1
|
Hong J, Lee C, Papoulas O, Pan J, Takagishi M, Manzi N, Dickinson DJ, Horani A, Brody SL, Marcotte E, Park TJ, Wallingford JB. Molecular organization of the distal tip of vertebrate motile cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639145. [PMID: 40027778 PMCID: PMC11870508 DOI: 10.1101/2025.02.19.639145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The beating of cilia on multi-ciliated cells (MCCs) is essential for normal development and homeostasis in animals. Unlike basal bodies or axonemes, the distal tips of MCC cilia remain poorly defined. Here, we characterize the molecular organization of the distal tip of vertebrate MCC cilia, revealing two distinct domains occupied by distinct protein constituents. Using frog, mouse, and human MCCs, we find that two largely uncharacterized proteins, Ccdc78 and Ccdc33 occupy a specialized region at the extreme distal tip, and these are required for the normal organization of other tip proteins, including Spef1, Cep104, and Eb3. Ccdc78 and Cccdc33 are also independently required for normal length regulation of MCC cilia. Mechanistically, Ccdc78 and Ccdc33 display robust microtubule-bundling activity both in vivo and in vitro . Thus, we reveal that two previously undefined proteins form a key module for organizing and stabilizing the distal tip of motile cilia in vertebrate MCC. We propose that these proteins represent potential disease loci for motile ciliopathies.
Collapse
|
2
|
Zhang Y, He M, Pan J. Axonemal microtubule dynamics in the assembly and disassembly of cilia. Biochem Soc Trans 2025; 53:BST20240688. [PMID: 39889304 DOI: 10.1042/bst20240688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Cilia and eukaryotic flagella (exchangeable terms) function in cell motility and signaling, which are pivotal for development and physiology. Cilia dysfunction can lead to ciliopathies. Cilia are usually assembled in quiescent and/or differentiated cells and undergo disassembly when cells enter cell cycle or in response to environmental stresses. Cilia contain a microtubule-based structure termed axoneme that comprises nine outer doublet microtubules with or without a pair of central microtubules, which is ensheathed by the ciliary membrane. Regulation of the axonemal microtubule dynamics is tightly associated with ciliary assembly and disassembly. In this short review, we discuss recent findings on the regulation of axonemal microtubules by microtubule-binding proteins and microtubule modulating kinesins during ciliary assembly and disassembly.
Collapse
Affiliation(s)
- Yi Zhang
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mu He
- School of Biomedical Sciences, The University of Hong Kong, Hongkong, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Sarusie MVK, Rönnbäck C, Jespersgaard C, Baungaard S, Ali Y, Kessel L, Christensen ST, Brøndum-Nielsen K, Møllgård K, Rosenberg T, Larsen LA, Grønskov K. A novel GFAP frameshift variant identified in a family with optico-retinal dysplasia and vision impairment. Hum Mol Genet 2024; 33:2145-2158. [PMID: 39471354 DOI: 10.1093/hmg/ddae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
Gain-of-function variants in GFAP leads to protein aggregation and is the cause of the severe neurodegenerative disorder Alexander Disease (AxD), while loss of GFAP function has been considered benign. Here, we investigated a six-generation family, where multiple individuals presented with gliosis of the optic nerve head and visual impairment. Whole genome sequencing (WGS) revealed a frameshift variant in GFAP (c.928dup, p.(Met310Asnfs*113)) segregating with disease. Analysis of human embryonic tissues revealed strong expression of GFAP in retinal neural progenitors. A zebrafish model verified that c.928dup does not result in extensive GFAP protein aggregation and zebrafish gfap loss-of-function mutants showed vision impairment and retinal dysplasia, characterized by a significant loss of Müller glia cells and photoreceptor cells. Our findings show how different mutational mechanisms can cause diverging phenotypes and reveal a novel function of GFAP in vertebrate eye development.
Collapse
Affiliation(s)
- Menachem V K Sarusie
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Cecilia Rönnbäck
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
| | - Cathrine Jespersgaard
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| | - Sif Baungaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yeasmeen Ali
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Karen Brøndum-Nielsen
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas Rosenberg
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| |
Collapse
|
4
|
Konjikusic MJ, Lee C, Yue Y, Shrestha BD, Nguimtsop AM, Horani A, Brody S, Prakash VN, Gray RS, Verhey KJ, Wallingford JB. Kif9 is an active kinesin motor required for ciliary beating and proximodistal patterning of motile axonemes. J Cell Sci 2023; 136:jcs259535. [PMID: 35531639 PMCID: PMC9357393 DOI: 10.1242/jcs.259535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 03/19/2024] Open
Abstract
Most motile cilia have a stereotyped structure of nine microtubule outer doublets and a single central pair of microtubules. The central pair of microtubules are surrounded by a set of proteins, termed the central pair apparatus. A specific kinesin, Klp1 projects from the central pair and contributes to ciliary motility in Chlamydomonas. The vertebrate ortholog, Kif9, is required for beating in mouse sperm flagella, but the mechanism of Kif9/Klp1 function remains poorly defined. Here, using Xenopus epidermal multiciliated cells, we show that Kif9 is necessary for ciliary motility and the proper distal localization of not only central pair proteins, but also radial spokes and dynein arms. In addition, single-molecule assays in vitro reveal that Xenopus Kif9 is a long-range processive motor, although it does not mediate long-range movement in ciliary axonemes in vivo. Together, our data suggest that Kif9 is integral for ciliary beating and is necessary for proper axonemal distal end integrity.
Collapse
Affiliation(s)
- Mia J. Konjikusic
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, TX 78712, USA
- Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Ange M. Nguimtsop
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vivek N. Prakash
- Department of Physics, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology and Department of Marine Biology and Ecology, University of Miami, Coral Gables, FL 33146,USA
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, TX 78712, USA
- Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Zhao H, Khan Z, Westlake CJ. Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol 2023; 133:20-31. [PMID: 35351373 PMCID: PMC9510604 DOI: 10.1016/j.semcdb.2022.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.
Collapse
Affiliation(s)
- Huijie Zhao
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Ziam Khan
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Batman U, Deretic J, Firat-Karalar EN. The ciliopathy protein CCDC66 controls mitotic progression and cytokinesis by promoting microtubule nucleation and organization. PLoS Biol 2022; 20:e3001708. [PMID: 35849559 PMCID: PMC9333452 DOI: 10.1371/journal.pbio.3001708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies. The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.
Collapse
Affiliation(s)
- Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
8
|
Müller M, Gorek L, Kamm N, Jacob R. Manipulation of the Tubulin Code Alters Directional Cell Migration and Ciliogenesis. Front Cell Dev Biol 2022; 10:901999. [PMID: 35903547 PMCID: PMC9315229 DOI: 10.3389/fcell.2022.901999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Conjunction of epithelial cells into monolayer sheets implies the ability to migrate and to undergo apicobasal polarization. Both processes comprise reorganization of cytoskeletal elements and rearrangements of structural protein interactions. We modulated expression of tubulin tyrosin ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, to study the role of tubulin detyrosination/-tyrosination in the orientation of cell motility and in epithelial morphogenesis. Oriented cell migration and the organization of focal adhesions significantly lose directionality with diminishing amounts of microtubules enriched in detyrosinated tubulin. On the other hand, increasing quantities of detyrosinated tubulin results in faster plus end elongation of microtubules in migrating and in polarized epithelial cells. These plus ends are decorated by the plus end binding protein 1 (EB1), which mediates interaction between microtubules enriched in detyrosinated tubulin and the integrin-ILK complex at focal adhesions. EB1 accumulates at the apical cell pole at the base of the primary cilium following apicobasal polarization. Polarized cells almost devoid of detyrosinated tubulin form stunted primary cilia and multiluminal cysts in 3D-matrices. We conclude that the balance between detyrosinated and tyrosinated tubulin alters microtubule dynamics, affects the orientation of focal adhesions and determines the organization of primary cilia on epithelial cells.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| | - Lena Gorek
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
- *Correspondence: Ralf Jacob,
| |
Collapse
|
9
|
Pchitskaya E, Rakovskaya A, Chigray M, Bezprozvanny I. Cytoskeleton Protein EB3 Contributes to Dendritic Spines Enlargement and Enhances Their Resilience to Toxic Effects of Beta-Amyloid. Int J Mol Sci 2022; 23:2274. [PMID: 35216391 PMCID: PMC8875759 DOI: 10.3390/ijms23042274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
EB3 protein is expressed abundantly in the nervous system and transiently enters the dendritic spines at the tip of the growing microtubule, which leads to spine enlargement. Nevertheless, the role of dynamic microtubules, and particularly EB3 protein, in synapse function is still elusive. By manipulating the EB3 expression level, we have shown that this protein is required for a normal dendritogenesis. Nonetheless, EB3 overexpression also reduces hippocampal neurons dendritic branching and total dendritic length. This effect likely occurs due to the speeding neuronal development cycle from dendrite outgrowth to the step when dendritic spines are forming. Implementing direct morphometric characterization of dendritic spines, we showed that EB3 overexpression leads to a dramatic increase in the dendritic spine head area. EB3 knockout oppositely reduces spine head area and increases spine neck length and spine neck/spine length ratio. The same effect is observed in conditions of amyloid-beta toxicity, modeling Alzheimer`s disease. Neck elongation is supposed to be a common detrimental effect on the spine's shape, which makes them biochemically and electrically less connected to the dendrite. EB3 also potentiates the formation of presynaptic protein Synapsin clusters and CaMKII-alpha preferential localization in spines rather than in dendrites of hippocampal neurons, while its downregulation has an opposite effect and reduces the size of presynaptic protein clusters Synapsin and PSD95. EB3's role in spine development and maturation determines its neuroprotective effect. EB3 overexpression makes dendritic spines resilient to amyloid-beta toxicity, restores altered PSD95 clustering, and reduces CaMKII-alpha localization in spines observed in this pathological state.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Anastasiya Rakovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Margarita Chigray
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nat Commun 2021; 12:5671. [PMID: 34580290 PMCID: PMC8476602 DOI: 10.1038/s41467-021-25929-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Primary cilia are microtubule based sensory organelles important for receiving and processing cellular signals. Recent studies have shown that cilia also release extracellular vesicles (EVs). Because EVs have been shown to exert various physiological functions, these findings have the potential to alter our understanding of how primary cilia regulate specific signalling pathways. So far the focus has been on lgEVs budding directly from the ciliary membrane. An association between cilia and MVB-derived smEVs has not yet been described. We show that ciliary mutant mammalian cells demonstrate increased secretion of small EVs (smEVs) and a change in EV composition. Characterisation of smEV cargo identified signalling molecules that are differentially loaded upon ciliary dysfunction. Furthermore, we show that these smEVs are biologically active and modulate the WNT response in recipient cells. These results provide us with insights into smEV-dependent ciliary signalling mechanisms which might underly ciliopathy disease pathogenesis. Extracellular vesicles (EV) are known to be released from the primary cilium, but the role ciliary proteins play in EV biogenesis remains unexplored. Here, the authors demonstrate increased secretion of small EVs with altered cargo composition from cells with known ciliarelated mutations. Wnt related molecules made up a majority of altered cargo
Collapse
|
11
|
Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 2021; 13:evab096. [PMID: 33963405 PMCID: PMC8290118 DOI: 10.1093/gbe/evab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
Collapse
Affiliation(s)
- Josip Skejo
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hendriksen
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Bremer
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Damjan Franjević
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 2021; 296:100680. [PMID: 33872598 PMCID: PMC8122175 DOI: 10.1016/j.jbc.2021.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.
Collapse
|
13
|
Doornbos C, Roepman R. Moonlighting of mitotic regulators in cilium disassembly. Cell Mol Life Sci 2021; 78:4955-4972. [PMID: 33860332 PMCID: PMC8233288 DOI: 10.1007/s00018-021-03827-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Correct timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.
Collapse
Affiliation(s)
- Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Abstract
Ciliogenesis describes the assembly of cilia in interphase cells. Several hundred proteins have been linked to ciliogenesis, which proceeds through a highly coordinated multistage process at the distal end of centrioles requiring membranes. In this short review, we focus on recently reported insights into the biogenesis of the primary cilium membrane and its association with other ciliogenic processes in the intracellular ciliogenesis pathway.
Collapse
Affiliation(s)
- Saurabh Shakya
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Kiesel P, Alvarez Viar G, Tsoy N, Maraspini R, Gorilak P, Varga V, Honigmann A, Pigino G. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat Struct Mol Biol 2020; 27:1115-1124. [PMID: 32989303 PMCID: PMC7610599 DOI: 10.1038/s41594-020-0507-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/12/2020] [Indexed: 01/09/2023]
Abstract
Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for investigating the structure of primary cilia isolated from MDCK-II cells at molecular resolution by cryo-electron tomography. We show that the textbook '9 + 0' arrangement of microtubule doublets is only present at the primary cilium base. A few microns out, the architecture changes into an unstructured bundle of EB1-decorated microtubules and actin filaments, putting an end to a long debate on the presence or absence of actin filaments in primary cilia. Our work provides a plethora of insights into the molecular structure of primary cilia and offers a methodological framework to study these important organelles.
Collapse
Affiliation(s)
- Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Nikolai Tsoy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Riccardo Maraspini
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Human Technopole, Milan, Italy.
| |
Collapse
|
16
|
Palander O, Trimble WS. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB J 2020; 34:16516-16535. [PMID: 33124112 DOI: 10.1096/fj.202001178r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Yamazoe T, Nagai T, Umeda S, Sugaya Y, Mizuno K. Roles of TOG and jelly-roll domains of centrosomal protein CEP104 in its functions in cilium elongation and Hedgehog signaling. J Biol Chem 2020; 295:14723-14736. [PMID: 32820051 DOI: 10.1074/jbc.ra120.013334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Primary cilia are generated through the extension of the microtubule-based axoneme. Centrosomal protein 104 (CEP104) localizes to the tip of the elongating axoneme, and CEP104 mutations are linked to a ciliopathy, Joubert syndrome. Thus, CEP104 has been implicated in ciliogenesis. However, the mechanism by which CEP104 regulates ciliogenesis remains elusive. We report here that CEP104 is critical for cilium elongation but not for initiating ciliogenesis. We also demonstrated that the tumor-overexpressed gene (TOG) domain of CEP104 exhibits microtubule-polymerizing activity and that this activity is essential for the cilium-elongating activity of CEP104. Knockdown/rescue experiments showed that the N-terminal jelly-roll (JR) fold partially contributes to cilium-elongating activity of CEP104, but neither the zinc-finger region nor the SXIP motif is required for this activity. CEP104 binds to a centriole-capping protein, CP110, through the zinc-finger region and to a microtubule plus-end-binding protein, EB1, through the SXIP motif, indicating that the binding of CP110 and EB1 is dispensable for the cilium-elongating activity of CEP104. Moreover, CEP104 depletion does not affect CP110 removal from the mother centriole, which suggests that CEP104 functions after the removal of CP110. Last, we also showed that CEP104 is required for the ciliary entry of Smoothened and export of GPR161 upon Hedgehog signal activation and that the TOG domain plays a critical role in this activity. Our results define the roles of the individual domains of CEP104 in its functions in cilium elongation and Hedgehog signaling and should enhance our understanding of the mechanism underlying CEP104 mutation-associated ciliopathies.
Collapse
Affiliation(s)
- Takashi Yamazoe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoaki Nagai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Shinya Umeda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuko Sugaya
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kensaku Mizuno
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Institute of Liberal Arts and Sciences, Tohoku University, Kawauchi, Sendai, Miyagi, Japan.
| |
Collapse
|
18
|
Conkar D, Firat-Karalar EN. Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J 2020; 288:786-798. [PMID: 32627332 DOI: 10.1111/febs.15473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The primary cilium is a microtubule-based structure that protrudes from the cell surface in diverse eukaryotic organisms. It functions as a key signaling center that decodes a variety of mechanical and chemical stimuli and plays fundamental roles in development and homeostasis. Accordingly, structural and functional defects of the primary cilium have profound effects on the physiology of multiple organ systems including kidney, retina, and central nervous system. At the core of the primary cilium is the microtubule-based axoneme, which supports the cilium shape and acts as the scaffold for bidirectional transport of cargoes into and out of cilium. Advances in imaging, proteomics, and structural biology have revealed new insights into the ultrastructural organization and composition of the primary cilium, the mechanisms that underlie its biogenesis and functions, and the pathologies that result from their deregulation termed ciliopathies. In this viewpoint, we first discuss the recent studies that identified the three-dimensional native architecture of the ciliary axoneme and revealed that it is considerably different from the well-known '9 + 0' paradigm. Moving forward, we explore emerging themes in the assembly and maintenance of the axoneme, with a focus on how microtubule-associated proteins regulate its structure, length, and stability. This far more complex picture of the primary cilium structure and composition, as well as the recent technological advances, open up new avenues for future research.
Collapse
Affiliation(s)
- Deniz Conkar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
19
|
Barsch F, Niedermair T, Mamilos A, Schmitt VH, Grevenstein D, Babel M, Burgoyne T, Shoemark A, Brochhausen C. Physiological and Pathophysiological Aspects of Primary Cilia-A Literature Review with View on Functional and Structural Relationships in Cartilage. Int J Mol Sci 2020; 21:ijms21144959. [PMID: 32674266 PMCID: PMC7404129 DOI: 10.3390/ijms21144959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of ‘Primary Cilia’ (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.
Collapse
Affiliation(s)
- Friedrich Barsch
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany and Institute of Exercise and Occupational Medicine, Department of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Volker H. Schmitt
- Cardiology I, Centre for Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
| | - David Grevenstein
- Department for Orthopedic and Trauma Surgery, University of Cologne, 50923 Köln, Germany;
| | - Maximilian Babel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Thomas Burgoyne
- Royal Brompton Hospital and Harefield NHS Trust, SW3 6NP London and UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Amelia Shoemark
- Royal Brompton Hospital and Harefield NHS Trust, University of Dundee, Dundee DD1 4HN, UK;
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
- Correspondence: ; Tel.: +49-941-944-6636
| |
Collapse
|
20
|
Ki SM, Kim JH, Won SY, Oh SJ, Lee IY, Bae Y, Chung KW, Choi B, Park B, Choi E, Lee JE. CEP41-mediated ciliary tubulin glutamylation drives angiogenesis through AURKA-dependent deciliation. EMBO Rep 2020; 21:e48290. [PMID: 31885126 PMCID: PMC7001496 DOI: 10.15252/embr.201948290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
The endothelial cilium is a microtubule-based organelle responsible for blood flow-induced mechanosensation and signal transduction during angiogenesis. The precise function and mechanisms by which ciliary mechanosensation occurs, however, are poorly understood. Although posttranslational modifications (PTMs) of cytoplasmic tubulin are known to be important in angiogenesis, the specific roles of ciliary tubulin PTMs play remain unclear. Here, we report that loss of centrosomal protein 41 (CEP41) results in vascular impairment in human cell lines and zebrafish, implying a previously unknown pro-angiogenic role for CEP41. We show that proper control of tubulin glutamylation by CEP41 is necessary for cilia disassembly and that is involved in endothelial cell (EC) dynamics such as migration and tubulogenesis. We show that in ECs responding to shear stress or hypoxia, CEP41 activates Aurora kinase A (AURKA) and upregulates expression of VEGFA and VEGFR2 through ciliary tubulin glutamylation, as well as leads to the deciliation. We further show that in hypoxia-induced angiogenesis, CEP41 is responsible for the activation of HIF1α to trigger the AURKA-VEGF pathway. Overall, our results suggest the CEP41-HIF1α-AURKA-VEGF axis as a key molecular mechanism of angiogenesis and demonstrate how important ciliary tubulin glutamylation is in mechanosense-responded EC dynamics.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Ji Hyun Kim
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - So Yeon Won
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - Shin Ji Oh
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
| | - In Young Lee
- Laboratory of Cell Death and Human DiseasesDepartment of Life SciencesKorea UniversitySeoulSouth Korea
| | - Young‐Ki Bae
- Comparative Biomedicine Research & Tumor Microenvironment Research BranchResearch InstituteNational Cancer CenterGoyangKorea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Boyoun Park
- Department of Systems BiologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Eui‐Ju Choi
- Laboratory of Cell Death and Human DiseasesDepartment of Life SciencesKorea UniversitySeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySAIHSTSungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research InstituteSamsung Medical CenterSeoulSouth Korea
| |
Collapse
|
21
|
Abstract
Recent evidence has indicated that caveolins are localized at the base of primary cilia, which are microtubule-based sensory organelles present on the cell surface, and that Caveolin-1 (CAV1) plays important roles in regulating ciliary membrane composition and function. Here we describe methods to analyze the localization and function of CAV1 in primary cilia of cultured mammalian cells. These include methods for culturing and transfecting mammalian cells with a CAV1-encoding plasmid or small interfering RNA (siRNA), analysis of mammalian cells by immunofluorescence microscopy (IFM) with antibodies against ciliary markers and CAV1, as well as methods for analyzing ciliary CAV1 function in siRNA-treated cells by IFM and cell-based signaling assays.
Collapse
|
22
|
Dynamic Changes in Ultrastructure of the Primary Cilium in Migrating Neuroblasts in the Postnatal Brain. J Neurosci 2019; 39:9967-9988. [PMID: 31685650 DOI: 10.1523/jneurosci.1503-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain.SIGNIFICANCE STATEMENT Immature neurons (neuroblasts) generated in the postnatal brain have a mitotic potential and migrate in chain-like cell aggregates toward the olfactory bulb. Here we report that migrating neuroblasts possess a tiny cellular protrusion called a primary cilium. Immunohistochemical studies with zebrafish, mouse, and monkey brains suggest that the presence of the primary cilium in migrating neuroblasts is evolutionarily conserved. Ciliogenesis in migrating neuroblasts in the rostral migratory stream is suppressed during mitosis and promoted after cell cycle exit. Moreover, live imaging and 3D electron microscopy revealed that ciliary localization and orientation change during saltatory movement of neuroblasts. Our results reveal highly organized dynamics in maturation and positioning of the primary cilium during neuroblast migration that underlie saltatory movement of postnatal-born neuroblasts.
Collapse
|
23
|
Galli C, Colangelo M, Pedrazzi G, Guizzardi S. The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature. Calcif Tissue Int 2019; 105:127-147. [PMID: 30997574 DOI: 10.1007/s00223-019-00554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.
Collapse
Affiliation(s)
- C Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - M Colangelo
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| | - G Pedrazzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Via Volturno 39, 43126, Parma, Italy
| | - S Guizzardi
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
24
|
Cassioli C, Baldari CT. A Ciliary View of the Immunological Synapse. Cells 2019; 8:E789. [PMID: 31362462 PMCID: PMC6721628 DOI: 10.3390/cells8080789] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
The primary cilium has gone from being a vestigial organelle to a crucial signaling hub of growing interest given the association between a group of human disorders, collectively known as ciliopathies, and defects in its structure or function. In recent years many ciliogenesis proteins have been observed at extraciliary sites in cells and likely perform cilium-independent functions ranging from regulation of the cytoskeleton to vesicular trafficking. Perhaps the most striking example is the non-ciliated T lymphocyte, in which components of the ciliary machinery are repurposed for the assembly and function of the immunological synapse even in the absence of a primary cilium. Furthermore, the specialization traits described at the immunological synapse are similar to those seen in the primary cilium. Here, we review common regulators and features shared by the immunological synapse and the primary cilium that document the remarkable homology between these structures.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
25
|
Mönnich M, Borgeskov L, Breslin L, Jakobsen L, Rogowski M, Doganli C, Schrøder JM, Mogensen JB, Blinkenkjær L, Harder LM, Lundberg E, Geimer S, Christensen ST, Andersen JS, Larsen LA, Pedersen LB. CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium. Cell Rep 2019. [PMID: 29514088 DOI: 10.1016/j.celrep.2018.02.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-β1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.
Collapse
Affiliation(s)
- Maren Mönnich
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Louise Borgeskov
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Loretta Breslin
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Michaela Rogowski
- Cell Biology/Electron Microscopy, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Canan Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob M Schrøder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Louise Blinkenkjær
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lea M Harder
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Stefan Geimer
- Cell Biology/Electron Microscopy, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany.
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Cabaud O, Roubin R, Comte A, Bascunana V, Sergé A, Sedjaï F, Birnbaum D, Rosnet O, Acquaviva C. Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum Mol Genet 2019; 27:3377-3391. [PMID: 29982567 DOI: 10.1093/hmg/ddy246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. A total of 436 skeletal dysplasias are listed in the 2015 revised version of the nosology and classification of genetic skeletal disorders, of which nearly 20% are still genetically and molecularly uncharacterized. We report the clinical and molecular characterization of a lethal skeletal dysplasia of the short-rib group caused by mutation of the mouse Fop gene. Fop encodes a centrosomal and centriolar satellite (CS) protein. We show that Fop mutation perturbs ciliogenesis in vivo and that this leads to the alteration of the Hedgehog signaling pathway. Fop mutation reduces CSs movements and affects pericentriolar material composition, which probably participates to the ciliogenesis defect. This study highlights the role of a centrosome and CSs protein producing phenotypes in mice that recapitulate a short rib-polydactyly syndrome when mutated.
Collapse
Affiliation(s)
- Olivier Cabaud
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Régine Roubin
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Audrey Comte
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Virginie Bascunana
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fatima Sedjaï
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Olivier Rosnet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Claire Acquaviva
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
27
|
Galli C, Pedrazzi G, Guizzardi S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019; 40:211-233. [PMID: 30908726 DOI: 10.1002/bem.22187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still-poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Carlo Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
28
|
Reilly ML, Benmerah A. Ciliary kinesins beyond IFT: Cilium length, disassembly, cargo transport and signalling. Biol Cell 2019; 111:79-94. [PMID: 30720881 DOI: 10.1111/boc.201800074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Cilia and flagella are microtubule-based antenna which are highly conserved among eukaryotes. In vertebrates, primary and motile cilia have evolved to exert several key functions during development and tissue homoeostasis. Ciliary dysfunction in humans causes a highly heterogeneous group of diseases called ciliopathies, a class of genetic multisystemic disorders primarily affecting kidney, skeleton, retina, lung and the central nervous system. Among key ciliary proteins, kinesin family members (KIF) are microtubule-interacting proteins involved in many diverse cellular functions, including transport of cargo (organelles, proteins and lipids) along microtubules and regulating the dynamics of cytoplasmic and spindle microtubules through their depolymerising activity. Many KIFs are also involved in diverse ciliary functions including assembly/disassembly, motility and signalling. We here review these ciliary kinesins in vertebrates and focus on their involvement in ciliopathy-related disorders.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France.,Paris Diderot University, Paris, 75013, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France
| |
Collapse
|
29
|
Cilia Distal Domain: Diversity in Evolutionarily Conserved Structures. Cells 2019; 8:cells8020160. [PMID: 30769894 PMCID: PMC6406257 DOI: 10.3390/cells8020160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cilia are microtubule-based organelles that protrude from the cell surface to fulfill sensory and motility functions. Their basic structure consists of an axoneme templated by a centriole/basal body. Striking differences in ciliary ultra-structures can be found at the ciliary base, the axoneme and the tip, not only throughout the eukaryotic tree of life, but within a single organism. Defects in cilia biogenesis and function are at the origin of human ciliopathies. This structural/functional diversity and its relationship with the etiology of these diseases is poorly understood. Some of the important events in cilia function occur at their distal domain, including cilia assembly/disassembly, IFT (intraflagellar transport) complexes' remodeling, and signal detection/transduction. How axonemal microtubules end at this domain varies with distinct cilia types, originating different tip architectures. Additionally, they show a high degree of dynamic behavior and are able to respond to different stimuli. The existence of microtubule-capping structures (caps) in certain types of cilia contributes to this diversity. It has been proposed that caps play a role in axoneme length control and stabilization, but their roles are still poorly understood. Here, we review the current knowledge on cilia structure diversity with a focus on the cilia distal domain and caps and discuss how they affect cilia structure and function.
Collapse
|
30
|
Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 2019; 132:jcs220749. [PMID: 30659111 PMCID: PMC6382014 DOI: 10.1242/jcs.220749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory Swank
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
31
|
Tu HQ, Qin XH, Liu ZB, Song ZQ, Hu HB, Zhang YC, Chang Y, Wu M, Huang Y, Bai YF, Wang G, Han QY, Li AL, Zhou T, Liu F, Zhang XM, Li HY. Microtubule asters anchored by FSD1 control axoneme assembly and ciliogenesis. Nat Commun 2018; 9:5277. [PMID: 30538248 PMCID: PMC6290075 DOI: 10.1038/s41467-018-07664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Defective ciliogenesis causes human developmental diseases termed ciliopathies. Microtubule (MT) asters originating from centrosomes in mitosis ensure the fidelity of cell division by positioning the spindle apparatus. However, the function of microtubule asters in interphase remains largely unknown. Here, we reveal an essential role of MT asters in transition zone (TZ) assembly during ciliogenesis. We demonstrate that the centrosome protein FSD1, whose biological function is largely unknown, anchors MT asters to interphase centrosomes by binding to microtubules. FSD1 knockdown causes defective ciliogenesis and affects embryonic development in vertebrates. We further show that disruption of MT aster anchorage by depleting FSD1 or other known anchoring proteins delocalizes the TZ assembly factor Cep290 from centriolar satellites, and causes TZ assembly defects. Thus, our study establishes FSD1 as a MT aster anchorage protein and reveals an important function of MT asters anchored by FSD1 in TZ assembly during ciliogenesis. Microtubule asters originate from centrosomes but their role during interphase remains largely unknown. Here, the authors find that microtubule asters anchored by previously-uncharacterized FSD1 play a role in ciliogenesis by maintaining the dynamic localization of centriolar satellites.
Collapse
Affiliation(s)
- Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xuan-He Qin
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhi-Bin Liu
- University of Chinese Academy of Science, Beijing, 100101, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Huang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yun-Feng Bai
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qiu-Ying Han
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China. .,Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
32
|
Composition, structure and function of the eukaryotic flagellum distal tip. Essays Biochem 2018; 62:815-828. [PMID: 30464008 PMCID: PMC6281473 DOI: 10.1042/ebc20180032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 01/13/2023]
Abstract
Cilia and flagella are long extensions commonly found on the surface of eukaryotic cells. In fact, most human cells have a flagellum, and failure to correctly form cilia leads to a spectrum of diseases gathered under the name ‘ciliopathies’. The cilium distal tip is where it grows and signals. Yet, out of the flagellar regions, the distal tip is probably the least intensively studied. In this review, we will summarise the current knowledge on the diverse flagellar tip structures, the dynamicity and signalling that occurs here and the proteins localising to this important cellular region.
Collapse
|
33
|
Roth D, Fitton BP, Chmel NP, Wasiluk N, Straube A. Spatial positioning of EB family proteins at microtubule tips involves distinct nucleotide-dependent binding properties. J Cell Sci 2018; 132:jcs.219550. [PMID: 30262468 PMCID: PMC6398475 DOI: 10.1242/jcs.219550] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/20/2018] [Indexed: 12/25/2022] Open
Abstract
EB proteins track the ends of growing microtubules and regulate microtubule dynamics both directly and by acting as the hub of the tip-tracking network. Mammalian cells express cell type-specific combinations of three EB proteins with different cellular roles. Here, we reconstitute EB1, EB2 and EB3 tip tracking in vitro. We find that all three EBs show rapid exchange at the microtubule tip and that their signal correlates to the microtubule assembly rate. However, the three signals differ in their maxima and position from the microtubule tip. Using microtubules built with nucleotide analogues and site-directed mutagenesis, we show that EB2 prefers binding to microtubule lattices containing a 1:1 mixture of different nucleotides and its distinct binding specificity is conferred by amino acid substitutions at the right-hand-side interface of the EB microtubule-binding domain with tubulin. Our data are consistent with the model that all three EB paralogues sense the nucleotide state of both β-tubulins flanking their binding site. Their different profile of preferred binding sites contributes to occupying spatially distinct domains at the temporally evolving microtubule tip structure. Summary:In vitro reconstitution of tip tracking with EB1, EB2 and EB3 shows that these three proteins sense the nucleotide state of both β-tubulins flanking their binding site.
Collapse
Affiliation(s)
- Daniel Roth
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Benjamin P Fitton
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK.,Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Nikola P Chmel
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Natalia Wasiluk
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK
| | - Anne Straube
- Centre for Mechanochemical Cell Biology (CMCB), University of Warwick, Coventry CV4 7AL, UK .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
34
|
Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J 2018; 475:2329-2353. [PMID: 30064990 PMCID: PMC6068341 DOI: 10.1042/bcj20170453] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
The cilium, once considered a vestigial structure, is a conserved, microtubule-based organelle critical for transducing extracellular chemical and mechanical signals that control cell polarity, differentiation, and proliferation. The cilium undergoes cycles of assembly and disassembly that are controlled by complex inter-relationships with the cytoskeleton. Microtubules form the core of the cilium, the axoneme, and are regulated by post-translational modifications, associated proteins, and microtubule dynamics. Although actin and septin cytoskeletons are not major components of the axoneme, they also regulate cilium organization and assembly state. Here, we discuss recent advances on how these different cytoskeletal systems affect cilium function, structure, and organization.
Collapse
|
35
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
36
|
The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Sci Rep 2018; 8:9542. [PMID: 29934521 PMCID: PMC6015040 DOI: 10.1038/s41598-018-27854-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Smad ubiquitin regulatory factor 1 (SMURF1) is a HECT-type E3 ubiquitin ligase that plays a critical role in vertebrate development by regulating planar cell polarity (PCP) signaling and convergent extension (CE). Here we show that SMURF1 is involved in mammalian heart development. We find that SMURF1 is highly expressed in outflow tract cushion mesenchyme and Smurf1−/− mouse embryos show delayed outflow tract septation. SMURF1 is expressed in smooth muscle cells of the coronary arteries and great vessels. Thickness of the aortic smooth muscle cell layer is reduced in Smurf1−/− mouse embryos. We show that SMURF1 is a negative regulator of cardiomyogenesis and a positive regulator of smooth muscle cell and cardiac fibroblast differentiation, indicating that SMURF1 is important for cell-type specification during heart development. Finally, we provide evidence that SMURF1 localizes at the primary cilium where it may regulate bone morphogenetic protein (BMP) signaling, which controls the initial phase of cardiomyocyte differentiation. In summary, our results demonstrate that SMURF1 is a critical regulator of outflow tract septation and cell-type specification during heart development, and that these effects may in part be mediated via control of cilium-associated BMP signaling.
Collapse
|
37
|
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, Cinatl J, Huang PH, Tanos BE. Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer. Cell Rep 2018; 23:3042-3055. [PMID: 29874589 PMCID: PMC6016080 DOI: 10.1016/j.celrep.2018.05.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/13/2017] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
Primary cilia are microtubule-based organelles that detect mechanical and chemical stimuli. Although cilia house a number of oncogenic molecules (including Smoothened, KRAS, EGFR, and PDGFR), their precise role in cancer remains unclear. We have interrogated the role of cilia in acquired and de novo resistance to a variety of kinase inhibitors, and found that, in several examples, resistant cells are distinctly characterized by an increase in the number and/or length of cilia with altered structural features. Changes in ciliation seem to be linked to differences in the molecular composition of cilia and result in enhanced Hedgehog pathway activation. Notably, manipulating cilia length via Kif7 knockdown is sufficient to confer drug resistance in drug-sensitive cells. Conversely, targeting of cilia length or integrity through genetic and pharmacological approaches overcomes kinase inhibitor resistance. Our work establishes a role for ciliogenesis and cilia length in promoting cancer drug resistance and has significant translational implications.
Collapse
Affiliation(s)
- Andrew D Jenks
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Simon Vyse
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Eleftherios Kostaras
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Deborah Keller
- FILM, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | - Amelia Shoemark
- Imperial College London, London, UK Electron Microscopy Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Athanasios Tsalikis
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Strasse 40, 60596 Frankfurt am Main, Germany
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Barbara E Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
38
|
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors. Front Immunol 2018; 9:1174. [PMID: 29910809 PMCID: PMC5992405 DOI: 10.3389/fimmu.2018.01174] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
39
|
Procter DJ, Banerjee A, Nukui M, Kruse K, Gaponenko V, Murphy EA, Komarova Y, Walsh D. The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread. Dev Cell 2018; 45:83-100.e7. [PMID: 29634939 DOI: 10.1016/j.devcel.2018.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.
Collapse
Affiliation(s)
- Dean J Procter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Masatoshi Nukui
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Eain A Murphy
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Yulia Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Schmid FM, Schou KB, Vilhelm MJ, Holm MS, Breslin L, Farinelli P, Larsen LA, Andersen JS, Pedersen LB, Christensen ST. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. J Cell Biol 2017; 217:151-161. [PMID: 29237719 PMCID: PMC5748969 DOI: 10.1083/jcb.201611050] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022] Open
Abstract
PDGFRα signals from cilia to control development and tumorigenesis. Schmid et al. now show that intraflagellar transport protein 20 (IFT20) interacts with and stabilizes the E3 ubiquitin ligases c-Cbl and Cbl-b to promote feedback inhibition of PDGFRα signaling at the primary cilium. Primary cilia have pivotal roles as organizers of many different signaling pathways, including platelet-derived growth factor receptor α (PDGFRα) signaling, which, when aberrantly regulated, is associated with developmental disorders, tumorigenesis, and cancer. PDGFRα is up-regulated during ciliogenesis, and ciliary localization of the receptor is required for its appropriate ligand-mediated activation by PDGF-AA. However, the mechanisms regulating sorting of PDGFRα and feedback inhibition of PDGFRα signaling at the cilium are unknown. Here, we provide evidence that intraflagellar transport protein 20 (IFT20) interacts with E3 ubiquitin ligases c-Cbl and Cbl-b and is required for Cbl-mediated ubiquitination and internalization of PDGFRα for feedback inhibition of receptor signaling. In wild-type cells treated with PDGF-AA, c-Cbl becomes enriched in the cilium, and the receptor is subsequently ubiquitinated and internalized. In contrast, in IFT20-depleted cells, PDGFRα localizes aberrantly to the plasma membrane and is overactivated after ligand stimulation because of destabilization and degradation of c-Cbl and Cbl-b.
Collapse
Affiliation(s)
- Fabian Marc Schmid
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Bødtker Schou
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Juel Vilhelm
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Schrøder Holm
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Loretta Breslin
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lotte Bang Pedersen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Huang N, Xia Y, Zhang D, Wang S, Bao Y, He R, Teng J, Chen J. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat Commun 2017; 8:15057. [PMID: 28422092 PMCID: PMC5399293 DOI: 10.1038/ncomms15057] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
In animal cells, the centrosome is the main microtubule-organizing centre where microtubules are nucleated and anchored. The centriole subdistal appendages (SDAs) are the key structures that anchor microtubules in interphase cells, but the composition and assembly mechanisms of SDAs are not well understood. Here, we reveal that centrosome-binding proteins, coiled-coil domain containing (CCDC) 120 and CCDC68 are two novel SDA components required for hierarchical SDA assembly in human cells. CCDC120 is anchored to SDAs by ODF2 and recruits CEP170 and Ninein to the centrosome through different coiled-coil domains at its N terminus. CCDC68 is a CEP170-interacting protein that competes with CCDC120 in recruiting CEP170 to SDAs. Furthermore, CCDC120 and CCDC68 are required for centrosome microtubule anchoring. Our findings elucidate the molecular basis for centriole SDA hierarchical assembly and microtubule anchoring in human interphase cells.
Collapse
Affiliation(s)
- Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuqing Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Song Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yitian Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Runsheng He
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Marthin JK, Stevens EM, Larsen LA, Christensen ST, Nielsen KG. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium: a simple methodological approach for ex vivo studies of primary ciliary dyskinesia. Cilia 2017; 6:3. [PMID: 28344781 PMCID: PMC5364668 DOI: 10.1186/s13630-017-0049-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 02/25/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical surface facing the outside and accessible for analysis of ciliary function. METHODS We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls. Nasal ciliary cells and sheets were removed on day 1 by nasal brush biopsy and analyzed with regard to ciliary beat pattern-and frequency using high-speed video imaging for standard reference values. Three-dimensional explant spheroid formation was initiated in the same individual on the same day by incubation of cells and sheets from a separate brush biopsy. Harvested spheroids were analyzed earliest possible and values of spheroid ciliary beat pattern and frequency were compared to the corresponding reference values from day 1. RESULTS Spheroids formed fast in serum-free culture medium. Formation was successful in 15 out of 18 (82%) sampled individuals. Thus, formation was successful in seven healthy controls and eight PCD patients, while unsuccessful in 3 with PCD due to infection. Median (range) number of days in culture before harvesting of spheroids was 4 (1-5) in healthy versus 2 (1-5) in PCD. Spheroid ciliary beat pattern and frequency were unchanged compared to their corresponding day 1 standard reference values. Spheroid ciliary beat frequency discriminated highly significant between healthy controls (9.3 Hz) and PCD patients (2.4 Hz) (P < 0.0001). Survival of spheroids was 16 days in a single healthy person. CONCLUSION Patient-specific three-dimensional explant spheroid formation from a minimal invasive nasal brush biopsy is a feasible, fast and valid ex vivo method to assess ciliary function with potential of aiding the diagnosis of PCD. In addition, it may be a useful model in the investigation of pathophysiological aspects and drug effects in human nasal airway epithelium.
Collapse
Affiliation(s)
- June Kehlet Marthin
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100 Denmark
| | - Elizabeth Munkebjerg Stevens
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100 Denmark
| | - Lars Allan Larsen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Kim Gjerum Nielsen
- Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100 Denmark
| |
Collapse
|
43
|
Au FKC, Jia Y, Jiang K, Grigoriev I, Hau BKT, Shen Y, Du S, Akhmanova A, Qi RZ. GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Dev Cell 2016; 40:81-94. [PMID: 28017616 DOI: 10.1016/j.devcel.2016.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtubules and actin to centrosomes, and the loss of GAS2L1 inhibits centrosome disjunction in G2 and centrosome splitting induced by depletion of the centrosome linker rootletin. Conversely, GAS2L1 overexpression induces premature centrosome separation, and this activity requires GAS2L1 association with actin, microtubules, and the microtubule end-binding proteins. The centrosome-splitting effect of GAS2L1 is counterbalanced by rootletin, reflecting the opposing actions of GAS2L1 and the centrosome linker. Our work reveals a GAS2L1-mediated centriole-tethering mechanism of microtubules and actin, which provide the forces required for centrosome dynamics and separation.
Collapse
Affiliation(s)
- Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yue Jia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kai Jiang
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Bill K T Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
44
|
May-Simera HL, Gumerson JD, Gao C, Campos M, Cologna SM, Beyer T, Boldt K, Kaya KD, Patel N, Kretschmer F, Kelley MW, Petralia RS, Davey MG, Li T. Loss of MACF1 Abolishes Ciliogenesis and Disrupts Apicobasal Polarity Establishment in the Retina. Cell Rep 2016; 17:1399-1413. [PMID: 27783952 PMCID: PMC5123820 DOI: 10.1016/j.celrep.2016.09.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) plays a role in the coordination of microtubules and actin in multiple cellular processes. Here, we show that MACF1 is also critical for ciliogenesis in multiple cell types. Ablation of Macf1 in the developing retina abolishes ciliogenesis, and basal bodies fail to dock to ciliary vesicles or migrate apically. Photoreceptor polarity is randomized, while inner retinal cells laminate correctly, suggesting that photoreceptor maturation is guided by polarity cues provided by cilia. Deletion of MACF1 in adult photoreceptors causes reversal of basal body docking and loss of outer segments, reflecting a continuous requirement for MACF1 function. MACF1 also interacts with the ciliary proteins MKKS and TALPID3. We propose that a disruption of trafficking across microtubles to actin filaments underlies the ciliogenesis defect in cells lacking MACF1 and that MKKS and TALPID3 are involved in the coordination of microtubule and actin interactions.
Collapse
Affiliation(s)
| | | | - Chun Gao
- National Eye Institute, Bethesda, MD 20892, USA
| | | | - Stephanie M Cologna
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Tina Beyer
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | | | - Nisha Patel
- National Eye Institute, Bethesda, MD 20892, USA
| | | | - Matthew W Kelley
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Megan G Davey
- The Roslin Institute, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
| | - Tiansen Li
- National Eye Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Zhang Y, Luo Y, Lyu R, Chen J, Liu R, Li D, Liu M, Zhou J. Proto-Oncogenic Src Phosphorylates EB1 to Regulate the Microtubule-Focal Adhesion Crosstalk and Stimulate Cell Migration. Am J Cancer Res 2016; 6:2129-2140. [PMID: 27698945 PMCID: PMC5039685 DOI: 10.7150/thno.16356] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/04/2016] [Indexed: 12/02/2022] Open
Abstract
Cell migration, a complex process critical for tumor progression and metastasis, requires a dynamic crosstalk between microtubules (MTs) and focal adhesions (FAs). However, the molecular mechanisms underlying this event remain elusive. Herein we identify the proto-oncogenic protein Src as an important player in the regulation of the MT-FA crosstalk. Src interacts with and phosphorylates end-binding protein 1 (EB1), a member of MT plus end-tracking proteins (+TIPs), both in cells and in vitro. Systematic mutagenesis reveals that tyrosine-247 (Y247) is the primary residue of EB1 phosphorylated by Src. Interestingly, both constitutively activated Src and Y247-phosphorylated EB1 localize to the centrosome and FAs. Src-mediated EB1 phosphorylation diminishes its interactions with other +TIPs, including adenomatous polyposis coli (APC) and mitotic centromere associated kinesin (MCAK). In addition, EB1 phosphorylation at Y247 enhances the rate of MT catastrophe and significantly stimulates cell migration. These findings thus demonstrate that the Src-EB1 axis plays a crucial role in regulating the crosstalk between MTs and FAs to promote cell migration.
Collapse
|
46
|
Pedersen LB, Mogensen JB, Christensen ST. Endocytic Control of Cellular Signaling at the Primary Cilium. Trends Biochem Sci 2016; 41:784-797. [DOI: 10.1016/j.tibs.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
|
47
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
48
|
Shinohara K, Chen D, Nishida T, Misaki K, Yonemura S, Hamada H. Absence of Radial Spokes in Mouse Node Cilia Is Required for Rotational Movement but Confers Ultrastructural Instability as a Trade-Off. Dev Cell 2016; 35:236-46. [PMID: 26506310 DOI: 10.1016/j.devcel.2015.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/29/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
Abstract
Determination of left-right asymmetry in mouse embryos is established by a leftward fluid flow that is generated by clockwise rotation of node cilia. How node cilia achieve stable unidirectional rotation has remained unknown, however. Here we show that brief exposure to the microtubule-stabilizing drug paclitaxel (Taxol) induces randomly directed rotation and changes the ultrastructure of node cilia. In vivo observations and a computer simulation revealed that a regular 9+0 arrangement of doublet microtubules is essential for stable unidirectional rotation of node cilia. The 9+2 motile cilia of the airway, which manifest planar beating, are resistant to Taxol treatment. However, the airway cilia of mice lacking the radial spoke head protein Rsph4a undergo rotational movement instead of planar beating, are prone to microtubule rearrangement, and are sensitive to Taxol. Our results suggest that the absence of radial spokes allows node cilia to rotate unidirectionally but, as a trade-off, renders them ultrastructurally fragile.
Collapse
Affiliation(s)
- Kyosuke Shinohara
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Duanduan Chen
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tomoki Nishida
- Research Center for Ultra-high Voltage Electron Microscopy, Osaka University, Osaka 567-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, Center for Life Science Technologies, RIKEN, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, Center for Life Science Technologies, RIKEN, Kobe 650-0047, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Harris JA, Liu Y, Yang P, Kner P, Lechtreck KF. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 2015; 27:295-307. [PMID: 26631555 PMCID: PMC4713132 DOI: 10.1091/mbc.e15-08-0608] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein-tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia.
Collapse
Affiliation(s)
- J Aaron Harris
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Peter Kner
- College of Engineering, University of Georgia, Athens, GA 30602
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
50
|
Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J Cell Sci 2015; 128:3543-9. [PMID: 26290382 DOI: 10.1242/jcs.173559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023] Open
Abstract
Primary cilia are microtubule-based sensory organelles projecting from most quiescent mammalian cells, which disassemble in cells cultured in serum-deprived conditions upon re-addition of serum or growth factors. Platelet-derived growth factors (PDGF) are implicated in deciliation, but the specific receptor isoforms and mechanisms involved are unclear. We report that PDGFRβ promotes deciliation in cultured cells and provide evidence implicating PLCγ and intracellular Ca(2+) release in this process. Activation of wild-type PDGFRα alone did not elicit deciliation. However, expression of constitutively active PDGFRα D842V mutant receptor, which potently activates PLCγ (also known as PLCG1), caused significant deciliation, and this phenotype was rescued by inhibiting PDGFRα D842V kinase activity or AURKA. We propose that PDGFRβ and PDGFRα D842V promote deciliation through PLCγ-mediated Ca(2+) release from intracellular stores, causing activation of calmodulin and AURKA-triggered deciliation.
Collapse
Affiliation(s)
- Brian S Nielsen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Raj R Malinda
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Fabian M Schmid
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Stine F Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| | - Lotte B Pedersen
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen OE DK-2100, Denmark
| |
Collapse
|