1
|
Zhang X, Song J, Shah BN, Han J, Hassan T, Miasniakova G, Sergueeva A, Nekhai S, Machado RF, Gladwin MT, Saraf SL, Prchal JT, Gordeuk VR. Gene expression changes in sickle cell reticulocytes and their clinical associations. Sci Rep 2023; 13:12864. [PMID: 37553354 PMCID: PMC10409856 DOI: 10.1038/s41598-023-40039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
Transcriptional changes in compensatory erythropoiesis in sickle cell anemia (SCA) and their disease modulation are unclear. We detected 1226 differentially expressed genes in hemoglobin SS reticulocytes compared to non-anemic hemoglobin AA controls. Assessing developmental expression changes in hemoglobin AA erythroblasts for these genes suggests heightened terminal differentiation in early erythroblasts in SCA that diminishes toward the polychromatic to orthochromatic stage transition. Comparison of reticulocyte gene expression changes in SCA with that in Chuvash erythrocytosis, a non-anemic disorder of increased erythropoiesis due to constitutive activation of hypoxia inducible factors, identified 453 SCA-specific changes attributable to compensatory erythropoiesis. Peripheral blood mononuclear cells (PBMCs) in SCA contain elevated proportions of erythroid progenitors due to heightened erythropoiesis. Deconvolution analysis in PBMCs from 131 SCA patients detected 54 genes whose erythroid expression correlated with erythropoiesis efficiency, which were enriched with SCA-specific changes (OR = 2.9, P = 0.00063) and annotation keyword "ubiquitin-dependent protein catabolic process", "protein ubiquitination", and "protein polyubiquitination" (OR = 4.2, P = 7.5 × 10-5). An erythroid expression quantitative trait locus of one of these genes, LNX2 encoding an E3 ubiquitin ligase, associated with severe pain episodes in 774 SCA patients (OR = 1.7, P = 3.9 × 10-5). Thus, erythroid gene transcription responds to unique conditions within SCA erythroblasts and these changes potentially correspond to vaso-occlusive manifestations.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Jihyun Song
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Binal N Shah
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin Han
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Taif Hassan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Mark T Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Santosh L Saraf
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Josef T Prchal
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
3
|
Andersson C, Lin H, Liu C, Levy D, Mitchell GF, Larson MG, Vasan RS. Integrated Multiomics Approach to Identify Genetic Underpinnings of Heart Failure and Its Echocardiographic Precursors. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002489. [DOI: 10.1161/circgen.118.002489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
Heart failure (HF) may arise from alterations in metabolic, structural, and signaling pathways, but its genetic architecture is incompletely understood. To elucidate potential genetic contributors to cardiac remodeling and HF, we integrated genome-wide single-nucleotide polymorphisms, gene expression, and DNA methylation using a transomics analytical approach.
Methods:
We used robust rank aggregation (where the position of a certain gene in a rank order list [based on statistical significance level] is tested against a randomly shuffled rank order list) to derive an integrative transomic score for each annotated gene associated with a HF trait.
Results:
We evaluated ≤8372 FHS (Framingham Heart Study) participants (54% women; mean age, 55±17 years). Of these, 62 (0.7%) and 35 (0.4%) had prevalent HF with reduced ejection fraction and HF with preserved left ventricular ejection fraction, respectively. During a mean follow-up of 8.5 years (minimum–maximum, 0.005–18.6 years), 223 (2.7%) and 234 (2.8%) individuals developed incident HF with reduced ejection fraction and HF with reduced ejection fraction, respectively. Top genes included
MMP20
and
MTSS1
(promotes actin assembly at intercellular junctions) for left ventricular systolic function;
ITGA9
(receptor for
VCAM1
[vascular cell protein 1]) and
C5
for left ventricular remodeling;
NUP210
(expressed during myogenic differentiation) and
ANK1
(cytoskeletal protein) for diastolic function;
TSPAN16
and
RAB11FIP3
(involved in regulation of actin cytoskeleton) for prevalent HF with reduced ejection fraction;
ANKRD13D
and
TRIM69
for incident HF with reduced ejection fraction;
HPCAL1
and
PTTG1IP
for prevalent HF with reduced ejection fraction; and
ZNF146
(close to the
COX7A1
enzyme) and
ZFP3
(close to
SLC52A1
—the riboflavin transporter) for incident HF with reduced ejection fraction. We tested the HF-related top single-nucleotide polymorphisms in the UK biobank, where
rs77059055
in
TPM1
(minor allele frequency, 0.023; odds ratio, 0.83;
P
=0.002) remained statistically significant upon Bonferroni correction.
Conclusions:
Our integrative transomics approach offers insights into potential molecular and genetic contributors to HF and its precursors. Although several of our candidate genes have been implicated in HF in animal models, independent replication is warranted.
Collapse
Affiliation(s)
- Charlotte Andersson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Cardiology, Herlev and Gentofte Hospital, Herlev, Denmark (C.A.)
| | - Honghuang Lin
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Section of Computational Biomedicine, Department of Medicine (H.L.), Boston University School of Medicine, MA
| | - Chunyu Liu
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Daniel Levy
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (D.L.)
| | | | - Martin G. Larson
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Department of Biostatistics (C.L., M.G.L.), Boston University School of Public Health, MA
| | - Ramachandran S. Vasan
- Framingham Heart Study, MA (C.A., H.L., C.L., D.L., M.G.L., R.S.V.)
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine (R.S.V.), Boston University School of Medicine, MA
- Department of Epidemiology (R.S.V.), Boston University School of Public Health, MA
| |
Collapse
|
4
|
D'Agostino M, Scerra G, Cannata Serio M, Caporaso MG, Bonatti S, Renna M. Unconventional secretion of α-Crystallin B requires the Autophagic pathway and is controlled by phosphorylation of its serine 59 residue. Sci Rep 2019; 9:16892. [PMID: 31729431 PMCID: PMC6858465 DOI: 10.1038/s41598-019-53226-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023] Open
Abstract
α-Crystallin B (CRYAB or HspB5) is a chaperone member of the small heat-shock protein family that prevents aggregation of many cytosolic client proteins by means of its ATP-independent holdase activity. Surprisingly, several reports show that CRYAB exerts a protective role also extracellularly, and it has been recently demonstrated that CRYAB is secreted from human retinal pigment epithelial cells by an unconventional secretion pathway that involves multi-vesicular bodies. Here we show that autophagy is crucial for this unconventional secretion pathway and that phosphorylation at serine 59 residue regulates CRYAB secretion by inhibiting its recruitment to the autophagosomes. In addition, we found that autophagosomes containing CRYAB are not able to fuse with lysosomes. Therefore, CRYAB is capable to highjack and divert autophagosomes toward the exocytic pathway, inhibiting their canonical route leading to the lysosomal compartment. Potential implications of these findings in the context of disease-associated mutant proteins turn-over are discussed.
Collapse
Affiliation(s)
- M D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| | - G Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Cannata Serio
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - M G Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - S Bonatti
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
5
|
de la Rocha-Muñoz A, Núñez E, Arribas-González E, López-Corcuera B, Aragón C, de Juan-Sanz J. E3 ubiquitin ligases LNX1 and LNX2 are major regulators of the presynaptic glycine transporter GlyT2. Sci Rep 2019; 9:14944. [PMID: 31628376 PMCID: PMC6802383 DOI: 10.1038/s41598-019-51301-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neuronal glycine transporter GlyT2 is an essential regulator of glycinergic neurotransmission that recaptures glycine in presynaptic terminals to facilitate transmitter packaging in synaptic vesicles. Alterations in GlyT2 expression or activity result in lower cytosolic glycine levels, emptying glycinergic synaptic vesicles and impairing neurotransmission. Lack of glycinergic neurotransmission caused by GlyT2 loss-of-function mutations results in Hyperekplexia, a rare neurological disease characterized by generalized stiffness and motor alterations that may cause sudden infant death. Although the importance of GlyT2 in pathology is known, how this transporter is regulated at the molecular level is poorly understood, limiting current therapeutic strategies. Guided by an unbiased screening, we discovered that E3 ubiquitin ligase Ligand of Numb proteins X1/2 (LNX1/2) modulate the ubiquitination status of GlyT2. The N-terminal RING-finger domain of LNX1/2 ubiquitinates a cytoplasmic C-terminal lysine cluster in GlyT2 (K751, K773, K787 and K791), and this process regulates the expression levels and transport activity of GlyT2. The genetic deletion of endogenous LNX2 in spinal cord primary neurons causes an increase in GlyT2 expression and we find that LNX2 is required for PKC-mediated control of GlyT2 transport. This work identifies, to our knowledge, the first E3 ubiquitin-ligases acting on GlyT2, revealing a novel molecular mechanism that controls presynaptic glycine availability. Providing a better understanding of the molecular regulation of GlyT2 may help future investigations into the molecular basis of human disease states caused by dysfunctional glycinergic neurotransmission, such as hyperekplexia and chronic pain.
Collapse
Affiliation(s)
- A de la Rocha-Muñoz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Núñez
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Arribas-González
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain
| | - B López-Corcuera
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - C Aragón
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.
| | - J de Juan-Sanz
- Sorbonne Université and Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France.
| |
Collapse
|
6
|
Zimmermann N, Gibbons WJ, Homan SM, Prows DR. Heart disease in a mutant mouse model of spontaneous eosinophilic myocarditis maps to three loci. BMC Genomics 2019; 20:727. [PMID: 31601172 PMCID: PMC6788080 DOI: 10.1186/s12864-019-6108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Heart disease (HD) is the major cause of morbidity and mortality in patients with hypereosinophilic diseases. Due to a lack of adequate animal models, our understanding of the pathophysiology of eosinophil-mediated diseases with heart complications is limited. We have discovered a mouse mutant, now maintained on an A/J inbred background, that spontaneously develops hypereosinophilia in multiple organs. Cellular infiltration into the heart causes an eosinophilic myocarditis, with affected mice of the mutant line (i.e., A/JHD) demonstrating extensive myocardial damage and remodeling that leads to HD and premature death, usually by 15-weeks old. Results Maintaining the A/JHD line for many generations established that the HD trait was heritable and implied the mode of inheritance was not too complex. Backcross and intercross populations generated from mating A/JHD males with females from four different inbred strains produced recombinant populations with highly variable rates of affected offspring, ranging from none in C57BL/6 J intercrosses, to a few mice with HD using 129S1/SvImJ intercrosses and C57BL/6 J backcrosses, but nearly 8% of intercrosses and > 17% of backcrosses from SJL/J related populations developed HD. Linkage analyses of these SJL/J derived recombinants identified three highly significant loci: a recessive locus mapping to distal chromosome 5 (LOD = 4.88; named Emhd1 for eosinophilic myocarditis to heart disease-1); and two dominant variants mapping to chromosome 17, one (Emhd2; LOD = 7.51) proximal to the major histocompatibility complex, and a second (Emhd3; LOD = 6.89) that includes the major histocompatibility region. Haplotype analysis identified the specific crossovers that defined the Emhd1 (2.65 Mb), Emhd2 (8.46 Mb) and Emhd3 (14.59 Mb) intervals. Conclusions These results indicate the HD trait in this mutant mouse model of eosinophilic myocarditis is oligogenic with variable penetrance, due to multiple segregating variants and possibly additional genetic or nongenetic factors. The A/JHD mouse model represents a unique and valuable resource to understand the interplay of causal factors that underlie the pathology of this newly discovered eosinophil-associated disease with cardiac complications.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Gibbons
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Shelli M Homan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Daniel R Prows
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
7
|
Jacko D, Bersiner K, Hebchen J, de Marées M, Bloch W, Gehlert S. Phosphorylation of αB-crystallin and its cytoskeleton association differs in skeletal myofiber types depending on resistance exercise intensity and volume. J Appl Physiol (1985) 2019; 126:1607-1618. [PMID: 30920888 DOI: 10.1152/japplphysiol.01038.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
αB-crystallin (CRYAB) is an important actor in the immediate cell stabilizing response following mechanical stress in skeletal muscle. Yet, only little is known regarding myofiber type-specific stress responses of CRYAB. We investigated whether the phosphorylation of CRYAB at serine 59 (pCRYABSer59) and its cytoskeleton association are influenced by varying load-intensity and -volume in a fiber type-specific manner. Male subjects were assigned to 1, 5, and 10 sets of different acute resistance exercise protocols: hypertrophy (HYP), maximum strength (MAX), strength endurance (SE), low intensity (LI), and three sets of maximum eccentric resistance exercise (ECC). Skeletal muscle biopsies were taken at baseline and 30 min after exercise. Western blot revealed an increase in pCRYABSer59 only following 5 and 10 sets in groups HYP, MAX, SE, and LI as well as following 3 sets in the ECC group. In type I fibers, immunohistochemistry determined increased pCRYABSer59 in all groups. In type II fibers, pCRYABSer59 only increased in MAX and ECC groups, with the increase in type II fibers exceeding that of type I fibers in ECC. Association of CRYAB and pCRYABSer59 with the cytoskeleton reflected the fiber type-specific phosphorylation pattern. Phosphorylation of CRYAB and its association with the cytoskeleton in type I and II myofibers is highly specific in terms of loading intensity and volume. Most likely, this is based on specific recruitment patterns of the different myofiber entities due to the different resistance exercise loadings. We conclude that pCRYABSer59 indicates contraction-induced mechanical stress exposure of single myofibers in consequence of resistance exercise. NEW & NOTEWORTHY We determined that the phosphorylation of αB-crystallin at serine 59 (pCRYABSer59) after resistance exercise differs between myofiber types in a load- and intensity-dependent manner. The determination of pCRYABSer59 could serve as a marker indirectly indicating contractile involvement and applied mechanical stress on individual fibers. By that, it is possible to retrospectively assess the impact of resistance exercise loading on skeletal muscle fiber entities.
Collapse
Affiliation(s)
- Daniel Jacko
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany.,Olympic Base Center Rhineland , Cologne , Germany
| | - Käthe Bersiner
- Institute of Sport Science, University of Hildesheim , Hildesheim , Germany
| | - Jonas Hebchen
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany
| | - Markus de Marées
- Section of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr University of Bochum , Bochum , Germany
| | - Wilhelm Bloch
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany
| | - Sebastian Gehlert
- Section of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne , Cologne , Germany.,Institute of Sport Science, University of Hildesheim , Hildesheim , Germany
| |
Collapse
|
8
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
LNX1/LNX2 proteins: functions in neuronal signalling and beyond. Neuronal Signal 2018; 2:NS20170191. [PMID: 32714586 PMCID: PMC7373230 DOI: 10.1042/ns20170191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Ligand of NUMB Protein X1 and X2 (LNX1 and LNX2) are E3 ubiquitin ligases, named for their ability to interact with and promote the degradation of the cell fate determinant protein NUMB. On this basis they are thought to play a role in modulating NUMB/NOTCH signalling during processes such as cortical neurogenesis. However, LNX1/2 proteins can bind, via their four PDZ (PSD95, DLGA, ZO-1) domains, to an extraordinarily large number of other proteins besides NUMB. Many of these interactions suggest additional roles for LNX1/2 proteins in the nervous system in areas such as synapse formation, neurotransmission and regulating neuroglial function. Twenty years on from their initial discovery, I discuss here the putative neuronal functions of LNX1/2 proteins in light of the anxiety-related phenotype of double knockout mice lacking LNX1 and LNX2 in the central nervous system (CNS). I also review what is known about non-neuronal roles of LNX1/2 proteins, including their roles in embryonic patterning and pancreas development in zebrafish and their possible involvement in colorectal cancer (CRC), osteoclast differentiation and immune function in mammals. The emerging picture places LNX1/2 proteins as potential regulators of multiple cellular signalling processes, but in many cases the physiological significance of such roles remains only partly validated and needs to be considered in the context of the tight control of LNX1/2 protein levels in vivo.
Collapse
|
10
|
Lenihan JA, Saha O, Young PW. Proteomic analysis reveals novel ligands and substrates for LNX1 E3 ubiquitin ligase. PLoS One 2017; 12:e0187352. [PMID: 29121065 PMCID: PMC5679597 DOI: 10.1371/journal.pone.0187352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022] Open
Abstract
Ligand of Numb protein X1 (LNX1) is an E3 ubiquitin ligase that contains a catalytic RING (Really Interesting New Gene) domain and four PDZ (PSD-95, DlgA, ZO-1) domains. LNX1 can ubiquitinate Numb, as well as a number of other ligands. However, the physiological relevance of these interactions in vivo remain unclear. To gain functional insights into the LNX family, we have characterised the LNX1 interactome using affinity purification and mass spectrometry. This approach identified a large number of novel LNX1-interacting proteins, as well as confirming known interactions with NUMB and ERC2. Many of the novel interactions mapped to the LNX PDZ domains, particularly PDZ2, and many showed specificity for LNX1 over the closely related LNX2. We show that PPFIA1 (liprin-α1), KLHL11, KIF7 and ERC2 are substrates for ubiquitination by LNX1. LNX1 ubiquitination of liprin-α1 is dependent on a PDZ binding motif containing a carboxyl terminal cysteine that binds LNX1 PDZ2. Surprisingly, the neuronally-expressed LNX1p70 isoform, that lacks the RING domain, was found to promote ubiquitination of PPFIA1 and KLHL11, albeit to a lesser extent than the longer RING-containing LNX1p80 isoform. Of several E3-ligases identified in the LNX1 interactome we confirm interactions of LNX1 with MID2/TRIM1 and TRIM27. On this basis we propose a model whereby LNX1p70, despite lacking a catalytic RING domain, may function as a scaffold to promote ubiquitination of its ligands through recruitment of other E3-ligases. These findings provide functional insights into the LNX protein family, particularly the neuronal LNX1p70 isoform.
Collapse
Affiliation(s)
- Joan A. Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Orthis Saha
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W. Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
11
|
Lenihan JA, Saha O, Heimer-McGinn V, Cryan JF, Feng G, Young PW. Decreased Anxiety-Related Behaviour but Apparently Unperturbed NUMB Function in Ligand of NUMB Protein-X (LNX) 1/2 Double Knockout Mice. Mol Neurobiol 2016; 54:8090-8109. [DOI: 10.1007/s12035-016-0261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
12
|
Ciano M, Allocca S, Ciardulli MC, Della Volpe L, Bonatti S, D'Agostino M. Differential phosphorylation-based regulation of αB-crystallin chaperone activity for multipass transmembrane proteins. Biochem Biophys Res Commun 2016; 479:325-330. [PMID: 27641668 PMCID: PMC5053547 DOI: 10.1016/j.bbrc.2016.09.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
We have previously shown that αB-crystallin (CRYAB), a small heat shock protein (sHsp) that prevents irreversible aggregation of unfolded protein by an ATP-independent chaperone activity, plays a pivotal role in the biogenesis of multipass transmembrane proteins (TMPs) assisting their folding from the cytosolic side of the endoplasmic reticulum (ER) (D'Agostino et al., 2013). Here we present evidence, based on phosphomimetic substitutions, that the three phosphorytable serine residues at position 19, 45 and 59 of CRYAB play a different regulatory role in this novel chaperone activity: S19 and S45 have a strong inhibitory effect, either alone or in combination, while S59 has not and counteracts the inhibition caused by single phosphomimetic substitutions at S19 and S45. Interestingly, all phosphomimetic substitutions determine the formation of smaller oligomeric complexes containing CRYAB, indicating that the inhibitory effect seen for S19 and S45 cannot be ascribed to the reduction of oligomerization frequently associated to a decreased chaperone activity. These results indicate that phosphorylation finely regulates the chaperone activity of CRYAB with multipass TMPs and suggest a pivotal role for S59 in this process. CRYAB chaperone activity toward ATP7B-H1069Q and Fz4-FEVR. Phosphomimetic S19D and S45D inhibit CRYAB chaperone activity. Phosphomimetic S59D protects CRYAB chaperone activity. Pseudo-phosphorylation decreases CRYAB oligomerization.
Collapse
Affiliation(s)
- Michela Ciano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Allocca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Camilla Ciardulli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucrezia Della Volpe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefano Bonatti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Nayak D, Sivaraman J. Structural basis for the indispensable role of a unique zinc finger motif in LNX2 ubiquitination. Oncotarget 2015; 6:34342-57. [PMID: 26451611 PMCID: PMC4741457 DOI: 10.18632/oncotarget.5326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/25/2015] [Indexed: 01/30/2023] Open
Abstract
LNX (Ligand of Numb Protein-X) proteins, LNX1 and LNX2, are RING- and PDZ-based E3-ubiquitin ligases known to interact with Numb. Silencing of LNX2 has been reported to down-regulate WNT and NOTCH, two key signaling pathways in tumorigenesis. Here we report the identification of the domain boundary of LNX2 to confer its ubiquitination activity, its crystal structure along with functional studies. We show that the RING domain in LNX2 is flanked by two Zinc-binding motifs (Zn-RING-Zn), in which the N-terminal Zinc-binding motif adopts novel conformation. Although this motif follows the typical Cys2His2-type zinc finger configuration, it is devoid of any secondary structure and forms an open circle conformation, which has not been reported yet. This unique N-terminal Zn-finger motif is indispensable for the activity and stability of LNX2, as verified using mutational studies. The Zn-RING-Zn domain of LNX2 is a dimer and assumes a rigid elongated structure that undergoes autoubiquitination and undergoes N-terminal polyubiquitination. The ubiquitin chains consist of all seven possible isopeptide linkages. These results were validated using full-length LNX2. Moreover we have demonstrated the ubiquitination of cell fate determinant protein, Numb by LNX2. Our study provides a structural basis for the functional machinery of LNX2 and thus provides the opportunity to investigate suitable drug targets against LNX2.
Collapse
Affiliation(s)
- Digant Nayak
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
14
|
Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas. Proc Natl Acad Sci U S A 2015; 112:12426-31. [PMID: 26392552 DOI: 10.1073/pnas.1517033112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.
Collapse
|
15
|
Zhou J, Fujiwara T, Ye S, Li X, Zhao H. Ubiquitin E3 Ligase LNX2 is Critical for Osteoclastogenesis In Vitro by Regulating M-CSF/RANKL Signaling and Notch2. Calcif Tissue Int 2015; 96:465-75. [PMID: 25712254 PMCID: PMC4730947 DOI: 10.1007/s00223-015-9967-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
The Notch signaling pathway plays a crucial role in skeletal development and homeostasis by regulating the proliferation and differentiation of osteoblasts and osteoclasts. However, the molecular mechanisms modulating the level and activity of Notch receptors in bone cells remain unknown. In this study, we uncovered that LNX2, an E3 ubiquitin ligase and Notch inhibitor Numb binding protein, was up-regulated during osteoclast differentiation. Knocking-down LNX2 expression in bone marrow macrophages by lentivirus-mediated short hairpin RNAs markedly inhibited osteoclast formation. Decreased LNX2 expression attenuated macrophage colony-stimulating factor (M-CSF)-induced ERK and AKT activation and RANKL-stimulated activation of NF-κB and JNK pathways; therefore, accelerated osteoclast apoptosis. Additionally, loss of LNX2 led to an increased accumulation of Numb, which promoted the degradation of Notch and caused a reduction of the expression of the Notch downstream target gene, Hes1. We conclude that LNX2 regulates M-CSF/RANKL and the Notch signaling pathways during osteoclastogenesis.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, P. R. China
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Toshifumi Fujiwara
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Xiaolin Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, P. R. China
- To whom correspondence should be addressed: Haibo Zhao, MD, PhD, Center for Osteoporosis and Bone Metabolic Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 587, Little Rock, AR 72205, USA Ph: (501) 686-5130; Fax: (501) 686-8148; , Xiaolin Li, MD, PhD, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, P. R. China Ph: 86-21-24058051; Fax: 86-21-64363802;
| | - Haibo Zhao
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
- To whom correspondence should be addressed: Haibo Zhao, MD, PhD, Center for Osteoporosis and Bone Metabolic Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 587, Little Rock, AR 72205, USA Ph: (501) 686-5130; Fax: (501) 686-8148; , Xiaolin Li, MD, PhD, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, P. R. China Ph: 86-21-24058051; Fax: 86-21-64363802;
| |
Collapse
|
16
|
Uric acid crystal could inhibit Numb-induced URAT1 lysosome degradation in uric acid nephropathy. J Physiol Biochem 2015; 71:217-26. [DOI: 10.1007/s13105-015-0399-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
17
|
Sayols-Baixeras S, Lluís-Ganella C, Subirana I, Salas LA, Vilahur N, Corella D, Muñoz D, Segura A, Jimenez-Conde J, Moran S, Soriano-Tárraga C, Roquer J, Lopez-Farré A, Marrugat J, Fitó M, Elosua R. Identification of a new locus and validation of previously reported loci showing differential methylation associated with smoking. The REGICOR study. Epigenetics 2015; 10:1156-65. [PMID: 26829059 PMCID: PMC4844221 DOI: 10.1080/15592294.2015.1115175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Smoking increases the risk of many diseases and could act through changes in DNA methylation patterns. The aims of this study were to determine the association between smoking and DNA methylation throughout the genome at cytosine-phosphate-guanine (CpG) site level and genomic regions. A discovery cross-sectional epigenome-wide association study nested in the follow-up of the REGICOR cohort was designed and included 645 individuals. Blood DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip. Smoking status was self-reported using a standardized questionnaire. We identified 66 differentially methylated CpG sites associated with smoking, located in 38 genes. In most of these CpG sites, we observed a trend among those quitting smoking to recover methylation levels typical of never smokers. A CpG site located in a novel smoking-associated gene (cg06394460 in LNX2) was hypomethylated in current smokers. Moreover, we validated two previously reported CpG sites (cg05886626 in THBS1, and cg24838345 in MTSS1) for their potential relation to atherosclerosis and cancer diseases, using several different approaches: CpG site methylation, gene expression, and plasma protein level determinations. Smoking was also associated with higher THBS1 gene expression but with lower levels of thrombospondin-1 in plasma. Finally, we identified differential methylation regions in 13 genes and in four non-coding RNAs. In summary, this study replicated previous findings and identified and validated a new CpG site located in LNX2 associated with smoking.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF); 08003 Barcelona, Catalonia, Spain
| | - Carla Lluís-Ganella
- Cardiovascular Epidemiology and Genetics Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
- CIBER Epidemiology and Public Health; 08003 Barcelona, Catalonia, Spain
| | - Lucas A Salas
- Universitat Pompeu Fabra (UPF); 08003 Barcelona, Catalonia, Spain
- CIBER Epidemiology and Public Health; 08003 Barcelona, Catalonia, Spain
- Centre for Research in Environmental Epidemiology (CREAL); 08003 Barcelona, Catalonia, Spain
| | - Nadia Vilahur
- Centre for Research in Environmental Epidemiology (CREAL); 08003 Barcelona, Catalonia, Spain
| | - Dolores Corella
- Preventive Medicine Department; Genetic and Molecular Epidemiology Unit; University of Valencia; 46010 Valencia, Spain
- CIBER Obesity and Nutrition; 15706 Santiago de Compostela, Galicia, Spain
| | - Dani Muñoz
- Cardiovascular Risk and Nutrition Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | - Antonio Segura
- Health Sciences Institute; 45600 Talavera de la Reina, Toledo, Spain
| | - Jordi Jimenez-Conde
- Department of Neurology; Neurovascular Research Group; IMIM-Hospital del Mar (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | - Sebastián Moran
- Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute (IDIBELL); 08908 Barcelona, Catalonia, Spain
| | - Carolina Soriano-Tárraga
- Department of Neurology; Neurovascular Research Group; IMIM-Hospital del Mar (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | - Jaume Roquer
- Department of Neurology; Neurovascular Research Group; IMIM-Hospital del Mar (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | | | - Jaume Marrugat
- Cardiovascular Epidemiology and Genetics Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | - Montse Fitó
- CIBER Obesity and Nutrition; 15706 Santiago de Compostela, Galicia, Spain
- Cardiovascular Risk and Nutrition Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group; IMIM (Hospital del Mar Medical Research Institute); 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Yin FT, Futagawa T, Li D, Ma YX, Lu MH, Lu L, Li S, Chen Y, Cao YJ, Yang ZZ, Oiso S, Nishida K, Kuchiiwa S, Watanabe K, Yamada K, Takeda Y, Xiao ZC, Ma QH. Caspr4 interaction with LNX2 modulates the proliferation and neuronal differentiation of mouse neural progenitor cells. Stem Cells Dev 2014; 24:640-52. [PMID: 25279559 DOI: 10.1089/scd.2014.0261] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Contactin-associated protein 4 (Caspr4), also known as contactin-associated protein-like protein (CNTNAP4), is expressed in various regions of the brain. Recent reports suggest that CNTNAP4 is a susceptibility gene of autism spectrum disorders (ASDs). However, the molecular function of Caspr4 in the brain has yet to be identified. In this study, we show an essential role of Caspr4 in neural progenitor cells (NPCs). Caspr4 is expressed in NPCs in the subventricular zone (SVZ), a neurogenic region in the developing cortex. Knocking down of Caspr4 enhances the proliferation of NPCs derived from the SVZ of embryonic day 14 mouse. Neuronal differentiation is increased by overexpression of Caspr4, but decreased by knocking down of Caspr4 in cultured mouse NPCs. Transfection of the intracellular domain of Caspr4 (C4ICD) rescues the abnormal decreased neuronal differentiation of Caspr4-knocking down NPCs. Ligand of Numb protein X2 (LNX2), a binding partner of Numb, interacts with Caspr4 in a PDZ domain-dependent manner and plays a similar role to Caspr4 in NPCs. Moreover, transfection of LNX2 rescues the decreased neuronal differentiation in Caspr4-knocking down NPCs. In contrast, transfection of C4ICD fails to do so in LNX2-knocking down NPCs. These results indicate that Caspr4 inhibits neuronal differentiation in a LNX-dependent manner. Therefore, this study reveals a novel role of Caspr4 through LNX2 in NPCs, which may link to the pathogenesis of ASDs.
Collapse
Affiliation(s)
- Feng-Ting Yin
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University , Suzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lenihan JA, Saha O, Mansfield LM, Young PW. Tight, cell type-specific control of LNX expression in the nervous system, at the level of transcription, translation and protein stability. Gene 2014; 552:39-50. [PMID: 25200495 DOI: 10.1016/j.gene.2014.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022]
Abstract
LNX1 and LNX2 are E3 ubiquitin ligases that can interact with Numb - a key regulator of neurogenesis and neuronal differentiation. LNX1 can target Numb for proteasomal degradation, and Lnx mRNAs are prominently expressed in the nervous system, suggesting that LNX proteins play a role in neural development. This hypothesis remains unproven, however, largely because LNX proteins are present at very low levels in vivo. Here, we demonstrate expression of both LNX1 and LNX2 proteins in the brain for the first time. We clarify the cell-type specific expression of LNX isoforms in both the CNS and PNS, and identify a novel LNX1 isoform. Using luciferase reporter assays, we show that the 5' untranslated region of the Lnx1_variant 2 mRNA, that generates the LNX1p70 isoform, strongly suppresses protein production. This effect is mediated in part by the presence of upstream open reading frames (uORFs), but also by a sequence element that decreases both mRNA levels and translational efficiency. By contrast, uORFs do not negatively regulate LNX1p80 or LNX2 expression. Instead, we find some evidence that protein turnover via proteasomal degradation may influence LNX1p80 levels in cells. These observations provide plausible explanations for the low levels of LNX1 proteins detected in vivo.
Collapse
Affiliation(s)
- Joan A Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Orthis Saha
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Louise M Mansfield
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
20
|
D'Agostino M, Crespi A, Polishchuk E, Generoso S, Martire G, Colombo SF, Bonatti S. ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum. J Membr Biol 2014; 247:1149-59. [PMID: 25086772 DOI: 10.1007/s00232-014-9710-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Department of Molecular medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
D'Agostino M, Lemma V, Chesi G, Stornaiuolo M, Cannata Serio M, D'Ambrosio C, Scaloni A, Polishchuk R, Bonatti S. The cytosolic chaperone α-crystallin B rescues folding and compartmentalization of misfolded multispan transmembrane proteins. J Cell Sci 2013; 126:4160-72. [PMID: 23843626 DOI: 10.1242/jcs.125443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α-crystallin B chain (CRYAB or HspB5) is a cytosolic chaperone belonging to the small heat shock protein family, which is known to help in the folding of cytosolic proteins. Here we show that CRYAB binds the mutant form of at least two multispan transmembrane proteins (TMPs), exerting an anti-aggregation activity. It rescues the folding of mutant Frizzled4, which is responsible for a rare autosomal dominant form of familial exudative vitreoretinopathy (Fz4-FEVR), and the mutant ATP7B Cu transporter (ATP7B-H1069Q) associated with a common form of Wilson's disease. In the case of Fz4-FEVR, CRYAB prevents the formation of inter-chain disulfide bridges between the lumenal ectodomains of the aggregated mutant chains, which enables correct folding and promotes appropriate compartmentalization on the plasma membrane. ATP7B-H1069Q, with help from CRYAB, folds into the proper conformation, moves to the Golgi complex, and responds to copper overload in the same manner as wild-type ATP7B. These findings strongly suggest that CRYAB plays a pivotal role, previously undetected, in the folding of multispan TMPs and, from the cytosol, is able to orchestrate folding events that take place in the lumen of the ER. Our results contribute to the explanation of the complex scenario behind multispan TMP folding; additionally, they serve to expose interesting avenues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hof-Nahor I, Leshansky L, Shivtiel S, Eldor L, Aberdam D, Itskovitz-Eldor J, Berrih-Aknin S. Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes. J Cell Sci 2012; 125:4640-50. [PMID: 22767507 DOI: 10.1242/jcs.108860] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms underlying the immunomodulatory effects of mesenchymal stem cells (MSCs) have been investigated under extreme conditions of strong T cell activation, which induces the rapid death of activated lymphocytes. The objective of this study was to investigate these mechanisms in the absence of additional polyclonal activation. In co-cultures of peripheral mononuclear blood cells with human MSCs (hereafter referred to as hMSCs), we observed a striking decrease in the level of CD8 expression on CD8+ cells, together with decreased expression of CD28 and CD44, and impaired production of IFN-gamma and Granzyme B. This effect was specific to hMSCs, because it was not observed with several other cell lines. Downregulation of CD8 expression required CD14+ monocytes to be in direct contact with the CD8+ cells, whereas the effects of hMSCs on the CD14+ cells were essentially mediated by soluble factors. The CD14+ monocytes exhibited a tolerogenic pattern when co-cultured with hMSCs, with a clear decrease in CD80 and CD86 co-stimulatory molecules, and an increase in the inhibitory receptors ILT-3 and ILT-4. CD8+ cells that were preconditioned by MSCs had similar effects on monocytes and were able to inhibit lymphocyte proliferation. Injection of hMSCs in humanized NSG mice showed similar trends, in particular decreased levels of CD44 and CD28 in human immune cells. Our study demonstrates a new immunomodulation mechanism of action of hMSCs through the modulation of CD8+ cells towards a non-cytotoxic and/or suppressive phenotype. This mechanism of action has to be taken into account in clinical trials, where it should be beneficial in grafts and autoimmune diseases, but potentially detrimental in malignant diseases.
Collapse
Affiliation(s)
- Irit Hof-Nahor
- INSERTECH, Bruce Rappaport Department of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|