1
|
Cai Y, Shen A, Liu H, Liu C, Xu W, Jia R. Toxic effects and transcriptome analysis of the early life stages of Larimichthys crocea exposed to the bloom-forming dinoflagellate Alexandrium tamarense. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107140. [PMID: 40252594 DOI: 10.1016/j.marenvres.2025.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the effects of the bloom-forming dinoflagellate Alexandrium tamarense and its potentially associated paralytic shellfish toxins on the early life stages of Larimichthys crocea (large yellow croaker) by integrating physiological effects with transcriptomic analysis to explore the molecular mechanisms underlying these harmful impacts. The results showed that 48-h acute exposure to A. tamarense culture and cell-free filtrate significantly reduced the heart rate in embryos and increased mortality rates in both embryos and larvae. Transcriptome sequencing of the filtrate-exposed group identified 130 differentially expressed genes in the embryo group and 884 in the juvenile group. Further analysis revealed that algal exposure triggered the activation of innate immunity in embryos, as evidenced by the significant upregulation of immune-related cytokines such as CCL20, IL11, and ILRA10. These genes were enriched in the cytokine-cytokine receptor interaction pathway and may induce immune responses through their respective downstream pathways. Additionally, the downregulation of the RNA polymerase and ribosome pathways suggests that protein synthesis was affected during the embryo stress response induced by A. tamarense. In juveniles, genes related to cardiac function, particularly those associated with myocardial contraction and calcium ion regulation, were downregulated after exposure to algal filtrate, further suggesting that A. tamarense, possibly through paralytic shellfish toxins, inhibits the heart function of L. crocea. The findings of this study elucidate the toxicological mechanisms of A. tamarense on the early life stages of L. crocea, providing scientific evidence for the impact of harmful algal blooms on marine life health and offering valuable insights for management strategies in aquaculture.
Collapse
Affiliation(s)
- Yongqi Cai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Anglu Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chongfeng Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wantu Xu
- Xiangshan Gangwan Marine Breeding Co., Ltd, Ningbo, China
| | - Rui Jia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
2
|
Laarne M, Oghabian A, Laitila J, Isohanni P, Tynninen O, Zhao F, Rostedt F, Sarparanta J, Sagath L, Lawlor MW, Wallgren-Pettersson C, Lehtokari VL, Pelin K. A homozygous single-nucleotide variant in TNNT1 causes abnormal troponin T isoform expression in a patient with severe nemaline myopathy: A case report. J Neuromuscul Dis 2025:22143602251339569. [PMID: 40397026 DOI: 10.1177/22143602251339569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
BACKGROUND Slow skeletal troponin T (ssTnT, TNNT1) is the tropomyosin-binding subunit of the troponin complex in the slow-twitch fibers of skeletal muscle. Exon 5 of TNNT1 is alternatively spliced, and retention of the 3' region of intron 11 (exon 12') has also been described. Variants in TNNT1 are known to cause nemaline myopathy (NM). OBJECTIVE To identify and further investigate the disease-causing variant in a patient with lethal NM. METHODS The genetic analyses included a gene panel, Sanger sequencing, whole-exome sequencing, and targeted array-CGH. Muscle biopsy was analyzed using routine histopathological methods. The alternative splicing of TNNT1 exon 12 in patient muscle was quantified from RNA sequencing data, and the protein expression was confirmed by western blot. Expression of ssTnT in patient muscle was studied by immunohistology. RESULTS The patient presented with arthrogryposis, stiffness, respiratory insufficiency, and minimal spontaneous movements. Histopathology showed hypotrophy and predominance of type II fibers, perimysial connective tissue accumulation, and nemaline bodies. The patient was homozygous for the TNNT1 missense variant (NM_003283.6:c.653C > G, p.(Pro218Arg), NM_ 001126132.3:c.612-7C > G), predicted to disrupt splicing. RNA-seq revealed inclusion of exon 12' in 49.85% of transcripts, whereas in controls exon 12' was not expressed. Exon 12' expression on the protein level was confirmed by western blot. Immunohistology showed strong ssTnT expression in remaining type I fibers, and low expression in type IIA fibers. CONCLUSIONS The c.653C > G variant was shown to alter TNNT1 splicing. The results suggest a novel pathogenetic mechanism involving abnormal expression of a troponin T isoform.
Collapse
Affiliation(s)
- Milla Laarne
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ali Oghabian
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jenni Laitila
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland
- Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fang Zhao
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fanny Rostedt
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Lydia Sagath
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Zhong Z, Wang K, Zhong T, Wang J. Mitochondrial fission regulates midgut muscle assembly and tick feeding capacity. Cell Rep 2025; 44:115505. [PMID: 40184249 DOI: 10.1016/j.celrep.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 04/06/2025] Open
Abstract
Ticks ingest over 100 times their body weight in blood. As the primary tissue for blood storage and digestion, the tick midgut's regulation in response to this substantial blood volume remains unclear. Here, we show that blood intake triggers stem cell proliferation and mitochondrial fission in the midgut of Haemaphysalis longicornis. While inhibiting stem cell proliferation does not impact feeding behavior, disruption of mitochondrial fission impairs tick feeding capacity. Mitochondrial fission mediated by dynamin 2 (DNM2) regulates ATP generation, which in turn influences the expression of the tropomyosin-anchoring subunit troponin T (TNT). Knockdown of TNT disrupts muscle fiber assembly, hindering midgut enlargement and contraction, thereby preventing blood ingestion. These findings underscore the indispensable role of musculature in facilitating midgut expansion during feeding in ticks.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Kun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Sherer LA, Nagle A, Papadaki M, Edassery S, Yoo D, D’Amico L, Brambila-Diaz D, Regnier M, Kirk JA. Calcium-Activated Sarcomere Contractility Drives Cardiomyocyte Maturation and the Response to External Mechanical Cues but is Dispensable for Sarcomere Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644054. [PMID: 40166280 PMCID: PMC11957071 DOI: 10.1101/2025.03.18.644054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Understanding the mechanisms of cardiomyocyte development is critical for fulfilling the potential of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Although myocyte development is known to depend on internal and external mechanical cues, further investigation is required to understand the contributions of different signals and how they are integrated together to generate an adult cardiomyocyte. Here, we address this gap by examining the role of calcium-activated contractility in sarcomere formation and maturation and its influence on the iPSC-CM response to nanopatterns. Methods We generated iPSCs with homozygous D65A cardiac troponin C (cTnC) mutations. This mutation prevents calcium binding to site II of cTnC, resulting in tropomyosin blocking strong myosin binding to the thin filament and inhibiting sarcomere contraction. The iPSCs were differentiated into cardiomyocytes and matured in culture over 60 days. Cells were characterized via fluorescence imaging and calcium transient analysis. WT and mutant proteomes were examined via mass spectrometry throughout differentiation and maturation. We also replated partially matured cardiomyocytes onto nanopatterned surfaces to investigate how external mechanical signals affect maturation in contractile versus non-contractile cells. Results Surprisingly, we found that sarcomeres formed in the cTnC D65A cardiomyocytes, though these sarcomeres were underdeveloped and disorganized. Mutant cardiomyocytes also exhibited significant proteomic maturation defects and abnormal calcium transients. Plating D65A cardiomyocytes on nanopatterns improved structural and proteomic maturation. However, plating WT cardiomyocytes on nanopatterns led to a reduction in sarcomeric and oxidative phosphorylation protein content. Conclusions Calcium-activated contractility is dispensable for sarcomerogenesis but critical for cardiomyocyte maturation. In non-contractile, mutant cardiomyocytes, nanopatterns enhance maturation, suggesting that external mechanical cues may partially compensate for defective contractility. However, nanopatterns did not facilitate WT maturation and may have hindered it. In addition to these novel findings, these large mass spectrometry datasets cataloging iPSC-CM maturation represent a useful resource for the cardiovascular community.
Collapse
Affiliation(s)
- Laura A. Sherer
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Abigail Nagle
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Mary Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Dasom Yoo
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Lauren D’Amico
- Department of Bioengineering, University of Washington, Seattle, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL
| |
Collapse
|
5
|
Zhao F, Shen Y, Ma Z, Tian H, Duan B, Xiao Y, Liu C, Shi X, Chen D, Wei W, Jiang R, Wei P. Transgenerational toxicity assessment of [C 8mim]Br: Focus on early development, antioxidant defense, and transcriptome profiles in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117884. [PMID: 39951882 DOI: 10.1016/j.ecoenv.2025.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
1-Methyl-3-octylimidazolium bromide ([C8mim]Br), one of the most widely used and studied ionic liquids, is a contaminant of emerging concern. Acute exposure to high doses of [C8mim]Br has been shown to induce a variety of toxicity effects in exposed animals. However, the detrimental effects of chronic parental exposure to low doses of [C8mim]Br on unexposed offspring and the underlying mechanisms remain largely unknown. To this end, spawning-capable female and male zebrafish (F0 generation) were separately exposed to 25, 250, and 2500 μg/L of [C8mim]Br for eight weeks and were then mated to spawn. The resulting eggs (F1 generation) were collected and cultured in [C8mim]Br-free media for 96 h. We found that the early growth and development of F1 embryo-larvae, which were not directly exposed to [C8mim]Br, were significantly inhibited. This was evidenced by delayed hatching, increased mortality, reduced body weight, slowed heartbeat, poor motility (decreased spontaneous tail-coiling movements and diminished escape responses to touch stimuli and water swirling), and uninflated swim bladders. Furthermore, fluorescent probe labeling and biochemical analyses revealed an accumulation of reactive oxygen species and impairment of the antioxidant defense system in F1 larvae from [C8mim]Br-exposed F0 parents, indicating the induction of oxidative stress. Finally, transcriptomic sequencing demonstrated that the differentially expressed genes in F1 larvae were primarily involved in muscle development and contraction performance, offering mechanistic insights into the poor motility and associated developmental defects observed in F1 embryo-larvae. Overall, this transgenerational toxicity assessment underscores the adverse outcomes of parental [C8mim]Br exposure on unexposed offspring, providing a crucial aspect of the ecological risks of [C8mim]Br.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ying Shen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhongjun Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huiqing Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bingkun Duan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Wei Wei
- Wushan County Ecological Environmental Monitoring Station, Chongqing 404700, China
| | - Rui Jiang
- Wushan County Ecological Environmental Monitoring Station, Chongqing 404700, China
| | - Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
6
|
Xiao H, Li M, Zhong Y, Patel A, Xu R, Zhang C, Athy TW, Fang S, Xu T, Du S. Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock. FASEB J 2025; 39:e70283. [PMID: 39760245 PMCID: PMC11740226 DOI: 10.1096/fj.202401875r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Molecular chaperones play critical roles in post-translational maintenance in protein homeostasis. Previous studies have shown that loss of Smyd1b function results in defective myofibril organization and dramatic upregulation of heat shock protein gene (hsp) expression in muscle cells of zebrafish embryos. To investigate the molecular mechanisms and functional importance of this stress response, we characterized changes of gene expression in smyd1b knockdown and knockout embryos using RNA-seq. The results showed that the top upregulated genes encode mostly cytosolic heat shock proteins. Co-IP assay revealed that the upregulated cytosolic Hsp70s associate with myosin chaperone UNC45b which is critical for myosin protein folding and sarcomere assembly. Strikingly, several hsp70 genes also display muscle-specific upregulation in response to heat shock-induced stress in zebrafish embryos. To investigate the regulation of hsp gene upregulation and its functional significance in muscle cells, we generated heat shock factor 1 (hsf-/-) knockout zebrafish mutants and analyzed hsp gene expression and muscle phenotype in the smyd1b-/-single and hsf1-/-;smyd1b-/- double-mutant embryos. The results showed that knockout of hsf1 blocked the hsp gene upregulation and worsened the muscle defects in smyd1b-/- mutant embryos. Moreover, we demonstrated that Hsf1 is essential for fish survival under heat shock (HS) conditions. Together, these studies uncover a correlation between Smyd1b deficiency and the Hsf1-activated heat shock response (HSR) in regulating muscle protein homeostasis and myofibril assembly and demonstrate that the Hsf1-mediated hsp gene upregulation is vital for the survival of zebrafish larvae under thermal stress conditions.
Collapse
Affiliation(s)
- Huanhuan Xiao
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Mofei Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Tianjin Normal University, Tianjin, China
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Avani Patel
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Rui Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas W. Athy
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Tianjun Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
7
|
Li MY, Li CC, Chen X, Yao YL, Han YS, Guo T, Zhang YS, Huang T. Differential analysis of ubiquitin-proteomics in skeletal muscle of Duroc pigs and Tibetan fragrant pigs. Front Vet Sci 2024; 11:1455338. [PMID: 39280835 PMCID: PMC11395495 DOI: 10.3389/fvets.2024.1455338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Understanding the differences in ubiquitination-modified proteins between Duroc pigs and Tibetan fragrant pigs is crucial for comprehending the growth and development of their skeletal muscles. In this study, skeletal muscle samples from 30-day-old Duroc pigs and Tibetan fragrant pigs were collected. Using ubiquitination 4D-Label free quantitative proteomics, we analyzed and identified ubiquitination-modified peptides, screening out 109 differentially expressed ubiquitination-modified peptides. Further enrichment analysis was conducted on the proteins associated with these differential peptides. GO analysis results indicated that the differential genes were primarily enriched in processes such as regulation of protein transport, motor activity, myosin complex, and actin cytoskeleton. KEGG pathway analysis revealed significant enrichment in pathways such as Glycolysis/Gluconeogenesis and Hippo signaling pathway. The differentially expressed key ubiquitinated proteins, including MYL1, MYH3, TNNC2, TNNI1, MYLPF, MYH1, MYH7, TNNT2, TTN, and TNNC1, were further identified. Our analysis demonstrates that these genes play significant roles in skeletal muscle protein synthesis and degradation, providing new insights into the molecular mechanisms of muscle development in Duroc pigs and Tibetan fragrant pigs, and offering theoretical support for breeding improvements in the swine industry.
Collapse
Affiliation(s)
- Meng-Yu Li
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chao-Cheng Li
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Chen
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Animal Genetics and Breeding Group, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi-Long Yao
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, Guangdong, China
| | - Yu-Song Han
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tao Guo
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong-Sheng Zhang
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tao Huang
- Xinjiang Characteristic Livestock Breeding and Reproduction Team, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
9
|
Fan Z, Yang Y, Hu P, Huang Y, He L, Hu R, Zhao K, Zhang H, Liu C. Molecular mechanism of ethylparaben on zebrafish embryo cardiotoxicity based on transcriptome analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156785. [PMID: 35752233 DOI: 10.1016/j.scitotenv.2022.156785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ethylparaben (EP), one of the parabens, a ubiquitous food and cosmetic preservatives, has caused widespread concern due to its health risks. Recently, studies have found that parabens exposure during pregnancy is negatively correlated with fetal and early childhood development. However, studies about EP on embryo development are few. In this study, the cardiotoxicity effects of EP concentrations ranging from 0 to 20 mg/L on zebrafish embryo development were explored. Results showed that EP exposure induce abnormal cardiac function and morphology, mainly manifested as pericardial effusion and abnormal heart rate in early-stage development of zebrafish embryos. Through transcriptome sequencing followed by Gene Ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we further confirmed that EP exposure ultimately leads to cardiac morphologic abnormalities via the following three mechanisms: 1. Disruption of the retinoic acid signaling pathway related to original cardiac catheter development; 2. Inhibition of gene expression related to myocardial contraction; 3. Orientation development disturbance of heart tube. Moreover, O-Dianisidine staining, whole-mount in situ hybridization at 30 and 48 hours post fertilization (hpf) and hematoxylin-eosin staining results all confirmed the decreased heart's return blood volume, misoriented heart tubes toward either the right or the middle side, and heart loop defects. For the first time, we explored the mechanism by which EP exposure causes abnormal heart development in zebrafish embryos, laying the foundation for further revealing of the EP toxicity on embryonic development.
Collapse
Affiliation(s)
- Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Henan Province Key Laboratory for Reproduction and Genetics, Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Yunyi Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peixuan Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yaochen Huang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Liting He
- The Second People's Hospital of Guiyang, Guiyang 550000, People's Republic of China
| | - Rui Hu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518047, People's Republic of China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
10
|
Shankar P, Garcia GR, LaDu JK, Sullivan CM, Dunham CL, Goodale BC, Waters KM, Stanisheuski S, Maier CS, Thunga P, Reif DM, Tanguay RL. The Ahr2-Dependent wfikkn1 Gene Influences Zebrafish Transcriptome, Proteome, and Behavior. Toxicol Sci 2022; 187:325-344. [PMID: 35377459 DOI: 10.1093/toxsci/kfac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is required for vertebrate development and is also activated by exogenous chemicals, including polycyclic aromatic hydrocarbons (PAHs) and TCDD. AHR activation is well-understood, but roles of downstream molecular signaling events are largely unknown. From previous transcriptomics in 48-hours post fertilization (hpf) zebrafish exposed to several PAHs and TCDD, we found wfikkn1 was highly co-expressed with cyp1a (marker for AHR activation). Thus, we hypothesized wfikkn1's role in AHR signaling, and showed that wfikkn1 expression was Ahr2 (zebrafish ortholog of human AHR)-dependent in developing zebrafish exposed to TCDD. To functionally characterize wfikkn1, we made a CRISPR-Cas9 mutant line with a 16-bp deletion in wfikkn1's exon, and exposed wildtype and mutants to DMSO or TCDD. 48-hpf mRNA sequencing revealed over 700 genes that were differentially expressed (p < 0.05, log2FC > 1) between each pair of treatment combinations, suggesting an important role for wfikkn1 in altering both the 48-hpf transcriptome and TCDD-induced expression changes. Mass spectrometry-based proteomics of 48-hpf wildtype and mutants revealed 325 significant differentially expressed proteins. Functional enrichment demonstrated wfikkn1 was involved in skeletal muscle development and played a role in neurological pathways after TCDD exposure. Mutant zebrafish appeared morphologically normal but had significant behavior deficiencies at all life stages, and absence of Wfikkn1 did not significantly alter TCDD-induced behavior effects at all life stages. In conclusion, wfikkn1 did not appear to be significantly involved in TCDD's overt toxicity but is likely a necessary functional member of the AHR signaling cascade.
Collapse
Affiliation(s)
- Prarthana Shankar
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Gloria R Garcia
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Jane K LaDu
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Christopher M Sullivan
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Cheryl L Dunham
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Britton C Goodale
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 USA
| | - Katrina M Waters
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331.,Biological Sciences Division, Pacific Northwest Laboratory, 902 Battelle Boulevard, Richland, P.O. Box 999, USA WA 99352
| | | | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Preethi Thunga
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Robyn L Tanguay
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| |
Collapse
|
11
|
Zhou Y, Kong Q, Lin Z, Ma J, Zhang H. Transcriptome aberration associated with altered locomotor behavior of zebrafish (Danio rerio) caused by Waterborne Benzo[a]pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112928. [PMID: 34710819 DOI: 10.1016/j.ecoenv.2021.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 μg/L and 2.0 μg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 μg/L group and the opposite in the 2.0 μg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| |
Collapse
|
12
|
TNNT1 myopathy with novel compound heterozygous mutations. Neuromuscul Disord 2021; 32:176-184. [DOI: 10.1016/j.nmd.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023]
|
13
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021; 249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden.; Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain..
| |
Collapse
|
14
|
Pohl J, Golovko O, Carlsson G, Örn S, Schmitz M, Ahi EP. Gene co-expression network analysis reveals mechanisms underlying ozone-induced carbamazepine toxicity in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2021; 276:130282. [PMID: 34088109 DOI: 10.1016/j.chemosphere.2021.130282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Sewage effluent ozonation can reduce concentrations of chemical pollutants including pharmaceutical residues. However, the formation of potentially toxic ozonation byproducts (OBPs) is a matter of concern. This study sought to elucidate toxicity mechanisms of ozonated carbamazepine (CBZ), an anti-epileptic drug frequently detected in sewage effluents and surface water, in zebrafish embryos (Danio rerio). Embryos were exposed to ozonated and non-ozonated CBZ from 3 h post-fertilization (hpf) until 144 hpf. Embryotoxicity endpoints (proportion of dead and malformed embryos) were assessed at 24, 48, and 144 hpf. Heart rate was recorded at 48 hpf. Exposure to ozonated CBZ gave rise to cardiovascular-related malformations and reduced heart rate. Moreover, embryo-larvae exposed to ozonated CBZ displayed a lack of swim bladder inflation. Hence, the expression patterns of CBZ target genes involved in cardiovascular and embryonal development were investigated through a stepwise gene co-expression analysis approach. Two co-expression networks and their upstream transcription regulators were identified, offering mechanistic explanations for the observed toxicity phenotypes. The study presents a novel application of gene co-expression analysis elucidating potential toxicity mechanisms of an ozonated pharmaceutical with environmental relevance. The resulting data was used to establish a putative adverse outcome pathway (AOP).
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 75007, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology Section, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden
| | - Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology Section, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden; Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
15
|
Karunendiran A, Nguyen CT, Barzda V, Stewart BA. Disruption of Drosophila larval muscle structure and function by UNC45 knockdown. BMC Mol Cell Biol 2021; 22:38. [PMID: 34256704 PMCID: PMC8278773 DOI: 10.1186/s12860-021-00373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Proper muscle function is heavily dependent on highly ordered protein complexes. UNC45 is a USC (named since this region is shared by three proteins UNC45/CRO1/She4P) chaperone that is necessary for myosin incorporation into the thick filaments. UNC45 is expressed throughout the entire Drosophila life cycle and it has been shown to be important during late embryogenesis when initial muscle development occurs. However, the effects of UNC45 manipulation at later developmental times, after muscle development, have not yet been studied. Main results UNC45 was knocked down with RNAi in a manner that permitted survival to the pupal stage, allowing for characterization of sarcomere organization in the well-studied third instar larvae. Second harmonic generation (SHG) microscopy revealed changes in the striated pattern of body wall muscles as well as a reduction of signal intensity. This observation was confirmed with immunofluorescence and electron microscopy imaging, showing diminished UNC45 signal and disorganization of myosin and z-disk proteins. Concomitant alterations in both synaptic physiology and locomotor function were also found. Both nerve-stimulated response and spontaneous vesicle release were negatively affected, while larval movement was impaired. Conclusions This study highlights the dependency of normal sarcomere structure on UNC45 expression. We confirm the known role of UNC45 for myosin localization and further show the I-Z-I complex is also disrupted. This suggests a broad need for UNC45 to maintain sarcomere integrity. Newly discovered changes in synaptic physiology reveal the likely presence of a homeostatic response to partially maintain synaptic strength and muscle function.
Collapse
Affiliation(s)
- Abiramy Karunendiran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
16
|
Sundarrajan L, Rajeswari JJ, Weber LP, Unniappan S. The sympathetic/beta-adrenergic pathway mediates irisin regulation of cardiac functions in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111016. [PMID: 34126232 DOI: 10.1016/j.cbpa.2021.111016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Irisin is a 23 kDa myokine encoded in its precursor, fibronectin type III domain containing 5 (FNDC5). The exercise-induced increase in the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) promotes FNDC5 mRNA, followed by the proteolytic cleavage of FNDC5 to release irisin from the skeletal or cardiac muscle into the blood. Irisin is abundantly expressed in skeletal and cardiac muscle and plays an important role in feeding, modulates appetite regulatory peptides, and regulates cardiovascular functions in zebrafish. In order to determine the potential mechanisms of acute irisin effects, in this research, we explored whether adrenergic or muscarinic pathways mediate the cardiovascular effects of irisin. Propranolol (100 ng/g B·W) alone modulated cardiac functions, and when injected in combination with irisin (0.1 ng/g B·W) attenuated the effects of irisin in regulating cardiovascular functions in zebrafish at 15 min post-injection. Atropine (100 ng/g B·W) modulated cardiovascular physiology in the absence of irisin, while it was ineffective in influencing irisin-induced effects on cardiovascular functions in zebrafish. At 1 h post-injection, irisin downregulated PGC-1 alpha mRNA, myostatin-a and myostatin-b mRNA expression in zebrafish heart and skeletal muscle. Propranolol alone had no effect on the expression of these mRNAs in zebrafish and did not alter the irisin-induced changes in expression. At 1 h post-injection, irisin siRNA downregulated PGC-1 alpha, troponin C and troponin T2D mRNA expression, while upregulating myostatin a and b mRNA expression in zebrafish heart and skeletal muscle. Atropine alone had no effects on mRNA expression, and was unable to alter effects on mRNA expression of siRNA. Overall, this research identified a role for the sympathetic/beta-adrenergic pathway in regulating irisin effects on cardiovascular physiology and cardiac gene expression in zebrafish.
Collapse
Affiliation(s)
- Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Lynn P Weber
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
17
|
Latham SL, Weiß N, Schwanke K, Thiel C, Croucher DR, Zweigerdt R, Manstein DJ, Taft MH. Myosin-18B Regulates Higher-Order Organization of the Cardiac Sarcomere through Thin Filament Cross-Linking and Thick Filament Dynamics. Cell Rep 2021; 32:108090. [PMID: 32877672 DOI: 10.1016/j.celrep.2020.108090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
MYO18B loss-of-function mutations and depletion significantly compromise the structural integrity of striated muscle sarcomeres. The molecular function of the encoded protein, myosin-18B (M18B), within the developing muscle is unknown. Here, we demonstrate that recombinant M18B lacks motor ATPase activity and harbors previously uncharacterized N-terminal actin-binding domains, properties that make M18B an efficient actin cross-linker and molecular brake capable of regulating muscle myosin-2 contractile forces. Spatiotemporal analysis of M18B throughout cardiomyogenesis and myofibrillogenesis reveals that this structural myosin undergoes nuclear-cytoplasmic redistribution during myogenic differentiation, where its incorporation within muscle stress fibers coincides with actin striation onset. Furthermore, this analysis shows that M18B is directly integrated within the muscle myosin thick filament during myofibril maturation. Altogether, our data suggest that M18B has evolved specific biochemical properties that allow it to define and maintain sarcomeric organization from within the thick filament via its dual actin cross-linking and motor modulating capabilities.
Collapse
Affiliation(s)
- Sharissa L Latham
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Nadine Weiß
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
18
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
19
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
20
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
21
|
Han CR, Wang H, Hoffmann V, Zerfas P, Kruhlak M, Cheng SY. Thyroid Hormone Receptor α Mutations Cause Heart Defects in Zebrafish. Thyroid 2021; 31:315-326. [PMID: 32762296 PMCID: PMC7891307 DOI: 10.1089/thy.2020.0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations of thyroid hormone receptor α1 (TRα1) cause resistance to thyroid hormone (RTHα). Patients exhibit growth retardation, delayed bone development, anemia, and bradycardia. By using mouse models of RTHα, much has been learned about the molecular actions of TRα1 mutants that underlie these abnormalities in adults. Using zebrafish models of RTHα that we have recently created, we aimed to understand how TRα1 mutants affect the heart function during this period. Methods: In contrast to human and mice, the thra gene is duplicated, thraa and thrab, in zebrafish. Using CRISPR/Cas9-mediated targeted mutagenesis, we created C-terminal mutations in each of two duplicated thra genes in zebrafish (thraa 8-bp insertion or thrab 1-bp insertion mutations). We recently showed that these mutant fish faithfully recapitulated growth retardation as found in patients and thra mutant mice. In the present study, we used histological analysis, gene expression profiles, confocal fluorescence, and transmission electron microscopy (TEM) to comprehensively analyze the phenotypic characteristics of mutant fish heart during development. Results: We found both a dilated atrium and an abnormally shaped ventricle in adult mutant fish. The retention of red blood cells in the two abnormal heart chambers, and the decreased circulating blood speed and reduced expression of contractile genes indicated weakened contractility in the heart of mutant fish. These abnormalities were detected in mutant fish as early as 35 days postfertilization (juveniles). Furthermore, the expression of genes associated with the sarcomere assembly was suppressed in the heart of mutant fish, resulting in abnormalities of sarcomere organization as revealed by TEM, suggesting that the abnormal sarcomere organization could underlie the bradycardia exhibited in mutant fish. Conclusions: Using a zebrafish model of RTHα, the present study demonstrated for the first time that TRα1 mutants could act to cause abnormal heart structure, weaken contractility, and disrupt sarcomere organization that affect heart functions. These findings provide new insights into the bradycardia found in RTHα patients.
Collapse
Affiliation(s)
- Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Wang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia Zerfas
- Diagnostic and Research Services Branch, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Address correspondence to: Sheue-Yann Cheng, PhD, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264, USA
| |
Collapse
|
22
|
Zhou Z, Zheng L, Tang C, Chen Z, Zhu R, Peng X, Wu X, Zhu P. Identification of Potentially Relevant Genes for Excessive Exercise-Induced Pathological Cardiac Hypertrophy in Zebrafish. Front Physiol 2020; 11:565307. [PMID: 33329019 PMCID: PMC7734032 DOI: 10.3389/fphys.2020.565307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Exercise-induced cardiac remodeling has aroused public concern for some time, as sudden cardiac death is known to occur in athletes; however, little is known about the underlying mechanism of exercise-induced cardiac injury. In the present study, we established an excessive exercise-induced pathologic cardiac hypertrophy model in zebrafish with increased myocardial fibrosis, myofibril disassembly, mitochondrial degradation, upregulated expression of the pathological hypertrophy marker genes in the heart, contractile impairment, and cardiopulmonary function impairment. High-throughput RNA-seq analysis revealed that the differentially expressed genes were enriched in the regulation of autophagy, protein folding, and degradation, myofibril development, angiogenesis, metabolic reprogramming, and insulin and FoxO signaling pathways. FOXO proteins may be the core mediator of the regulatory network needed to promote the pathological response. Further, PPI network analysis showed that pik3c3, gapdh, fbox32, fzr1, ubox5, lmo7a, kctd7, fbxo9, lonrf1l, fbxl4, nhpb2l1b, nhp2, fbl, hsp90aa1.1, snrpd3l, dhx15, mrto4, ruvbl1, hspa8b, and faub are the hub genes that correlate with the pathogenesis of pathological cardiac hypertrophy. The underlying regulatory pathways and cardiac pressure-responsive molecules identified in the present study will provide valuable insights for the supervision and clinical treatment of pathological cardiac hypertrophy induced by excessive exercise.
Collapse
Affiliation(s)
- Zuoqiong Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Runkang Zhu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiushan Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
23
|
Zou W, Xia M, Jiang K, Cao Z, Zhang X, Hu X. Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13888-13898. [PMID: 33078945 DOI: 10.1021/acs.est.0c05399] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and pose substantial threats to the water ecosystem. However, the impact of natural aging of MPs on their toxicity has rarely been considered. This study found that visible light irradiation with hydrogen peroxide at environmentally relevant concentration for 90 days significantly altered the physicochemical properties and mitigated the toxicity of polyamide (PA) fragments to infantile zebrafish. The size of PA particles was reduced from ∼8.13 to ∼6.37 μm, and nanoparticles were produced with a maximum yield of 5.03%. The end amino groups were volatilized, and abundant oxygen-containing groups (e.g., hydroxyl and carboxyl) and carbon-centered free radicals were generated, improving the hydrophilicity and colloidal stability of degraded MPs. Compared with pristine PA, the depuration of degraded MPs mediated by multixenobiotics resistance was much quicker, leading to markedly lower bioaccumulation in fish and weaker inhibition on musculoskeletal development. By integrating transcriptomics and transgenic zebrafish [Tg(lyz:EGFP)] tests, differences in macrophages-triggered proinflammatory effects, apoptosis via IL-17 signaling pathway, and antioxidant damages were identified as the underlying mechanisms for the attenuated toxicity of degraded MPs. This work highlights the importance of natural degradation on the toxicity of MPs, which has great implications for risk assessment of MPs.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Mengli Xia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
24
|
Ranjani TS, Pitchika GK, Yedukondalu K, Gunavathi Y, Daveedu T, Sainath SB, Philip GH, Pradeepkiran JA. Phenotypic and transcriptomic changes in zebrafish (Danio rerio) embryos/larvae following cypermethrin exposure. CHEMOSPHERE 2020; 249:126148. [PMID: 32062212 DOI: 10.1016/j.chemosphere.2020.126148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Cypermethrin is one of the widely used type-II pyrethroid and the indiscriminate use of this pesticide leads to life threatening effects and in particular showed developmental effects in sensitive populations such as children and pregnant woman. However, the molecular mechanisms underlying cypermethrin-induced development toxicity is not well defined. To address this gap, the present study was designed to investigate the phenotypic and transcriptomic (next generation RNA-Seq method) impact of cypermethrin in zebrafish embryos as a model system. Zebrafish embryos at two time points, 24 h postfertilization (hpf) and 48 hpf were exposed to cypermethrin at a concentration of 10 μg/L. Respective control groups were maintained. Cypermethrin induced both phenotypic and transcriptomic changes in zebrafish embryos at 48 hpf. The phenotypic anomalies such as delayed hatching rate, increased heartbeat rate and deformed axial spinal curvature in cypermethrin exposed zebrafish embryos at 48 hpf as compared to its respective controls. Transcriptomic analysis indicated that cypermethrin exposure altered genes associated with visual/eye development and gene functional profiling also revealed that cypermethrin stress over a period of 48 h disrupts phototransduction pathway in zebrafish embryos. Interestingly, cypermethrin exposure resulted in up regulation of only one gene, tnnt3b, fast muscle troponin isoform 3T in 24 hpf embryos as compared to its respective controls. The present model system, cypermethrin exposed zebrafish embryos elaborates the toxic consequences of cypermethrin exposure during developmental stages, especially in fishes. The present findings paves a way to understand the visual impairment in sensitive populations such as children exposed to cypermethrin during their embryonic period and further research is warranted.
Collapse
Affiliation(s)
- T Sri Ranjani
- Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, 515003, India; Department of Zoology, D.K. Govt. Degree College for Women (Autonomous), Dargamitta, Nellore, 524003, India
| | - Gopi Krishna Pitchika
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - K Yedukondalu
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - Y Gunavathi
- Department of Zoology, Vikrama Simhapuri University Post-Graduation Centre, Kavali, 524201, India
| | - T Daveedu
- Department of Biotechnology, Vikrama Sihapuri University, Nellore, 524320, India
| | - S B Sainath
- Department of Biotechnology, Vikrama Sihapuri University, Nellore, 524320, India.
| | - G H Philip
- Department of Zoology, Sri Krishnadevaraya University, Anantapuramu, 515003, India.
| | | |
Collapse
|
25
|
Pellerin D, Aykanat A, Ellezam B, Troiano EC, Karamchandani J, Dicaire MJ, Petitclerc M, Robertson R, Allard-Chamard X, Brunet D, Konersman CG, Mathieu J, Warman Chardon J, Gupta VA, Beggs AH, Brais B, Chrestian N. Novel Recessive TNNT1 Congenital Core-Rod Myopathy in French Canadians. Ann Neurol 2020; 87:568-583. [PMID: 31970803 DOI: 10.1002/ana.25685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy. METHODS Patients underwent full clinical characterization, lower limb magnetic resonance imaging (MRI), muscle biopsy, and genetic testing. A zebrafish loss-of-function model using morpholinos was created to assess the pathogenicity of the identified variant. Wild-type or mutated human TNNT1 mRNAs were coinjected with morpholinos to assess their abilities to rescue the morphant phenotype. RESULTS Three adults and 1 child shared a novel missense homozygous variant in the TNNT1 gene (NM_003283.6: c.287T > C; p.Leu96Pro). They developed from childhood very slowly progressive limb-girdle weakness with rigid spine and disabling contractures. They suffered from restrictive lung disease requiring noninvasive mechanical ventilation in 3 patients, as well as recurrent episodes of rhabdomyolysis triggered by infections, which were relieved by dantrolene in 1 patient. Older patients remained ambulatory into their 60s. MRI of the leg muscles showed fibrofatty infiltration predominating in the posterior thigh and the deep posterior leg compartments. Muscle biopsies showed multiminicores and lobulated fibers, rods in half the patients, and no fiber type disproportion. Wild-type TNNT1 mRNA rescued the zebrafish morphants, but mutant transcripts failed to do so. INTERPRETATION This study expands the phenotypic spectrum of TNNT1 myopathy and provides functional evidence for the pathogenicity of the newly identified missense mutation. ANN NEUROL 2020;87:568-583.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Asli Aykanat
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Emily C Troiano
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marc Petitclerc
- Department of Neurology, Hôpital Hôtel-Dieu de Lévis, Lévis, Quebec, Canada
| | - Rebecca Robertson
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Denis Brunet
- Department of Neurology, Hôpital de l'Enfant Jésus, Université Laval, Quebec City, Quebec, Canada
| | | | - Jean Mathieu
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada
| | - Jodi Warman Chardon
- Department of Neurosciences, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicolas Chrestian
- Department of Child Neurology, Centre Hospitalier de l'Université Laval et Centre Mère-Enfant Soleil, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
26
|
Prill K, Dawson JF. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int J Mol Sci 2020; 21:E542. [PMID: 31952119 PMCID: PMC7013991 DOI: 10.3390/ijms21020542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions.
Collapse
Affiliation(s)
| | - John F. Dawson
- Centre for Cardiovascular Investigations, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
27
|
Bailey KE, MacGowan GA, Tual-Chalot S, Phillips L, Mohun TJ, Henderson DJ, Arthur HM, Bamforth SD, Phillips HM. Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight 2019; 5:125172. [PMID: 30835717 PMCID: PMC6538384 DOI: 10.1172/jci.insight.125172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sarcomeric disarray is a hallmark of gene mutations in patients with hypertrophic cardiomyopathy (HCM). However, it is unknown when detrimental sarcomeric changes first occur and whether they originate in the developing embryonic heart. Furthermore, Rho kinase (ROCK) is a serine/threonine protein kinase that is critical for regulating the function of several sarcomeric proteins, and therefore, our aim was to determine whether disruption of ROCK signaling during the earliest stages of heart development would disrupt the integrity of sarcomeres, altering heart development and function. Using a mouse model in which the function of ROCK is specifically disrupted in embryonic cardiomyocytes, we demonstrate a progressive cardiomyopathy that first appeared as sarcomeric disarray during cardiogenesis. This led to abnormalities in the structure of the embryonic ventricular wall and compensatory cardiomyocyte hypertrophy during fetal development. This sarcomeric disruption and hypertrophy persisted throughout adult life, triggering left ventricular concentric hypertrophy with systolic dysfunction, and reactivation of fetal gene expression and cardiac fibrosis, all typical features of HCM. Taken together, our findings establish a mechanism for the developmental origin of the sarcomeric phenotype of HCM and suggest that variants in the ROCK genes or disruption of ROCK signaling could, in part, contribute to its pathogenesis. Disruption of ROCK activity in embryonic cardiomyocytes revealed a developmental origin for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Kate E Bailey
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
28
|
Xu QH, Guan P, Zhang T, Lu C, Li G, Liu JX. Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:102-113. [PMID: 29729476 DOI: 10.1016/j.aquatox.2018.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Metal nanoparticles from industries contaminate the environment and affect the normal development of fish even human health. However, little is known about their biological effects on fish embryogenesis and the potential mechanisms. In this study, zebrafish embryos exposed to/injected with silver nanopaticles (AgNPs) exhibited shorter body, reduced heartbeats, and dysfunctional movements. Less, loose, and unassembled myofibrils were observed in AgNPs-treated embryos, and genes in myofibrillogenesis and sarcomere formation were found to be down-regulated in treated embryos. Down-regulated calcium (Ca2+) signaling and loci-specific DNA methylation in specific muscle genes, such as bves, shroom1, and arpc1a, occurred in AgNPs-treated embryos, which might result in the down-regulated expression of myofibrillogenesis genes and muscle dysfunctions in the treated embryos. Our results for the first time reveal that through down-regulating Ca2+ signaling and myogenic loci-specific DNA methylation in zebrafish embryos, AgNPs might induce defects of myofibril assembly and sarcomere formation via their particles mostly, which may subsequently cause heartbeat reduction and behavior dysfunctions.
Collapse
Affiliation(s)
- Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chang Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
29
|
Arcanjo C, Armant O, Floriani M, Cavalie I, Camilleri V, Simon O, Orjollet D, Adam-Guillermin C, Gagnaire B. Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:114-126. [PMID: 29751158 DOI: 10.1016/j.aquatox.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Tritium (3H) is a radioactive isotope of hydrogen. In the environment, the most common form of tritium is tritiated water (HTO). The present study aimed to identify early biomarkers of HTO contamination through the use of an aquatic model, the zebrafish (Danio rerio). We used the zebrafish embryo-larvae model to investigate the modes of action of HTO exposure at dose rates of 0.4 and 4 mGy/h, dose rates expected to induce deleterious effects on fish. Zebrafish were exposed to HTO from 3 hpf (hours post fertilization) to 96 hpf. The transcriptomic effects were investigated 24 h and 96 h after the beginning of the contamination, using mRNAseq. Results suggested an impact of HTO contamination, regardless of the dose rate, on genes involved in muscle contraction (tnnt2d, tnni2a.4, slc6a1a or atp2a1l) and eye opacity (crygm2d9, crygmxl1, mipb or lim2.3) after 24 h of contamination. Interestingly, an opposite differential expression was highlighted in genes playing a role in muscle contraction and eye opacity in 24 hpf embryos when comparing dose rates, suggesting an onset of DNA protective mechanisms. The expression of h2afx and ddb2 involved in DNA repair was enhanced in response to HTO exposure. The entrainment of circadian clock and the response to H2O2 signalling pathways were enriched at 96 hpf at 0.4 mGy/h and in both stages after 4 mGy/h. Genes involved in ROS scavenging were differentially expressed only after 24 h of exposure for the lowest dose rate, suggesting the onset of early protective mechanisms against oxidative stress. Effects highlighted on muscle at the molecular scale were confirmed at a higher biological scale, as electron microscopy observations revealed sarcomere impairments in 96 hpf larvae for both dose rates. Together with other studies, the present work provides useful data to better understand modes of action of tritium on zebrafish embryos-larvae.
Collapse
Affiliation(s)
- Caroline Arcanjo
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France.
| | - Olivier Armant
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Olivier Simon
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Daniel Orjollet
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
30
|
Cai M, Si Y, Zhang J, Tian Z, Du S. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:168-181. [PMID: 29374849 DOI: 10.1007/s10126-018-9794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.
Collapse
Affiliation(s)
- Mengxin Cai
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Yufeng Si
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, 710062, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 701 E. Pratt St, Baltimore, MD, 21202, USA.
- Department of Bioengineering and Environmental Science, Changsha University, Hunan, 250014, China.
| |
Collapse
|
31
|
Liu HC, Chu TY, Chen LL, Gui WJ, Zhu GN. The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1093-1103. [PMID: 28803741 DOI: 10.1016/j.envpol.2017.05.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The health risk of triadimefon (TF) to cardiovascular system of human is still unclear, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems) who are at a greater risk. Therefore, firstly we explored the toxic effects and possible mechanism of cardiovascular toxicity induced by TF using zebrafish model. Zebrafish at stage of 48 h post fertilization (hpf) exposed to TF for 24 h exhibited morphological malformations which were further confirmed by histopathologic examination, including pericardial edema, circulation abnormalities, serious venous thrombosis and increased distance between the sinus venosus (SV) and bulbus arteriosus (BA) regions of the heart. In addition to morphological changes, TF induced functional deficits in the heart of zebrafish, including bradycardia and a significant reduced cardiac output that became more serious at higher concentrations. To better understand the possible molecular mechanisms underlying cardiovascular toxicity in zebrafish, we investigated the transcriptional level of genes related to calcium signaling pathway and cardiac muscle contraction. Q-PCR (quantitative real-time polymerase chain reaction) results demonstrated that the expression level of genes related to ATPase (atp2a1l, atp1b2b, atp1a3b), calcium channel (cacna1ab, cacna1da) and cardiac troponin C (tnnc1a) were significantly decreased after TF exposure. For the first time, the present study revealed that TF exposure had observable morphological and functional negative impacts on cardiovascular system of zebrafish. Mechanistically, this toxicity might result from the pressure of down-regulation of genes associated with calcium signaling pathway and cardiac muscle contraction following TF exposure. These findings generated here can provide information for better pesticide poisoning treatments, occupational disease prevention, and providing theoretical foundation for risk management measures.
Collapse
Affiliation(s)
- Hong-Cui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Tian-Yi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Li-Li Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Jun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Guo-Nian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev Cell 2017; 41:540-554.e7. [PMID: 28586646 DOI: 10.1016/j.devcel.2017.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Nuclear pore complexes (NPCs) are multiprotein channels connecting the nucleus with the cytoplasm. NPCs have been shown to have tissue-specific composition, suggesting that their function can be specialized. However, the physiological roles of NPC composition changes and their impacts on cellular processes remain unclear. Here we show that the addition of the Nup210 nucleoporin to NPCs during myoblast differentiation results in assembly of an Mef2C transcriptional complex required for efficient expression of muscle structural genes and microRNAs. We show that this NPC-localized complex is essential for muscle growth, myofiber maturation, and muscle cell survival and that alterations in its activity result in muscle degeneration. Our findings suggest that NPCs regulate the activity of functional gene groups by acting as scaffolds that promote the local assembly of tissue-specific transcription complexes and show how nuclear pore composition changes can be exploited to regulate gene expression at the nuclear periphery.
Collapse
|
33
|
Bonnet A, Lambert G, Ernest S, Dutrieux FX, Coulpier F, Lemoine S, Lobbardi R, Rosa FM. Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin. Dev Cell 2017; 42:527-541.e4. [PMID: 28867488 DOI: 10.1016/j.devcel.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2017] [Accepted: 08/03/2017] [Indexed: 10/24/2022]
Abstract
Skeletal muscle contraction is mediated by myofibrils, complex multi-molecular scaffolds structured into repeated units, the sarcomeres. Myofibril structure and function have been extensively studied, but the molecular processes regulating its formation within the differentiating muscle cell remain largely unknown. Here we show in zebrafish that genetic interference with the Quaking RNA-binding proteins disrupts the initial steps of myofibril assembly without affecting early muscle differentiation. Using RNA sequencing, we demonstrate that Quaking is required for accumulation of the muscle-specific tropomyosin-3 transcript, tpm3.12. Further functional analyses reveal that Tpm3.12 mediates Quaking control of myofibril formation. Moreover, we identified a Quaking-binding site in the 3' UTR of tpm3.12 transcript, which is required in vivo for tpm3.12 accumulation and myofibril formation. Our work uncovers a Quaking/Tpm3 pathway controlling de novo myofibril assembly. This unexpected developmental role for Tpm3 could be at the origin of muscle defects observed in human congenital myopathies associated with tpm3 mutation.
Collapse
Affiliation(s)
- Aline Bonnet
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France.
| | - Guillaume Lambert
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Sylvain Ernest
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - François Xavier Dutrieux
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Fanny Coulpier
- INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France; IBENS, Institut de Biologie de l'Ecole Normale Supérieure, Plateforme Génomique, 75005 Paris, France
| | - Sophie Lemoine
- INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France; IBENS, Institut de Biologie de l'Ecole Normale Supérieure, Plateforme Génomique, 75005 Paris, France
| | - Riadh Lobbardi
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France
| | - Frédéric Marc Rosa
- IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France.
| |
Collapse
|
34
|
Sundarrajan L, Yeung C, Hahn L, Weber LP, Unniappan S. Irisin regulates cardiac physiology in zebrafish. PLoS One 2017; 12:e0181461. [PMID: 28771499 PMCID: PMC5542394 DOI: 10.1371/journal.pone.0181461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/30/2017] [Indexed: 11/30/2022] Open
Abstract
Irisin is a myokine encoded in its precursor fibronectin type III domain containing 5 (FNDC5). It is abundantly expressed in cardiac and skeletal muscle, and is secreted upon the activation of peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1 alpha). We aimed to study the role of irisin on cardiac function and muscle protein regulation in zebrafish. Western blot analyses detected the presence of irisin protein (23 kDa) in zebrafish heart and skeletal muscle, and irisin immunoreactivity was detected in both tissues. Irisin siRNA treated samples did not show bands corresponding to irisin in zebrafish. In vitro studies found that treatment with irisin (0.1 nM) downregulated the expression of PGC-1 alpha, myostatin a, and b, while upregulating troponin C mRNA expression in zebrafish heart and skeletal muscle. Exogenous irisin (0.1 and 1 ng/g B.W) increased diastolic volume, heart rate and cardiac output, while knockdown of irisin (10 ng/g B.W) showed opposing effects on cardiovascular function. Irisin (1 and 10 ng/g B.W) downregulated PGC-1 alpha, myostatin a and b, and upregulated troponin C and troponin T2D mRNA expression. Meanwhile, knockdown of irisin showed opposing effects on troponin C, troponin T2D and myostatin a and b mRNAs in zebrafish heart and skeletal muscle. Collectively, these results identified muscle proteins as novel targets of irisin, and added irisin to the list of peptide modulators of cardiovascular physiology in zebrafish.
Collapse
Affiliation(s)
- Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chanel Yeung
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Logan Hahn
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lynn P. Weber
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
35
|
Sun Y, Huang Y, Hu G, Zhang X, Ruan Z, Zhao X, Guo C, Tang Z, Li X, You X, Lin H, Zhang Y, Shi Q. Comparative Transcriptomic Study of Muscle Provides New Insights into the Growth Superiority of a Novel Grouper Hybrid. PLoS One 2016; 11:e0168802. [PMID: 28005961 PMCID: PMC5179234 DOI: 10.1371/journal.pone.0168802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Grouper (Epinephelus spp.) is a group of fish species with great economic importance in Asian countries. A novel hybrid grouper, generated by us and called the Hulong grouper (Hyb), has better growth performance than its parents, E. fuscoguttatus (Efu, ♀) and E. lanceolatus (Ela, ♂). We previously reported that the GH/IGF (growth hormone/insulin-like growth factor) system in the brain and liver contributed to the superior growth of the Hyb. In this study, using transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR), we analyzed RNA expression levels of comprehensive genes in the muscle of the hybrid and its parents. Our data showed that genes involved in glycolysis and calcium signaling in addition to troponins are up-regulated in the Hyb. The results suggested that the activity of the upstream GH/IGF system in the brain and liver, along with the up-regulated glycolytic genes as well as ryanodine receptors (RyRs) and troponins related to the calcium signaling pathway in muscle, led to enhanced growth in the hybrid grouper. Muscle contraction inducing growth could be the major contributor to the growth superiority in our novel hybrid grouper, which may be a common mechanism for hybrid superiority in fishes.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Guojun Hu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Chuanyu Guo
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (Hl); (YZ); (QS)
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (Hl); (YZ); (QS)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI, Shenzhen, China
- Center for Marine Research, School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- * E-mail: (Hl); (YZ); (QS)
| |
Collapse
|
36
|
Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci Rep 2016; 6:36768. [PMID: 27824130 PMCID: PMC5099880 DOI: 10.1038/srep36768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development.
Collapse
|
37
|
Broughton KM, Li J, Sarmah E, Warren CM, Lin YH, Henze MP, Sanchez-Freire V, Solaro RJ, Russell B. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 2016; 311:H107-17. [PMID: 27199119 DOI: 10.1152/ajpheart.00162.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM.
Collapse
Affiliation(s)
- K M Broughton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - J Li
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Sarmah
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - C M Warren
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Y-H Lin
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - M P Henze
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - V Sanchez-Freire
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - R J Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| | - B Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
38
|
Dempsey WP, Hodas NO, Ponti A, Pantazis P. Determination of the source of SHG verniers in zebrafish skeletal muscle. Sci Rep 2015; 5:18119. [PMID: 26657568 PMCID: PMC4676038 DOI: 10.1038/srep18119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/12/2015] [Indexed: 01/24/2023] Open
Abstract
SHG microscopy is an emerging microscopic technique for medically relevant imaging because certain endogenous proteins, such as muscle myosin lattices within muscle cells, are sufficiently spatially ordered to generate detectable SHG without the use of any fluorescent dye. Given that SHG signal is sensitive to the structural state of muscle sarcomeres, SHG functional imaging can give insight into the integrity of muscle cells in vivo. Here, we report a thorough theoretical and experimental characterization of myosin-derived SHG intensity profiles within intact zebrafish skeletal muscle. We determined that “SHG vernier” patterns, regions of bifurcated SHG intensity, are illusory when sarcomeres are staggered with respect to one another. These optical artifacts arise due to the phase coherence of SHG signal generation and the Guoy phase shift of the laser at the focus. In contrast, two-photon excited fluorescence images obtained from fluorescently labeled sarcomeric components do not contain such illusory structures, regardless of the orientation of adjacent myofibers. Based on our results, we assert that complex optical artifacts such as SHG verniers should be taken into account when applying functional SHG imaging as a diagnostic readout for pathological muscle conditions.
Collapse
Affiliation(s)
- William P Dempsey
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Nathan O Hodas
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aaron Ponti
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
39
|
Duan J, Yu Y, Li Y, Li Y, Liu H, Jing L, Yang M, Wang J, Li C, Sun Z. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology 2015; 10:575-85. [PMID: 26551753 DOI: 10.3109/17435390.2015.1102981] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos.
Collapse
Affiliation(s)
- Junchao Duan
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Yang Yu
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Yang Li
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Yanbo Li
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Hongcui Liu
- c Hunter Biotechnology Inc. , Hangzhou, Zhejiang Province , P.R. China
| | - Li Jing
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Man Yang
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Ji Wang
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Chunqi Li
- c Hunter Biotechnology Inc. , Hangzhou, Zhejiang Province , P.R. China
| | - Zhiwei Sun
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| |
Collapse
|
40
|
Prill K, Windsor Reid P, Wohlgemuth SL, Pilgrim DB. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly. PLoS One 2015; 10:e0142528. [PMID: 26544721 PMCID: PMC4636364 DOI: 10.1371/journal.pone.0142528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf), supporting SMYD1b as an assembly protein during sarcomere formation.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
41
|
Yang J, Shih YH, Xu X. Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec (Hoboken) 2015; 297:1681-93. [PMID: 25125181 DOI: 10.1002/ar.22975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
42
|
A Multifunctional Mutagenesis System for Analysis of Gene Function in Zebrafish. G3-GENES GENOMES GENETICS 2015; 5:1283-99. [PMID: 25840430 PMCID: PMC4478556 DOI: 10.1534/g3.114.015842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the sequencing of the human reference genome, many human disease-related genes have been discovered. However, understanding the functions of all the genes in the genome remains a challenge. The biological activities of these genes are usually investigated in model organisms such as mice and zebrafish. Large-scale mutagenesis screens to generate disruptive mutations are useful for identifying and understanding the activities of genes. Here, we report a multifunctional mutagenesis system in zebrafish using the maize Ds transposon. Integration of the Ds transposable element containing an mCherry reporter for protein trap events and an EGFP reporter for enhancer trap events produced a collection of transgenic lines marking distinct cell and tissue types, and mutagenized genes in the zebrafish genome by trapping and prematurely terminating endogenous protein coding sequences. We obtained 642 zebrafish lines with dynamic reporter gene expression. The characterized fish lines with specific expression patterns will be made available through the European Zebrafish Resource Center (EZRC), and a database of reporter expression is available online (http://fishtrap.warwick.ac.uk/). Our approach complements other efforts using zebrafish to facilitate functional genomic studies in this model of human development and disease.
Collapse
|
43
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
44
|
Cao J, Li S, Shao M, Cheng X, Xu Z, Shi D. The PDZ-containing unconventional myosin XVIIIA regulates embryonic muscle integrity in zebrafish. J Genet Genomics 2014; 41:417-28. [PMID: 25160974 DOI: 10.1016/j.jgg.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022]
Abstract
Myosin XVIIIA, or MYO18A, is a unique PDZ domain-containing unconventional myosin and is evolutionarily conserved from Drosophila to vertebrates. Although there is evidence indicating its expression in the somites, whether it regulates muscle function remains unclear. We show that the two zebrafish myo18a genes (myo18aa and myo18ab) are predominantly expressed at somite borders during early developmental stages. Knockdown of these genes or overexpression of the MYO18A PDZ domain disrupts myofiber integrity, induces myofiber lesions, and compromises the localization of dystrophin, α-dystroglycan (α-DG) and laminin at the myotome boundaries. Cell transplantation experiments indicate that myo18a morphant myoblasts fail to form elongated myofibers in the myotomes of wild-type embryos, which can be rescued by the full-length MYO18A protein. These results suggest that MYO18A likely functions in the adhesion process that maintains the stable attachment of myofibers to ECM (extracellular matrix) and muscle integrity during early development.
Collapse
Affiliation(s)
- Jianmeng Cao
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Shangqi Li
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Xiaoning Cheng
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Zhigang Xu
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.
| | - Deli Shi
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China; Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, F-75005 Paris, France; CNRS, UMR 7622, Laboratory of Developmental Biology, F-75005 Paris, France.
| |
Collapse
|
45
|
Herault F, Vincent A, Dameron O, Le Roy P, Cherel P, Damon M. The Longissimus and Semimembranosus muscles display marked differences in their gene expression profiles in pig. PLoS One 2014; 9:e96491. [PMID: 24809746 PMCID: PMC4014511 DOI: 10.1371/journal.pone.0096491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Meat quality depends on skeletal muscle structure and metabolic properties. While most studies carried on pigs focus on the Longissimus muscle (LM) for fresh meat consumption, Semimembranosus (SM) is also of interest because of its importance for cooked ham production. Even if both muscles are classified as glycolytic muscles, they exhibit dissimilar myofiber composition and metabolic characteristics. The comparison of LM and SM transcriptome profiles undertaken in this study may thus clarify the biological events underlying their phenotypic differences which might influence several meat quality traits. METHODOLOGY/PRINCIPAL FINDINGS Muscular transcriptome analyses were performed using a custom pig muscle microarray: the 15 K Genmascqchip. A total of 3823 genes were differentially expressed between the two muscles (Benjamini-Hochberg adjusted P value ≤0.05), out of which 1690 and 2133 were overrepresented in LM and SM respectively. The microarray data were validated using the expression level of seven differentially expressed genes quantified by real-time RT-PCR. A set of 1047 differentially expressed genes with a muscle fold change ratio above 1.5 was used for functional characterization. Functional annotation emphasized five main clusters associated to transcriptome muscle differences. These five clusters were related to energy metabolism, cell cycle, gene expression, anatomical structure development and signal transduction/immune response. CONCLUSIONS/SIGNIFICANCE This study revealed strong transcriptome differences between LM and SM. These results suggest that skeletal muscle discrepancies might arise essentially from different post-natal myogenic activities.
Collapse
Affiliation(s)
- Frederic Herault
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| | - Annie Vincent
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| | - Olivier Dameron
- Université de Rennes1, F-35000 Rennes, France
- IRISA team Dyliss, F-35000 Rennes, France
| | - Pascale Le Roy
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| | - Pierre Cherel
- iBV-institut de Biologie Valrose, Université Nice-Sophia Antipolis UMR CNRS 7277 Inserm U1091, Parc Valrose, F-06108 Nice, France
| | - Marie Damon
- INRA, UMR1348, PEGASE, F-35590 Saint-Gilles, France
- Agrocampus Ouest, UMR1348, PEGASE, F-35000 Rennes, France
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This article reviews recent advances in the understanding of nemaline myopathy, with a focus on the genetic basis of the disorder, histology, and pathogenesis. RECENT FINDINGS Pathogenic mutations have been identified in eight genes and there is evidence of further genetic heterogeneity in nemaline myopathy. Clinical presentation, histological features on skeletal muscle biopsy, and pattern of changes on muscle MRI may guide prioritization of molecular genetic testing. It is anticipated that use of new technologies such as whole exome sequencing and comparative genomic hybridization will increase the number of genes associated with nemaline myopathy and the proportion of patients in whom the genetic basis of the disorder is identified. Single fiber studies and animal models continue to add to understanding of the pathogenesis of this disorder. Current management focuses on supportive treatment; however, encouraging advances are emerging for the future. SUMMARY Recent advances in understanding of nemaline myopathy have important implications for clinical practice and for genetic diagnosis of patients with nemaline myopathy.
Collapse
|
47
|
McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 2014; 243:800-17. [PMID: 24500875 DOI: 10.1002/dvdy.24115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.
Collapse
Affiliation(s)
- Caroline R McKeown
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
48
|
Moore RK, Abdullah S, Tardiff JC. Allosteric effects of cardiac troponin TNT1 mutations on actomyosin binding: a novel pathogenic mechanism for hypertrophic cardiomyopathy. Arch Biochem Biophys 2014; 552-553:21-8. [PMID: 24480310 DOI: 10.1016/j.abb.2014.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 01/16/2014] [Indexed: 12/13/2022]
Abstract
The majority of hypertrophic cardiomyopathy mutations in (cTnT) occur within the alpha-helical tropomyosin binding TNT1 domain. A highly charged region at the C-terminal end of TNT1 unwinds to create a flexible "hinge". While this region has not been structurally resolved, it likely acts as an extended linker between the two cTnT functional domains. Mutations in this region cause phenotypically diverse and often severe forms of HCM. Mechanistic insight, however, has been limited by the lack of structural information. To overcome this limitation, we evaluated the effects of cTnT 160-163 mutations using regulated in vitro motility (R-IVM) assays and transgenic mouse models. R-IVM revealed that cTnT mutations Δ160E, E163R and E163K disrupted weak electrostatic actomyosin binding. Reducing the ionic strength or decreasing Brownian motion rescued function. This is the first observation of HCM-linked mutations in cTnT disrupting weak interactions between the thin filament and myosin. To evaluate the in vivo effects of altering weak actomyosin binding we generated transgenic mice expressing Δ160E and E163R mutant cTnT and observed severe cardiac remodeling and profound myofilament disarray. The functional changes observed in vitro may contribute to the structural impairment seen in vivo by destabilizing myofilament structure and acting as a constant pathophysiologic stress.
Collapse
Affiliation(s)
- Rachel K Moore
- Department of Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Salwa Abdullah
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Tucson, AZ 85724, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
49
|
Smith LL, Beggs AH, Gupta VA. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp 2013:e50925. [PMID: 24378748 DOI: 10.3791/50925] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Zebrafish (Danio rerio) have become a particularly effective tool for modeling human diseases affecting skeletal muscle, including muscular dystrophies, congenital myopathies, and disruptions in sarcomeric assembly, due to high genomic and structural conservation with mammals. Muscular disorganization and locomotive impairment can be quickly assessed in the zebrafish over the first few days post-fertilization. Two assays to help characterize skeletal muscle defects in zebrafish are birefringence (structural) and touch-evoked escape response (behavioral). Birefringence is a physical property in which light is rotated as it passes through ordered matter, such as the pseudo-crystalline array of muscle sarcomeres. It is a simple, noninvasive approach to assess muscle integrity in translucent zebrafish larvae early in development. Wild-type zebrafish with highly organized skeletal muscle appear very bright amidst a dark background when visualized between two polarized light filters, whereas muscle mutants have birefringence patterns specific to the primary muscular disorder they model. Zebrafish modeling muscular dystrophies, diseases characterized by myofiber degeneration followed by repeated rounds of regeneration, exhibit degenerative dark patches in skeletal muscle under polarized light. Nondystrophic myopathies are not associated with necrosis or regenerative changes, but result in disorganized myofibers and skeletal muscle weakness. Myopathic zebrafish typically show an overall reduction in birefringence, reflecting the disorganization of sarcomeres. The touch-evoked escape assay involves observing an embryo's swimming behavior in response to tactile stimulation. In comparison to wild-type larvae, mutant larvae frequently display a weak escape contraction, followed by slow swimming or other type of impaired motion that fails to propel the larvae more than a short distance. The advantage of these assays is that disease progression in the same fish type can be monitored in vivo for several days, and that large numbers of fish can be analyzed in a short time relative to higher vertebrates.
Collapse
Affiliation(s)
- Laura L Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School
| | | | | |
Collapse
|
50
|
Campinho MA, Power DM. Waterborne exposure of zebrafish embryos to micromole concentrations of ioxynil and diethylstilbestrol disrupts thyrocyte development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:279-287. [PMID: 23851054 DOI: 10.1016/j.aquatox.2013.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
The herbicide ioxynil (IOX) and synthetic estrogen diethylstilbestrol (DES) are common aquatic contaminants with an endocrine disrupting action. In juvenile teleost fish IOX and DES disrupt the hypothalamic-pituitary-thyroid (HPT) axis. To assess how IOX and DES influence the developing HPT axis prior to establishment of central regulation of thyroid hormones, zebrafish embryos were exposed to low concentrations of the chemicals in water. IOX and DES (1 and 0.1 μM) exposure failed to modify hypothalamic development but had a negative effect on thyrocyte development. Specifically, IOX and DES caused a significant (p<0.05) reduction in the size of the thyroid anlagen by decreasing the mRNA expression field of both nk2.1a and thyroglobulin (Tg) genes. Inhibition of thyroid gland development by IOX and DES (0.1 μM) was strongly associated with altered heart morphology. To test if the effect of IOX and DES on the thyroid was a consequence of altered cardiac development a morpholino (MO) against zebrafish cardiac troponin I (zcTnI) was microinjected. The zcTnI morphants had modified heart function, a small thyroid anlagen and a reduction in the mRNA expression of nk2.1a and Tg genes similar to that of zebrafish exposed to IOX (1 and 0.1 μM) and DES (0.1 μM). Collectively the data indicate that IOX and DES alter thyroid development in zebrafish and chemicals that alter heart development and function can have an indirect endocrine disrupting action on the thyroid in teleosts.
Collapse
Affiliation(s)
- M A Campinho
- Comparative and Molecular Endocrinology Group, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | |
Collapse
|