1
|
Sánchez Díaz E, Osegueda B, Minakhina S, Starks N, Novak S, Tolkatchev D, Gregorio CC, Kostyukova AS, Smith GE. Prediction and biological significance of small changes in binding of leiomodin to tropomyosin. J Gen Physiol 2025; 157:e202413641. [PMID: 40272387 PMCID: PMC12020486 DOI: 10.1085/jgp.202413641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/14/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025] Open
Abstract
In cardiac muscle, regulation of actin polymerization at the thin filament pointed end is controlled by two structurally similar but functionally antagonistic proteins, leiomodin-2 and tropomodulin-1. Both proteins contain tropomyosin-binding site 1, which is essential for their recruitment to the pointed end. Using circular dichroism, we determined changes in melting temperatures (ΔTm) for complexes of tropomyosin and leiomodin-2 fragments containing several hypomorphic mutations, which moderately affect binding to tropomyosin. We ran molecular dynamics simulations for the complexes and calculated standard Gibbs free energies of binding, which we found to strongly correlate with the ΔTm. We found that the E34Q mutation in leiomodin-2 resulted in a decrease in the melting temperature of the complex of tropomyosin and leiomodin-2 fragments, indicating a decrease in the affinity of leiomodin-2 for tropomyosin. Although modest, this change in in vitro affinity made leiomodin-2 a weaker competitor for tropomyosin than tropomodulin-1 in cardiomyocytes. This mutation significantly reduced the ability of leiomodin-2 to displace tropomodulin-1 at thin filament pointed ends and affected the ability of leiomodin-2 to elongate thin filaments. Our results highlight the essential role of the tropomyosin-binding site in the dynamic equilibrium between tropomodulin-1 and leiomodin-2 at the pointed end of thin filaments. Our data also suggest the potential use of the correlation between ΔTm and the modeled standard Gibbs free energies of binding to predict changes in the stability of complexes between tropomyosin and leiomodin or tropomodulin isoforms.
Collapse
Affiliation(s)
- Eduardo Sánchez Díaz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Brayan Osegueda
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Svetlana Minakhina
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nickolas Starks
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Carol C. Gregorio
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Kopylova GV, Kochurova AM, Beldiia EA, Slushchev AV, Nefedova VV, Ryabkova NS, Katrukha IA, Yampolskaya DS, Matyushenko AM, Shchepkin DV. Tropomodulin-Tropomyosin Interplay Modulates Interaction Between Cardiac Myosin and Thin Filaments. Biomolecules 2025; 15:727. [PMID: 40427620 PMCID: PMC12109978 DOI: 10.3390/biom15050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Tropomodulin (Tmod) is an actin-binding protein that interacts with tropomyosin and the actin filament at the pointed end. The influence of Tmod on the thin filament activation in the myocardium is not clear. We studied the interactions of Tmod1 and Tmod4 with the cardiac tropomyosin isoforms Tpm1.1 and Tpm1.2 using size-exclusion chromatography, a pull-down assay, and cross-linking with glutaraldehyde. We found that Tmod1 and Tmod4 form complexes with both Tpm1.1 and Tpm1.2, indicating durable interactions between these proteins. The effects of both Tmods on the actin-myosin interaction were studied using an in vitro motility assay. Tmod did not affect the sliding velocity of bare F-actin. Tmod1 slightly dose-dependently decreased the sliding velocity of F-actin-Tpm1.1 filaments and had no effect on the velocity of F-actin-Tpm1.2 filaments. With ventricular myosin, Tmod1 reduced the calcium sensitivity of the sliding velocity of thin filaments containing Tpm1.1 but did not affect it with filaments containing Tpm1.2. With atrial myosin, Tmod1 decreased the calcium sensitivity of the sliding velocities of thin filaments containing both Tpm1.1 and Tpm1.2. We can conclude that Tmod takes part in the regulation of actin-myosin interactions in the myocardium through interactions with Tpm. The effect of Tmod on the activation of thin filaments depends on the protein isoforms.
Collapse
Affiliation(s)
- Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| | - Evgeniia A. Beldiia
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| | - Andrey V. Slushchev
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.S.R.)
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.S.R.)
- HyTest Ltd., 20520 Turku, Finland
| | - Daria S. Yampolskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Alexander M. Matyushenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (V.V.N.); (D.S.Y.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia (D.V.S.)
| |
Collapse
|
3
|
Little M, Risi CM, Larrinaga TM, Summers MD, Nguyen T, Smith GE, Atherton J, Gregorio CC, Kostyukova AS, Galkin VE. Interaction of cardiac leiomodin with the native cardiac thin filament. PLoS Biol 2025; 23:e3003027. [PMID: 39883708 PMCID: PMC11813103 DOI: 10.1371/journal.pbio.3003027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Every heartbeat depends on cyclical contraction-relaxation produced by the interactions between myosin-containing thick and actin-based thin filaments (TFs) arranged into a crystalline-like lattice in the cardiac sarcomere. Therefore, the maintenance of thin filament length is crucial for myocardium function. The thin filament is comprised of an actin backbone, the regulatory troponin complex and tropomyosin that controls interactions between thick and thin filaments. Thin filament length is controlled by the tropomodulin family of proteins; tropomodulin caps pointed ends of thin filaments, and leiomodin (Lmod) promotes elongation of thin filaments by a "leaky-cap" mechanism. The broader distribution of Lmod on the thin filament implied to the possibility of its interaction with the sides of thin filaments. Here, we use biochemical and structural approaches to show that cardiac Lmod (Lmod2) binds to a specific region on the native cardiac thin filament in a Ca2+-dependent manner. We demonstrate that Lmod2's unique C-terminal extension is required for binding to the thin filament actin backbone and suggest that interactions with the troponin complex assist Lmod2's localization on the surface of thin filaments. We propose that Lmod2 regulates the length of cardiac thin filaments in a working myocardium by protecting newly formed thin filament units during systole and promoting actin polymerization at thin filament pointed ends during diastole.
Collapse
Affiliation(s)
- Madison Little
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Cristina M. Risi
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Mason D. Summers
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Tyler Nguyen
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Jennifer Atherton
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Vitold E. Galkin
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
4
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
5
|
Iwanski JB, Pappas CT, Mayfield RM, Farman GP, Ahrens-Nicklas R, Churko JM, Gregorio CC. Leiomodin 2 neonatal dilated cardiomyopathy mutation results in altered actin gene signatures and cardiomyocyte dysfunction. NPJ Regen Med 2024; 9:21. [PMID: 39285234 PMCID: PMC11405699 DOI: 10.1038/s41536-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is a poorly understood muscular disease of the heart. Several homozygous biallelic variants in LMOD2, the gene encoding the actin-binding protein Leiomodin 2, have been identified to result in severe DCM. Collectively, LMOD2-related cardiomyopathies present with cardiac dilation and decreased heart contractility, often resulting in neonatal death. Thus, it is evident that Lmod2 is essential to normal human cardiac muscle function. This study aimed to understand the underlying pathophysiology and signaling pathways related to the first reported LMOD2 variant (c.1193 G > A, p.Trp398*). Using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model harboring the homologous mutation to the patient, we discovered dysregulated actin-thin filament lengths, altered contractility and calcium handling properties, as well as alterations in the serum response factor (SRF)-dependent signaling pathway. These findings reveal that LMOD2 may be regulating SRF activity in an actin-dependent manner and provide a potential new strategy for the development of biologically active molecules to target LMOD2-related cardiomyopathies.
Collapse
Grants
- R01HL123078 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL128906 NHLBI NIH HHS
- R01 HL164644 NHLBI NIH HHS
- R01 GM120137 NIGMS NIH HHS
- F30HL151139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32HL007249 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007249 NHLBI NIH HHS
- R01 HL123078 NHLBI NIH HHS
- R01HL164644 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL151139 NHLBI NIH HHS
- R01GM120137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jessika B Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rebecca Ahrens-Nicklas
- Department of Pediatrics and Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Larrinaga TM, Farman GP, Mayfield RM, Yuen M, Ahrens-Nicklas RC, Cooper ST, Pappas CT, Gregorio CC. Lmod2 is necessary for effective skeletal muscle contraction. SCIENCE ADVANCES 2024; 10:eadk1890. [PMID: 38478604 PMCID: PMC10936868 DOI: 10.1126/sciadv.adk1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.
Collapse
Affiliation(s)
- Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Michaela Yuen
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | | | - Sandra T. Cooper
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Christopher T. Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Ono S. Segregated localization of two calponin-related proteins within sarcomeric thin filaments in Caenorhabditis elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:127-140. [PMID: 37792405 PMCID: PMC11249056 DOI: 10.1002/cm.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Vasilescu C, Colpan M, Ojala TH, Manninen T, Mutka A, Ylänen K, Rahkonen O, Poutanen T, Martelius L, Kumari R, Hinterding H, Brilhante V, Ojanen S, Lappalainen P, Koskenvuo J, Carroll CJ, Fowler VM, Gregorio CC, Suomalainen A. Recessive TMOD1 mutation causes childhood cardiomyopathy. Commun Biol 2024; 7:7. [PMID: 38168645 PMCID: PMC10761686 DOI: 10.1038/s42003-023-05670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.
Collapse
Affiliation(s)
- Catalina Vasilescu
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA
| | - Tiina H Ojala
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuula Manninen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Aino Mutka
- Department of Pathology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Kaisa Ylänen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuija Poutanen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Laura Martelius
- Department of Pediatric Radiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Hinterding
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Simo Ojanen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | | | - Christopher J Carroll
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Molecular and Clinical Sciences, St. George's, University of London, London, United Kingdom
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA.
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine, New York, NY, 10029, USA.
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
- HUSlab, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland.
| |
Collapse
|
9
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
10
|
Schultz LE, Colpan M, Smith GE, Mayfield RM, Larrinaga TM, Kostyukova AS, Gregorio CC. A nemaline myopathy-linked mutation inhibits the actin-regulatory functions of tropomodulin and leiomodin. Proc Natl Acad Sci U S A 2023; 120:e2315820120. [PMID: 37956287 PMCID: PMC10665800 DOI: 10.1073/pnas.2315820120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Actin is a highly expressed protein in eukaryotic cells and is essential for numerous cellular processes. In particular, efficient striated muscle contraction is dependent upon the precise regulation of actin-based thin filament structure and function. Alterations in the lengths of actin-thin filaments can lead to the development of myopathies. Leiomodins and tropomodulins are members of an actin-binding protein family that fine-tune thin filament lengths, and their dysfunction is implicated in muscle diseases. An Lmod3 mutation [G326R] was previously identified in patients with nemaline myopathy (NM), a severe skeletal muscle disorder; this residue is conserved among Lmod and Tmod isoforms and resides within their homologous leucine-rich repeat (LRR) domain. We mutated this glycine to arginine in Lmod and Tmod to determine the physiological function of this residue and domain. This G-to-R substitution disrupts Lmod and Tmod's LRR domain structure, altering their binding interface with actin and destroying their abilities to regulate thin filament lengths. Additionally, this mutation renders Lmod3 nonfunctional in vivo. We found that one single amino acid is essential for folding of Lmod and Tmod LRR domains, and thus is essential for the opposing actin-regulatory functions of Lmod (filament elongation) and Tmod (filament shortening), revealing a mechanism underlying the development of NM.
Collapse
Affiliation(s)
- Lauren E. Schultz
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA99164
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA99164
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
- Department of Medicine, Cardiovascular Research Institute, Icahn School of Medicine, New York, NY10029
| |
Collapse
|
11
|
Yu B, Liu J, Cai Z, Wang H, Feng X, Zhang T, Ma R, Gu Y, Zhang J. RNA N 6-methyladenosine profiling reveals differentially methylated genes associated with intramuscular fat metabolism during breast muscle development in chicken. Poult Sci 2023; 102:102793. [PMID: 37276703 PMCID: PMC10258505 DOI: 10.1016/j.psj.2023.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intramuscular fat (IMF) is an important indicator for determining meat quality, and IMF deposition during muscle development is regulated by a complex molecular network involving multiple genes. The N6-methyladenosine (m6A) modification of mRNA plays an important regulatory role in muscle adipogenesis. However, the distribution of m6A and its role in IMF metabolism in poultry has not been reported. In the present study, a transcriptome-wide m6A profile was constructed using methylated RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to explore the potential mechanism of regulating IMF deposition in the breast muscle based on the comparative analysis of IMF differences in the breast muscles of 42 (group G), 126 (group S), and 180-days old (group M) Jingyuan chickens. The findings revealed that the IMF content in the breast muscle increased significantly with the increase in the growth days of the Jingyuan chickens (P < 0.05). The m6A peak in the breast muscles of the 3 groups was highly enriched in the coding sequence (CDS) and 3' untranslated regions (3' UTR), which corresponded to the consensus motif RRACH. Moreover, we identified 129, 103, and 162 differentially methylated genes (DMGs) in the breast muscle samples of the G, S, and M groups, respectively. Functional enrichment analyses revealed that DMGs are involved in many physiological activities of muscle fat anabolism. The m6A-induced ferroptosis pathway was identified in breast muscle tissue as a new target for regulating IMF metabolism. In addition, association analysis demonstrated that LMOD2 and its multiple m6A negatively regulated DMGs are potential regulators of IMF differential deposition in muscle. The findings of the present study provide a solid foundation for further investigation into the potential role of m6A modification in regulating chicken fat metabolism.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Kuwabara Y, York AJ, Lin SC, Sargent MA, Grimes KM, Pirruccello JP, Molkentin JD. A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy. Proc Natl Acad Sci U S A 2023; 120:e2213696120. [PMID: 37126682 PMCID: PMC10175844 DOI: 10.1073/pnas.2213696120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.
Collapse
Affiliation(s)
- Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Allen J. York
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Suh-Chin Lin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Michelle A. Sargent
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA94158
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children’s Hospital and the University of Cincinnati, Cincinnati, OH45229
| |
Collapse
|
13
|
Zapater I Morales C, Carman PJ, Soffar DB, Windner SE, Dominguez R, Baylies MK. Drosophila Tropomodulin is required for multiple actin-dependent processes within developing myofibers. Development 2023; 150:dev201194. [PMID: 36806912 PMCID: PMC10112908 DOI: 10.1242/dev.201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.
Collapse
Affiliation(s)
- Carolina Zapater I Morales
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Peter J Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary K Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
15
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
16
|
Tolkatchev D, Gregorio CC, Kostyukova AS. The role of leiomodin in actin dynamics: a new road or a secret gate. FEBS J 2022; 289:6119-6131. [PMID: 34273242 PMCID: PMC8761783 DOI: 10.1111/febs.16128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Leiomodin is an important emerging regulator of thin filaments. As novel molecular, cellular, animal model, and human data accumulate, the mechanisms of its action become clearer. Structural studies played a significant part in understanding the functional significance of leiomodin's interacting partners and functional domains. In this review, we present the current state of knowledge on the structural and cellular properties of leiomodin which has led to two proposed mechanisms of its function. Although it is known that leiomodin is essential for life, numerous domains within leiomodin remain unstudied and as such, we outline future directions for investigations that we predict will provide evidence that leiomodin is a multifunctional protein.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
17
|
Smith GE, Tolkatchev D, Risi C, Little M, Gregorio CC, Galkin VE, Kostyukova AS. Ca 2+ attenuates nucleation activity of leiomodin. Protein Sci 2022; 31:e4358. [PMID: 35762710 PMCID: PMC9207750 DOI: 10.1002/pro.4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022]
Abstract
A transient increase in Ca2+ concentration in sarcomeres is essential for their proper function. Ca2+ drives striated muscle contraction via binding to the troponin complex of the thin filament to activate its interaction with the myosin thick filament. In addition to the troponin complex, the myosin essential light chain and myosin-binding protein C were also found to be Ca2+ sensitive. However, the effects of Ca2+ on the function of the tropomodulin family proteins involved in regulating thin filament formation have not yet been studied. Leiomodin, a member of the tropomodulin family, is an actin nucleator and thin filament elongator. Using pyrene-actin polymerization assay and transmission electron microscopy, we show that the actin nucleation activity of leiomodin is attenuated by Ca2+ . Using circular dichroism and nuclear magnetic resonance spectroscopy, we demonstrate that the mostly disordered, negatively charged region of leiomodin located between its first two actin-binding sites binds Ca2+ . We propose that Ca2+ binding to leiomodin results in the attenuation of its nucleation activity. Our data provide further evidence regarding the role of Ca2+ as an ultimate regulator of the ensemble of sarcomeric proteins essential for muscle function. SUMMARY STATEMENT: Ca2+ fluctuations in striated muscle sarcomeres modulate contractile activity via binding to several distinct families of sarcomeric proteins. The effects of Ca2+ on the activity of leiomodin-an actin nucleator and thin filament length regulator-have remained unknown. In this study, we demonstrate that Ca2+ binds directly to leiomodin and attenuates its actin nucleating activity. Our data emphasizes the ultimate role of Ca2+ in the regulation of the sarcomeric protein interactions.
Collapse
Affiliation(s)
- Garry E. Smith
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| | - Cristina Risi
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Madison Little
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Vitold E. Galkin
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
18
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
19
|
Ono S, Lewis M, Ono K. Mutual dependence between tropomodulin and tropomyosin in the regulation of sarcomeric actin assembly in Caenorhabditis elegans striated muscle. Eur J Cell Biol 2022; 101:151215. [PMID: 35306452 PMCID: PMC9081161 DOI: 10.1016/j.ejcb.2022.151215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| | - Mario Lewis
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kanako Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Lay E, Azamian MS, Denfield SW, Dreyer W, Spinner JA, Kearney D, Zhang L, Worley KC, Bi W, Lalani SR. LMOD2-related dilated cardiomyopathy presenting in late infancy. Am J Med Genet A 2022; 188:1858-1862. [PMID: 35188328 DOI: 10.1002/ajmg.a.62699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/10/2022]
Abstract
Leiomodin-2 (LMOD2) is an important regulator of the thin filament length, known to promote elongation of actin through polymerization at pointed ends. Mice with Lmod2 deficiency die around 3 weeks of age due to severe dilated cardiomyopathy (DCM), resulting from decreased heart contractility due to shorter thin filaments. To date, there have been three infants from two families reported with biallelic variants in LMOD2, presenting with perinatal onset DCM. Here, we describe a third family with a child harboring a previously described homozygous frameshift variant, c.1243_1244delCT (p.L415Vfs*108) with DCM, presenting later in infancy at 9 months of age. Family history was relevant for a sibling who died suddenly at 1 year of age after being diagnosed with cardiomegaly. LMOD2-related cardiomyopathy is a rare form of inherited cardiomyopathy resulting from thin filament length dysregulation and should be considered in genetic evaluation of newborns and infants with suspected autosomal recessive inheritance or sporadic early onset cardiomyopathy.
Collapse
Affiliation(s)
- Erica Lay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Susan W Denfield
- Department of Pediatrics, Section of Cardiology, Texas Children's Hospital, Houston, Texas, USA
| | - William Dreyer
- Department of Pediatrics, Section of Cardiology, Texas Children's Hospital, Houston, Texas, USA
| | - Joseph A Spinner
- Department of Pediatrics, Section of Cardiology, Texas Children's Hospital, Houston, Texas, USA
| | - Debra Kearney
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Berger J, Berger S, Mok YSG, Li M, Tarakci H, Currie PD. Genetic dissection of novel myopathy models reveals a role of CapZα and Leiomodin 3 during myofibril elongation. PLoS Genet 2022; 18:e1010066. [PMID: 35148320 PMCID: PMC8870547 DOI: 10.1371/journal.pgen.1010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/24/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4. The force-generating contractile apparatus is a highly organised structure mainly composed of thick and thin filaments of uniform length. Three families of capping proteins are described to play a role in the regulation of thin filament length. Current models suggest that thin filament assembly is initiated by CapZ, extended by Leiomodins (Lmods) and concluded by Tropomodulins (Tmods). To better understand the role of these capping proteins, we analysed single and double loss-of-function zebrafish mutants for these capping proteins. We find that lmod3- and capza1b-deficient zebrafish model aspects of the human disorders caused by variations in their orthologs. Surprisingly, although pivotal for sarcomere formation, our results reveal that none of the analysed capping proteins, capza1b, capza1a, lmod3 and tmod4, are absolutely required for thin filament assembly, as suggested by current models. Our study further indicates that the roles of CapZ and Lmod3 are distinct from Tmod4. Both Lmod3- as well as CapZα-deficient mutants feature specific defects at the peripheral ends of muscle cells. We conclude that, in addition to their non-essential role during thin filament assembly, both Lmod3- and CapZα proteins may function in the longitudinal growth of the contractile apparatus.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
- * E-mail: (JB); (PDC)
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
| | - Yu Shan G. Mok
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
| | - Hakan Tarakci
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
- Victoria Node, EMBL Australia, Clayton, Australia
- * E-mail: (JB); (PDC)
| |
Collapse
|
22
|
Greenway SC, Fruitman D, Ferrier R, Huculak C, Marcadier J, Sergi C, Bernier FP. Early Death of 2 Siblings Related to Mutations in LMOD2, a Recently Discovered Cause of Neonatal Dilated Cardiomyopathy. CJC Open 2021; 3:1300-1302. [PMID: 34888509 PMCID: PMC8636227 DOI: 10.1016/j.cjco.2021.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
We report a family with 2 neonatal deaths related to dilated cardiomyopathy (DCM) and compound heterozygous loss-of-function variants (c.1243_1244del, p.Leu415Valfs*108 and c.1537C > T, p.Arg513*) in Leiomodin 2 (LMOD2), a recently documented cause of early DCM. The phenotype in mice and humans consists of early, severe cardiac dilation and dysfunction related to decreased functional LMOD2, which results in abnormal actin filaments and abnormal myocardial contractility. Our cases confirm mutations in LMOD2 as a cause of DCM in humans and highlight the rapid changes occurring in cardiac genetics and the importance of reviewing previously negative genetic test results in the context of emerging literature.
Collapse
Affiliation(s)
- Steven C. Greenway
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Fruitman
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raechel Ferrier
- Section of Clinical Genetics and Metabolics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Cathleen Huculak
- Section of Clinical Genetics and Metabolics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Julien Marcadier
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Consolato Sergi
- Division of Anatomic Pathology, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada
| | - Francois P. Bernier
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
24
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
25
|
Kiss B, Gohlke J, Tonino P, Hourani Z, Kolb J, Strom J, Alekhina O, Smith JE, Ottenheijm C, Gregorio C, Granzier H. Nebulin and Lmod2 are critical for specifying thin-filament length in skeletal muscle. SCIENCE ADVANCES 2020; 6:6/46/eabc1992. [PMID: 33177085 PMCID: PMC7673738 DOI: 10.1126/sciadv.abc1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/23/2020] [Indexed: 06/07/2023]
Abstract
Regulating the thin-filament length in muscle is crucial for controlling the number of myosin motors that generate power. The giant protein nebulin forms a long slender filament that associates along the length of the thin filament in skeletal muscle with functions that remain largely obscure. Here nebulin's role in thin-filament length regulation was investigated by targeting entire super-repeats in the Neb gene; nebulin was either shortened or lengthened by 115 nm. Its effect on thin-filament length was studied using high-resolution structural and functional techniques. Results revealed that thin-filament length is strictly regulated by the length of nebulin in fast muscles. Nebulin's control is less tight in slow muscle types where a distal nebulin-free thin-filament segment exists, the length of which was found to be regulated by leiomodin-2 (Lmod2). We propose that strict length control by nebulin promotes high-speed shortening and that dual-regulation by nebulin/Lmod2 enhances contraction efficiency.
Collapse
Affiliation(s)
- Balázs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Olga Alekhina
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Carol Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
- Allan and Alfie Endowed Chair for Heart Disease in Women Research, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
26
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
27
|
Tolkatchev D, Smith GE, Schultz LE, Colpan M, Helms GL, Cort JR, Gregorio CC, Kostyukova AS. Leiomodin creates a leaky cap at the pointed end of actin-thin filaments. PLoS Biol 2020; 18:e3000848. [PMID: 32898131 PMCID: PMC7500696 DOI: 10.1371/journal.pbio.3000848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/18/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Lauren E. Schultz
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Gregory L. Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| | - John R. Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
28
|
Regulation of Actin Filament Length by Muscle Isoforms of Tropomyosin and Cofilin. Int J Mol Sci 2020; 21:ijms21124285. [PMID: 32560136 PMCID: PMC7352323 DOI: 10.3390/ijms21124285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
In striated muscle the extent of the overlap between actin and myosin filaments contributes to the development of force. In slow twitch muscle fibers actin filaments are longer than in fast twitch fibers, but the mechanism which determines this difference is not well understood. We hypothesized that tropomyosin isoforms Tpm1.1 and Tpm3.12, the actin regulatory proteins, which are specific respectively for fast and slow muscle fibers, differently stabilize actin filaments and regulate severing of the filaments by cofilin-2. Using in vitro assays, we showed that Tpm3.12 bound to F-actin with almost 2-fold higher apparent binding constant (Kapp) than Tpm1.1. Cofilin2 reduced Kapp of both tropomyosin isoforms. In the presence of Tpm1.1 and Tpm3.12 the filaments were longer than unregulated F-actin by 25% and 40%, respectively. None of the tropomyosins affected the affinity of cofilin-2 for F-actin, but according to the linear lattice model both isoforms increased cofilin-2 binding to an isolated site and reduced binding cooperativity. The filaments decorated with Tpm1.1 and Tpm3.12 were severed by cofilin-2 more often than unregulated filaments, but depolymerization of the severed filaments was inhibited. The stabilization of the filaments by Tpm3.12 was more efficient, which can be attributed to lower dynamics of Tpm3.12 binding to actin.
Collapse
|
29
|
Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers. Genes (Basel) 2020; 11:genes11030244. [PMID: 32110997 PMCID: PMC7140879 DOI: 10.3390/genes11030244] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/04/2023] Open
Abstract
High-quality chicken meat is an important source of animal protein for humans. Gene expression profiles in breast muscle tissue were determined, aiming to explore the common regulatory genes relevant to muscle and intramuscular fat (IMF) during the developmental stage in chickens. Results show that breast muscle weight (BMW), breast meat percentage (BMP, %), and IMF (%) continuously increased with development. A total of 256 common differentially expressed genes (DEGs) during the developmental stage were screened. Among them, some genes related to muscle fiber hypertrophy were upregulated (e.g., CSRP3, LMOD2, MUSTN1, MYBPC1), but others (e.g., ACTC1, MYL1, MYL4) were downregulated from Week 3 to Week 18. During this period, expression of some DEGs related to the cells cycle (e.g., CCNB3, CCNE2, CDC20, MCM2) changed in a way that genetically suggests possible inhibitory regulation on cells number. In addition, DEGs associated with energy metabolism (e.g., ACOT9, CETP, LPIN1, DGAT2, RBP7, FBP1, PHKA1) were found to regulate IMF deposition. Our data identified and provide new insights into the common regulatory genes related to muscle growth, cell proliferation, and energy metabolism at the developmental stage in chickens.
Collapse
|
30
|
Prill K, Dawson JF. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int J Mol Sci 2020; 21:E542. [PMID: 31952119 PMCID: PMC7013991 DOI: 10.3390/ijms21020542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions.
Collapse
Affiliation(s)
| | - John F. Dawson
- Centre for Cardiovascular Investigations, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
31
|
Mi-Mi L, Farman GP, Mayfield RM, Strom J, Chu M, Pappas CT, Gregorio CC. In vivo elongation of thin filaments results in heart failure. PLoS One 2020; 15:e0226138. [PMID: 31899774 PMCID: PMC6941805 DOI: 10.1371/journal.pone.0226138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
A novel cardiac-specific transgenic mouse model was generated to identify the physiological consequences of elongated thin filaments during post-natal development in the heart. Remarkably, increasing the expression levels in vivo of just one sarcomeric protein, Lmod2, results in ~10% longer thin filaments (up to 26% longer in some individual sarcomeres) that produce up to 50% less contractile force. Increasing the levels of Lmod2 in vivo (Lmod2-TG) also allows us to probe the contribution of Lmod2 in the progression of cardiac myopathy because Lmod2-TG mice present with a unique cardiomyopathy involving enlarged atrial and ventricular lumens, increased heart mass, disorganized myofibrils and eventually, heart failure. Turning off of Lmod2 transgene expression at postnatal day 3 successfully prevents thin filament elongation, as well as gross morphological and functional disease progression. We show here that Lmod2 has an essential role in regulating cardiac contractile force and function.
Collapse
Affiliation(s)
- Lei Mi-Mi
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Joshua Strom
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Miensheng Chu
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Christopher T. Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
32
|
Lake JA, Papah MB, Abasht B. Increased Expression of Lipid Metabolism Genes in Early Stages of Wooden Breast Links Myopathy of Broilers to Metabolic Syndrome in Humans. Genes (Basel) 2019; 10:E746. [PMID: 31557856 PMCID: PMC6826700 DOI: 10.3390/genes10100746] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Wooden breast is a muscle disorder affecting modern commercial broiler chickens that causes a palpably firm pectoralis major muscle and severe reduction in meat quality. Most studies have focused on advanced stages of wooden breast apparent at market age, resulting in limited insights into the etiology and early pathogenesis of the myopathy. Therefore, the objective of this study was to identify early molecular signals in the wooden breast transcriptional cascade by performing gene expression analysis on the pectoralis major muscle of two-week-old birds that may later exhibit the wooden breast phenotype by market age at 7 weeks. Biopsy samples of the left pectoralis major muscle were collected from 101 birds at 14 days of age. Birds were subsequently raised to 7 weeks of age to allow sample selection based on the wooden breast phenotype at market age. RNA-sequencing was performed on 5 unaffected and 8 affected female chicken samples, selected based on wooden breast scores (0 to 4) assigned at necropsy where affected birds had scores of 2 or 3 (mildly or moderately affected) while unaffected birds had scores of 0 (no apparent gross lesions). Differential expression analysis identified 60 genes found to be significant at an FDR-adjusted p-value of 0.05. Of these, 26 were previously demonstrated to exhibit altered expression or genetic polymorphisms related to glucose tolerance or diabetes mellitus in mammals. Additionally, 9 genes have functions directly related to lipid metabolism and 11 genes are associated with adiposity traits such as intramuscular fat and body mass index. This study suggests that wooden breast disease is first and foremost a metabolic disorder characterized primarily by ectopic lipid accumulation in the pectoralis major.
Collapse
Affiliation(s)
- Juniper A Lake
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.
| | - Michael B Papah
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
33
|
Wang Y, Zhu C, Du L, Li Q, Lin MF, Férec C, Cooper DN, Chen JM, Zhou Y. Compound Heterozygosity for Novel Truncating Variants in the LMOD3 Gene as the Cause of Polyhydramnios in Two Successive Fetuses. Front Genet 2019; 10:835. [PMID: 31572445 PMCID: PMC6753228 DOI: 10.3389/fgene.2019.00835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Polyhydramnios is sometimes associated with genetic defects. However, establishing an accurate diagnosis and pinpointing the precise genetic cause of polyhydramnios in any given case represents a major challenge because it is known to occur in association with over 200 different conditions. Whole exome sequencing (WES) is now a routine part of the clinical workup, particularly with diseases characterized by atypical manifestations and significant genetic heterogeneity. Here we describe the identification, by means of WES, of novel compound heterozygous truncating variants in the LMOD3 gene [i.e., c.1412delA (p.Lys471Serfs*18) and c.1283dupC (p.Gly429Trpfs*35)] in a Chinese family with two successive fetuses affected with polyhydramnios, thereby potentiating the prenatal diagnosis of nemaline myopathy (NM) in the proband. LMOD3 encodes leiomodin-3, which is localized to the pointed ends of thin filaments and acts as a catalyst of actin nucleation in skeletal and cardiac muscle. This is the first study to describe the prenatal and postnatal manifestations of LMOD3-related NM in the Chinese population. Of all the currently reported NM-causing LMOD3 nonsense and frameshifting variants, c.1412delA generates the shortest truncation at the C-terminal end of the protein, underscoring the critical role of the WH2 domain in LMOD3 structure and function. Survey of the prenatal phenotypes of all known LMOD3-related severe NM cases served to identify fetal edema as a novel presenting feature that may provide an early clue to facilitate prenatal diagnosis of the disease.
Collapse
Affiliation(s)
- Ye Wang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Caixia Zhu
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liu Du
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiaoer Li
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Mei-Fang Lin
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Yi Zhou
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
Ahrens-Nicklas RC, Pappas CT, Farman GP, Mayfield RM, Larrinaga TM, Medne L, Ritter A, Krantz ID, Murali C, Lin KY, Berger JH, Yum SW, Carreon CK, Gregorio CC. Disruption of cardiac thin filament assembly arising from a mutation in LMOD2: A novel mechanism of neonatal dilated cardiomyopathy. SCIENCE ADVANCES 2019; 5:eaax2066. [PMID: 31517052 PMCID: PMC6726455 DOI: 10.1126/sciadv.aax2066] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/31/2019] [Indexed: 05/10/2023]
Abstract
Neonatal heart failure is a rare, poorly-understood presentation of familial dilated cardiomyopathy (DCM). Exome sequencing in a neonate with severe DCM revealed a homozygous nonsense variant in leiomodin 2 (LMOD2, p.Trp398*). Leiomodins (Lmods) are actin-binding proteins that regulate actin filament assembly. While disease-causing mutations in smooth (LMOD1) and skeletal (LMOD3) muscle isoforms have been described, the cardiac (LMOD2) isoform has not been previously associated with human disease. Like our patient, Lmod2-null mice have severe early-onset DCM and die before weaning. The infant's explanted heart showed extraordinarily short thin filaments with isolated cardiomyocytes displaying a large reduction in maximum calcium-activated force production. The lack of extracardiac symptoms in Lmod2-null mice, and remarkable morphological and functional similarities between the patient and mouse model informed the decision to pursue cardiac transplantation in the patient. To our knowledge, this is the first report of aberrant cardiac thin filament assembly associated with human cardiomyopathy.
Collapse
Affiliation(s)
- Rebecca C. Ahrens-Nicklas
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher T. Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Livija Medne
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa Ritter
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chaya Murali
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Y. Lin
- Division of Pediatric Cardiology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Justin H. Berger
- Division of Pediatric Cardiology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sabrina W. Yum
- Division of Pediatric Neurology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chrystalle Katte Carreon
- Department of Pathology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 2019; 41:39-53. [PMID: 31270709 PMCID: PMC7109180 DOI: 10.1007/s10974-019-09532-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Tropomyosin is the major regulator of the thin filament. In striated muscle its function is to bind troponin complex and control the access of myosin heads to actin in a Ca2+-dependent manner. It also participates in the maintenance of thin filament length by regulation of tropomodulin and leiomodin, the pointed end-binding proteins. Because the size of the overlap between actin and myosin filaments affects the number of myosin heads which interact with actin, the filament length is one of the determinants of force development. Numerous point mutations in genes encoding tropomyosin lead to single amino acid substitutions along the entire length of the coiled coil that are associated with various types of cardiomyopathy and skeletal muscle disease. Specific regions of tropomyosin interact with different binding partners; therefore, the mutations affect diverse tropomyosin functions. In this review, results of studies on mutations in the genes TPM1 and TPM3, encoding Tpm1.1 and Tpm3.12, are described. The paper is particularly focused on mutation-dependent alterations in the mechanisms of actin-myosin interactions and dynamics of the thin filament at the pointed end.
Collapse
|
36
|
Role of intrinsic disorder in muscle sarcomeres. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:311-340. [PMID: 31521234 DOI: 10.1016/bs.pmbts.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role and utility of intrinsically disordered regions (IDRs) is reviewed for two groups of sarcomeric proteins, such as members of tropomodulin/leiomodin (Tmod/Lmod) protein homology group and myosin binding protein C (MyBP-C). These two types of sarcomeric proteins represent very different but strongly interdependent functions, being responsible for maintaining structure and operation of the muscle sarcomere. The role of IDRs in the formation of complexes between thin filaments and Tmods/Lmods is discussed within the framework of current understanding of the thin filament length regulation. For MyBP-C, the function of IDRs is discussed in the context of MYBP-C-dependent sarcomere contraction and actomyosin activation.
Collapse
|
37
|
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ, Kostyukova AS. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 2018; 30:268-281. [PMID: 30462572 PMCID: PMC6589558 DOI: 10.1091/mbc.e18-06-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin’s thin-filament pointed-end assembly but does not affect tropomodulin’s assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin’s affinity for F-actin and affects leiomodin’s function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin’s function.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Dylan Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834
| | - William Schlecht
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
38
|
Nanda V, Wang T, Pjanic M, Liu B, Nguyen T, Matic LP, Hedin U, Koplev S, Ma L, Franzén O, Ruusalepp A, Schadt EE, Björkegren JLM, Montgomery SB, Snyder MP, Quertermous T, Leeper NJ, Miller CL. Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus. PLoS Genet 2018; 14:e1007755. [PMID: 30444878 PMCID: PMC6268002 DOI: 10.1371/journal.pgen.1007755] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/30/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.
Collapse
Affiliation(s)
- Vivek Nanda
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ting Wang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Milos Pjanic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Boxiang Liu
- Department of Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trieu Nguyen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Oscar Franzén
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Arno Ruusalepp
- Clinical Gene Networks AB, Stockholm, Sweden
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Department of Medical Biochemistry and Biophysics, Vascular Biology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Tartu, Estonia
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael P. Snyder
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Clint L. Miller
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Center for Public Health Genomics, Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
39
|
Pappas CT, Farman GP, Mayfield RM, Konhilas JP, Gregorio CC. Cardiac-specific knockout of Lmod2 results in a severe reduction in myofilament force production and rapid cardiac failure. J Mol Cell Cardiol 2018; 122:88-97. [PMID: 30102883 DOI: 10.1016/j.yjmcc.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Leiomodin-2 (Lmod2) is a striated muscle-specific actin binding protein that is implicated in assembly of thin filaments. The necessity of Lmod2 in the adult mouse and role it plays in the mechanics of contraction are unknown. To answer these questions, we generated cardiac-specific conditional Lmod2 knockout mice (cKO). These mice die within a week of induction of the knockout with severe left ventricular systolic dysfunction and little change in cardiac morphology. Cardiac trabeculae isolated from cKO mice have a significant decrease in maximum force production and a blunting of myofilament length-dependent activation. Thin filaments are non-uniform and substantially reduced in length in cKO hearts, affecting the functional overlap of the thick and thin filaments. Remarkably, we also found that Lmod2 levels are directly linked to thin filament length and cardiac function in vivo, with a low amount (<20%) of Lmod2 necessary to maintain cardiac function. Thus, Lmod2 plays an essential role in maintaining proper cardiac thin filament length in adult mice, which in turn is necessary for proper generation of contractile force. Dysregulation of thin filament length in the absence of Lmod2 contributes to heart failure.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA.
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
40
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
41
|
Guzek D, Głąbska D, Głąbski K, Wierzbicka A. Influence of Duroc breed inclusion into Polish Landrace maternal line on pork meat quality traits. AN ACAD BRAS CIENC 2018; 88:1079-88. [PMID: 27254455 DOI: 10.1590/0001-3765201620140679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/10/2015] [Indexed: 11/21/2022] Open
Abstract
Crossbreeding with Duroc breed allows to improve meat quality, but no data is available regarding specific influence of Duroc breed on characteristics of meat in the case of crossbreeding with various breeds. The aim of the present research was to evaluate the effect of crossbreeding Polish Landrace dames with Duroc sires on quality features of meat in reference to Polish Landrace breed. The objects of the study were Longissimus dorsi lumborum pork muscles obtained from Polish Landrace breed and Polish Landrace x Duroc crossbreed animals. Sarcomere length measurements were conducted using microscopic method and basic chemical composition measurement was analyzed using spectrophotometric scanning. Texture analysis of meat samples, performed after thermal treatment was expressed by Warner-Bratzler shear force and color analysis was obtained using CIE L*a*b* color system. No differences in sarcomere length, shear force as well as components of color values between pork meat originated from Polish Landrace breed and Polish Landrace x Duroc crossbreed were observed. Analysis of basic chemical composition revealed higher fat and lower ash contents in the case of meat of Polish Landrace breed animals. It was concluded that the actual impact of breed on meat characteristics is possibly altered by other factors. It may be suggested that influence of basic chemical composition on color of meat is breed-related.
Collapse
Affiliation(s)
- Dominika Guzek
- Laboratory of Food Chemistry, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska str., 02-776 Warsaw, Poland, University of Warsaw, Warsaw University of Life Sciences, Faculty of Human Nutrition and Consumer Sciences, Warsaw , Poland
| | - Dominika Głąbska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska str., 02-776 Warsaw, Poland, University of Warsaw, Warsaw University of Life Sciences, Faculty of Human Nutrition and Consumer Sciences, Warsaw , Poland
| | - Krzysztof Głąbski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS-PAN), 5a Pawinskiego str., 02-106 Warsaw, Poland, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, Warsaw , Poland
| | - Agnieszka Wierzbicka
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS- SGGW), 159c Nowoursynowska str., 02-776 Warsaw, Poland, University of Warsaw, Warsaw University of Life Sciences, Faculty of Human Nutrition and Consumer Sciences, Department of Technique and Food Development, Warsaw , Poland
| |
Collapse
|
42
|
Arslan B, Colpan M, Gray KT, Abu-Lail NI, Kostyukova AS. Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin. Arch Biochem Biophys 2017; 638:18-26. [PMID: 29223925 DOI: 10.1016/j.abb.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/18/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Tropomodulin family of proteins includes several isoforms of tropomodulins (Tmod) and leiomodins (Lmod). These proteins can sequester actin monomers or nucleate actin polymerization. Although it is known that their actin-binding properties are isoform-dependent, knowledge on how they vary in strengths of interactions with G-actin is missing. While it is confirmed in many studies that Tmods have two actin-binding sites, information on number and location of actin-binding sites in Lmod2 is controversial. We used atomic force microscopy to study interactions between G-actin and proteins of the tropomodulin family. Unbinding forces between G-actin and Tmod1, Tmod2, Tmod3, or Lmod2 were quantified. Our results indicated that Tmod1 and Tmod3 had unimodal force distributions, Tmod2 had a bimodal distribution and Lmod2 had a trimodal distribution. The number of force distributions correlates with the proteins' abilities to sequester actin or to nucleate actin polymerization. We assigned specific unbinding forces to the individual actin-binding sites of Tmod2 and Lmod2 using mutations that destroy actin-binding sites of Tmod2 and truncated Lmod2. Our results confirm the existence of the N-terminal actin-binding site in Lmod2. Altogether, our data demonstrate how the differences between the number and the strength of actin-binding sites of Tmod or Lmod translate to their functional abilities.
Collapse
Affiliation(s)
- Baran Arslan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Mert Colpan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States; Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Kevin T Gray
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Nehal I Abu-Lail
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| | - Alla S Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
43
|
Ly T, Krieger I, Tolkatchev D, Krone C, Moural T, Samatey FA, Kang C, Kostyukova AS. Structural destabilization of tropomyosin induced by the cardiomyopathy-linked mutation R21H. Protein Sci 2017; 27:498-508. [PMID: 29105867 DOI: 10.1002/pro.3341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022]
Abstract
The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled-coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1-28 Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1-28 Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ∼30-fold decrease of αTM1a1-28 Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1-28 Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1-28 Zip's coiled-coil structure, most notably from residue Ala18 to residue His31, it may not affect the N-terminal end of tropomyosin. The drastic decrease of αTM1a1-28 Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Cheyenna Krone
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Timothy Moural
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Fadel A Samatey
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| |
Collapse
|
44
|
HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci U S A 2017; 114:11956-11961. [PMID: 29078393 DOI: 10.1073/pnas.1713763114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small heat shock protein HSPB7 is highly expressed in the heart. Several mutations within HSPB7 are associated with dilated cardiomyopathy and heart failure in human patients. However, the precise role of HSPB7 in the heart is still unclear. In this study, we generated global as well as cardiac-specific HSPB7 KO mouse models and found that loss of HSPB7 globally or specifically in cardiomyocytes resulted in embryonic lethality before embryonic day 12.5. Using biochemical and cell culture assays, we identified HSPB7 as an actin filament length regulator that repressed actin polymerization by binding to monomeric actin. Consistent with HSPB7's inhibitory effects on actin polymerization, HSPB7 KO mice had longer actin/thin filaments and developed abnormal actin filament bundles within sarcomeres that interconnected Z lines and were cross-linked by α-actinin. In addition, loss of HSPB7 resulted in up-regulation of Lmod2 expression and mislocalization of Tmod1. Furthermore, crossing HSPB7 null mice into an Lmod2 null background rescued the elongated thin filament phenotype of HSPB7 KOs, but double KO mice still exhibited formation of abnormal actin bundles and early embryonic lethality. These in vivo findings indicated that abnormal actin bundles, not elongated thin filament length, were the cause of embryonic lethality in HSPB7 KOs. Our findings showed an unsuspected and critical role for a specific small heat shock protein in directly modulating actin thin filament length in cardiac muscle by binding monomeric actin and limiting its availability for polymerization.
Collapse
|
45
|
Szatmári D, Bugyi B, Ujfalusi Z, Grama L, Dudás R, Nyitrai M. Cardiac leiomodin2 binds to the sides of actin filaments and regulates the ATPase activity of myosin. PLoS One 2017; 12:e0186288. [PMID: 29023566 PMCID: PMC5638494 DOI: 10.1371/journal.pone.0186288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/28/2017] [Indexed: 12/26/2022] Open
Abstract
Leiomodin proteins are vertebrate homologues of tropomodulin, having a role in the assembly and maintenance of muscle thin filaments. Leiomodin2 contains an N-terminal tropomodulin homolog fragment including tropomyosin-, and actin-binding sites, and a C-terminal Wiskott-Aldrich syndrome homology 2 actin-binding domain. The cardiac leiomodin2 isoform associates to the pointed end of actin filaments, where it supports the lengthening of thin filaments and competes with tropomodulin. It was recently found that cardiac leiomodin2 can localise also along the length of sarcomeric actin filaments. While the activities of leiomodin2 related to pointed end binding are relatively well described, the potential side binding activity and its functional consequences are less well understood. To better understand the biological functions of leiomodin2, in the present work we analysed the structural features and the activities of Rattus norvegicus cardiac leiomodin2 in actin dynamics by spectroscopic and high-speed sedimentation approaches. By monitoring the fluorescence parameters of leiomodin2 tryptophan residues we found that it possesses flexible, intrinsically disordered regions. Leiomodin2 accelerates the polymerisation of actin in an ionic strength dependent manner, which relies on its N-terminal regions. Importantly, we demonstrate that leiomodin2 binds to the sides of actin filaments and induces structural alterations in actin filaments. Upon its interaction with the filaments leiomodin2 decreases the actin-activated Mg2+-ATPase activity of skeletal muscle myosin. These observations suggest that through its binding to side of actin filaments and its effect on myosin activity leiomodin2 has more functions in muscle cells than it was indicated in previous studies.
Collapse
Affiliation(s)
- Dávid Szatmári
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
| | - Zoltán Ujfalusi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - László Grama
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Réka Dudás
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Miklós Nyitrai
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- Hungarian Academy of Sciences-University of Pécs, Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
- * E-mail:
| |
Collapse
|
46
|
Boczkowska M, Yurtsever Z, Rebowski G, Eck MJ, Dominguez R. Crystal Structure of Leiomodin 2 in Complex with Actin: A Structural and Functional Reexamination. Biophys J 2017; 113:889-899. [PMID: 28834725 DOI: 10.1016/j.bpj.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
Leiomodins (Lmods) are a family of actin filament nucleators related to tropomodulins (Tmods), which are pointed end-capping proteins. Whereas Tmods have alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, ABS2), Lmods lack TMBS2 and half of ABS1, and present a C-terminal extension containing a proline-rich domain and an actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domain that is absent in Tmods. Most of the nucleation activity of Lmods resides within a fragment encompassing ABS2 and the C-terminal extension. This fragment recruits actin monomers into a polymerization nucleus. Here, we revise a recently reported structure of this region of Lmod2 in complex with actin and provide biochemical validation for the newly revised structure. We find that instead of two actin subunits connected by a single Lmod2 polypeptide, as reported in the original structure, the P1 unit cell contains two nearly identical copies of actin monomers, each bound to Lmod2's ABS2 and WH2 domain, with no electron density connecting these two domains. Moreover, we show that the two actin molecules in the unit cell are related to each other by a local twofold noncrystallographic symmetry axis, a conformation clearly distinct from that of actin subunits in the helical filament. We further find that a proposed actin-binding site within the missing connecting region of Lmod2, termed helix h1, does not bind actin in vitro and that the electron density assigned to it in the original structure corresponds instead to a WH2 domain with opposite backbone directionality. Polymerization assays using Lmod2 mutants of helix h1 and the WH2 domain support this conclusion. Finally, we find that deleting the C-terminal extension of Lmod1 and Lmod2 results in an approximately threefold decrease in the nucleation activity, which is only partially accounted for by the lack of the WH2 domain.
Collapse
Affiliation(s)
- Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zeynep Yurtsever
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
47
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium. Front Physiol 2017; 8:631. [PMID: 28912723 PMCID: PMC5582297 DOI: 10.3389/fphys.2017.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease (CHD). However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages). 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS). Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States.,Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science UniversityPortland, OR, United States
| | - Larry David
- Proteomics Core, Oregon Health & Science UniversityPortland, OR, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, United States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| |
Collapse
|
48
|
Fowler VM, Dominguez R. Tropomodulins and Leiomodins: Actin Pointed End Caps and Nucleators in Muscles. Biophys J 2017; 112:1742-1760. [PMID: 28494946 DOI: 10.1016/j.bpj.2017.03.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoskeletal structures characterized by actin filaments with uniform lengths, including the thin filaments of striated muscles and the spectrin-based membrane skeleton, use barbed and pointed-end capping proteins to control subunit addition/dissociation at filament ends. While several proteins cap the barbed end, tropomodulins (Tmods), a family of four closely related isoforms in vertebrates, are the only proteins known to specifically cap the pointed end. Tmods are ∼350 amino acids in length, and comprise alternating tropomyosin- and actin-binding sites (TMBS1, ABS1, TMBS2, and ABS2). Leiomodins (Lmods) are related in sequence to Tmods, but display important differences, including most notably the lack of TMBS2 and the presence of a C-terminal extension featuring a proline-rich domain and an actin-binding WASP-Homology 2 domain. The Lmod subfamily comprises three somewhat divergent isoforms expressed predominantly in muscle cells. Biochemically, Lmods differ from Tmods, acting as powerful nucleators of actin polymerization, not capping proteins. Structurally, Lmods and Tmods display crucial differences that correlate well with their different biochemical activities. Physiologically, loss of Lmods in striated muscle results in cardiomyopathy or nemaline myopathy, whereas complete loss of Tmods leads to failure of myofibril assembly and developmental defects. Yet, interpretation of some of the in vivo data has led to the idea that Tmods and Lmods are interchangeable or, at best, different variants of two subfamilies of pointed-end capping proteins. Here, we review and contrast the existing literature on Tmods and Lmods, and propose a model of Lmod function that attempts to reconcile the in vitro and in vivo data, whereby Lmods nucleate actin filaments that are subsequently capped by Tmods during sarcomere assembly, turnover, and repair.
Collapse
Affiliation(s)
- Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Colpan M, Ly T, Grover S, Tolkatchev D, Kostyukova AS. The cardiomyopathy-associated K15N mutation in tropomyosin alters actin filament pointed end dynamics. Arch Biochem Biophys 2017; 630:18-26. [PMID: 28732641 DOI: 10.1016/j.abb.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Correct assembly of thin filaments composed of actin and actin-binding proteins is of crucial importance for properly functioning muscle cells. Tropomyosin (Tpm) mediates the binding of tropomodulin (Tmod) and leiomodin (Lmod) at the slow-growing, or pointed, ends of the thin filaments. Together these proteins regulate thin filament lengths and actin dynamics in cardiac muscle. The K15N mutation in the TPM1 gene is associated with familial dilated cardiomyopathy (DCM) but the effect of this mutation on Tpm's function is unknown. In this study, we introduced the K15N mutation in striated muscle α-Tpm (Tpm1.1) and investigated its interaction with actin, Tmod and Lmod. The mutation caused a ∼3-fold decrease in the affinity of Tpm1.1 for actin. The binding of Lmod and Tmod to Tpm1.1-covered actin filaments also decreased in the presence of the K15N mutation. Furthermore, the K15N mutation in Tpm1.1 disrupted the inhibition of actin polymerization and affected the competition between Tmod1 and Lmod2 for binding at the pointed ends. Our data demonstrate that the K15N mutation alters pointed end dynamics by affecting molecular interactions between Tpm1.1, Lmod2 and Tmod1.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States.
| | - Thu Ly
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Samantha Grover
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering & Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
50
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|