1
|
Bian C, Marchetti A, Dias M, Perrin J, Cosson P. Short transmembrane domains target type II proteins to the Golgi apparatus and type I proteins to the endoplasmic reticulum. J Cell Sci 2024; 137:jcs261738. [PMID: 38973735 DOI: 10.1242/jcs.261738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Transmembrane domains (TMDs) contain information targeting membrane proteins to various compartments of the secretory pathway. In previous studies, short or hydrophilic TMDs have been shown to target membrane proteins either to the endoplasmic reticulum (ER) or to the Golgi apparatus. However, the basis for differential sorting to the ER and to the Golgi apparatus remained unclear. To clarify this point, we quantitatively analyzed the intracellular targeting of a collection of proteins exhibiting a single TMD. Our results reveal that membrane topology is a major targeting element in the early secretory pathway: type I proteins with a short TMD are targeted to the ER, and type II proteins to the Golgi apparatus. A combination of three features accounts for the sorting of simple membrane proteins in the secretory pathway: membrane topology, length and hydrophilicity of the TMD, and size of the cytosolic domain. By clarifying the rules governing sorting to the ER and to the Golgi apparatus, our study could revive the search for sorting mechanisms in the early secretory pathway.
Collapse
Affiliation(s)
- Claudie Bian
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
- Manufacturing Science and Technologies, Biotech Department, Merck, Z.I. de l'Ouriettaz 150, 1170 Aubonne, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Marco Dias
- Manufacturing Science and Technologies, Biotech Department, Merck, Z.I. de l'Ouriettaz 150, 1170 Aubonne, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Zhao Y, Caron C, Chan YY, Lee CK, Xu X, Zhang J, Masubuchi T, Wu C, Bui JD, Hui E. cis-B7:CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8 + T cell function and anti-tumor immunity. Immunity 2023; 56:1187-1203.e12. [PMID: 37160118 PMCID: PMC10330546 DOI: 10.1016/j.immuni.2023.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Christine Caron
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ya-Yuan Chan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Calvin K Lee
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaozheng Xu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jibin Zhang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Takeya Masubuchi
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Enfu Hui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Ahmad T, Vullhorst D, Chaudhuri R, Guardia CM, Chaudhary N, Karavanova I, Bonifacino JS, Buonanno A. Transcytosis and trans-synaptic retention by postsynaptic ErbB4 underlie axonal accumulation of NRG3. J Cell Biol 2022; 221:213222. [PMID: 35579602 PMCID: PMC9118086 DOI: 10.1083/jcb.202110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Haryana, India
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Correspondence to Andres Buonanno:
| |
Collapse
|
4
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
5
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
6
|
Biomimetic Magnetoliposomes as Oxaliplatin Nanocarriers: In Vitro Study for Potential Application in Colon Cancer. Pharmaceutics 2020; 12:pharmaceutics12060589. [PMID: 32599905 PMCID: PMC7356838 DOI: 10.3390/pharmaceutics12060589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Current chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC50 compared to that of soluble Oxa. However, their strong interaction with the macrophages revealed toxicity and possibility of aggregation. In this scenario, a further improvement of this nanoassembly was necessary. In the present study, Oxa-BMNPs nanoassemblies were enveloped in phosphatidylcholine unilamellar liposomes (both pegylated and non-pegylated). Our results demonstrate that the addition of both a lipid cover and further pegylation improves the biocompatibility and cellular uptake of the Oxa-BMNPs nanoassemblies without significantly reducing their cytotoxic activity in colon cancer cells. In particular, with the pegylated magnetoliposome nanoformulation (a) hemolysis was reduced from 5% to 2%, being now hematocompatibles, (b) red blood cell agglutination was reduced, (c) toxicity in white blood cells was eliminated. This study represents a truly stepforward in this area as describes the production of one of the very few existing nanoformulations that could be used for a local chemotherapy to treat CRC.
Collapse
|
7
|
Abstract
Few approaches exist for the stable and controllable synthesis of customized mucin glycoproteins for glycocalyx editing in eukaryotic cells. Taking advantage of custom gene synthesis and a biology-by-parts approach to cDNA construction, we build a library of swappable DNA bricks for mucin leader tags, membrane anchors, cytoplasmic motifs, and optical reporters, as well as codon-optimized native mucin repeats and newly designed domains for synthetic mucins. We construct a library of over 50 mucins, each with unique chemical, structural, and optical properties and describe how additional permutations could readily be constructed. We apply the library to explore sequence-specific effects on glycosylation for engineering of mucins. We find that the extension of the immature α-GalNAc Tn-antigen to Core 1 and Core 2 glycan structures depends on the underlying peptide backbone sequence. Glycosylation could also be influenced through recycling motifs on the mucin cytoplasmic tail. We expect that the mucin parts inventory presented here can be broadly applied for glycocalyx research and mucin-based biotechnologies.
Collapse
Affiliation(s)
- Hao Pan
- Field of Biophysics, Cornell University, Ithaca, New York 14853, United States
| | | | - Nitin T. Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew J. Paszek
- Field of Biophysics, Cornell University, Ithaca, New York 14853, United States
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Jabalera Y, Garcia-Pinel B, Ortiz R, Iglesias G, Cabeza L, Prados J, Jimenez-Lopez C, Melguizo C. Oxaliplatin-Biomimetic Magnetic Nanoparticle Assemblies for Colon Cancer-Targeted Chemotherapy: An In Vitro Study. Pharmaceutics 2019; 11:E395. [PMID: 31390773 PMCID: PMC6723246 DOI: 10.3390/pharmaceutics11080395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC. Electrostatic interactions between Oxa and BMNPs trigger the formation of the nanoassembly and keep it stable at physiological pH. When the BMNPs become neutral at acidic pH values, the Oxa is released, and such a release is greatly potentiated by hyperthermia. The coupling of the drug with the BMNPs improves its toxicity to even higher levels than the soluble drug, probably because of the fast internalization of the nanoassembly by tumor cells through endocytosis. In addition, the BMNPs are cytocompatible and non-hemolytic, providing positive feedback as a proof of concept for the nanoassembly. Our study clearly demonstrates the applicability of Oxa-BMNP in colon cancer and offers a promising nanoassembly for targeted chemotherapy against this type of tumor.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Beatriz Garcia-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - Guillermo Iglesias
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain.
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain.
| | - Concepcion Jimenez-Lopez
- Department of Microbiology, Sciences School, University of Granada, Campus de Fuentenueva, 18002 Granada, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18012 Granada, Spain
| |
Collapse
|
9
|
Yanguas F, Moscoso-Romero E, Valdivieso MH. Ent3 and GGA adaptors facilitate diverse anterograde and retrograde trafficking events to and from the prevacuolar endosome. Sci Rep 2019; 9:10747. [PMID: 31341193 PMCID: PMC6656748 DOI: 10.1038/s41598-019-47035-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Carboxypeptidases Y (Cpy1) and S (Cps1), the receptor Vps10, and the ATPase subunit Vph1 follow the carboxypeptidase Y (CPY) pathway from the trans-Golgi network (TGN) to the prevacuolar endosome (PVE). Using Schizosaccharomyces pombe quantitative live-cell imaging, biochemical and genetic analyses, we extended the previous knowledge and showed that collaboration between Gga22, the dominant Golgi-localized Gamma-ear-containing ARF-binding (GGA) protein, and Gga21, and between Gga22 and the endosomal epsin Ent3, was required for efficient: i) Vps10 anterograde trafficking from the TGN to the PVE; ii) Vps10 retrograde trafficking from the PVE to the TGN; iii) Cps1 exit from the TGN, and its sorting in the PVE en route to the vacuole; and iv) Syb1/Snc1 recycling to the plasma membrane through the PVE. Therefore, monomeric clathrin adaptors facilitated the trafficking of Vps10 in both directions of the CPY pathway, and facilitated trafficking events of Cps1 in different organelles. By contrast, they were dispensable for Vph1 trafficking. Thus, these adaptors regulated the traffic of some, but not all, of the cargo of the CPY pathway, and regulated the traffic of cargoes that do not follow this pathway. Additionally, this collaboration was required for PVE organization and efficient growth under stress.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Esteban Moscoso-Romero
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
10
|
Shurer CR, Head SE, Goudge MC, Paszek MJ. Mucin-coating technologies for protection and reduced aggregation of cellular production systems. Biotechnol Bioeng 2019; 116:994-1005. [PMID: 30636317 PMCID: PMC6763341 DOI: 10.1002/bit.26916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 01/23/2023]
Abstract
Optimization of host-cell production systems with improved yield and production reliability is desired to meet the increasing demand for biologics with complex posttranslational modifications. Aggregation of suspension-adapted mammalian cells remains a significant problem that can limit the cellular density and per volume yield of bioreactors. Here, we propose a genetically encoded technology that directs the synthesis of antiadhesive and protective coatings on the cellular surface. Inspired by the natural ability of mucin glycoproteins to resist cellular adhesion and hydrate and protect cell and tissue surfaces, we genetically encode new cell-surface coatings through the fusion of engineered mucin domains to synthetic transmembrane anchors. Combined with appropriate expression systems, the mucin-coating technology directs the assembly of thick, highly hydrated barriers to strongly mitigate cell aggregation and protect cells in suspension against fluid shear stresses. The coating technology is demonstrated on suspension-adapted human 293-F cells, which resist clumping even in media formulations that otherwise would induce extreme cell aggregation and show improved performance over a commercially available anticlumping agent. The stable biopolymer coatings do not show deleterious effects on cell proliferation rate, efficiency of transient transfection with complementary DNAs, or recombinant protein expression. Overall, our mucin-coating technology and engineered cell lines have the potential to improve the single-cell growth and viability of suspended cells in bioreactors.
Collapse
Affiliation(s)
- Carolyn R. Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Shelby E. Head
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Marc C. Goudge
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Field of Biophysics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
11
|
Vernay A, Lamrabet O, Perrin J, Cosson P. TM9SF4 levels determine sorting of transmembrane domains in the early secretory pathway. J Cell Sci 2018; 131:jcs.220830. [PMID: 30301779 DOI: 10.1242/jcs.220830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/26/2018] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that TM9SF4 interacts with glycine-rich transmembrane domains (TMDs) and promotes their surface localization, presumably by escorting them along the secretory pathway. Here, we delineated the role of TM9 proteins in the sorting of TMDs. Our results indicate that TM9SF4 interacts with and sorts a variety of TMDs. In human embryonic kidney (HEK) cells, a TMD carrying a positively charged residue (T-R1) or a negatively charged residue (T-D1) was localized to the endoplasmic reticulum (ER), but partially relocated to the Golgi complex upon overexpression of TM9SF4. These results show that TM9SF4 controls the sorting of TMDs at the ER-Golgi interface. Remarkably, sorting of T-R1 in HCT116 cells was different from that in HEK cells: in HCT116 cells, a substantial fraction of T-R1 was localized to the Golgi complex, and it was relocated to the ER by genetic ablation of TM9SF4. This observation indicates that TM9SF4 sorting activity differs in HEK and HCT116 cells, resulting in different sorting of TMDs in these two cell types. Although TM9SF1 associated with several TMDs, it did not visibly alter their intracellular transport in the secretory pathway and may function in other intracellular transport pathways.
Collapse
Affiliation(s)
- Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
12
|
Kikegawa T, Yamaguchi T, Nambu R, Etchuya K, Ikeda M, Mukai Y. Signal-anchor sequences are an essential factor for the Golgi-plasma membrane localization of type II membrane proteins. Biosci Biotechnol Biochem 2018; 82:1708-1714. [PMID: 29912671 DOI: 10.1080/09168451.2018.1484272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Despite studies of the mechanism underlying the intracellular localization of membrane proteins, the specific mechanisms by which each membrane protein localizes to the endoplasmic reticulum, Golgi apparatus, and plasma membrane in the secretory pathway are unclear. In this study, a discriminant analysis of endoplasmic reticulum, Golgi apparatus and plasma membrane-localized type II membrane proteins was performed using a position-specific scoring matrix derived from the amino acid propensity of the sequences around signal-anchors. The possibility that the sequence around the signal-anchor is a factor for identifying each localization group was evaluated. The discrimination accuracy between the Golgi apparatus and plasma membrane-localized type II membrane proteins was as high as 90%, indicating that, in addition to other factors, the sequence around signal-anchor is an essential component of the selection mechanism for the Golgi and plasma membrane localization. These results may improve the use of membrane proteins for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Tatsuki Kikegawa
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Takuya Yamaguchi
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Ryohei Nambu
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Kenji Etchuya
- b Molecular Neurobiology Research Group , Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Ibaraki , Japan.,c Department of Electronics and Bioinformatics, School of Science and Technology , Meiji University , Kanagawa , Japan
| | - Masami Ikeda
- d Artificial Intelligence Research Center (AIRC) , National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo , Japan
| | - Yuri Mukai
- a Department of Electronics, Graduate School of Science and Technology , Meiji University , Kanagawa , Japan.,c Department of Electronics and Bioinformatics, School of Science and Technology , Meiji University , Kanagawa , Japan
| |
Collapse
|
13
|
Shurer CR, Colville MJ, Gupta VK, Head SE, Kai F, Lakins JN, Paszek MJ. Genetically Encoded Toolbox for Glycocalyx Engineering: Tunable Control of Cell Adhesion, Survival, and Cancer Cell Behaviors. ACS Biomater Sci Eng 2017; 4:388-399. [PMID: 29805991 DOI: 10.1021/acsbiomaterials.7b00037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The glycocalyx is a coating of protein and sugar on the surface of all living cells. Dramatic perturbations to the composition and structure of the glycocalyx are frequently observed in aggressive cancers. However, tools to experimentally mimic and model the cancer-specific glycocalyx remain limited. Here, we develop a genetically encoded toolkit to engineer the chemical and physical structure of the cellular glycocalyx. By manipulating the glycocalyx structure, we are able to switch the adhesive state of cells from strongly adherent to fully detached. Surprisingly, we find that a thick and dense glycocalyx with high O-glycan content promotes cell survival even in a suspended state, characteristic of circulating tumor cells during metastatic dissemination. Our data suggest that glycocalyx-mediated survival is largely independent of receptor tyrosine kinase and mitogen activated kinase signaling. While anchorage is still required for proliferation, we find that cells with a thick glycocalyx can dynamically attach to a matrix scaffold, undergo cellular division, and quickly disassociate again into a suspended state. Together, our technology provides a needed toolkit for engineering the glycocalyx in glycobiology and cancer research.
Collapse
Affiliation(s)
- Carolyn R Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Marshall J Colville
- Cornell University, Field of Biophysics, 107 Biotechnology Building, Ithaca, New York 14853, United States
| | - Vivek K Gupta
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 105 Upson Hall, Ithaca, New York 14853, United States
| | - Shelby E Head
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Jonathon N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States.,Cornell University, Field of Biophysics, 107 Biotechnology Building, Ithaca, New York 14853, United States.,Field of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Montoro AG, Bigliani G, Taubas JV. Transmembrane-domain shape is a novel endocytosis signal for single-spanning membrane proteins. J Cell Sci 2017; 130:3829-3838. [DOI: 10.1242/jcs.202937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/27/2017] [Indexed: 02/03/2023] Open
Abstract
Endocytosis is crucial for all cells as it allows them to incorporate material from the extracellular space and control the availability of transmembrane proteins at the plasma membrane. In yeast, endocytosis followed by recycling to the plasma membrane results in a polarised distribution of membrane proteins by a kinetic mechanism. Here we report that increasing the volume of the residues that constitute the exoplasmic half of the transmembrane domain in the yeast SNARE Sso1, a type II membrane protein, results in its polarised distribution at the plasma membrane. Expression of this chimera in strains affected in either endocytosis or recycling revealed that this polarisation is achieved by endocytic cycling. A bioinformatics search of the Saccharomyces cerevisiae proteome identified several proteins with high-volume exoplasmic hemi-TMDs. Our experiments indicate that TMDs from these proteins can confer a polarised distribution to the Sso1 cytoplasmic domain, indicating that the shape of the TMD can act as a novel endocytosis and polarity signal in yeast. Additionally, a high-volume exoplasmic hemi-TMD can act as an endocytosis signal in a mammalian cell line.
Collapse
Affiliation(s)
- Ayelén González Montoro
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Current address: University of Osnabrück, Department of Biology/Chemistry, Biochemistry section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Gonzalo Bigliani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
15
|
Singh S, Mittal A. Transmembrane Domain Lengths Serve as Signatures of Organismal Complexity and Viral Transport Mechanisms. Sci Rep 2016; 6:22352. [PMID: 26925972 PMCID: PMC4772119 DOI: 10.1038/srep22352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/12/2016] [Indexed: 12/24/2022] Open
Abstract
It is known that membrane proteins are important in various secretory pathways, with
a possible role of their transmembrane domains (TMDs) as sorting determinant
factors. One key aspect of TMDs associated with various
“checkposts” (i.e. organelles) of intracellular trafficking
is their length. To explore possible linkages in organisms with varying
“complexity” and differences in TMD lengths of membrane
proteins associated with different organelles (such as Endoplasmic Reticulum, Golgi,
Endosomes, Nucleus, Plasma Membrane), we analyzed ~70000 membrane
protein sequences in over 300 genomes of fungi, plants, non-mammalian vertebrates
and mammals. We report that as we move from simpler to complex organisms, variation
in organellar TMD lengths decreases, especially compared to their respective plasma
membranes, with increasing organismal complexity. This suggests an evolutionary
pressure in modulating length of TMDs of membrane proteins with increasing
complexity of communication between sub-cellular compartments. We also report
functional applications of our findings by discovering remarkable distinctions in
TMD lengths of membrane proteins associated with different intracellular transport
pathways. Finally, we show that TMD lengths extracted from viral proteins can serve
as somewhat weak indicators of viral replication sites in plant cells but very
strong indicators of different entry pathways employed by animal viruses.
Collapse
Affiliation(s)
- Snigdha Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
16
|
Field LD, Walper SA, Susumu K, Oh E, Medintz IL, Delehanty JB. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly. SENSORS (BASEL, SWITZERLAND) 2015; 15:30457-68. [PMID: 26690153 PMCID: PMC4721730 DOI: 10.3390/s151229810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor-acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol). We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.
Collapse
Affiliation(s)
- Lauren D Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave, S.W., Washington, DC 20375, USA.
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave, S.W., Washington, DC 20375, USA.
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., 7230 Lee DeForest Drive, Columbia, MD 21046, USA.
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600 U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave, S.W., Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave, S.W., Washington, DC 20375, USA.
| |
Collapse
|
17
|
Perrin J, Le Coadic M, Vernay A, Dias M, Gopaldass N, Ouertatani-Sakouhi H, Cosson P. TM9 family proteins control surface targeting of glycine-rich transmembrane domains. J Cell Sci 2015; 128:2269-77. [PMID: 25999474 PMCID: PMC4510845 DOI: 10.1242/jcs.164848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
TM9 family proteins (also named Phg1 proteins) have been previously shown to control cell adhesion by determining the cell surface localization of adhesion proteins such as the Dictyostelium SibA protein. Here, we show that the glycine-rich transmembrane domain (TMD) of SibA is sufficient to confer Phg1A-dependent surface targeting to a reporter protein. Accordingly, in Dictyostelium phg1A-knockout (KO) cells, proteins with glycine-rich TMDs were less efficiently transported out of the endoplasmic reticulum (ER) and to the cell surface. Phg1A, as well as its human ortholog TM9SF4 specifically associated with glycine-rich TMDs. In human cells, genetic inactivation of TM9SF4 resulted in an increased retention of glycine-rich TMDs in the endoplasmic reticulum, whereas TM9SF4 overexpression enhanced their surface localization. The bulk of the TM9SF4 protein was localized in the Golgi complex and a proximity-ligation assay suggested that it might interact with glycine-rich TMDs. Taken together, these results suggest that one of the main roles of TM9 proteins is to serve as intramembrane cargo receptors controlling exocytosis and surface localization of a subset of membrane proteins. Summary: TM9 proteins facilitate transport to the cell surface of proteins with gylcine-rich transmembrane domains. They might represent a new class of cargo receptors controlling transport in the secretory pathway.
Collapse
Affiliation(s)
- Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Marion Le Coadic
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Navin Gopaldass
- Department of Biochemistry, Sciences II, University of Geneva, 30 quai Ernest-Ansermet, Geneva 4 CH-1211, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| |
Collapse
|
18
|
Fossati M, Goud B, Borgese N, Manneville JB. An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers. CELLULAR LOGISTICS 2014; 4:e29087. [PMID: 25210649 PMCID: PMC4156485 DOI: 10.4161/cl.29087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/21/2014] [Accepted: 04/30/2014] [Indexed: 01/08/2023]
Abstract
Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required.
Collapse
Affiliation(s)
- Matteo Fossati
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine; University of Milano; Milano, Italy
| | - Bruno Goud
- CNRS-Institut Curie; UMR144; Paris, France
| | - Nica Borgese
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine; University of Milano; Milano, Italy ; Department of Health Science; University of Catanzaro "Magna Graecia"; Catanzaro, Italy
| | | |
Collapse
|
19
|
Gershlick DC, de Marcos Lousa C, Foresti O, Lee AJ, Pereira EA, daSilva LL, Bottanelli F, Denecke J. Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco. THE PLANT CELL 2014; 26:1308-29. [PMID: 24642936 PMCID: PMC4001386 DOI: 10.1105/tpc.113.122226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 05/02/2023]
Abstract
The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II-dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR-ligand interactions in the cis-Golgi play an important role in vacuolar sorting. We also show that a conserved Glu is required but not sufficient for rate-limiting YXX-mediated receptor trafficking. Protein-protein interaction studies show that the VSR tail interacts with the μ-subunits of plant or mammalian clathrin adaptor complex AP1 and plant AP4 but not that of plant and mammalian AP2. Mutants causing a detour of full-length receptors via the cell surface invariantly cause the secretion of VSR ligands. Therefore, we propose that cycling via the plasma membrane is unlikely to play a role in biosynthetic vacuolar sorting under normal physiological conditions and that the conserved Ile-Met motif is mainly used to recover mistargeted receptors. This occurs via a fundamentally different pathway from the prevacuolar compartment that does not mediate recycling. The role of clathrin and clathrin-independent pathways in vacuolar targeting is discussed.
Collapse
Affiliation(s)
- David C. Gershlick
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carine de Marcos Lousa
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Andrew J. Lee
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | - Jurgen Denecke
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
20
|
Gershlick DC, Lousa CDM, Farmer L, Denecke J. Routes to and from the plasma membrane: bulk flow versus signal mediated endocytosis. PLANT SIGNALING & BEHAVIOR 2014; 9:e972813. [PMID: 25482763 PMCID: PMC4622740 DOI: 10.4161/15592316.2014.972813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 05/29/2023]
Abstract
Transport of proteins via the secretory pathway is controlled by a combination of signal dependent cargo selection as well as unspecific bulk flow of membranes and aqueous lumen. Using the plant vacuolar sorting receptor as model for membrane spanning proteins, we have distinguished bulk flow from signal mediated protein targeting in biosynthetic and endocytic transport routes and investigated the influence of transmembrane domain length. More specifically, long transmembrane domains seem to prevent ER retention, either by stimulating export or preventing recycling from post ER compartments. Long transmembrane domains also seem to prevent endocytic bulk flow from the plasma membrane, but the presence of specific endocytosis signals overrules this in a dominant manner.
Collapse
Affiliation(s)
- David C Gershlick
- Centre for Plant Sciences; University of Leeds; Leeds, United Kingdom
| | | | - Lucy Farmer
- Centre for Plant Sciences; University of Leeds; Leeds, United Kingdom
| | - Jurgen Denecke
- Centre for Plant Sciences; University of Leeds; Leeds, United Kingdom
| |
Collapse
|
21
|
Anchors aweigh: protein localization and transport mediated by transmembrane domains. Trends Cell Biol 2013; 23:511-7. [PMID: 23806646 PMCID: PMC3783643 DOI: 10.1016/j.tcb.2013.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022]
Abstract
TMDs control the intracellular transport of many membrane proteins. The length and hydrophobicity of TMDs determine their sorting. Some membrane receptors for sorting TMDs have been identified. Lipid partitioning may also participate in the sorting of TMDs.
The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.
Collapse
|
22
|
Herzig Y, Sharpe HJ, Elbaz Y, Munro S, Schuldiner M. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol 2012; 10:e1001329. [PMID: 22629230 PMCID: PMC3358343 DOI: 10.1371/journal.pbio.1001329] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/03/2012] [Indexed: 11/29/2022] Open
Abstract
A systematic approach to visualize proteins exiting the endoplasmic reticulum paired with their cargo receptors identifies novel cargo for known receptors and reveals the mechanism of one conserved receptor, Erv14. The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term “PAIRS” (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ∼150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs. All cells sense their environment, respond to it, and communicate with neighboring cells. To perform these functions, cells use an impressive array of proteins that they display on their surface membranes and secrete into their external environment. Newly synthesized proteins destined for the surface of nucleated cells, or to be secreted into the environment must enter the secretory pathway through the endoplasmic reticulum. Those that reside there remain behind, but most leave for their next destination as cargo proteins in lipid vesicles. To be packaged into vesicles, many of them require a “cargo receptor,” which recognizes and tethers specific cargo proteins in the vesicles. Our study takes a systematic approach to identify the range of cargo proteins that bind to each of the known receptors in yeast. By using this approach, we both discover new cargo for known cargo receptors and delineate the rule that governs cargo selection for one cargo receptor, Erv14. Thus, our study demonstrates a novel approach to identify the cargo for any receptor or to discover new cargo receptors.
Collapse
Affiliation(s)
- Yonatan Herzig
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yael Elbaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail: (SM); (MS)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (SM); (MS)
| |
Collapse
|
23
|
Froquet R, le Coadic M, Perrin J, Cherix N, Cornillon S, Cosson P. TM9/Phg1 and SadA proteins control surface expression and stability of SibA adhesion molecules in Dictyostelium. Mol Biol Cell 2012; 23:679-86. [PMID: 22219373 PMCID: PMC3279395 DOI: 10.1091/mbc.e11-04-0338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ETOC: TM9/Phg1 proteins are essential for cellular adhesion in many systems, from Dictyostelium to human cells, yet their exact role remains unknown. We demonstrate that TM9 proteins participate in adhesion in Dictyostelium cells by controlling the surface levels of SibA adhesion molecules, notably by influencing their sorting in the endocytic pathway. TM9 proteins form a family of conserved proteins with nine transmembrane domains essential for cellular adhesion in many biological systems, but their exact role in this process remains unknown. In this study, we found that genetic inactivation of the TM9 protein Phg1A dramatically decreases the surface levels of the SibA adhesion molecule in Dictyostelium amoebae. This is due to a decrease in sibA mRNA levels, in SibA protein stability, and in SibA targeting to the cell surface. A similar phenotype was observed in cells devoid of SadA, a protein that does not belong to the TM9 family but also exhibits nine transmembrane domains and is essential for cellular adhesion. A contact site A (csA)-SibA chimeric protein comprising only the transmembrane and cytosolic domains of SibA and the extracellular domain of the Dictyostelium surface protein csA also showed reduced stability and relocalization to endocytic compartments in phg1A knockout cells. These results indicate that TM9 proteins participate in cell adhesion by controlling the levels of adhesion proteins present at the cell surface.
Collapse
Affiliation(s)
- Romain Froquet
- Département de Physiologie Cellulaire et Métabolisme, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Bos E, Sant´Anna C, Gnaegi H, Pinto RF, Ravelli RB, Koster AJ, Souza WD, Peters PJ. A new approach to improve the quality of ultrathin cryo-sections; its use for immunogold EM and correlative electron cryo-tomography. J Struct Biol 2011; 175:62-72. [DOI: 10.1016/j.jsb.2011.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|