) patients who received 5-fluorouracil (5-FU)-based adjuvant chemotherapy. Methods The expression of GOLPH3 was determined by qRT-PCR and immunohistochemistry in colorectal tissues from CRC patients treated with 5-FU based adjuvant chemotherapy after surgery. The association of GOLPH3 with clinicopathologic features and prognosis was analysed. The effects of GOLPH3 on 5-FU sensitivity were examined in CRC cell lines. Results GOLPH3 expression was elevated in CRC tissues compared with matched adjacent noncancerous tissues. Kaplan-Meier survival curves indicated that high GOLPH3 expression was significantly associated with prolonged disease-free survival (DFS, P = 0.002) and overall survival (OS, P = 0.011) in patients who received 5-FU-based adjuvant chemotherapy. Moreover, multivariate analysis showed that GOLPH3 expression was an independent prognostic factor for DFS in CRC patients treated with 5-FU-based chemotherapy (HR, 0.468; 95%CI, 0.222-0.987; P = 0.046). In vitro, overexpression of GOLPH3 facilitated the 5-FU chemosensitivity in CRC cells; while siRNA-mediated knockdown of GOLPH3 reduced the sensitivity of CRC cells to 5-FU-induced apoptosis. Conclusions Our results suggest that GOLPH3 is associated with prognosis in CRC patients treated with postoperative 5-FU-based adjuvant chemotherapy, and may serve as a potential indicator to predict 5-FU chemosensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142 Beijing, China.
| |
Collapse
|
27
|
Shi M, Zheng D, Sun L, Wang L, Lin L, Wu Y, Zhou M, Liao W, Liao Y, Zuo Q, Liao W. XB130 promotes proliferation and invasion of gastric cancer cells. J Transl Med 2014; 12:1. [PMID: 24387290 PMCID: PMC3882781 DOI: 10.1186/1479-5876-12-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/27/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND XB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized. METHODS In this study, we investigated the influence of XB130 on gastric tumorigenesis and metastasis in vivo and in vitro using the MTT assay, clonogenic assay, BrdU incorporation assay, 3D culture, immunohistochemistry and immunofluorescence. Western blot analysis was also performed to identify the potential mechanisms involved. RESULTS The proliferation, migration, and invasion of SGC7901 and MNK45 gastric adenocarcinoma cell lines were all significantly inhibited by knockdown of XB130 using small hairpin RNA. In a xenograft model, tumor growth was markedly inhibited after shXB130-transfected GC cells were implanted into nude mice. After XB130 knockdown, GC cells showed a more epithelial-like phenotype, suggesting an inhibition of the epithelial-mesenchymal transition (EMT) process. In addition, silencing of XB130 reduced the expression of p-Akt/Akt, upregulated expression of epithelial markers including E-cadherin, α-catenin and β-catenin, and downregulated mesenchymal markers including fibronectin and vimentin. Expression of oncoproteins related to tumor metastasis, such as MMP2, MMP9, and CD44, was also significantly reduced. CONCLUSIONS These findings indicate that XB130 enhances cell motility and invasiveness by modulating the EMT-like process, while silencing XB130 in GC suppresses tumorigenesis and metastasis, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Yajun Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Minyu Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Wenjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| |
Collapse
|
28
|
XB130, a new adaptor protein, regulates expression of tumor suppressive microRNAs in cancer cells. PLoS One 2013; 8:e59057. [PMID: 23527086 PMCID: PMC3602428 DOI: 10.1371/journal.pone.0059057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/11/2013] [Indexed: 12/16/2022] Open
Abstract
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.
Collapse
|
29
|
Xiao H, Bai XH, Wang Y, Kim H, Mak AS, Liu M. MEK/ERK pathway mediates PKC activation-induced recruitment of PKCζ and MMP-9 to podosomes. J Cell Physiol 2013; 228:416-27. [PMID: 22740332 DOI: 10.1002/jcp.24146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP-9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation-induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu-induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)-inhibited PDBu-induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP-9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu-induced podosomes by influencing the recruitment of PKCζ and MMP-9 to podosomes.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cell and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Shi M, Huang W, Lin L, Zheng D, Zuo Q, Wang L, Wang N, Wu Y, Liao Y, Liao W. Silencing of XB130 is associated with both the prognosis and chemosensitivity of gastric cancer. PLoS One 2012; 7:e41660. [PMID: 22927913 PMCID: PMC3426513 DOI: 10.1371/journal.pone.0041660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/24/2012] [Indexed: 12/03/2022] Open
Abstract
XB130 is a newly characterized adaptor protein that was reported to promote thyroid tumor growth, but its role in the progression of other kinds of cancer such as gastric cancer (GC) remains unknown. Accordingly, we investigated the association between XB130 expression and the prognosis of GC patients. The subjects were 411 patients with GC in stages I to IV. XB130 expression was examined in surgical specimens of GC. Kaplan-Meier analysis and the Cox proportional hazards model were used to assess the prognostic significance of XB130 for survival and recurrence. Moreover, GC cells stably transfected with XB130 short hairpin RNA were established to analyze the effect of XB130 on sensitivity of chemotherapy. The results show that both XB130 mRNA and protein expression were detectable in normal gastric tissues. The overall survival time of stage IV patients and the disease-free period after radical resection of GC in stage I-III patients were significantly shorter when immunohistochemical staining for XB130 was low than when staining was high (both p<0.05). XB130 expression also predicted tumor sensitivity to several chemotherapy agents. Viability of both XB130-silenced SGC7901 cells and wild-type cells was suppressed by 5-fluorouracil (5-FU), cisplatin, and irinotecan in a dose-dependent way, but cisplatin and irinotecan were more sensitive against sXB130-silenced GC cells and 5-FU showed higher sensitivity to wild-type cells. When treated by 5-FU, patients with high expression of XB130 tumors had a higher survival rate than those with low expression tumors. These findings indicate that reduced XB130 protein expression is a prognostic biomarker for shorter survival and a higher recurrence rate in patients with GC, as well as for the response to chemotherapy.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhen Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nina Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajun Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
XB130 mediates cancer cell proliferation and survival through multiple signaling events downstream of Akt. PLoS One 2012; 7:e43646. [PMID: 22928011 PMCID: PMC3426539 DOI: 10.1371/journal.pone.0043646] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/24/2012] [Indexed: 12/18/2022] Open
Abstract
XB130, a novel adaptor protein, mediates RET/PTC chromosome rearrangement-related thyroid cancer cell proliferation and survival through phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway. Recently, XB130 was found in different cancer cells in the absence of RET/PTC. To determine whether RET/PTC is required of XB130-related cancer cell proliferation and survival, WRO thyroid cancer cells (with RET/PTC mutation) and A549 lung cancer cells (without RET/PTC) were treated with XB130 siRNA, and multiple Akt down-stream signals were examined. Knocking-down of XB130 inhibited G1-S phase progression, and induced spontaneous apoptosis and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death. Knocking-down of XB130 reduced phosphorylation of p21Cip1/WAF1, p27Kip1, FOXO3a and GSK3β, increased p21Cip1/WAF1protein levels and cleavages of caspase-8 and-9. However, the phosphorylation of FOXO1 and the protein levels of p53 were not affected by XB130 siRNA. We also found XB130 can be phosphorylated by multiple protein tyrosine kinases. These results indicate that XB130 is a substrate of multiple protein tyrosine kinases, and it can regulate cell proliferation and survival through modulating selected down-stream signals of PI3K/Akt pathway. XB130 could be involved in growth and survival of different cancer cells.
Collapse
|
32
|
Shiozaki A, Kosuga T, Ichikawa D, Komatsu S, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, Shimizu H, Ishimoto T, Kitagawa M, Nakou Y, Kishimoto M, Liu M, Otsuji E. XB130 as an independent prognostic factor in human esophageal squamous cell carcinoma. Ann Surg Oncol 2012; 20:3140-50. [PMID: 22805860 DOI: 10.1245/s10434-012-2474-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adaptor proteins, with multimodular structures, can participate in the regulation of various cellular functions. A novel adaptor protein XB130 has been implicated as a substrate and regulator of tyrosine kinase-mediated signaling and in controlling cell proliferation and apoptosis in thyroid and lung cancer cells. However, its expression and role in gastrointestinal cancer have not been investigated. We sought to determine the role of XB130 in cell cycle progression of esophageal squamous cell carcinoma (ESCC) cells and to examine its expression and effects on the prognosis of patients with ESCC. METHODS Expression of XB130 in human ESCC cell lines was analyzed by Western blot testing and immunofluorescent staining. Knockdown experiments with XB130 small interfering RNA (siRNA) were conducted, and the effect on cell cycle progression was analyzed. Immunohistochemistry of XB130 for 52 primary tumor samples obtained from patients with ESCC undergoing esophagectomy was performed. RESULTS XB130 was highly expressed in TE2, TE5, and TE9 cells. In these cells, knockdown of XB130 with siRNA inhibited G1-S phase progression and increased the expression of p21, the cyclin-dependent kinase inhibitor. Immunohistochemistry showed that 71.2% of the patients expressed XB130 in the nuclei and/or cytoplasm of the ESCC cells. Further, nuclear expression of XB130 was an independent prognostic factor of postoperative survival. CONCLUSIONS These observations suggest that the expression of XB130 in ESCC cells may affect cell cycle progression and impact prognosis of patients with ESCC. A deeper understanding of XB130 as a mediator and/or biomarker in ESCC is needed.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shiozaki A, Bai XH, Shen-Tu G, Moodley S, Takeshita H, Fung SY, Wang Y, Keshavjee S, Liu M. Claudin 1 mediates TNFα-induced gene expression and cell migration in human lung carcinoma cells. PLoS One 2012; 7:e38049. [PMID: 22675434 PMCID: PMC3365005 DOI: 10.1371/journal.pone.0038049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 05/02/2012] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Xiao-hui Bai
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Grace Shen-Tu
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Serisha Moodley
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Hiroki Takeshita
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Shan-Yu Fung
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network Toronto General Research Institute, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
34
|
Yamanaka D, Akama T, Fukushima T, Nedachi T, Kawasaki C, Chida K, Minami S, Suzuki K, Hakuno F, Takahashi SI. Phosphatidylinositol 3-kinase-binding protein, PI3KAP/XB130, is required for cAMP-induced amplification of IGF mitogenic activity in FRTL-5 thyroid cells. Mol Endocrinol 2012; 26:1043-55. [PMID: 22496359 DOI: 10.1210/me.2011-1349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We previously demonstrated that long-term pretreatment of rat FRTL-5 thyroid cells with TSH or cAMP-generating reagents potentiated IGF-I-dependent DNA synthesis. Under these conditions, cAMP treatment increased tyrosine phosphorylation of a 125-kDa protein (p125) and its association with a p85 regulatory subunit of phosphatidylinositol 3-kinase (p85 PI3K), which were suggested to mediate potentiation of DNA synthesis. This study was undertaken to identify p125 and to elucidate its roles in potentiation of DNA synthesis induced by IGF-I. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis revealed p125 to be a rat ortholog of human XB130, which we named PI3K-associated protein (PI3KAP). cAMP treatment elevated PI3KAP/XB130 mRNA and protein levels as well as tyrosine phosphorylation and interaction with p85 PI3K leading to increased PI3K activities associated with PI3KAP/XB130, supporting the role of PI3KAP/XB130 in DNA synthesis potentiation. Importantly, PI3KAP/XB130 knockdown attenuated cAMP-dependent potentiation of IGF-I-induced DNA synthesis. Furthermore, c-Src was associated with PI3KAP/XB130 and was activated in response to cAMP. Addition of Src family kinase inhibitors, PP1 or PP2, during cAMP treatment abolished tyrosine phosphorylation of PI3KAP/XB130 and its interaction with p85 PI3K. Finally, introduction of PI3KAP/XB130 into NIH3T3 fibroblasts lacking endogenous PI3KAP/XB130 enhanced IGF-I-induced DNA synthesis; however, a mutant Y72F incapable of binding to p85 PI3K did not show this response. Together, these data indicate that cAMP-dependent induction of PI3KAP/XB130, which is associated with PI3K, is required for enhancement of IGF mitogenic activities.
Collapse
Affiliation(s)
- Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao H, Han B, Lodyga M, Bai XH, Wang Y, Liu M. The actin-binding domain of actin filament-associated protein (AFAP) is involved in the regulation of cytoskeletal structure. Cell Mol Life Sci 2012; 69:1137-51. [PMID: 21984596 PMCID: PMC11114525 DOI: 10.1007/s00018-011-0812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/15/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Actin filament-associated protein (AFAP) plays a critical role in the regulation of actin filament integrity, formation and maintenance of the actin network, function of focal contacts, and cell migration. Here, we show that endogenous AFAP was present not only in the cytoskeletal but also in the cytosolic fraction. Depolymerization of actin filaments with cytochalasin D or latrunculin A increased AFAP in the cytosolic fraction. AFAP harbors an actin-binding domain (ABD) in its C-terminus. AFAPΔABD, an AFAP mutant with selective ABD deletion, was mainly in the cytosolic fraction when overexpressed in the cells, which was associated with a disorganized cytoskeleton with reduced stress fibers, accumulation of F-actin on cellular membrane, and formation of actin-rich small dots. Cortactin, a well-known podosome marker, was colocalized with AFAPΔABD in these small dots at the ventral surface of the cell, indicating that these small dots fulfill certain criteria of podosomes. However, these podosome-like small dots did not digest gelatin matrix. This may be due to the reduced interaction between AFAPΔABD and c-Src. When AFAPΔABD-transfected cells were stimulated with phorbol ester, they formed podosome-like structures with larger sizes, less numerous and longer life span, in comparison with wild-type AFAP-transfected cells. These results indicate that the association of AFAP with F-actin through ABD is crucial for AFAP to regulate cytoskeletal structures. The AFAPΔABD, as cytosolic proteins, may be more accessible to the cellular membrane, podosome-like structures, and thus be more interactive for the regulation of cellular functions.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Bing Han
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Monika Lodyga
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Xiao-Hui Bai
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Yingchun Wang
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
| | - Mingyao Liu
- Division of Cellular and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, ON Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Room TMDT 2-814, 101 College Street, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
36
|
Zuo Q, Huang H, Shi M, Zhang F, Sun J, Bin J, Liao Y, Liao W. Multivariate analysis of several molecular markers and clinicopathological features in postoperative prognosis of hepatocellular carcinoma. Anat Rec (Hoboken) 2011; 295:423-31. [PMID: 22190283 DOI: 10.1002/ar.21531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
This study was designed to assess the impact of several molecular markers and clinicopathological characteristics on postoperative survival of patients with hepatocellular carcinoma (HCC). Postoperative clinical data of 64 patients with HCC were retrospectively analyzed. K-ras, PIK3CA, and BRAF gene mutations in surgically resected specimens of the 64 patients with HCC were detected by pyrosequencing. H-ras and XB130 protein expression was examined by immunohistochemistry. A Cox proportional hazards regression model was used for univariate and multivariate survival analyses of the clinical and pathological parameters. The mutation rates of K-ras, PIK3CA, and BRAF genes in HCC were found to be 4.69%, 1.56%, and 0%, respectively. Positive expression rate of XB130 and H-ras in HCC was 75.0% and 93.8%, respectively. Univariate analysis revealed that clinicopathological factors impacting postoperative prognosis of patients with HCC include clinical stage, tumor diameter, and postoperative transcatheter arterial embolization therapy for HCC. Meanwhile, multivariate analysis showed that clinical stage (relative risk [RR]: 6.420, P = 0.013) and tumor diameter (RR: 1.498, P = 0.014) were independent factors impacting postoperative survival of patients with HCC. These findings indicate that the clinical stage and tumor diameter are independent risk factors impacting postoperative survival of patients with HCC. Gene mutations of K-ras and PIK3CA and protein expression of XB130 and H-ras are not associated with the postoperative prognosis of patients with HCC.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Shiozaki A, Liu M. Roles of XB130, a novel adaptor protein, in cancer. J Clin Bioinforma 2011; 1:10. [PMID: 21884627 PMCID: PMC3164603 DOI: 10.1186/2043-9113-1-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/17/2011] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins, with multi-modular structures, can participate in the regulation of various cellular functions. During molecular cloning process of actin filament associated protein, we have discovered a novel adaptor protein, referred to as XB130. The human xb130 gene is localized on chromosome 10q25.3, and encodes an 818 amino acid protein. The N-terminal region of XB130 includes several tyrosine phosphorylation sites and a proline-rich sequence that might interact with Src homology 2 and 3 domain-containing proteins, respectively. Our studies have indeed implicated XB130 as a likely substrate and regulator of tyrosine kinase-mediated signaling. Down-regulation of endogenous XB130 with small interfering RNA reduced c-Src activity, IL-8 production and phosphorylation of Akt in human lung epithelial cells. Further, XB130 binds the p85α subunit of phosphatidyl-inositol-3-kinase and subsequently mediates signaling through RET/PTC in thyroid cancer cells. Knockdown of XB130 using small interfering RNA inhibited G1-S phase progression, induced spontaneous apoptosis and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death in human lung and thyroid cancer cells. Growth of tumors in nude mice formed from XB130 short hairpin RNA stably transfected human thyroid cancer cells were significantly reduced, with decreased cell proliferation and increased apoptosis. Further, XB130 has a high affinity to lamellipodial F-actin meshwork and is involved in the motility and invasiveness of cancer cells. Gene expression profiling identified 246 genes significantly changed in XB130 short hairpin RNA transfected thyroid cancer cells. Among them, 57 genes are related to cell proliferation or survival, including many transcription regulators. Pathway analysis showed that the top ranked disease related to XB130 is Cancer, and the top molecular and cellular functions are Cellular Growth and Proliferation, and Cell Cycle. These observations suggest that the expression of XB130 may affect cell proliferation, survival, motility and invasion in various cancer cells. A deeper understanding of these mechanisms may lead to the discovery of XB130 as an important mediator in tumor development and as a novel therapeutic target for cancer.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | | |
Collapse
|
38
|
Shiozaki A, Lodyga M, Bai XH, Nadesalingam J, Oyaizu T, Winer D, Asa SL, Keshavjee S, Liu M. XB130, a novel adaptor protein, promotes thyroid tumor growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:391-401. [PMID: 21224076 DOI: 10.1016/j.ajpath.2010.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
Adaptor proteins with multimodular structures can participate in the regulation of various cellular functions. We have cloned a novel adaptor protein, XB130, which binds the p85α subunit of phosphatidyl inositol 3-kinase and subsequently mediates signaling through RET/PTC in TPC-1 thyroid cancer cells. In the present study, we sought to determine the role of XB130 in the tumorigenesis in vivo and in related molecular mechanisms. In WRO thyroid cancer cells, knockdown of XB130 using small interfering RNA inhibited G(1)-S phase progression, induced spontaneous apoptosis, and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death. Growth of tumors in nude mice formed from XB130 shRNA stably transfected WRO cells were significantly reduced, with decreased cell proliferation and increased apoptosis. Microarray analysis identified 246 genes significantly changed in XB130 shRNA transfected cells. Among them, 57 genes are related to cell proliferation or survival, including many transcription regulators. Ingenuity Pathway Analysis showed that the top-ranked disease related to XB130 is cancer, and the top molecular and cellular functions are cellular growth and proliferation and cell cycle. A human thyroid tissue microarray study identified expression of XB130 in normal thyroid tissue as well as in human thyroid carcinomas. These observations suggest that the expression of XB130 in these cancer cells may affect cell proliferation and survival by controlling the expression of multiple genes, especially transcription regulators.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Latner Thoracic Surgery Research Laboratories, University Health Network, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|