1
|
Guha Majumdar A, Shree S, Das A, Kumar BK, Dey P, Subramanian M, Patro BS. Design, synthesis and development of a dual inhibitor of Topoisomerase 1 and poly (ADP-ribose) polymerase 1 for efficient killing of cancer cells. Eur J Med Chem 2023; 258:115598. [PMID: 37406384 DOI: 10.1016/j.ejmech.2023.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Combinatorial inhibition of Topoisomerase 1 (TOP1) and Poly (ADP-ribose) polymerase 1 (PARP1) is an attractive therapeutic strategy which is under active investigation to address chemoresistance to TOP1 inhibitors. However, this combinatorial regimen suffers from severe dose limiting toxicities. Dual inhibitors often offer significant advantages over combinatorial therapies involving individual agents by minimizing toxicity and providing conducive pharmacokinetic profiles. In this study, we have designed, synthesized and evaluated a library of 11 candidate conjugated dual inhibitors for PARP1 and TOP1, named as DiPT-1 to DiPT-11. Our extensive screening showed that one of the hits i.e.DiPT-4 has promising cytotoxicity profile against multiple cancers with limited toxicities towards normal cells. DiPT-4 induces extensive DNA double stand breaks (DSBs), cell cycle arrest and apoptosis in cancer cells. Mechanistically, DiPT-4 has the propensity to bind catalytic pockets of TOP1 and PARP1, leading to significant inhibition of both TOP1 and PARP1 at in vitro and cellular level. Interestingly, DiPT-4 causes extensive stabilization of TOP1-DNA covalent complex (TOP1cc), a key lethal intermediate associated with induction of DSBs and cell death. Moreover, DiPT-4 inhibited poly (ADP-ribosylation) i.e. PARylation of TOP1cc, leading to long lived TOP1cc with a slower kinetics of degradation. This is one of the important molecular processes which helps in overcoming resistance in cancer in response to TOP1 inhibitors. Together, our investigation showed DiPT-4 as a promising dual inhibitor of TOP1 and PARP1, which may have the potential to offer significant advantages over combinatorial therapy in clinical settings.
Collapse
Affiliation(s)
- Ananda Guha Majumdar
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Shikha Shree
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Amit Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Binita K Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India
| | | | - Mahesh Subramanian
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, India; Homi Bhabha National Institute, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
2
|
Gupta P, Majumdar AG, Patro BS. Non-enzymatic function of WRN RECQL helicase regulates removal of topoisomerase-I-DNA covalent complexes and triggers NF-κB signaling in cancer. Aging Cell 2022; 21:e13625. [PMID: 35582959 PMCID: PMC9197415 DOI: 10.1111/acel.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Mutation in Werner (WRN) RECQL helicase is associated with premature aging syndrome (Werner syndrome, WS) and predisposition to multiple cancers. In patients with solid cancers, deficiency of the WRN RECQL helicase is paradoxically associated with enhanced overall survival in response to treatment with TOP1 inhibitors, which stabilize pathological TOP1-DNA-covalent-complexes (TOP1cc) on the genome. However, the underlying mechanism of WRN in development of chemoresistance to TOP1 inhibitors is not yet explored. Our whole-genome transcriptomic analysis for ~25,000 genes showed robust activation of NF-κB-dependent prosurvival genes in response to TOP1cc. CRISPR-Cas9 knockout, shRNA silencing, and under-expression of WRN confer high-sensitivity of multiple cancers to TOP1 inhibitor. We demonstrated that WRN orchestrates TOP1cc repair through proteasome-dependent and proteasome-independent process, unleashing robust ssDNA generation. This in turn ensues signal transduction for CHK1 mediated NF-κB-activation through IκBα-degradation and nuclear localization of p65 protein. Intriguingly, our site-directed mutagenesis and rescue experiments revealed that neither RECQL-helicase nor DNA-exonuclease enzyme activity of WRN (WRNE84A , WRNK577M , and WRNE84A-K577M ) were required for TOP1cc removal, ssDNA generation and signaling for NF-κB activation. In correlation with patient data and above results, the TOP1 inhibitor-based targeted therapy showed that WRN-deficient melanoma tumors were highly sensitive to TOP1 inhibition in preclinical in vivo mouse model. Collectively, our findings identify hitherto unknown non-enzymatic role of WRN RECQL helicase in pathological mechanisms underlying TOP1cc processing and subsequent NF-κB-activation, offering a potential targeted therapy for WRN-deficient cancer patients.
Collapse
Affiliation(s)
- Pooja Gupta
- Bio‐Organic DivisionBhabha Atomic Research CentreTrombayMumbaiIndia
- Homi Bhabha National InstituteAnushaktinagarMumbaiIndia
| | - Ananda Guha Majumdar
- Bio‐Organic DivisionBhabha Atomic Research CentreTrombayMumbaiIndia
- Homi Bhabha National InstituteAnushaktinagarMumbaiIndia
| | - Birija Sankar Patro
- Bio‐Organic DivisionBhabha Atomic Research CentreTrombayMumbaiIndia
- Homi Bhabha National InstituteAnushaktinagarMumbaiIndia
| |
Collapse
|
3
|
A clinically relevant heterozygous ATR mutation sensitizes colorectal cancer cells to replication stress. Sci Rep 2022; 12:5422. [PMID: 35361811 PMCID: PMC8971416 DOI: 10.1038/s41598-022-09308-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among the most frequent malignancies and represents the second most common cause of cancer-related deaths worldwide. By interfering with the DNA replication process of cancer cells, several chemotherapeutic molecules used in CRC therapy induce replication stress (RS). At the cellular level, this stress is managed by the ATR-CHK1 pathway, which activates the replication checkpoint. In recent years, the therapeutic value of targeting this pathway has been demonstrated. Moreover, MSI + (microsatellite instability) tumors frequently harbor a nonsense, heterozygous mutation in the ATR gene. Using isogenic HCT116 clones, we showed that this mutation of ATR sensitizes the cells to several drugs, including SN-38 (topoisomerase I inhibitor) and VE-822 (ATR inhibitor) and exacerbates their synergistic effects. We showed that this mutation bottlenecks the replication checkpoint leading to extensive DNA damage. The combination of VE-822 and SN-38 induces an exhaustion of RPA and a subsequent replication catastrophe. Surviving cells complete replication and accumulate in G2 in a DNA-PK-dependent manner, protecting them from cell death. Together, our results suggest that RPA and DNA-PK represent promising therapeutic targets to optimize the inhibition of the ATR-CHK1 pathway in oncology. Ultimately, ATR frameshift mutations found in patients may also represent important prognostic factors.
Collapse
|
4
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
5
|
Lee J, Shamanna RA, Kulikowicz T, Borhan Fakouri N, Kim EW, Christiansen LS, Croteau DL, Bohr VA. CDK2 phosphorylation of Werner protein (WRN) contributes to WRN's DNA double-strand break repair pathway choice. Aging Cell 2021; 20:e13484. [PMID: 34612580 PMCID: PMC8590104 DOI: 10.1111/acel.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/14/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Werner syndrome (WS) is an accelerated aging disorder characterized by genomic instability, which is caused by WRN protein deficiency. WRN participates in DNA metabolism including DNA repair. In a previous report, we showed that WRN protein is recruited to laser-induced DNA double-strand break (DSB) sites during various stages of the cell cycle with similar intensities, supporting that WRN participates in both non-homologous end joining (NHEJ) and homologous recombination (HR). Here, we demonstrate that the phosphorylation of WRN by CDK2 on serine residue 426 is critical for WRN to make its DSB repair pathway choice between NHEJ and HR. Cells expressing WRN engineered to mimic the unphosphorylated or phosphorylation state at serine 426 showed abnormal DSB recruitment, altered RPA interaction, strand annealing, and DSB repair activities. The CDK2 phosphorylation on serine 426 stabilizes WRN's affinity for RPA, likely increasing its long-range resection at the end of DNA strands, which is a crucial step for HR. Collectively, the data shown here demonstrate that a CDK2-dependent phosphorylation of WRN regulates DSB repair pathway choice and cell cycle participation.
Collapse
Affiliation(s)
- Jong‐Hyuk Lee
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Raghavendra A. Shamanna
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Tomasz Kulikowicz
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Nima Borhan Fakouri
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Edward W. Kim
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Louise S. Christiansen
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Deborah L. Croteau
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
| | - Vilhelm A. Bohr
- Section on DNA RepairNational Institute on Aging National Institutes of Health BaltimoreMDUSA
- Danish Center for Healthy AgingUniversity of Copenhagen CopenhagenDenmark
| |
Collapse
|
6
|
Gupta P, Saha B, Chattopadhyay S, Patro BS. Pharmacological targeting of differential DNA repair, radio-sensitizes WRN-deficient cancer cells in vitro and in vivo. Biochem Pharmacol 2021; 186:114450. [PMID: 33571504 DOI: 10.1016/j.bcp.2021.114450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
Werner (WRN) expression is epigenetically downregulated in various tumors. It is imperative to understand differential repair process in WRN-proficient and WRN-deficient cancers to find pharmacological targets for radio-sensitization of WRN-deficient cancer. In the current investigation, we showed that pharmacological inhibition of CHK1 mediated homologous recombination repair (HRR), but not non-homologous end joining (NHEJ) repair, can causes hyper-radiosensitization of WRN-deficient cancers. This was confirmed in cancer cell lines of different tissue origin (osteosarcoma, colon adenocarcinoma and melanoma) with WRN silencing and overexpression. We established that WRN-depleted cells are dependent on a critical but compromised CHK1-mediated HRR-pathway for repairing ionizing radiation (IR) induced DSBs for their survival. Mechanistically, we unraveled a new finding that the MRE11, CTIP and WRN proteins are largely responsible for resections of late and persistent DSBs. In response to IR-treatment, MRE11 and CTIP-positively and WRN-negatively regulate p38-MAPK reactivation in a CHK1-dependent manner. A degradation resistant WRN protein, mutated at serine 1141, abrogates p38-MAPK activation. We also showed that CHK1-p38-MAPK axis plays important role in RAD51 mediated HRR in WRN-silenced cells. Like CHK1 inhibition, pharmacological-inhibition of p38-MAPK also hyper-radiosensitizes WRN-depleted cells by targeting HR-pathway. Combination treatment of CHK1-inhibitor (currently under various clinical trials) and IR exhibited a strong synergy against WRN-deficient melanoma tumor in vivo. Taken together, our findings suggest that pharmacological targeting of CHK1-p38-MAPK mediated HRR is an attractive strategy for enhancing therapeutic response of radiation treatment of cancer.
Collapse
Affiliation(s)
- Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bhaskar Saha
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Chakraborty S, Dutta K, Gupta P, Das A, Das A, Ghosh SK, Patro BS. Targeting RECQL5 Functions, by a Small Molecule, Selectively Kills Breast Cancer in Vitro and in Vivo. J Med Chem 2021; 64:1524-1544. [PMID: 33529023 DOI: 10.1021/acs.jmedchem.0c01692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Clinical and preclinical data reveal that RECQL5 protein overexpression in breast cancer was strongly correlated with poor prognosis, survival, and therapeutic resistance. In the current investigation, we report design, synthesis, and specificity of a small molecule, 4a, which can preferentially kill RECQL5-expressing breast cancers but not RECQL5 knockout. Our stringent analysis showed that compound 4a specifically sensitizes RECQL5-expressing cancers, while it did not have any effect on other members of DNA RECQL-helicases. Integrated approaches of organic synthesis, biochemical, in silico molecular simulation, knockouts, functional mutation, and rescue experiments showed that 4a potently inhibits RECQL5-helicase activity and stabilizes RECQL5-RAD51 physical interaction, leading to impaired HRR and preferential killing of RECQL5-expressing breast cancer. Moreover, 4a treatment led to the efficient sensitization of cisplatin-resistant breast cancers but not normal mammary epithelial cells. Pharmacologically, compound 4a was orally effective in reducing the growth of RECQL5-expressing breast tumors (human xenograft) in NUDE-mice with no appreciable toxicity to the vital organs.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kartik Dutta
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anubrata Das
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit Das
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sunil Kumar Ghosh
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
8
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|
9
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
RecQ DNA Helicase Rqh1 Promotes Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint Pathway of Fission Yeast. Mol Cell Biol 2020; 40:MCB.00145-20. [PMID: 32541066 DOI: 10.1128/mcb.00145-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Rad3 is the orthologue of ATR and the sensor kinase of the DNA replication checkpoint in Schizosaccharomyces pombe Under replication stress, it initiates checkpoint signaling at the forks necessary for maintaining genome stability and cell survival. To better understand the checkpoint initiation process, we have carried out a genetic screen in fission yeast by random mutation of the genome, looking for mutants defective in response to the replication stress induced by hydroxyurea. In addition to the previously reported mutant with a C-to-Y change at position 307 encoded by tel2 (tel2-C307Y mutant) (Y.-J. Xu, S. Khan, A. C. Didier, M. Wozniak, et al., Mol Cell Biol 39:e00175-19, 2019, https://doi.org/10.1128/MCB.00175-19), this screen has identified six mutations in rqh1 encoding a RecQ DNA helicase. Surprisingly, these rqh1 mutations, except for a start codon mutation, are all in the helicase domain, indicating that the helicase activity of Rqh1 plays an important role in the replication checkpoint. In support of this notion, integration of two helicase-inactive mutations or deletion of rqh1 generated a similar Rad3 signaling defect, and heterologous expression of human RECQ1, BLM, and RECQ4 restored the Rad3 signaling and partially rescued a rqh1 helicase mutant. Therefore, the replication checkpoint function of Rqh1 is highly conserved, and mutations in the helicase domain of these human enzymes may cause the checkpoint defect and contribute to the cancer predisposition syndromes.
Collapse
|
11
|
Tyagi M, Bauri AK, Chattopadhyay S, Patro BS. Thiol antioxidants sensitize malabaricone C induced cancer cell death via reprogramming redox sensitive p53 and NF-κB proteins in vitro and in vivo. Free Radic Biol Med 2020; 148:182-199. [PMID: 31945496 DOI: 10.1016/j.freeradbiomed.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/11/2022]
Abstract
Specific focus on "redox cancer therapy" by targeting drugs to redox homeostasis of the cancer cells is growing rapidly. Recent clinical studies showed that N-acetyl cysteine (NAC) treatment significantly decreased the metabolic heterogeneity and reduced Ki67 (a proliferation marker) with simultaneous enhancement in apoptosis of tumor cells in patients. However, it is not yet precisely known how thiol antioxidants enhance killing of cancer cells in a context dependent manner. To this end, we showed that a dietary compound, malabaricone C (mal C) generated copious amounts of reactive oxygen species (ROS) and also reduced GSH level in lung cancer cells. Paradoxically, although antioxidants supplementation reduced mal C-induced ROS, thiol-antioxidants (NAC/GSH) restored intracellular GSH level but enhanced DNA DSBs and apoptotic cell death induced by mal C. Our results unraveled two tightly coupled biochemical mechanisms attributing this sensitization process by thiol antioxidants. Firstly, thiol antioxidants enable the "catechol-quinone redox cycle" of mal C and ameliorate ROS generation and bio-molecular damage (DNA and protein). Secondly, thiol antioxidants cause rapid glutathionylation of transcription factors [p53, p65 (NF-κB) etc.], oxidized by mal C, and abrogates their nuclear sequestration and transcription of the anti-apoptotic genes. Furthermore, analyses of the mitochondrial fractions of p53 expressing and silenced cells revealed that cytoplasmic accumulation of glutathionylated p53 (p53-SSG) triggers a robust mitochondrial death process. Interestingly, mutation of redox sensitive cysteine residues at 124, 141 and 182 position in p53 significantly reduces mal C plus NAC mediated sensitization of cancer cells. The preclinical results, in two different tumor models in mice, provides further support our conclusion that NAC is able to sensitize mal C induced suppression of tumor growth in vivo.
Collapse
Affiliation(s)
- Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Ajay Kumar Bauri
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | | | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
12
|
Hepatitis C Virus NS3 Protein Plays a Dual Role in WRN-Mediated Repair of Nonhomologous End Joining. J Virol 2019; 93:JVI.01273-19. [PMID: 31462559 DOI: 10.1128/jvi.01273-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) NS3 protein possesses protease and helicase activities and is considered an oncoprotein in virus-derived hepatocellular carcinoma. The NS3-associated oncogenesis has been studied but not fully understood. In this study, we have identified novel interactions of the NS3 protein with DNA repair factors, Werner syndrome protein (WRN) and Ku70, in both an HCV subgenomic replicon system and Huh7 cells expressing NS3. HCV NS3 protein inhibits WRN-mediated DNA repair and reduces the repair efficiency of nonhomologous end joining. It interferes with Ku70 recruitment to the double-strand break sites and alters the nuclear distribution of WRN-Ku repair complex. In addition, WRN is a substrate of the NS3/4A protease; the level of WRN protein is regulated by both the proteasome degradation pathway and HCV NS3/4A protease activity. The dual role of HCV NS3 and NS3/4A proteins in regulating the function and expression level of the WRN protein intensifies the effect of impairment on DNA repair. This may lead to an accumulation of DNA mutations and genome instability and, eventually, tumor development.IMPORTANCE HCV infection is a worldwide problem of public health and a major contributor to hepatocellular carcinoma. The single-stranded RNA virus with RNA-dependent RNA polymerase experiences a high error rate and develops strategies to escape the immune system and hepatocarcinogenesis. Studies have revealed the involvement of HCV proteins in the impairment of DNA repair. The present study aimed to further elucidate mechanisms by which the viral NS3 protein impairs the repair of DNA damage. Our results clearly indicate that HCV NS3/4A protease targets WRN for degradation, and, at the same time, diminishes the repair efficiency of nonhomologous end joining by interfering with the recruitment of Ku protein to the DNA double-strand break sites. The study describes a novel mechanism by which the NS3 protein influences DNA repair and provides new insight into the molecular mechanism of HCV pathogenesis.
Collapse
|
13
|
Marabitti V, Lillo G, Malacaria E, Palermo V, Sanchez M, Pichierri P, Franchitto A. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res 2019; 47:3485-3502. [PMID: 30657978 PMCID: PMC6468170 DOI: 10.1093/nar/gkz025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023] Open
Abstract
Werner syndrome (WS) is a cancer-prone disease caused by deficiency of Werner protein (WRN). WRN maintains genome integrity by promoting replication-fork stability after various forms of replication stress. Under mild replication stress, WS cells show impaired ATR-mediated CHK1 activation. However, it remains unclear if WS cells elicit other repair pathway. We demonstrate that loss of WRN leads to enhanced ATM phosphorylation upon prolonged exposure to aphidicolin, a specific inhibitor of DNA polymerases, resulting in CHK1 activation. Moreover, we find that loss of WRN sensitises cells to replication-transcription collisions and promotes accumulation of R-loops, which undergo XPG-dependent cleavage responsible for ATM signalling activation. Importantly, we observe that ATM pathway limits chromosomal instability in WS cells. Finally, we prove that, in WS cells, genomic instability enhanced upon chemical inhibition of ATM kinase activity is counteracted by direct or indirect suppression of R-loop formation or by XPG abrogation. Together, these findings suggest a potential role of WRN as regulator of R-loop-associated genomic instability, strengthening the notion that conflicts between replication and transcription can affect DNA replication, leading to human disease and cancer.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Giorgia Lillo
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Eva Malacaria
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Valentina Palermo
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Massimo Sanchez
- Department of Cell Biology and Neurosciences, Section of Gene and Cell Therapy, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Pietro Pichierri
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Annapaola Franchitto
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
14
|
Saha B, Pai GB, Subramanian M, Gupta P, Tyagi M, Patro BS, Chattopadhyay S. Resveratrol analogue, trans-4,4'-dihydroxystilbene (DHS), inhibits melanoma tumor growth and suppresses its metastatic colonization in lungs. Biomed Pharmacother 2018; 107:1104-1114. [PMID: 30257322 DOI: 10.1016/j.biopha.2018.08.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
The prevalence of melanoma and the lack of effective therapy for metastatic melanoma warrant extensive and systematic evaluations of small molecules in cellular and pre-clinical models. We investigated, herein, the antitumor and anti-metastatic effects of trans-4,4'-dihydroxystilbene (DHS), a natural product present in bark of Yucca periculosa, using in vitro and in vivo melanoma murine models. DHS showed potent melanoma cytotoxicity, as determined by MTT and clonogenic assay. Further, DHS induced cytotoxicity was mediated through apoptosis, which was assessed by annexin V-FITC/PI, sub-G1 and caspase activation assays. In addition, DHS inhibited cell proliferation by inducing robust cell cycle arrest in G1-phase. Imperatively, these inhibitory effects led to a significant reduction of melanoma tumor in pre-clinical murine model. DHS also inhibited cell migration and invasion of melanoma cells, which were examined using wound healing and Transwell migration/invasion assays. Mechanistically, DHS modulated the expressions of several key metastasis regulating proteins e.g., MMP-2/9, N-cadherin, E-cadherin and survivin. We also showed the anti-metastatic effect of DHS in a melanoma mediated lung metastasis model in vivo. DHS significantly reduced large melanoma nodule formation in the parenchyma of lungs. Therefore, DHS may represent a promising natural drug in the repertoire of treatment against melanoma tumor growth and metastasis.
Collapse
Affiliation(s)
- Bhaskar Saha
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ganesh B Pai
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
15
|
Pasero P, Vindigni A. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet 2018; 51:477-499. [PMID: 29178820 DOI: 10.1146/annurev-genet-120116-024745] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a lifetime, a human being synthesizes approximately 2×1016 meters of DNA, a distance that corresponds to 130,000 times the distance between the Earth and the Sun. This daunting task is executed by thousands of replication forks, which progress along the chromosomes and frequently stall when they encounter DNA lesions, unusual DNA structures, RNA polymerases, or tightly-bound protein complexes. To complete DNA synthesis before the onset of mitosis, eukaryotic cells have evolved complex mechanisms to process and restart arrested forks through the coordinated action of multiple nucleases, topoisomerases, and helicases. In this review, we discuss recent advances in understanding the role and regulation of nucleases acting at stalled forks with a focus on the nucleolytic degradation of nascent DNA, a process commonly referred to as fork resection. We also discuss the effects of deregulated fork resection on genomic instability and on the unscheduled activation of the interferon response under replication stress conditions.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002, University of Montpellier, 34396 Montpellier, France;
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA;
| |
Collapse
|
16
|
Bhattacharyya R, Gupta P, Bandyopadhyay SK, Patro BS, Chattopadhyay S. Coralyne, a protoberberine alkaloid, causes robust photosenstization of cancer cells through ATR-p38 MAPK-BAX and JAK2-STAT1-BAX pathways. Chem Biol Interact 2018; 285:27-39. [PMID: 29486184 DOI: 10.1016/j.cbi.2018.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) provides an effective cancer treatment option but it requires sufficient cellular oxygen concentration to exert its photosensitizing effects. Due to hypoxic nature of most tumors, widespread clinical application of PDT is restricted and warrants development of photosensitizers which can kill cancer cells in ROS independent manner. Previously, we reported significant enhancement of the anti-cancer property of coralyne in presence of ultraviolet-A (UVA) light exposure against several human carcinoma cell lines. This study aimed at unravelling molecular cascades of events in CUVA treatment (coralyne and UVA light)-mediated photosensitization of human skin cancer. The CUVA-treatment caused robust apoptosis of A431 cancer cells, primarily through mitochondrial and lysosomal dysfunctions. Silencing of BAX conferred a significant protection against CUVA-induced apoptosis. Both lysosomal proteases and caspase-8 activation contributed to BID cleavage. Further, our results revealed that a dual signaling axis e.g., ATR-p38 MAPK and JAK2-STAT1 pathways functioned upstream of BAX activation in apoptosis response. Moreover, transient silencing of ATR and pharmacological inhibition of p38-MAPK or JAK2 significantly abolished the effect of CUVA treatment induced BAX expression and cell death, linking the extrinsic and intrinsic pathways with the observed cell death. Our data suggest that coralyne, which is known topoisomerase-I inhibitor, may be an attractive agent for photo-chemotherapeutic treatment of human skin cancers.
Collapse
Affiliation(s)
- Rahul Bhattacharyya
- Dept. of Biochemistry, KPC Medical College & Hospital, Jadavpur, 700032, Kolkata, India
| | - Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
17
|
Abstract
The highly complex structural genome variations chromothripsis, chromoanasynthesis, and chromoplexy are subsumed under the term chromoanagenesis, which means chromosome rebirth. Precipitated by numerous DNA double-strand breaks, they differ in number of and distances between breakpoints, associated copy number variations, order and orientation of segments, and flanking sequences at joining points. Results from patients with the autosomal dominant cancer susceptibility disorder Li-Fraumeni syndrome implicated somatic TP53 mutations in chromothripsis. TP53 participates in the G2/M phase checkpoint, halting cell cycling after premature chromosome compaction during the second half of the S phase, thus preventing chromosome shattering. By experimental TP53 ablation and micronucleus induction, one or a few isolated chromosomes underwent desynchronized replication and chromothripsis. Secondly, chromothripsis occurred after experimental induction of telomere crisis after which dicentric chromosomes sustained TREX1-mediated resolution of chromosome bridges and kataegis. Third, DNA polymerase Polθ-dependent chromothripsis has been documented. Finally, a family with chromothripsis after L1 element-dependent retrotransposition and Alu/Alu homologous recombination has been reported. Human chromosomal instability syndromes share defects in responses to DNA double-strand breaks, characteristic cell cycle perturbations, elevated rates of micronucleus formation, premature chromosome compaction, and apoptosis. They are also associated with elevated susceptibility to malignant disease, such as medulloblastomas and gliomas in ataxia-telangiectasia, leukemia and lymphoma in Bloom syndrome, and osteosarcoma and soft tissue sarcoma in Werner syndrome. The latter syndrome is characterized by a premature aging-like progressive decline of mesenchymal tissues. In all thus far studied cases, constitutional chromothripsis occurred in the male germline and male patients with defects in the double-strand break response genes ATM, MRE11, BLM, LIG4, WRN, and Ku70 show impaired fertility. Conceivably, chromothripsis may, in a stochastic rather than deterministic way, be implicated in germline structural variation, malignant disease, premature aging, genome mosaicism in somatic tissues, and male infertility.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 2017; 18:622-636. [PMID: 28811666 DOI: 10.1038/nrm.2017.67] [Citation(s) in RCA: 592] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| | - David Cortez
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| |
Collapse
|
19
|
Poot M. Recombine and Associate to Prevent Genomic Instability and Premature Aging. Mol Syndromol 2017; 8:1-3. [PMID: 28232777 DOI: 10.1159/000452784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 11/19/2022] Open
|
20
|
Distinct functions of human RecQ helicases during DNA replication. Biophys Chem 2016; 225:20-26. [PMID: 27876204 DOI: 10.1016/j.bpc.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 12/31/2022]
Abstract
DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition.
Collapse
|
21
|
Palermo V, Rinalducci S, Sanchez M, Grillini F, Sommers JA, Brosh RM, Zolla L, Franchitto A, Pichierri P. CDK1 phosphorylates WRN at collapsed replication forks. Nat Commun 2016; 7:12880. [PMID: 27634057 PMCID: PMC5028418 DOI: 10.1038/ncomms12880] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Regulation of end-processing is critical for accurate repair and to switch between homologous recombination (HR) and non-homologous end joining (NHEJ). End resection is a two-stage process but very little is known about regulation of the long-range resection, especially in humans. WRN participates in one of the two alternative long-range resection pathways mediated by DNA2 or EXO1. Here we demonstrate that phosphorylation of WRN by CDK1 is essential to perform DNA2-dependent end resection at replication-related DSBs, promoting HR, replication recovery and chromosome stability. Mechanistically, S1133 phosphorylation of WRN is dispensable for relocalization in foci but is involved in the interaction with the MRE11 complex. Loss of WRN phosphorylation negatively affects MRE11 foci formation and acts in a dominant negative manner to prevent long-range resection altogether, thereby licensing NHEJ at collapsed forks. Collectively, we unveil a CDK1-dependent regulation of the WRN-DNA2-mediated resection and identify an undescribed function of WRN as a DSB repair pathway switch. End-resection of double strand DNA breaks is essential for pathway choice between non-homologous end-joining and homologous recombination. Here the authors show that phosphorylation of WRN helicase by CDK1 is essential for resection at replication-related breaks.
Collapse
Affiliation(s)
- Valentina Palermo
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sara Rinalducci
- Proteomics Lab, Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy
| | - Massimo Sanchez
- Section of Gene and Cell Therapy, Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Grillini
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland 21224, USA
| | - Lello Zolla
- Proteomics Lab, Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy
| | - Annapaola Franchitto
- Section of Molecular Epidemiology, Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Pietro Pichierri
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Health, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
22
|
Berti M, Vindigni A. Replication stress: getting back on track. Nat Struct Mol Biol 2016; 23:103-9. [PMID: 26840898 PMCID: PMC5125612 DOI: 10.1038/nsmb.3163] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
The replication-stress response enables the DNA replication machinery to overcome DNA lesions or intrinsic replication-fork obstacles, and it is essential to ensure faithful transmission of genetic information to daughter cells. Multiple replication stress–response pathways have been identified in recent years, thus raising questions about the specific and possibly redundant functions of these pathways. Here, we review the emerging mechanisms of the replication-stress response in mammalian cells and consider how they may influence the dynamics of the core DNA replication complex.
Collapse
Affiliation(s)
- Matteo Berti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
23
|
Hyun M, Choi S, Stevnsner T, Ahn B. The Caenorhabditis elegans Werner syndrome protein participates in DNA damage checkpoint and DNA repair in response to CPT-induced double-strand breaks. Cell Signal 2015; 28:214-223. [PMID: 26691982 DOI: 10.1016/j.cellsig.2015.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022]
Abstract
The RecQ helicases play roles in maintenance of genomic stability in species ranging from Escherichia coli to humans and interact with proteins involved in DNA metabolic pathways such as DNA repair, recombination, and replication. Our previous studies found that the Caenorhabditis elegans WRN-1 RecQ protein (a human WRN ortholog) exhibits ATP-dependent 3'-5' helicase activity and that the WRN-1 helicase is stimulated by RPA-1 on a long forked DNA duplex. However, the role of WRN-1 in response to S-phase associated with DSBs is unclear. We found that WRN-1 is involved in the checkpoint response to DSBs after CPT, inducing cell cycle arrest, is recruited to DSBs by RPA-1 and functions upstream of ATL-1 and ATM-1 for CHK-1 phosphorylation in the S-phase checkpoint. In addition, WRN-1 and RPA-1 recruitments to the DSBs require MRE-11, suggesting that DSB processing controlled by MRE-11 is important for WRN-1 at DSBs. The repair of CPT-induced DSBs is greatly reduced in the absence of WRN-1. These observations suggest that WRN-1 functions downstream of RPA-1 and upstream of CHK-1 in the DSB checkpoint pathway and is also required for the repair of DSB.
Collapse
Affiliation(s)
- Moonjung Hyun
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seoyun Choi
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
24
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
25
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Su F, Mukherjee S, Yang Y, Mori E, Bhattacharya S, Kobayashi J, Yannone SM, Chen DJ, Asaithamby A. Nonenzymatic role for WRN in preserving nascent DNA strands after replication stress. Cell Rep 2014; 9:1387-401. [PMID: 25456133 DOI: 10.1016/j.celrep.2014.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/11/2014] [Accepted: 10/11/2014] [Indexed: 01/16/2023] Open
Abstract
WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRN to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.
Collapse
Affiliation(s)
- Fengtao Su
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shibani Mukherjee
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanyong Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eiichiro Mori
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junya Kobayashi
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Steven M Yannone
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David J Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Abstract
Cell-cycle checkpoints are generally global in nature: one unattached kinetochore prevents the segregation of all chromosomes; stalled replication forks inhibit late origin firing throughout the genome. A potential exception to this rule is the regulation of replication fork progression by the S-phase DNA damage checkpoint. In this case, it is possible that the checkpoint is global, and it slows all replication forks in the genome. However, it is also possible that the checkpoint acts locally at sites of DNA damage, and only slows those forks that encounter DNA damage. Whether the checkpoint regulates forks globally or locally has important mechanistic implications for how replication forks deal with damaged DNA during S-phase.
Collapse
|
28
|
Baechler SA, Schroeter A, Walker J, Aichinger G, Marko D. Oxidative metabolism enhances the cytotoxic and genotoxic properties of the soy isoflavone daidzein. Mol Nutr Food Res 2014; 58:1269-81. [PMID: 24585454 DOI: 10.1002/mnfr.201300531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/23/2022]
Abstract
SCOPE Oxidative metabolism of daidzein (DAI) might result in the formation of hydroxylated metabolites. Here, we address the question whether these metabolites differ in their biological activity from the parent isoflavone, exemplified for the epidermal growth factor receptor and topoisomerase II, potentially resulting in an enhanced toxic profile. METHODS AND RESULTS In contrast to DAI, 6-hydroxydaidzein (6-HO-DAI) and 8-hydroxydaidzein (8-HO-DAI) were found to inhibit the tyrosine kinase activity of the epidermal growth factor receptor in an ELISA-based test system, but showed no effects within cells. Further, the oxidative metabolites suppressed the catalytic activity of topoisomerase II in the decatenation assay. In the in vivo complexes of enzyme to DNA (ICE) bioassay, 6-HO-DAI and 8-HO-DAI did not affect the level of covalent topoisomerase II-DNA intermediates within HT29 cells, thus arguing for a catalytic inhibition of topoisomerase II rather than poisoning activity. In contrast to DAI, 6-HO-DAI and 8-HO-DAI significantly increased the rate of DNA strand breaks in HT29 cells after 24-h incubation and caused a cell cycle delay in S-phase. Differences were also observed between the oxidative metabolites, with only 6-HO-DAI inducing apoptosis but not 8-HO-DAI. CONCLUSION These data indicate that oxidative metabolism of DAI generates metabolites with genotoxic properties where interference with topoisomerase II might play a role.
Collapse
Affiliation(s)
- Simone A Baechler
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
29
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
30
|
Tyagi M, Bhattacharyya R, Bauri AK, Patro BS, Chattopadhyay S. DNA damage dependent activation of checkpoint kinase-1 and mitogen-activated protein kinase-p38 are required in malabaricone C-induced mitochondrial cell death. Biochim Biophys Acta Gen Subj 2014; 1840:1014-27. [DOI: 10.1016/j.bbagen.2013.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/15/2022]
|
31
|
Werner syndrome: association of premature aging and cancer predisposition. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
33
|
Popuri V, Tadokoro T, Croteau DL, Bohr VA. Human RECQL5: guarding the crossroads of DNA replication and transcription and providing backup capability. Crit Rev Biochem Mol Biol 2013; 48:289-99. [PMID: 23627586 DOI: 10.3109/10409238.2013.792770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA helicases are ubiquitous enzymes that catalyze unwinding of duplex DNA and function in all metabolic processes in which access to single-stranded DNA is required, including DNA replication, repair, recombination and RNA transcription. RecQ helicases are a conserved family of DNA helicases that display highly specialized and vital roles in the maintenance of genome stability. Mutations in three of the five human RecQ helicases, BLM, WRN and RECQL4 are associated with the genetic disorders Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome that are characterized by chromosomal instability, premature aging and predisposition to cancer. The biological role of human RECQL5 is only partially understood and RECQL5 has not yet been associated with any human disease. Illegitimate recombination and replication stress are hallmarks of human cancers and common instigators for genomic instability and cell death. Recql5 knockout mice are cancer prone and show increased chromosomal instability. Recql5-deficient mouse embryonic fibroblasts are sensitive to camptothecin and display elevated levels of sister chromatid exchanges. Unlike other human RecQ helicases, RECQL5 is recruited to single-stranded DNA breaks and is also proposed to play an essential role in RNA transcription. Here, we review the established roles of RECQL5 at the cross roads of DNA replication, recombination and transcription, and propose that human RECQL5 provides important backup functions in the absence of other DNA helicases.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
34
|
CPT-11 Chemotherapy Rescued A Patient with Atypical Sclerosing Epithelioid Fibrosarcoma from Emergent Condition. Chin J Cancer Res 2013; 24:253-6. [PMID: 23359776 DOI: 10.1007/s11670-012-0253-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/13/2012] [Indexed: 02/01/2023] Open
Abstract
Sclerosing epithelioid fibrosarcoma (SEF) is a rare and poorly defined variant of fibrosarcoma, but generally insensitive to chemotherapy and progresses with poor prognosis. We report the marvelous effect of irinotecan hydrochloride (CPT-11) chemotherapy in rescuing a patient with atypical SEF from emergent condition, who underwent recurrences after several treatment methods. Small dose of CPT-11 was administered to the patient, with which, the size of superficial mass (cervical lymph node) gradually decreased observed by the naked eyes in 5 days. X-ray and CT image proved a marked reduction in the size of the tumor. CPT-11 is valuable for the treatment of this aggressive sarcoma. In condition of emergency caused by sarcoma oppression, administering a tolerable small dose of topoisomerase I-inhibiting drug could be a beneficial choice.
Collapse
|
35
|
Sidorova JM, Kehrli K, Mao F, Monnat R. Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. DNA Repair (Amst) 2012; 12:128-39. [PMID: 23253856 DOI: 10.1016/j.dnarep.2012.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/15/2012] [Accepted: 11/18/2012] [Indexed: 12/21/2022]
Abstract
Human WRN and BLM genes are members of the conserved RECQ helicase family. Mutations in these genes are associated with Werner and Bloom syndromes. WRN and BLM proteins are implicated in DNA replication, recombination, repair, telomere maintenance, and transcription. Using microfluidics-assisted display of DNA for replication track analysis (ma-RTA), we show that WRN and BLM contribute additively to normal replication fork progression, and non-additively, in a RAD51-dependent pathway, to resumption of replication after arrest by hydroxyurea (HU), a replication-stalling drug. WRN but not BLM is required to support fork progression after HU. Resumption of replication by forks may be necessary but is not sufficient for timely completion of the cell cycle after HU arrest, as depletion of WRN or BLM compromises fork recovery to a similar degree, but only BLM depletion leads to extensive delay of cell division after HU, as well as more pronounced chromatin bridging. Finally, we show that recovery from HU includes apparent removal of some of the DNA that was synthesized immediately after release from HU, a novel phenomenon that we refer to as nascent strand processing, NSP.
Collapse
Affiliation(s)
- Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, United States.
| | | | | | | |
Collapse
|
36
|
Popuri V, Huang J, Ramamoorthy M, Tadokoro T, Croteau DL, Bohr VA. RECQL5 plays co-operative and complementary roles with WRN syndrome helicase. Nucleic Acids Res 2012. [PMID: 23180761 PMCID: PMC3553943 DOI: 10.1093/nar/gks1134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Humans have five RecQ helicases, whereas simpler organisms have only one. Little is known about whether and how these RecQ helicases co-operate and/or complement each other in response to cellular stress. Here we show that RECQL5 associates longer at laser-induced DNA double-strand breaks in the absence of Werner syndrome (WRN) protein, and that it interacts physically and functionally with WRN both in vivo and in vitro. RECQL5 co-operates with WRN on synthetic stalled replication fork-like structures and stimulates its helicase activity on DNA fork duplexes. Both RECQL5 and WRN re-localize from the nucleolus into the nucleus after replicative stress and significantly associate with each other during S-phase. Further, we show that RECQL5 is essential for cell survival in the absence of WRN. Loss of both RECQL5 and WRN severely compromises DNA replication, accumulates genomic instability and ultimately leads to cell death. Collectively, our results indicate that RECQL5 plays both co-operative and complementary roles with WRN. This is an early demonstration of a significant functional interplay and a novel synthetic lethal interaction among the human RecQ helicases.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
37
|
Masuda K, Banno K, Yanokura M, Tsuji K, Kobayashi Y, Kisu I, Ueki A, Yamagami W, Nomura H, Tominaga E, Susumu N, Aoki D. Association of epigenetic inactivation of the WRN gene with anticancer drug sensitivity in cervical cancer cells. Oncol Rep 2012; 28:1146-52. [PMID: 22797812 PMCID: PMC3583574 DOI: 10.3892/or.2012.1912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/08/2012] [Indexed: 12/14/2022] Open
Abstract
The Werner (WRN) gene codes for a DNA helicase that contributes to genomic stability and has been identified as the gene responsible for progeria. Recent studies have shown reduced WRN expression due to aberrant DNA hypermethylation in cancer cells. Furthermore, WRN expression is thought to affect sensitivity to DNA topoisomerase I inhibitors in cancer therapy. In this study, we examined the relationship between aberrant DNA hypermethylation of WRN and the sensitivity of cervical cancer cells to anticancer drugs. DNA was extracted from samples from 22 patients with primary cervical cancer and 6 human cervical cancer-derived cell lines. Aberrant DNA hypermethylation was analyzed by methylation-specific PCR. WRN expression in cultured cells before and after addition of 5-aza-2-deoxycytidine, a demethylating agent, was examined using RT-PCR. The sensitivity of cells to anticancer drugs was determined using a collagen gel droplet embedded culture drug sensitivity test (CD-DST). siRNA against WRN was transfected into a cervical cancer-derived cell line with high WRN expression. Changes in drug sensitivity after silencing WRN were determined by CD-DST. Aberrant DNA hypermethylation and decreased expression of WRN were detected in 7/21 cases of primary cervical cancer and in two cervical cancer-derived cell lines. These two cell lines showed high sensitivity to CPT-11, a topoisomerase I inhibitor, but became resistant to CPT-11 after treatment with 5-aza-2-deoxycytidine. Transfection of siRNA against WRN increased the sensitivity of the cells to CPT-11. Aberrant DNA hypermethylation of WRN also increased the sensitivity of cervical cancer cells to CPT-11. Therefore, epigenetic inactivation of this gene may be a biomarker for selection of drugs for the treatment of cervical cancer. This is the first report to show a relationship between the methylation of the WRN gene and sensitivity to CPT-11 in gynecological cancers.
Collapse
Affiliation(s)
- Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Popuri V, Ramamoorthy M, Tadokoro T, Singh DK, Karmakar P, Croteau DL, Bohr VA. Recruitment and retention dynamics of RECQL5 at DNA double strand break sites. DNA Repair (Amst) 2012; 11:624-35. [PMID: 22633600 PMCID: PMC3374033 DOI: 10.1016/j.dnarep.2012.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 02/04/2023]
Abstract
RECQL5 is one of the five human RecQ helicases, involved in the maintenance of genomic integrity. While much insight has been gained into the function of the Werner (WRN) and Bloom syndrome proteins (BLM), little is known about RECQL5. We have analyzed the recruitment and retention dynamics of RECQL5 at laser-induced DNA double strand breaks (DSBs) relative to other human RecQ helicases. RECQL5-depleted cells accumulate persistent 53BP1 foci followed by γ-irradiation, indicating a potential role of RECQL5 in the processing of DSBs. Real time imaging of live cells using confocal laser microscopy shows that RECQL5 is recruited early to laser-induced DSBs and remains for a shorter duration than BLM and WRN, but persist longer than RECQL4. These studies illustrate the differential involvement of RecQ helicases in the DSB repair process. Mapping of domains within RECQL5 that are necessary for recruitment to DSBs revealed that both the helicase and KIX domains are required for DNA damage recognition and stable association of RECQL5 to the DSB sites. Previous studies have shown that MRE11 is essential for the recruitment of RECQL5 to the DSB sites. Here we show that the recruitment of RECQL5 does not depend on the exonuclease activity of MRE11 or on active transcription by RNA polymerase II, one of the prominent interacting partners of RECQL5. Also, the recruitment of RECQL5 to laser-induced damage sites is independent of the presence of other DNA damage signaling and repair proteins BLM, WRN and ATM.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224
| | | | - Takashi Tadokoro
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224
| | - Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224
| | | | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224
| |
Collapse
|
39
|
Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P, Haracska L. Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 2012; 40:6049-59. [PMID: 22457066 PMCID: PMC3401441 DOI: 10.1093/nar/gks256] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18−/− cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability.
Collapse
Affiliation(s)
- Himabindu Gali
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|