1
|
Zheng Y, Zhang X, Liu Z, Fan M, Deng L, Ping J. CircMYO9A inhibits influenza A virus replication by dampening haemagglutinin cleavage via increasing SERPINE1/PAI-1 expression. Emerg Microbes Infect 2025; 14:2502007. [PMID: 40314425 DOI: 10.1080/22221751.2025.2502007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/03/2025]
Abstract
Circular RNAs (circRNAs) represent a class of widespread and diverse covalently closed circular endogenous RNAs that play critical roles in regulating gene expression in mammals. However, the roles and regulatory mechanisms of circRNAs during influenza A virus (IAV) infection remain largely unexplored. In this study, we screened the circRNA transcription profiles of WSN-infected cells to identify circRNAs involved in viral replication and identified a novel differentially expressed circular RNA, circMYO9A. Mechanistically, circMYO9A acts as a competing endogenous RNA (ceRNA) for SERPINE1/PAI-1 by sponging miR-6059-3p, thereby increasing SERPINE1/PAI-1 expression, which restricts IAV haemagglutinin cleavage and subsequently reduces the infectivity of progeny viruses. Importantly, our findings demonstrate that circMYO9A significantly inhibits viral replication in the lungs of infected mice, potentially increasing their survival during IAV infection. These results demonstrate that circRNAs play crucial roles in inhibiting IAV replication and provide novel insights into potential therapeutic strategies involving circRNAs.
Collapse
Affiliation(s)
- Yiqing Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaoting Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhiyuan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Menglu Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Lun Y, Sun J, Wei L, Liu B, Li Z, Dong W, Zhao W. SPINK13 acts as a tumor suppressor in hepatocellular carcinoma by inhibiting Akt phosphorylation. Cell Death Dis 2024; 15:822. [PMID: 39537605 PMCID: PMC11561306 DOI: 10.1038/s41419-024-07214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The PI3K/Akt pathway is overexpressed in nearly 50% of hepatocellular carcinomas and inhibits apoptosis by promoting the expression of antiapoptotic genes. Serine protease inhibitors have been shown to induce apoptosis in hepatoma cells by downregulating SPINK13 in the PI3K/Akt pathway. In this study, SPINK13 was expressed in lentiviral vectors. Changes in signaling pathway adapter proteins, apoptosis regulatory proteins, cell cycle regulatory proteins, and the biological behavior of hepatocellular carcinoma were observed in cell and nude mouse xenograft models. The underlying mechanism of endogenous SPINK13-induced apoptosis in hepatocellular carcinoma cells was explored via transcriptomics. As a result, endogenous SPINK13 might inhibit the activity of Furin protease, downregulate the Notch1/Hes1 pathway in a binding manner, activate the direct effector PTEN, inhibit Akt phosphorylation, inactivate the downstream PI3K/Akt pathway, and ultimately lead to mitochondrial apoptosis and cell cycle arrest in hepatoma cells. Therefore, the Notch1/Hes1/PTEN pathway may act upstream of SPINK13 to downregulate the PI3K/Akt signaling pathway. Our study helps elucidate the underlying mechanism of SPINK13 in anti-hepatocellular carcinoma and lays a theoretical foundation for the development of novel therapeutic serine protease inhibitors.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Mice, Nude
- Phosphorylation
- Apoptosis/genetics
- Mice
- Signal Transduction
- Cell Line, Tumor
- Phosphatidylinositol 3-Kinases/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Serine Peptidase Inhibitors, Kazal Type/metabolism
- Serine Peptidase Inhibitors, Kazal Type/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Hep G2 Cells
- Mice, Inbred BALB C
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yongzhi Lun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China.
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China.
| | - Jie Sun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Ling Wei
- Beijing Centre for Physical and Chemical Analysis, 100089, Beijing, China
| | - Ben Liu
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Zhixue Li
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wen Dong
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Wenqi Zhao
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
| |
Collapse
|
3
|
Lotke R, Petersen M, Sauter D. Restriction of Viral Glycoprotein Maturation by Cellular Protease Inhibitors. Viruses 2024; 16:332. [PMID: 38543698 PMCID: PMC10975521 DOI: 10.3390/v16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.
Collapse
Affiliation(s)
| | | | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Al‐kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GE. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken) 2024; 7:e1920. [PMID: 38018319 PMCID: PMC10809206 DOI: 10.1002/cnr2.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Endometrial adenocarcinoma (EAC) is a malignant tumor of the endometrium. EAC is the most common female malignancy following the menopause period. About 40% of patients with EAC are linked with obesity and interrelated with hypertension, diabetes mellitus, and high circulating estrogen levels. Proprotein convertase (PC) furin was involved in the progression of EAC. RECENT FINDINGS Furin is a protease enzyme belonging to the subtilisin PC family called PC subtilisin/kexin type 3 that converts precursor proteins to biologically active forms and products. Aberrant activation of furin promotes abnormal cell proliferation and the development of cancer. Furin promotes angiogenesis, malignant cell proliferation, and tissue invasion by malignant cells through its pro-metastatic and oncogenic activities. Furin activity is correlated with the malignant proliferation of EAC. Higher expression of furin may increase the development of EAC through overexpression of pro-renin receptors and disintegrin and metalloprotease 17 (ADAM17). As well, inflammatory signaling in EAC promotes the expression of furin with further propagation of malignant transformation. CONCLUSION Furin is associated with the development and progression of EAC through the induction of proliferation, invasion, and metastasis of malignant cells of EAC. Furin induces ontogenesis in EAC through activation expression of ADAM17, pro-renin receptor, CD109, and TGF-β. As well, EAC-mediated inflammation promotes the expression of furin with further propagation of neoplastic growth and invasion.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and ObstetricsCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh University, Chandigarh‐Ludhiana HighwayMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of PathologyFaculty of Veterinary Medicine, Matrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary Medicine, Damanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
5
|
Rana T, Jiang C, Banerjee S, Yi N, Zmijewski JW, Liu G, Liu RM. PAI-1 Regulation of p53 Expression and Senescence in Type II Alveolar Epithelial Cells. Cells 2023; 12:2008. [PMID: 37566086 PMCID: PMC10417428 DOI: 10.3390/cells12152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Cellular senescence contributes importantly to aging and aging-related diseases, including idiopathic pulmonary fibrosis (IPF). Alveolar epithelial type II (ATII) cells are progenitors of alveolar epithelium, and ATII cell senescence is evident in IPF. Previous studies from this lab have shown that increased expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, promotes ATII cell senescence through inducing p53, a master cell cycle repressor, and activating p53-p21-pRb cell cycle repression pathway. In this study, we further show that PAI-1 binds to proteasome components and inhibits proteasome activity and p53 degradation in human lung epithelial A549 cells and primary mouse ATII cells. This is associated with a senescence phenotype of these cells, manifested as increased p53 and p21 expression, decreased phosphorylated retinoblastoma protein (pRb), and increased senescence-associated beta-galactose (SA-β-gal) activity. Moreover, we find that, although overexpression of wild-type PAI-1 (wtPAI-1) or a secretion-deficient, mature form of PAI-1 (sdPAI-1) alone induces ATII cell senescence (increases SA-β-gal activity), only wtPAI-1 induces p53, suggesting that the premature form of PAI-1 is required for the interaction with the proteasome. In summary, our data indicate that PAI-1 can bind to proteasome components and thus inhibit proteasome activity and p53 degradation in ATII cells. As p53 is a master cell cycle repressor and PAI-1 expression is increased in many senescent cells, the results from this study will have a significant impact not only on ATII cell senescence/lung fibrosis but also on the senescence of other types of cells in different diseases.
Collapse
Affiliation(s)
- Tapasi Rana
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chunsun Jiang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jaroslaw W. Zmijewski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Haynes LM, Huttinger ZM, Yee A, Kretz CA, Siemieniak DR, Lawrence DA, Ginsburg D. Deep mutational scanning and massively parallel kinetics of plasminogen activator inhibitor-1 functional stability to probe its latency transition. J Biol Chem 2022; 298:102608. [PMID: 36257408 PMCID: PMC9667310 DOI: 10.1016/j.jbc.2022.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor superfamily of proteins, is unique among serine protease inhibitors for exhibiting a spontaneous conformational change to a latent or inactive state. The functional half-life for this transition at physiologic temperature and pH is ∼1 to 2 h. To better understand the molecular mechanisms underlying this transition, we now report on the analysis of a comprehensive PAI-1 variant library expressed on filamentous phage and selected for functional stability after 48 h at 37 °C. Of the 7201 possible single amino acid substitutions in PAI-1, we identified 439 that increased the functional stability of PAI-1 beyond that of the WT protein. We also found 1549 single amino acid substitutions that retained inhibitory activity toward the canonical target protease of PAI-1 (urokinase-like plasminogen activator), whereas exhibiting functional stability less than or equal to that of WT PAI-1. Missense mutations that increase PAI-1 functional stability are concentrated in highly flexible regions within the PAI-1 structure. Finally, we developed a method for simultaneously measuring the functional half-lives of hundreds of PAI-1 variants in a multiplexed, massively parallel manner, quantifying the functional half-lives for 697 single missense variants of PAI-1 by this approach. Overall, these findings provide novel insight into the mechanisms underlying the latency transition of PAI-1 and provide a database for interpreting human PAI-1 genetic variants.
Collapse
Affiliation(s)
- Laura M Haynes
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Zachary M Huttinger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Yee
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA; Howard Hughes Medical Institute; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Tsai YT, Li CY, Huang YH, Chang TS, Lin CY, Chuang CH, Wang CY, Anuraga G, Chang TH, Shih TC, Lin ZY, Chen YL, Chung I, Lee KH, Chang CC, Sung SY, Yang KH, Tsui WL, Yap CV, Wu MH. Galectin-1 orchestrates an inflammatory tumor-stroma crosstalk in hepatoma by enhancing TNFR1 protein stability and signaling in carcinoma-associated fibroblasts. Oncogene 2022; 41:3011-3023. [PMID: 35459781 DOI: 10.1038/s41388-022-02309-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/10/2023]
Abstract
Most cases of hepatocellular carcinoma (HCC) arise with the fibrotic microenvironment where hepatic stellate cells (HSCs) and carcinoma-associated fibroblasts (CAFs) are critical components in HCC progression. Therefore, CAF normalization could be a feasible therapy for HCC. Galectin-1 (Gal-1), a β-galactoside-binding lectin, is critical for HSC activation and liver fibrosis. However, few studies has evaluated the pathological role of Gal-1 in HCC stroma and its role in hepatic CAF is unclear. Here we showed that Gal-1 mainly expressed in HCC stroma, but not cancer cells. High expression of Gal-1 is correlated with CAF markers and poor prognoses of HCC patients. In co-culture systems, targeting Gal-1 in CAFs or HSCs, using small hairpin (sh)RNAs or an therapeutic inhibitor (LLS30), downregulated plasminogen activator inhibitor-2 (PAI-2) production which suppressed cancer stem-like cell properties and invasion ability of HCC in a paracrine manner. The Gal-1-targeting effect was mediated by increased a disintegrin and metalloprotease 17 (ADAM17)-dependent TNF-receptor 1 (TNFR1) shedding/cleavage which inhibited the TNF-α → JNK → c-Jun/ATF2 signaling axis of pro-inflammatory gene transcription. Silencing Gal-1 in CAFs inhibited CAF-augmented HCC progression and reprogrammed the CAF-mediated inflammatory responses in a co-injection xenograft model. Taken together, the findings uncover a crucial role of Gal-1 in CAFs that orchestrates an inflammatory CSC niche supporting HCC progression and demonstrate that targeting Gal-1 could be a potential therapy for fibrosis-related HCC.
Collapse
Affiliation(s)
- Yao-Tsung Tsai
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yi Li
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Sheng Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ivy Chung
- Universiti Malaya Cancer Research Institute, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Che-Chang Chang
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shian-Ying Sung
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Huei Yang
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wan-Lin Tsui
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chee-Voon Yap
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Heng Wu
- International PhD Program for Translational Science, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan. .,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
8
|
Sasaki K, Fujiwara T, Ochi T, Ono K, Kato H, Onodera K, Ichikawa S, Fukuhara N, Onishi Y, Yokoyama H, Miyata T, Harigae H. TM5614, an Inhibitor of Plasminogen Activator Inhibitor-1, Exerts an Antitumor Effect on Chronic Myeloid Leukemia. TOHOKU J EXP MED 2022; 257:211-224. [DOI: 10.1620/tjem.2022.j036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Tohru Fujiwara
- Department of Hematology, Tohoku University Graduate School
| | - Tetsuro Ochi
- Department of Hematology, Tohoku University Graduate School
| | - Koya Ono
- Department of Hematology, Tohoku University Graduate School
| | - Hiroki Kato
- Department of Hematology, Tohoku University Graduate School
| | - Koichi Onodera
- Department of Hematology, Tohoku University Graduate School
| | | | | | - Yasushi Onishi
- Department of Hematology, Tohoku University Graduate School
| | | | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine
| | | |
Collapse
|
9
|
Carroll EL, Bailo M, Reihill JA, Crilly A, Lockhart JC, Litherland GJ, Lundy FT, McGarvey LP, Hollywood MA, Martin SL. Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases. Int J Mol Sci 2021; 22:5817. [PMID: 34072295 PMCID: PMC8199346 DOI: 10.3390/ijms22115817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.
Collapse
Affiliation(s)
- Emma L. Carroll
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; (E.L.C.); (J.A.R.)
| | - Mariarca Bailo
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - James A. Reihill
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; (E.L.C.); (J.A.R.)
| | - Anne Crilly
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - John C. Lockhart
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - Gary J. Litherland
- Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; (M.B.); (A.C.); (J.C.L.); (G.J.L.)
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; (F.T.L.); (L.P.M.)
| | - Lorcan P. McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; (F.T.L.); (L.P.M.)
| | - Mark A. Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland;
| | - S. Lorraine Martin
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; (E.L.C.); (J.A.R.)
| |
Collapse
|
10
|
Wu Y, Huang Y, Zhang W, Gunst SJ. The proprotein convertase furin inhibits IL-13-induced inflammation in airway smooth muscle by regulating integrin-associated signaling complexes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L102-L115. [PMID: 34009050 DOI: 10.1152/ajplung.00618.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Furin is a proprotein convertase that regulates the activation and the inactivation of multiple proteins including matrix metalloproteinases, integrins, and cytokines. It is a serine endoprotease that localizes to the plasma membrane and can be secreted into the extracellular space. The role of furin in regulating inflammation in isolated canine airway smooth muscle tissues was investigated. The treatment of airway tissues with recombinant furin (rFurin) inhibited the activation of Akt and eotaxin secretion induced by IL-13, and it prevented the IL-13-induced suppression of smooth muscle myosin heavy chain expression. rFurin promoted a differentiated phenotype by activating β1-integrin proteins and stimulating the activation of the adhesome proteins vinculin and paxillin by talin. Activated paxillin induced the binding of Akt to β-parvin IPP [integrin-linked kinase (ILK), PINCH, parvin] complexes, which inhibits Akt activation. Treatment of tissues with a furin inhibitor or the depletion of endogenous furin using shRNA resulted in Akt activation and inflammatory responses similar to those induced by IL-13. Furin inactivation or IL-13 caused talin cleavage and integrin inactivation, resulting in the inactivation of vinculin and paxillin. Paxillin inactivation resulted in the coupling of Akt to α-parvin IPP complexes, which catalyze Akt activation and an inflammatory response. The results demonstrate that furin inhibits inflammation in airway smooth muscle induced by IL-13 and that the anti-inflammatory effects of furin are mediated by activating integrin proteins and integrin-associated signaling complexes that regulate Akt-mediated pathways to the nucleus. Furin may have therapeutic potential for the treatment of inflammatory conditions of the lungs and airways.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
11
|
Garad M, Edelmann E, Leßmann V. Long-term depression at hippocampal mossy fiber-CA3 synapses involves BDNF but is not mediated by p75NTR signaling. Sci Rep 2021; 11:8535. [PMID: 33879805 PMCID: PMC8058084 DOI: 10.1038/s41598-021-87769-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.
Collapse
Affiliation(s)
- Machhindra Garad
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Elke Edelmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
12
|
Yaron JR, Zhang L, Guo Q, Haydel SE, Lucas AR. Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front Cardiovasc Med 2021; 8:648947. [PMID: 33869309 PMCID: PMC8044766 DOI: 10.3389/fcvm.2021.648947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The making and breaking of clots orchestrated by the thrombotic and thrombolytic serine protease cascades are critical determinants of morbidity and mortality during infection and with vascular or tissue injury. Both the clot forming (thrombotic) and the clot dissolving (thrombolytic or fibrinolytic) cascades are composed of a highly sensitive and complex relationship of sequentially activated serine proteases and their regulatory inhibitors in the circulating blood. The proteases and inhibitors interact continuously throughout all branches of the cardiovascular system in the human body, representing one of the most abundant groups of proteins in the blood. There is an intricate interaction of the coagulation cascades with endothelial cell surface receptors lining the vascular tree, circulating immune cells, platelets and connective tissue encasing the arterial layers. Beyond their role in control of bleeding and clotting, the thrombotic and thrombolytic cascades initiate immune cell responses, representing a front line, "off-the-shelf" system for inducing inflammatory responses. These hemostatic pathways are one of the first response systems after injury with the fibrinolytic cascade being one of the earliest to evolve in primordial immune responses. An equally important contributor and parallel ancient component of these thrombotic and thrombolytic serine protease cascades are the serine protease inhibitors, termed serpins. Serpins are metastable suicide inhibitors with ubiquitous roles in coagulation and fibrinolysis as well as multiple central regulatory pathways throughout the body. Serpins are now known to also modulate the immune response, either via control of thrombotic and thrombolytic cascades or via direct effects on cellular phenotypes, among many other functions. Here we review the co-evolution of the thrombolytic cascade and the immune response in disease and in treatment. We will focus on the relevance of these recent advances in the context of the ongoing COVID-19 pandemic. SARS-CoV-2 is a "respiratory" coronavirus that causes extensive cardiovascular pathogenesis, with microthrombi throughout the vascular tree, resulting in severe and potentially fatal coagulopathies.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Shelley E. Haydel
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a functional biomarker of the metabolic syndrome. Previous studies have demonstrated that PAI-1 is a mechanistic contributor to several elements of the syndrome, including obesity, hypertension and insulin resistance. Here we show that PAI-1 is also a critical regulator of hepatic lipid metabolism. RNA sequencing revealed that PAI-1 directly regulates the transcriptional expression of numerous genes involved in mammalian lipid homeostasis, including PCSK9 and FGF21. Pharmacologic or genetic reductions in plasma PAI-1 activity ameliorates hyperlipidemia in vivo. These experimental findings are complemented with the observation that genetic deficiency of PAI-1 is associated with reduced plasma PCSK9 levels in humans. Taken together, our findings identify PAI-1 as a novel contributor to mammalian lipid metabolism and provides a fundamental mechanistic insight into the pathogenesis of one of the most pervasive medical problems worldwide.
Collapse
|
14
|
He Y, Zhu H, Zhang M, Li J, Ma S, Lu Y, Chen L, Zhang M, Peng H. Association Between Serum Furin and Fasting Glucose: A Cross-Sectional Study in Chinese Adults. Front Endocrinol (Lausanne) 2021; 12:781890. [PMID: 35046896 PMCID: PMC8761844 DOI: 10.3389/fendo.2021.781890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Furin has been associated with glucose metabolic phenotypes in small sampled clinical studies. However, this association has not yet been studied in Chinese. Here, we aimed to examine the association between serum furin and fasting glucose in Chinese adults. METHODS Serum furin and fasting plasma glucose were assayed for 2,172 participants (mean aged 53 years, 38% men) in the Gusu cohort. A median regression model was applied to examine the association between serum furin and fasting glucose, adjusting for age, sex, education level, cigarette smoking, alcohol drinking, obesity, blood pressure, and lipids. To facilitate data interpretation, the association between serum furin and prevalent diabetes was also examined. RESULTS Serum furin was negatively associated with fasting glucose (β=-0.18, P<0.001 for log-furin). In participants with diabetes, serum furin was significantly lower than those with normal glucose (median: 0.90 ng/mL vs. 1.05 ng/mL, P=0.001). Compared with participants in the highest quartile of serum furin, those in the lowest quartile had 42% and 80% increased risk of prevalent prediabetes (OR=1.42, 95%CI: 1.05-1.92, P=0.023) and diabetes (OR=1.80, 95%CI: 1.13-2.91, P=0.015), respectively. CONCLUSIONS Serum furin was negatively associated with prediabetes and diabetes in Chinese adults. Our findings suggest that serum furin may be a risk factor or a biomarker of diabetes.
Collapse
Affiliation(s)
- Yan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hanyun Zhu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Min Zhang
- Central Office, Suzhou National New and Hi-Tech Industrial Development Zone Center for Disease Control and Prevention, Suzhou, China
| | - Jing Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shengqi Ma
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yin Lu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Linan Chen
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Mingzhi Zhang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Hao Peng, ; Mingzhi Zhang,
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
- *Correspondence: Hao Peng, ; Mingzhi Zhang,
| |
Collapse
|
15
|
Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull 2021; 166:172-184. [PMID: 33202257 DOI: 10.1016/j.brainresbull.2020.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in pathophysiological mechanisms in neuropsychiatric diseases, including depression, anxiety, and schizophrenia (SZ), as well as neurodegenerative diseases like Parkinson's disease (PD) and Alzheimer's disease (AD). An imbalance or insufficient pro-brain-derived neurotrophic factor (proBDNF) transformation into mature BDNF (mBDNF) is potentially critical to the disease pathogenesis by impairing neuronal plasticity as suggested by results from many studies. Thus, promoting proBDNF transformation into mBDNF is therefore hypothesized as beneficial for the treatment of neuropsychiatric and neurodegenerative diseases. ProBDNF is proteolytically cleaved into the mBDNF by intracellular furin/proprotein convertases and extracellular proteases (plasmin/matrix metallopeptidases). This article reviews the mechanisms of the conversion of proBDNF to mBDNF and the research status of intracellular/extracellular proteolytic proteases for neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuhuan Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
16
|
Garcia V, Park EJ, Siragusa M, Frohlich F, Mahfuzul Haque M, Pascale JV, Heberlein KR, Isakson BE, Stuehr DJ, Sessa WC. Unbiased proteomics identifies plasminogen activator inhibitor-1 as a negative regulator of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2020; 117:9497-9507. [PMID: 32300005 PMCID: PMC7196906 DOI: 10.1073/pnas.1918761117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.
Collapse
Affiliation(s)
- Victor Garcia
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Mauro Siragusa
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Florian Frohlich
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Department of Biology/Chemistry, Molecular Membrane Biology Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Katherine R Heberlein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
17
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
18
|
Takafuji Y, Tatsumi K, Ishida M, Kawao N, Okada K, Matsuo O, Kaji H. Plasminogen activator inhibitor-1 deficiency suppresses osteoblastic differentiation of mesenchymal stem cells in mice. J Cell Physiol 2018; 234:9687-9697. [PMID: 30387130 DOI: 10.1002/jcp.27655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Statin treatment reduces matrix degradation capacity of proinflammatory polarized macrophages. Vascul Pharmacol 2018; 110:49-54. [PMID: 30098417 DOI: 10.1016/j.vph.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Macrophages are versatile immune cells involved in tissue degradation and remodeling. Proinflammatory macrophages have the highest capacity of matrix degradation and proteolysis. Within atherosclerotic lesions, proinflammatory macrophages are associated with unstable plaques. Statins have been demonstrated to increase plaque stability. Possible changes of polarized macrophage tissue degradation behavior under statin treatment are currently unknown. METHODS Polarized macrophages were tested in vitro for matrix degradation capacity with or without statin treatment. RESULTS Proinflammatory macrophages show high matrix degradation capacity, which is lost after statin treatment. Statin concentrations were within a physiological range and did not influence overall macrophage polarization. Proinflammatory macrophages showed however a loss of filopodia where activators of MMPs are located. Loss of matrix degradation in proinflammatory macrophages was associated with changes of MMP14 activation and loss of uPAR localization at filopodia. Supplementation of mevalonate restored localization of uPAR to cellular protrusions and matrix degradation capacity. CONCLUSION Statins reduce the matrix degradation potential of proinflammatory macrophages by reducing uPAR localization to cellular filopodia and reducing intracellular MMP14 activation.
Collapse
|
20
|
Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: Mechanisms and epidemiology. Thromb Haemost 2017; 110:669-80. [DOI: 10.1160/th13-01-0075] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/20/2013] [Indexed: 12/19/2022]
Abstract
summaryCentral obesity is a key feature of the metabolic syndrome (metS), a multiplex risk factor for subsequent development of type 2 diabetes and cardiovascular disease. Many metabolic alterations closely related to this condition exert effects on platelets and vascular cells. A procoagulant and hypofibrinolytic state has been identified, mainly underlain by inflammation, oxidative stress, dyslipidaemia, and ectopic fat that accompany central obesity. In support of these data, central obesity independently predisposes not only to atherothrombosis but also to venous thrombosis.
Collapse
|
21
|
Eren M, Place AT, Thomas PM, Flevaris P, Miyata T, Vaughan DE. PAI-1 is a critical regulator of FGF23 homeostasis. SCIENCE ADVANCES 2017; 3:e1603259. [PMID: 28924605 PMCID: PMC5597312 DOI: 10.1126/sciadv.1603259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/11/2017] [Indexed: 05/29/2023]
Abstract
Elevated levels of fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone, are associated with a number of pathologic conditions including chronic kidney disease, cardiac hypertrophy, and congestive heart failure. Currently, there are no specific treatments available to lower plasma FGF23 levels. We have recently reported that genetic plasminogen activator inhibitor-1 (PAI-1) deficiency provided a significant reduction in circulating FGF23 levels while simultaneously prolonging the life span of Klotho-deficient mice. We extend our investigations into the effect of PAI-1 on FGF23 homeostasis. Transgenic overexpression of PAI-1 resulted in threefold increase in FGF23 levels compared to wild-type littermates. Moreover, pharmacological modulation of PAI-1 activity with the small-molecule PAI-1 antagonist TM5441 significantly reduced FGF23 levels in PAI-1 transgenic and Klotho-deficient mice. In addition, TM5441 treatment or PAI-1 deficiency significantly accelerated the clearance of endogenous FGF23 and recombinant human FGF23 from circulation in mice with acute kidney injury. On the basis of these observations, we studied the effects of plasminogen activators (PAs), tissue-type PA (tPA) and urokinase-type PA (uPA), on FGF23. We demonstrate that both PAs directly cleave FGF23; however, it is not known whether the PA-generated FGF23 peptides retain or acquire functions that affect binding and/or signaling properties of intact FGF23. PAI-1 inhibits the PA-dependent cleavage of FGF23, and TM5441 inhibition of PAI-1 restores the proteolysis of FGF23. Furthermore, top-down proteomic analysis indicates that tPA cleaves FGF23 at multiple arginines including the proconvertase sensitive site R176. In summary, our results indicate that PAI-1 prevents the PA-driven proteolysis of FGF23 and PAI-1 inhibition provides a novel therapeutic approach to prevent the pathologic consequences of increased FGF23.
Collapse
Affiliation(s)
- Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aaron T. Place
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul M. Thomas
- Proteomics Center of Excellence, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Panagiotis Flevaris
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Douglas E. Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
22
|
TGF-β-induced intracellular PAI-1 is responsible for retaining hematopoietic stem cells in the niche. Blood 2017; 130:2283-2294. [PMID: 28821477 DOI: 10.1182/blood-2017-02-767384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in the supportive stromal niche in bone marrow (BM); when needed, however, they are rapidly mobilized into the circulation, suggesting that HSPCs are intrinsically highly motile but usually stay in the niche. We questioned what determines the motility of HSPCs. Here, we show that transforming growth factor (TGF)-β-induced intracellular plasminogen activator inhibitor (PAI)-1 activation is responsible for keeping HSPCs in the BM niche. We found that the expression of PAI-1, a downstream target of TGF-β signaling, was selectively augmented in niche-residing HSPCs. Functional inhibition of the TGF-β-PAI-1 signal increased MT1-MMP-dependent cellular motility, causing a detachment of HSPCs from the TGF-β-expressing niche cells, such as megakaryocytes. Furthermore, consistently high motility in PAI-1-deficient HSPCs was demonstrated by both a transwell migration assay and reciprocal transplantation experiments, indicating that intracellular, not extracellular, PAI-1 suppresses the motility of HSPCs, thereby causing them to stay in the niche. Mechanistically, intracellular PAI-1 inhibited the proteolytic activity of proprotein convertase Furin, diminishing MT1-MMP activity. This reduced expression of MT1-MMP in turn affected the expression levels of several adhesion/deadhesion molecules for determination of HSPC localization, such as CD44, VLA-4, and CXCR4, which then promoted the retention of HSPCs in the niche. Our findings open up a new field for the study of intracellular proteolysis as a regulatory mechanism of stem cell fate, which has the potential to improve clinical HSPC mobilization and transplantation protocols.
Collapse
|
23
|
Intra- and extracellular plasminogen activator inhibitor-1 regulate effect of vitronectin against radiation-induced endothelial cell death. Vascul Pharmacol 2016; 87:150-158. [PMID: 27650166 DOI: 10.1016/j.vph.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/13/2016] [Accepted: 09/10/2016] [Indexed: 01/12/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is induced by radiation resulting in endothelial cell impairment, potentially leading to multiple organ failure. Vitronectin (VN) is a 75-kDa glycoprotein (VN75) cleaved into two forms (VN75 or VN65/10) by furin, which is regulated by intracellular PAI-1. VN protects against radiation-induced endothelial cell death, but the mechanisms involved in VN processing and its interactions with intra- and extracellular PAI-1 remain unclear. We examined these processes in cells in vitro using recombinant proteins or overexpression of VN and PAI-1 genes, including furin-susceptible (T381) and furin-resistant VN (A381). VN processing was analyzed using a mutant PAI-1 with relatively weaker binding to VN. VN function was evaluated by survival of radiation-damaged endothelial cells. Wild-type, but not mutant PAI-1 inhibited furin-dependent VN processing. Gene transfer revealed that furin-susceptible VN was processed more than the furin-resistant form, but processing of both was inhibited by PAI-1 overexpression. Intracellular PAI-1 formed a complex with VN75 (T381) in cells and media, and the VN75 form was secreted preferentially. Only VN75 protected against radiation-induced endothelial cell death, in which its effect was abolished by wild-type but not mutant PAI-1. These findings indicate that intracellular PAI-1 inhibits VN processing and protects against radiation-induced endothelial cell death.
Collapse
|
24
|
D'Elia JA, Bayliss G, Gleason RE, Weinrauch LA. Cardiovascular-renal complications and the possible role of plasminogen activator inhibitor: a review. Clin Kidney J 2016; 9:705-12. [PMID: 27679717 PMCID: PMC5036907 DOI: 10.1093/ckj/sfw080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/20/2016] [Indexed: 12/14/2022] Open
Abstract
Since angiotensin increases the expression of plasminogen activator inhibitor (PAI), mechanisms associated with an actively functioning renin–angiotensin–aldosterone system can be expected to be associated with increased PAI-1 expression. These mechanisms are present not only in common conditions resulting in glomerulosclerosis associated with aging, diabetes or genetic mutations, but also in autoimmune disease (like scleroderma and lupus), radiation injury, cyclosporine toxicity, allograft nephropathy and ureteral obstruction. While the renin–angiotensin–aldosterone system and growth factors, such as transforming growth factor-beta (TGF-β), are almost always part of the process, there are rare experimental observations of PAI-1 expression without their interaction. Here we review the literature on PAI-1 and its role in vascular, fibrotic and oxidative injury as well as work suggesting potential areas of intervention in the pathogenesis of multiple disorders.
Collapse
Affiliation(s)
- John A D'Elia
- Joslin Diabetes Center, Boston, MA, USA; Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - George Bayliss
- Division ofKidney Diseases and Hypertension, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA; The Miriam Hospital, Providence, RI, USA; Alpert Medical School, Brown University, Providence, RI, USA
| | - Ray E Gleason
- Joslin Diabetes Center, Boston, MA, USA; Beth Israel Deaconess Medical Center, Boston, MA, USA; EP Joslin Research Laboratory, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Larry A Weinrauch
- Joslin Diabetes Center, Boston, MA, USA; Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; EP Joslin Research Laboratory, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Rapid Increases in proBDNF after Pilocarpine-Induced Status Epilepticus in Mice Are Associated with Reduced proBDNF Cleavage Machinery. eNeuro 2016; 3:eN-NWR-0020-15. [PMID: 27057559 PMCID: PMC4814566 DOI: 10.1523/eneuro.0020-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/23/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) levels are elevated after status epilepticus (SE), leading to activation of multiple signaling pathways, including the janus kinase/signal transducer and activator of transcription pathway that mediates a decrease in GABAA receptor α1 subunits in the hippocampus (Lund et al., 2008). While BDNF can signal via its pro or mature form, the relative contribution of these forms to signaling after SE is not fully known. In the current study, we investigate changes in proBDNF levels acutely after SE in C57BL/6J mice. In contrast to previous reports (Unsain et al., 2008; Volosin et al., 2008; VonDran et al., 2014), our studies found that levels of proBDNF in the hippocampus are markedly elevated as early as 3 h after SE onset and remain elevated for 7 d. Immunohistochemistry studies indicate that seizure-induced BDNF localizes to all hippocampal subfields, predominantly in principal neurons and also in astrocytes. Analysis of the proteolytic machinery that cleaves proBDNF to produce mature BDNF demonstrates that acutely after SE there is a decrease in tissue plasminogen activator and an increase in plasminogen activator inhibitor-1 (PAI-1), an inhibitor of extracellular and intracellular cleavage, which normalizes over the first week after SE. In vitro treatment of hippocampal slices from animals 24 h after SE with a PAI-1 inhibitor reduces proBDNF levels. These findings suggest that rapid proBDNF increases following SE are due in part to reduced cleavage, and that proBDNF may be part of the initial neurotrophin response driving intracellular signaling during the acute phase of epileptogenesis.
Collapse
|
26
|
Sfaxi F, Scamuffa N, Lalou C, Ma J, Metrakos P, Siegfried G, Ragg H, Bikfalvi A, Calvo F, Khatib AM. Repression of liver colorectal metastasis by the serpin Spn4A a naturally occurring inhibitor of the constitutive secretory proprotein convertases. Oncotarget 2015; 5:4195-210. [PMID: 24961901 PMCID: PMC4147316 DOI: 10.18632/oncotarget.1966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Liver is the most common site of metastasis from colorectal cancers, and liver of patients with liver colorectal metastasis have abnormal levels of the proprotein convertases (PCs). These proteases are involved in the activation and/or expression of various colon cancer-related mediators, making them promising targets in colorectal liver metastasis therapy. Here, we revealed that the serpin Spn4 from Drosophila melanogaster inhibits the activity of all the PCs found in the constitutive secretory pathway and represses the metastatic potential of the colon cancer cells HT-29 and CT-26. In these cells, Spn4A inhibited the processing of the PCs substrates IGF-1R and PDGF-A that associated their reduced anchorage-independent growth, invasiveness and survival in response to apoptotic agents. In vivo, Spn4A-expressing tumor cells showed repressed subcutaneous tumor development and liver metastases formation in response to their intrasplenic inoculation. In these cells Spn4A induced the expression of molecules with anti-metastatic functions and inhibited expression of pro-tumorigenic molecules. Taken together, our findings identify Spn4A as the only endogenous inhibitor of all the constitutive secretory pathway PCs, which is able to repress the metastatic potential of colon cancer cells. These results suggest the potential use of Spn4A and/or derivates as a useful adduct colorectal liver metastasis prevention.
Collapse
Affiliation(s)
- Fatma Sfaxi
- Université Bordeaux 1, LAMC, Talence, France; INSERM, UMR 1029, F-33405 Talence, France
| | | | | | | | | | | | | | | | | | - Abdel-Majid Khatib
- Université Bordeaux 1, LAMC, Talence, France; INSERM, UMR 1029, F-33405 Talence, France
| |
Collapse
|
27
|
A serpin shapes the extracellular environment to prevent influenza A virus maturation. Cell 2015; 160:631-643. [PMID: 25679759 PMCID: PMC4328142 DOI: 10.1016/j.cell.2015.01.040] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/22/2014] [Accepted: 01/13/2015] [Indexed: 01/23/2023]
Abstract
Interferon-stimulated genes (ISGs) act in concert to provide a tight barrier against viruses. Recent studies have shed light on the contribution of individual ISG effectors to the antiviral state, but most have examined those acting on early, intracellular stages of the viral life cycle. Here, we applied an image-based screen to identify ISGs inhibiting late stages of influenza A virus (IAV) infection. We unraveled a directly antiviral function for the gene SERPINE1, encoding plasminogen activator inhibitor 1 (PAI-1). By targeting extracellular airway proteases, PAI-1 inhibits IAV glycoprotein cleavage, thereby reducing infectivity of progeny viruses. This was biologically relevant for IAV restriction in vivo. Further, partial PAI-1 deficiency, attributable to a polymorphism in human SERPINE1, conferred increased susceptibility to IAV in vitro. Together, our findings reveal that manipulating the extracellular environment to inhibit the last step in a virus life cycle is an important mechanism of the antiviral response. SERPINE1/PAI-1 was identified as an unconventional ISG that acts extracellularly PAI-1 inhibits influenza A virus (IAV) spread by inhibiting glycoprotein cleavage Endogenous PAI-1 blocks IAV spread in human and murine cells, ex vivo and in vivo PAI-1 potentially inhibits other viruses requiring extracellular maturation
Collapse
|
28
|
Kara I, Poggi M, Bonardo B, Govers R, Landrier JF, Tian S, Leibiger I, Day R, Creemers JWM, Peiretti F. The paired basic amino acid-cleaving enzyme 4 (PACE4) is involved in the maturation of insulin receptor isoform B: an opportunity to reduce the specific insulin receptor-dependent effects of insulin-like growth factor 2 (IGF2). J Biol Chem 2014; 290:2812-21. [PMID: 25527501 DOI: 10.1074/jbc.m114.592543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gaining the full activity of the insulin receptor (IR) requires the proteolytic cleavage of its proform by intra-Golgi furin-like activity. In mammalian cells, IR is expressed as two isoforms (IRB and IRA) that are responsible for insulin action. However, only IRA transmits the growth-promoting and mitogenic effects of insulin-like growth factor 2. Here we demonstrate that the two IR isoforms are similarly cleaved by furin, but when this furin-dependent maturation is inefficient, IR proforms move to the cell surface where the proprotein convertase PACE4 selectively supports IRB maturation. Therefore, in situations of impaired furin activity, the proteolytic maturation of IRB is greater than that of IRA, and accordingly, the amount of phosphorylated IRB is also greater than that of IRA. We highlight the ability of a particular proprotein convertase inhibitor to effectively reduce the maturation of IRA and its associated mitogenic signaling without altering the signals emanating from IRB. In conclusion, the selective PACE4-dependent maturation of IRB occurs when furin activity is reduced; accordingly, the pharmacological inhibition of furin reduces IRA maturation and its mitogenic potential without altering the insulin effects.
Collapse
Affiliation(s)
- Imène Kara
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Marjorie Poggi
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Bernadette Bonardo
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Roland Govers
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Jean-François Landrier
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Sun Tian
- Nuolan Net, 1098 Amsterdam, The Netherlands
| | - Ingo Leibiger
- the Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Robert Day
- the Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada, and
| | - John W M Creemers
- the Laboratory of Biochemical Neuroendocrinology Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Peiretti
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France,
| |
Collapse
|
29
|
Agren A, Jörneskog G, Elgue G, Henriksson P, Wallen H, Wiman B. Increased incorporation of antiplasmin into the fibrin network in patients with type 1 diabetes. Diabetes Care 2014; 37:2007-14. [PMID: 24760258 DOI: 10.2337/dc13-1776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetes is associated with various vascular complications and is suggested to induce a prothrombotic state. In the current study, we characterized antiplasmin incorporation into fibrin in relation to other fibrinolytic compounds in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS A total of 236 patients with type 1 diabetes and 78 control subjects were investigated. The incorporation of antiplasmin into the fibrin network and the plasma levels of plasminogen activator inhibitor type 1 (PAI-1) activity, tissue plasminogen activator (tPA) activity, tPA/PAI-1 complex, plasmin-antiplasmin complex, antiplasmin, factor XIII, and d-dimer were measured. In addition, we used global assays to study fibrinolysis. RESULTS The incorporation of antiplasmin into the fibrin network was significantly higher in patients with type 1 diabetes than in control subjects without diabetes (1.65 ± 0.25 vs. 1.35 ± 0.18 mg/L, respectively; P < 0.0001). The patients also had lower PAI-1 activity (2.19 units/mL [interquartile range 0.96-5.42] vs. 4.25 units/mL [1.95-9.0]; P = 0.0012) and antiplasmin level in plasma (78.5 ± 13.3 vs. 83.2 ± 15.4 mg/L; P < 0.05), resulting in a higher fibrinolytic capacity (shorter clot lysis time; P = 0.0090). We did not find any important sex differences regarding fibrinolysis in the patients or in the control subjects. CONCLUSIONS Patients with type 1 diabetes incorporate more antiplasmin into the fibrin network than control subjects without diabetes do and have a reduced PAI-1 activity and a shorter clot lysis time. These results suggest that patients with type 1 diabetes produce a fibrin clot that is more resistant to fibrinolysis, which, however, may be counteracted by an increased fibrinolytic potential in plasma.
Collapse
Affiliation(s)
- Anna Agren
- Coagulation Unit, Division of Haematology, Department of Medicine, Karolinska University Hospital, Stockholm, SwedenDepartment of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Gun Jörneskog
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Graciela Elgue
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Peter Henriksson
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Håkan Wallen
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Björn Wiman
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci U S A 2014; 111:7090-5. [PMID: 24778222 DOI: 10.1073/pnas.1321942111] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence restricts the proliferative capacity of cells and is accompanied by the production of several proteins, collectively termed the "senescence-messaging secretome" (SMS). As senescent cells accumulate in tissue, local effects of the SMS have been hypothesized to disrupt tissue regenerative capacity. Klotho functions as an aging-suppressor gene, and Klotho-deficient (kl/kl) mice exhibit an accelerated aging-like phenotype that includes a truncated lifespan, arteriosclerosis, and emphysema. Because plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor (SERPIN), is elevated in kl/kl mice and is a critical determinant of replicative senescence in vitro, we hypothesized that a reduction in extracellular proteolytic activity contributes to the accelerated aging-like phenotype of kl/kl mice. Here we show that PAI-1 deficiency retards the development of senescence and protects organ structure and function while prolonging the lifespan of kl/kl mice. These findings indicate that a SERPIN-regulated cell-nonautonomous proteolytic cascade is a critical determinant of senescence in vivo.
Collapse
|
31
|
Boulaftali Y, François D, Venisse L, Jandrot-Perrus M, Arocas V, Bouton MC. Endothelial protease nexin-1 is a novel regulator of A disintegrin and metalloproteinase 17 maturation and endothelial protein C receptor shedding via furin inhibition. Arterioscler Thromb Vasc Biol 2013; 33:1647-54. [PMID: 23661674 DOI: 10.1161/atvbaha.113.301494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Human protein C is a plasma serine protease that plays a key role in hemostasis, and activated protein C (aPC) is known to elicit protective responses in vascular endothelial cells. This cytoprotective activity requires the interaction of the protease with its cell membrane receptor, endothelial protein C receptor. However, the mechanisms regulating the beneficial cellular effects of aPC are not well known. We aimed to determine whether a serine protease inhibitor called protease nexin-1 (PN-1) or serpinE2, expressed by vascular cells, can modulate the effect of aPC on endothelial cells. APPROACH AND RESULTS We found that vascular barrier protective and antiapoptotic activities of aPC were reduced both in endothelial cells underexpressing PN-1 and in endothelial cells whose PN-1 function was blocked by a neutralizing antibody. Our in vitro data were further confirmed in vivo. Indeed, we found that vascular endothelial growth factor-mediated hyperpermeability in the skin of mice was markedly reduced by local intradermal injection of aPC in wild-type mice but not in PN-1-deficient mice. Furthermore, we demonstrated a previously unknown protective role of endothelial PN-1 on endothelial protein C receptor shedding. We provided evidence that PN-1 inhibits furin, a serine protease that activates a disintegrin and metalloproteinase 17 involved in the shedding of endothelial protein C receptor. We indeed evidenced a direct interaction between PN-1 and furin in endothelial cells. CONCLUSIONS Our results thus demonstrate an original role of PN-1 as a furin convertase inhibitor, providing new insights for understanding the regulation of endothelial protein C receptor-dependent aPC endothelial protective effects.
Collapse
|
32
|
Palmitoylation of TNF alpha is involved in the regulation of TNF receptor 1 signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:602-12. [DOI: 10.1016/j.bbamcr.2012.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/27/2022]
|
33
|
De UC, Mishra P, Pal PR, Dinda B, Basak A. Non-peptide Inhibitors of Proprotein Convertase Subtilisin Kexins (PCSKs): An Overall Review of Existing and New Data. ACTA ACUST UNITED AC 2012. [DOI: 10.4199/c00066ed1v01y201209pac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K. Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Douglas E. Vaughan
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
35
|
Sun X, Essalmani R, Susan-Resiga D, Prat A, Seidah NG. Latent transforming growth factor beta-binding proteins-2 and -3 inhibit the proprotein convertase 5/6A. J Biol Chem 2011; 286:29063-29073. [PMID: 21700711 DOI: 10.1074/jbc.m111.242479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basic amino acid-specific proprotein convertase 5/6 (PC5/6) is an essential secretory protease, as knock-out mice die at birth and exhibit multiple homeotic transformation defects, including impaired bone morphogenesis and lung structure. Some of the observed defects were attributed to impaired processing of the TGFβ-like growth differentiating factor 11 precursor (proGdf11). In this work we present evidence that the latent TGFβ-binding proteins 2 and 3 (LTBP-2 and -3) inhibit the extracellular processing of proGdf11 by PC5/6A. This is partly due to the binding of LTBPs in the endoplasmic reticulum to the zymogen proPC5/6A, thus allowing the complex to exit the endoplasmic reticulum and be sequestered as an inactive zymogen in the extracellular matrix but not at the cell surface. This results in lower levels of PC5/6A in the media, without affecting those of PACE4, Furin, or a soluble form of PC7. The secreted soluble protease-specific activity of PC5/6A or a variant lacking the C-terminal Cys-rich domain (PC5/6-ΔCRD) is significantly decreased when co-expressed with LTBPs in cells. A similar enzymatic inhibition seems to apply to PACE4 and Furin. In situ hybridization analyses revealed extensive co-localization of PC5/6 and LTBP-3 mRNAs in mice at embryonic day 15.5 and post partum day 1. In conclusion, this is the first time that a zymogen of the proprotein convertases was shown to exit the endoplasmic reticulum in the presence of LTBPs, representing a potential novel mechanism for the regulation of PC5/6A activity, e.g. in tissues such as bone and lung where LTBP-3 and PC5/6 co-localize.
Collapse
Affiliation(s)
- Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| |
Collapse
|