1
|
Puzanskiy RK, Kirpichnikova AA, Bogdanova EM, Prokopiev IA, Shavarda AL, Romanyuk DA, Vanisov SA, Yemelyanov VV, Shishova MF. From Division to Death: Metabolomic Analysis of Nicotiana tabacum BY-2 Cells Reveals the Complexity of Life in Batch Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3426. [PMID: 39683219 DOI: 10.3390/plants13233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation, elongation, and stationary phases. During this process, the composition of the growth medium changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted. The medium's pH initially decreased and then rose with aging. As a result of the crosstalk between the internal and external stimuli, cells pass through complicated systemic rearrangements, which cause metabolomic alterations. The early stages were characterized by high levels of amino acids and sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements occurred between the proliferation and active elongation stages, including repression of amino acid accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher levels of secondary metabolites, which may be a non-specific response to deteriorating conditions. Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and probably led to self-destructive processes. A correlation analysis revealed relationships between metabolites' covariation, their biochemical ratio, and the growth phase.
Collapse
Affiliation(s)
- Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | | | - Ekaterina M Bogdanova
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya A Prokopiev
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria A Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Sergey A Vanisov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Staub JM. Transformation of the Plastid Genome in Tobacco Suspension Cell Cultures. Methods Mol Biol 2021; 2317:167-175. [PMID: 34028768 DOI: 10.1007/978-1-0716-1472-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chloroplast transformation has been extremely valuable for the study of plastid biology and gene expression, but the tissue culture methodology involved can be laborious and it can take several months to obtain homoplasmic regenerated plants useful for molecular or physiological studies. In contrast, transformation of tobacco suspension cell plastids provides an easy and efficient system to rapidly evaluate the efficacy of multiple constructs prior to plant regeneration. Suspension cell cultures can be initiated from many cell types, and once established, can be maintained by subculture for more than a year with no loss of transformation efficiency. Using antibiotic selection, homoplasmy is readily achieved in uniform cell colonies useful for comparative gene expression analyses, with the added flexibility to subsequently regenerate plants for in planta studies. Plastids from suspension cells grown in the dark are similar in size and cellular morphology to those in embryogenic culture systems of monocot species, thus providing a useful model for understanding the steps leading to plastid transformation in those recalcitrant species.
Collapse
|
3
|
Yoshida Y, Mogi Y. How do plastids and mitochondria divide? Microscopy (Oxf) 2019; 68:45-56. [PMID: 30476140 DOI: 10.1093/jmicro/dfy132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yuko Mogi
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| |
Collapse
|
4
|
Sakai A, Takusagawa M, Nio A, Sawai Y. Cytological Studies on Proliferation, Differentiation, and Death of BY-2 Cultured Tobacco Cells. CYTOLOGIA 2015. [DOI: 10.1508/cytologia.80.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women's University
| | - Mari Takusagawa
- Graduate School of Humanities and Sciences, Nara Women's University
| | - Asuka Nio
- Department of Biological Sciences, Faculty of Science, Nara Women's University
| | - Yu Sawai
- Graduate School of Humanities and Sciences, Nara Women's University
| |
Collapse
|
5
|
Sato T, Nagasato C, Hara Y, Motomura T. Cell cycle and nucleomorph division in Pyrenomonas helgolandii (Cryptophyta). Protist 2014; 165:113-22. [PMID: 24568875 DOI: 10.1016/j.protis.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/12/2014] [Accepted: 01/18/2014] [Indexed: 12/12/2022]
Abstract
The cells of cryptophycean and chlorarachniophycean algae contain a nucleomorph, a vestigial nucleus derived from red and green algal endosymbionts respectively. The origin of the nucleomorph is therefore different from that of cellular organelles such as mitochondria and chloroplasts. In this study, we sought to determine whether cell cycle regulation of the nucleomorph in the cryptophycean alga Pyrenomonas helgolandii is functionally similar to that of the cell nucleus. We performed an ultrastructural analysis of nucleomorph division in cells prepared by rapid freezing fixation - freeze substitution and also carried out BrdU labeling experiments to determine the timing of nucleomorph DNA synthesis in relation to that of the cell nucleus. In cells cultured under 16 hours light: 8 hours dark conditions, BrdU labeling experiments showed that DNA synthesis in the nucleomorph occurred during a limited period from 2 hr to 4 hr after the beginning of the dark period. The S phase in the nucleomorph started just after completion of the nuclear S phase. Thus, DNA synthesis in the nucleomorph occurred at a defined period of the cell cycle. By contrast, our BrdU experiments showed that the nucleoids of mitochondria and chloroplasts could perform DNA synthesis throughout the whole cell cycle.
Collapse
Affiliation(s)
- Tomonori Sato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0003, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0003, Japan
| | - Yoshiaki Hara
- Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0003, Japan.
| |
Collapse
|
6
|
Abstract
Chloroplast transformation has been extremely valuable for the study of plastid biology and gene expression, but the tissue culture methodology involved can be laborious, and it can take several months to obtain homoplasmic regenerated plants useful for molecular or physiological studies. In contrast, transformation of tobacco suspension cell plastids provides an easy and efficient system to rapidly evaluate the efficacy of multiple constructs prior to plant regeneration. Suspension cell cultures can be initiated from many cell types, and once established, can be maintained by subculture for more than a year with no loss of transformation efficiency. Using antibiotic selection, homoplasmy is readily achieved in uniform cell colonies useful for comparative gene expression analyses, with the added flexibility to subsequently regenerate plants for in planta studies. Plastids from suspension cells grown in the dark are similar in size and cellular morphology to those in embryogenic culture systems of monocot species, thus providing a useful model for understanding the steps leading to plastid transformation in those recalcitrant species.
Collapse
|
7
|
Sumiya N, Owari S, Watanabe K, Kawano S. ROLE OF MULTIPLE FTSZ RINGS IN CHLOROPLAST DIVISION UNDER OLIGOTROPHIC AND EUTROPHIC CONDITIONS IN THE UNICELLULAR GREEN ALGA NANNOCHLORIS BACILLARIS (CHLOROPHYTA, TREBOUXIOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2012; 48:1187-1196. [PMID: 27011278 DOI: 10.1111/j.1529-8817.2012.01204.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann cultured under nutrient-enriched conditions have multiple rings of FtsZ, a prokaryote-derived chloroplast division protein. We previously reported that synthesis of excess chloroplast DNA and formation of multiple FtsZ rings occur simultaneously. To clarify the role of multiple FtsZ rings in chloroplast division, we investigated chloroplast DNA synthesis and ring formation in cells cultured under various culture conditions. Cells transferred from a nutrient-enriched medium to an inorganic medium in the light showed a drop in cell division rate, a reduction in chloroplast DNA content, and changes in the shape of chloroplast nucleoids as cells divided. We then examined DNA synthesis by immunodetecting BrdU incorporated into DNA strands using the anti-BrdU antibody. BrdU-labeled nuclei were clearly observed in cells 48 h after transfer into the inorganic medium, while only weak punctate signals were visible in the chloroplasts. In parallel, the number of FtsZ rings decreased from 6 to only 1. When the cells were transferred from an inorganic medium to a nutrient-enriched medium, the number of cells increased only slightly in the first 12 h after transfer; after this time, however, they started to divide more quickly and increased exponentially. Chloroplast nucleoids changed from punctate to rod-like structures, and active chloroplast DNA synthesis and FtsZ ring formation were observed. On the basis of our results, we conclude that multiple FtsZ ring assembly and chloroplast DNA duplication under nutrient-rich conditions facilitate chloroplast division after transfer to oligotrophic conditions without further duplication of chloroplast DNA and formation of new FtsZ rings.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Satomi Owari
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Koichi Watanabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
8
|
Toshoji H, Katsumata T, Takusagawa M, Yusa Y, Sakai A. Effects of chloroplast dysfunction on mitochondria: white sectors in variegated leaves have higher mitochondrial DNA levels and lower dark respiration rates than green sectors. PROTOPLASMA 2012; 249:805-17. [PMID: 21984314 PMCID: PMC3382374 DOI: 10.1007/s00709-011-0325-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/26/2011] [Indexed: 05/23/2023]
Abstract
Co-ordination between plastids and mitochondria is so essential that there should be extensive inter-organellar crosstalk during development of plant cells. Indeed, chloroplast dysfunction in white leaves of plastid ribosome-deficient mutant barley, albostrians, is reportedly accompanied by increases in the levels of mitochondrial DNA and mitochondrial transcripts, suggesting that (i) developmental/physiological status of plastids (or heterotrophic growth condition of albino leaves) can affect the status of mitochondrial genome, and (ii) the function of the affected mitochondria may also be up-regulated accordingly. However, functional aspects of the mitochondria affected by chloroplast dysfunction have not yet been examined in detail. Here, we examined the effects of chloroplast dysfunction on mitochondrial DNA level and dark respiration rate, by comparing white and green sectors within individual variegated leaves, using 12 ornamental plants as experimental materials. The pattern of leaf variegation differed from species to species, suggesting that different mechanisms were involved in the formation of white sectors in different species. Quantitative hybridization analysis revealed that mitochondrial DNA levels were generally higher in white sectors than in green sectors. In spite of the elevated mitochondrial DNA levels, however, dark respiration rates in white sectors were generally lower than those in green sectors. Several possible mechanisms for elevation of mitochondrial DNA level and suppression of dark respiration rates in white sectors are discussed.
Collapse
Affiliation(s)
- Haruka Toshoji
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara, 630-8506 Japan
| | - Tomomi Katsumata
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara, 630-8506 Japan
| | - Mari Takusagawa
- Department of Biological Science and Environment, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Yoichi Yusa
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara, 630-8506 Japan
| | - Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara, 630-8506 Japan
| |
Collapse
|
9
|
Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. PLANT PHYSIOLOGY 2012; 158:156-89. [PMID: 22065420 PMCID: PMC3252073 DOI: 10.1104/pp.111.188474] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 05/18/2023]
Abstract
Plastids contain multiple copies of the plastid chromosome, folded together with proteins and RNA into nucleoids. The degree to which components of the plastid gene expression and protein biogenesis machineries are nucleoid associated, and the factors involved in plastid DNA organization, repair, and replication, are poorly understood. To provide a conceptual framework for nucleoid function, we characterized the proteomes of highly enriched nucleoid fractions of proplastids and mature chloroplasts isolated from the maize (Zea mays) leaf base and tip, respectively, using mass spectrometry. Quantitative comparisons with proteomes of unfractionated proplastids and chloroplasts facilitated the determination of nucleoid-enriched proteins. This nucleoid-enriched proteome included proteins involved in DNA replication, organization, and repair as well as transcription, mRNA processing, splicing, and editing. Many proteins of unknown function, including pentatricopeptide repeat (PPR), tetratricopeptide repeat (TPR), DnaJ, and mitochondrial transcription factor (mTERF) domain proteins, were identified. Strikingly, 70S ribosome and ribosome assembly factors were strongly overrepresented in nucleoid fractions, but protein chaperones were not. Our analysis strongly suggests that mRNA processing, splicing, and editing, as well as ribosome assembly, take place in association with the nucleoid, suggesting that these processes occur cotranscriptionally. The plastid developmental state did not dramatically change the nucleoid-enriched proteome but did quantitatively shift the predominating function from RNA metabolism in undeveloped plastids to translation and homeostasis in chloroplasts. This study extends the known maize plastid proteome by hundreds of proteins, including more than 40 PPR and mTERF domain proteins, and provides a resource for targeted studies on plastid gene expression. Details of protein identification and annotation are provided in the Plant Proteome Database.
Collapse
|
10
|
Imoto Y, Yoshida Y, Yagisawa F, Kuroiwa H, Kuroiwa T. The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. Microscopy (Oxf) 2011; 60 Suppl 1:S117-36. [DOI: 10.1093/jmicro/dfr034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Woloszynska M. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:657-71. [PMID: 19995826 DOI: 10.1093/jxb/erp361] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondrial heteroplasmy is defined as the coexistence of divergent mitochondrial genotypes in a cell. The ratio of the alternative genomes may be variable, but in plants, the usually prevalent main genome is accompanied by sublimons--substoichiometric mitochondrial DNA (mtDNA) molecules. Plant mitochondrial heteroplasmy was originally viewed as being associated with pathological mutations or was found in non-natural plant populations. Currently, it is considered to be a common situation in plants. Recent years have changed the previous view on the role of homologous recombination, small-scale mutations, and paternal leakage of mtDNA in the generation of heteroplasmy. Newly developed sensitive techniques have allowed the precise estimation of mtDNA stoichiometry. Mechanisms of maintenance and transmission of heteroplasmic genomes, including DNA recombination and replication, as well as mitochondrial fusion and fission, have been studied. This review describes the high level of plant mitochondrial genome complication--the 'madness' resulting from the heteroplasmic state and explains the method hidden in this madness. Heteroplasmy is described as the evolutionary strategy of uniparentally inherited plant mitochondrial genomes which do not undergo sexual recombination. In order to compensate for this deficiency, alternative types of mtDNA are substoichiometrically accumulated as a reservoir of genetic variability and may undergo accelerated evolution. Occasionally, sublimons are selected and amplified in the process called substoichiometric shifting, to take over the role of the main genome. Alternative mitochondrial genomes may recombine, yielding new mtDNA variants, or segregate during plant growth resulting in plants with mosaic phenotypes. Two opposite roles of mitochondrial heteroplasmy with respect to acceleration or counteracting of mutation accumulation are also discussed. Finally, nuclear control of heteroplasmy and substoichiometric shifting is described.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
12
|
Takanashi H, Ohnishi T, Mogi M, Okamoto T, Arimura SI, Tsutsumi N. Studies of mitochondrial morphology and DNA amount in the rice egg cell. Curr Genet 2009; 56:33-41. [PMID: 19967377 DOI: 10.1007/s00294-009-0277-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/15/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
In plant vegetative cells, mitochondria are usually small and grain-shaped. In contrast, unusually shaped giant mitochondria (large cup-shaped or long stretched-rod-shaped) appear in the egg cells of geranium, maize, Ipomoea nil, and bracken. In this study, to characterize egg cell mitochondria in rice, we used nonenzymatic manual dissection to isolate unfertilized egg cells of rice and observed the egg cell mitochondria and mitochondrial DNA (mtDNA) simultaneously. These observations showed that the mitochondria in the rice egg cell are small and grain-shaped, unlike the mitochondria in geranium, maize, I. nil, and bracken. Double staining of mitochondria by MitoTracker and mtDNA by SYBR Green I showed that mitochondria in the rice egg cell have a large amount of mtDNA compared with the rice root protoplast. We also used real-time PCR analysis to quantify the mtDNA amount in the rice egg cell. We quantified the copy numbers of four mitochondrial genes per single rice egg cell and rice leaf protoplast. Real-time PCR analysis revealed that the egg cell has more than ten times more copy numbers of all of four genes encoded in the mitochondrial genome compared with the leaf protoplast.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Sumiya N, Hirata A, Kawano S. MULTIPLE FtsZ RING FORMATION AND REDUPLICATED CHLOROPLAST DNA IN NANNOCHLORIS BACILLARIS (CHLOROPHYTA, TREBOUXIOPHYCEAE) UNDER PHOSPHATE-ENRICHED CULTURE(1). JOURNAL OF PHYCOLOGY 2008; 44:1476-1489. [PMID: 27039862 DOI: 10.1111/j.1529-8817.2008.00589.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We examined the effects of phosphate enrichment on chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann. The doubling time of cells was similar in phosphate-limited (no β-glycerophosphate) and phosphate-enriched (2 mM β-glycerophosphate) media. The lengths of cells and chloroplasts were similar, regardless of phosphate concentration. The relationship between the ring formation of the prokaryote-derived chloroplast division protein FtsZ and phosphate concentration was examined using indirect fluorescent antibody staining. The number of FtsZ rings increased as the phosphate concentration of the medium increased. Multiple FtsZ rings were formed in cells in phosphate-enriched medium; up to six FtsZ rings per chloroplast were observed. The number of FtsZ rings increased as the chloroplast grew. The FtsZ ring located near the center of the chloroplast had the strongest fluorescence. The FtsZ ring at the relative center of all FtsZ rings was used for division. Plastid division rings did not multiply in phosphate-enriched culture. The chloroplast DNA content was 2.3 times greater in phosphate-enriched than in phosphate-limited culture and decreased in cells cultured in phosphate-enriched medium containing 5-fluorodeoxyuridine (FdUr). In the presence of FdUr, only one FtsZ ring formed, even under phosphate enrichment. This finding suggests that excessive chloroplast DNA replication induces multiple FtsZ ring formation in phosphate-enriched culture. We propose a multiple FtsZ ring formation model under phosphate enrichment.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-601, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
14
|
Ono Y, Sakai A, Takechi K, Takio S, Takusagawa M, Takano H. NtPolI-like1 and NtPolI-like2, bacterial DNA polymerase I homologs isolated from BY-2 cultured tobacco cells, encode DNA polymerases engaged in DNA replication in both plastids and mitochondria. PLANT & CELL PHYSIOLOGY 2007; 48:1679-92. [PMID: 17942449 DOI: 10.1093/pcp/pcm140] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Two cDNAs encoding homologs of bacterial DNA polymerase I were isolated from cultured tobacco (Nicotiana tabacum) BY-2 cells, and the corresponding genes were named NtPolI-like1 and NtPolI-like2. High sequence similarity suggested that they are orthologous genes each derived from respective parental species of N. tabacum, an allotetraploid plant. Each of the NtPolI-like1/2 gene products had a putative transit peptide for plastid localization at the N-terminus, followed by a 3'-5' exonuclease domain in the internal region, and a DNA polymerase domain in the C-terminal region. Among family A DNA polymerases, NtPolI-like proteins formed, together with other plant DNA polymerase I homologs, a phylogenetic group distinct from mitochondrial DNA polymerase gamma in animals and fungi, as well as eukaryotic cell nuclear-localized repair enzymes. In contrast to computer predictions, experiments with green fluorescent protein (GFP) fusion protein and Western blotting analysis suggested dual targeting of the gene products to both plastids and mitochondria. The recombinant NtPolI-like2 protein exhibited DNA polymerase activity in vitro. Their biochemical character roughly coincided with those of the 116 kDa DNA polymerases found in the plastid and mitochondrial nuclei (nucleoids) isolated from BY-2 cells. Pre-treatment of the organelle nuclear extracts with anti-NtPolI-like antibody removed most of the DNA polymerase activity. Reverse transcription-PCR (RT-PCR) and Western blotting analyses demonstrated transient activation of NtPolI-like gene expression in the initial phase of cell proliferation, exactly when the 116 kDa DNA polymerases in the isolated organelle nuclei were activated and preferential synthesis of organelle DNAs occurred. Taken together, our results suggest that NtPolI-like1/2 genes encode DNA polymerases engaged in DNA replication in both plastids and mitochondria.
Collapse
Affiliation(s)
- Yuriko Ono
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic Effects of Volatile Monoterpenoids Produced by Salvia leucophylla: Inhibition of Cell Proliferation and DNA Synthesis in the Root Apical Meristem of Brassica campestris Seedlings. J Chem Ecol 2005; 31:1187-203. [PMID: 16124241 DOI: 10.1007/s10886-005-4256-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salvia leucophylla, a shrub observed in coastal south California, produces several volatile monoterpenoids (camphor, 1,8-cineole, beta-pinene, alpha-pinene, and camphene) that potentially act as allelochemicals. The effects of these were examined using Brassica campestris as the test plant. Camphor, 1,8-cineole, and beta-pinene inhibited germination of B. campestris seeds at high concentrations, whereas alpha-pinene and camphene did not. Root growth was inhibited by all five monoterpenoids in a dose-dependent manner, but hypocotyl growth was largely unaffected. The monoterpenoids did not alter the sizes of matured cells in either hypocotyls or roots, indicating that cell expansion is relatively insensitive to these compounds. They did not decrease the mitotic index in the shoot apical region, but specifically lowered mitotic index in the root apical meristem. Moreover, morphological and biochemical analyses on the incorporation of 5-bromo-2'-deoxyuridine into DNA demonstrated that the monoterpenoids inhibit both cell-nuclear and organelle DNA synthesis in the root apical meristem. These results suggest that the monoterpenoids produced by S. leucophylla could interfere with the growth of other plants in its vicinity through inhibition of cell proliferation in the root apical meristem.
Collapse
Affiliation(s)
- Nami Nishida
- Department of Biological Science, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | | | | | | | | |
Collapse
|
16
|
Langbecker CL, Ye GN, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz PTJ, Armstrong CL, Staub JM. High-frequency transformation of undeveloped plastids in tobacco suspension cells. PLANT PHYSIOLOGY 2004; 135:39-46. [PMID: 15141065 PMCID: PMC429331 DOI: 10.1104/pp.103.035410] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 05/22/2023]
Abstract
Although leaf chloroplast transformation technology was developed more than a decade ago, no reports exist of stable transformation of undeveloped plastids or other specialized plastid types, such as proplastids, etioplasts, or amyloplasts. In this work we report development of a dark-grown tobacco suspension cell model system to investigate the transformation potential of undeveloped plastids. Electron microscope analysis confirmed that the suspension cells carry plastids that are significantly smaller (approximately 50-fold less in volume) and have a very different subcellular localization and developmental state than leaf cell chloroplasts. Using antibiotic selection in the light, we demonstrated that both plastid and nuclear transformation of these cell suspensions is efficient and reproducible, with plastid transformation frequency at least equal to that of leaf chloroplast transformation. Homoplasmic plastid transformants are readily obtained in cell colonies, or in regenerated plants, providing a more consistent and versatile model than the leaf transformation system. Because of the uniformity of the cell suspension model, we could further show that growth rate, selection scheme, particle size, and DNA amount influence the frequency of transformation. Our results indicate that the rate-limiting steps for nuclear and plastid transformation are different, and each must be optimized separately. The suspension cell system will be useful as a model for understanding transformation in those plant species that utilize dark-grown embryogenic cultures and for characterizing the steps that lead to homoplasmic plastid transformation.
Collapse
|
17
|
Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics 2004; 271:121-9. [PMID: 14758540 DOI: 10.1007/s00438-003-0934-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 09/16/2003] [Indexed: 11/26/2022]
Abstract
To elucidate the genetic system that establishes homologous chromosome pairing in monocot plants, we have isolated an asynaptic mutant of rice, designated pair2 (homologous pairing aberration in rice meiosis 2), in which 24 completely unpaired univalents are observed at pachytene and diakinesis. The mutation was caused by an insertion of the retrotransposon Tos17, as demonstrated by complementation of the mutation by transformation with the corresponding wild-type gene. The gene in which the element was inserted is orthologous to the ASY1 gene of Arabidopsis thaliana and the HOP1 gene of Saccharomyces cerevisiae. Mature PAIR2 mRNA and several splicing variants were found to be highly expressed in wild-type reproductive tissues, and lower expression was also detected in vegetative tissues. In situ hybridization and BrdU incorporation experiments revealed that PAIR2 expression is specifically enhanced in male and female meiocytes, but not in those at pre-meiotic S phase or in the pollen maturation stages. The results obtained in this study suggest that the PAIR2 gene is essential for homologous chromosome pairing in meiosis, as in the case of the genes ASY1 and HOP1. The study also suggested the possibility that a highly homologous copy of the PAIR2 gene located on a different chromosome is in fact a pseudogene.
Collapse
Affiliation(s)
- K-I Nonomura
- Experimental Farm and Plant Genetics Laboratory, National Institute of Genetics, Yata 1111, 411-8540 Mishima, Shizuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Sakai A, Takano H, Kuroiwa T. Organelle Nuclei in Higher Plants: Structure, Composition, Function, and Evolution. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:59-118. [PMID: 15364197 DOI: 10.1016/s0074-7696(04)38002-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plant cells have two distinct types of energy-converting organelles: plastids and mitochondria. These organelles have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. The organelle DNAs associate with various proteins to form compact DNA-protein complexes, which are referred to as organelle nuclei or nucleoids. Various functions of organelle genomes, such as DNA replication and transcription, are performed within these compact structures. Fluorescence microscopy using the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole has played a pivotal role in establishing the concept of "organelle nuclei." This fluorochrome has also facilitated the isolation of morphologically intact organelle nuclei, which is indispensable for understanding their structure and composition. Moreover, development of an in vitro transcription?DNA synthesis system using isolated organelle nuclei has provided us with a means of measuring and analyzing the function of organelle nuclei. In addition to these morphological and biochemical approaches, genomics has also had a great impact on our ability to investigate the components of organelle nuclei. These analyses have revealed that organelle nuclei are not a vestige of the bacterial counterpart, but rather are a complex system established through extensive interaction between organelle and cell nuclear genomes during evolution. Extensive diversion or exchange during evolution is predicted to have occurred for several important structural proteins, such as major DNA-compacting proteins, and functional proteins, such as RNA and DNA polymerases, resulting in complex mechanisms to control the function of organelle genomes. Thus, organelle nuclei represent the most dynamic front of interaction between the three genomes (cell nuclear, plastid, and mitochondrial) constituting eukaryotic plant cells.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | |
Collapse
|
20
|
Momoyama Y, Miyazawa Y, Miyagishima SY, Mori T, Misumi O, Kuroiwa H, Tsuneyoshi K. The division of pleomorphic plastids with multiple FtsZ rings in tobacco BY-2 cells. Eur J Cell Biol 2003; 82:323-32. [PMID: 12868600 DOI: 10.1078/0171-9335-00318] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastids, an essential group of plant cellular organelles, proliferate by division to maintain continuity through cell lineages in plants. In recent years, it was revealed that the bacterial cell division protein FtsZ is encoded in the nuclear genome of plant cells, and plays a major role in the plastid division process forming a ring along the center of plastids. Although the best-characterized type of plastid division so far is the division with a single FtsZ ring at the plastid midpoint, it was recently reported that in some plant organs and tissues, plastids are pleomorphic and form multiple FtsZ rings. However, the pleomorphic plastid division mechanism, such as the formation of multiple FtsZ rings, the constriction of plastids and the behavior of plastid (pt) nucleoids, remains totally unclear. To elucidate these points, we used the cultured cell line, tobacco (Nicotiana tabacum L.) Bright Yellow-2, in which plastids are pleomorphic and show dynamic morphological changes during culture. As a result, it was revealed that as the plastid elongates from an ellipsoid shape to a string shape after medium renewal, FtsZ rings are multiplied almost orderly and perpendicularly to the long axis of plastids. Active DNA synthesis of pt nucleoids is induced by medium transfer, and the division and the distribution of pt nucleoids occur along with plastid elongation. Although it was thought that the plastid divides with simultaneous multiple constrictions at all the FtsZ ring sites, giving rise to many small plastids, we found that the plastids generally divide constricting at only one FtsZ ring site. Moreover, using electron microscopy, we revealed that plastid-dividing (PD) rings are observed only at the constriction site, and not at swollen regions. These results indicate that in the pleomorphic plastid division with multiple FtsZ rings, the formation of PD rings occurs at a limited FtsZ ring site for one division. Multiplied FtsZ rings seem to localize in advance at the expected sites of division, and the formation of a PD ring at each FtsZ ring site occurs in a certain order, not simultaneously. Based on these results, a novel model for the pleomorphic plastid division with multiple FtsZ rings is proposed.
Collapse
Affiliation(s)
- Yu Momoyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Miyazawa Y, Kato H, Muranaka T, Yoshida S. Amyloplast formation in cultured tobacco BY-2 cells requires a high cytokinin content. PLANT & CELL PHYSIOLOGY 2002; 43:1534-41. [PMID: 12514251 DOI: 10.1093/pcp/pcf173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
When cytokinin-autonomous tobacco BY-2 cell cultures are transferred into 2,4-dichlorophenoxyacetic acid (2,4-D)-deprived medium, amyloplast development is initiated. Using this in vitro amyloplast-inducing system, the role of cytokinins in amyloplast formation was investigated. We show that addition of lovastatin, an inhibitor of mevalonate synthesis, to amyloplast-inducing medium reduced starch accumulation. Microscopic observation also revealed that lovastatin treatment decreased starch deposition; however, the overall morphologies of cells and plastids were less affected than control cell cultures. In addition, lovastatin lowered the transcription level of the ADP-glucose pyrophosphorylase small subunit (AgpS) gene. Application of mevalonate or zeatin dramatically restored the decrease in starch deposition, and restored AgpS mRNA accumulation. Moreover, addition of other molecules with cytokinin activity, such as adenine- and phenylurea-type compounds, restored starch accumulation and AgpS transcript levels, whereas other isopentenyl pyrophosphate-derived phytohormones did not. Liquid chromatography-mass spectrometry/mass spectrometry quantification of endogenous cytokinins revealed that endogenous cytokinins increased when BY-2 cells were transferred into 2,4-D-deprived medium from conventional medium containing 2,4-D. In addition, lovastatin treatment decreased endogenous cytokinins to some extent when cultured under 2,4-D-deprived conditions. Our results suggest that both 2,4-D deprivation and an increase in endogenous cytokinins have important roles in accelerating the changes in plastid morphology, starch accumulation, and AgpS gene expression.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Plant Functions Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198 Japan.
| | | | | | | |
Collapse
|
22
|
Köhler RH, Hanson MR. Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 2000; 113 ( Pt 1):81-9. [PMID: 10591627 DOI: 10.1242/jcs.113.1.81] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Green fluorescent stroma filled tubules (stromules) emanating from the plastid surface were observed in transgenic plants containing plastid-localized green fluorescent protein (GFP). These transgenic tobacco plants were further investigated by epifluorescence and confocal laser scanning microscopy (CSLM) to identify developmental and/or cell type specific differences in the abundance and appearance of stromules and of plastids. Stromules are rarely seen on chlorophyll-containing plastids in cell types such as trichomes, guard cells or mesophyll cells of leaves. In contrast, they are abundant in tissues that contain chlorophyll-free plastids, such as petal and root. The morphology of plastids in roots and petals is highly dynamic, and plastids are often elongated and irregular. The shapes, size, and position of plastids vary in particular developmental zones of the root. Furthermore, suspension cells of tobacco exhibit stromules on virtually every plastid with two major forms of appearance. The majority of cells show a novel striking 'octopus- or millipede-like' structure with plastid bodies clustered around the nucleus and with long thin stromules of up to at least 40 (micro)m length stretching into distant areas of the cell. The remaining cells have plastid bodies distributed throughout the cell with short stromules. Photobleaching experiments indicated that GFP can flow through stromules and that the technique can be used to distinguish interconnected plastids from independent plastids.
Collapse
Affiliation(s)
- R H Köhler
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca NY 14853, USA.
| | | |
Collapse
|
23
|
Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T. Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. PLANT PHYSIOLOGY 1999; 121:461-69. [PMID: 10517837 PMCID: PMC59408 DOI: 10.1104/pp.121.2.461] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 06/17/1999] [Indexed: 05/18/2023]
Abstract
In cultured Bright Yellow-2 (BY-2) tobacco (Nicotiana tabacum) cells, the depletion of auxin (2,4-dichlorophenoxyacetic acid) in the culture medium induces the accumulation of starch. This is accelerated by the addition of cytokinin (benzyladenine). Light and electron microscopic observations revealed that this amyloplast formation involves drastic changes in plastid morphology. The effects of auxin and cytokinin on amyloplast development were investigated by adding auxin or cytokinin to cells grown in a hormone-free culture. Auxin repressed amyloplast development, whereas cytokinin accelerated starch accumulation regardless of the timing of hormone addition. RNA gel-blot analysis revealed that the accumulation of the ADP-glucose pyrophosphorylase small subunit gene (AgpS), granule-bound starch synthase, and starch branching enzyme transcripts were also affected by hormonal conditions. High levels of AgpS, granule-bound starch synthase, and starch branching enzyme transcripts accumulated in amyloplast-developing cells grown in auxin-depleted conditions. Furthermore, the addition of auxin to the cells cultured in hormone-free medium reduced the level of AgpS transcripts, whereas the addition of cytokinin increased it, irrespective of the timing of hormone addition. These results suggest that auxin and cytokinin exert opposite effects on amyloplast development by regulating the expression of the genes required for starch biosynthesis.
Collapse
Affiliation(s)
- Y Miyazawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Benková E, Witters E, Van Dongen W, Kolár J, Motyka V, Brzobohatý B, Van Onckelen HA, Machácková I. Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. PLANT PHYSIOLOGY 1999; 121:245-52. [PMID: 10482680 PMCID: PMC59373 DOI: 10.1104/pp.121.1.245] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 06/07/1999] [Indexed: 05/20/2023]
Abstract
Although cytokinins (CKs) affect a number of processes connected with chloroplasts, it has never been rigorously proven that chloroplasts contain CKs. We isolated intact chloroplasts from tobacco (Nicotiana tabacum L. cv SR1) and wheat (Triticum aestivum L. cv Ritmo) leaves and determined their CKs by liquid chromatography/tandem mass spectroscopy. Chloroplasts from both species contained a whole spectrum of CKs, including free bases (zeatin and isopentenyladenine), ribosides (zeatin riboside, and isopentenyladenosine), ribotides (isopentenyladenosine-5'-monophosphate, zeatin riboside-5'-monophosphate, and dihydrozeatin riboside-5'-monophosphate), and N-glucosides (zeatin-N(9)-glucoside, dihydrozeatin-N(9)-glucoside, zeatin-N(7)-glucoside, and isopentenyladenine-N-glucosides). In chloroplasts there was a moderately higher relative amount of bases, ribosides, and ribotides than in leaves, and a significantly increased level of N(9)-glucosides of zeatin and dihydrozeatin. Tobacco and wheat chloroplasts were prepared from leaves at the end of either a dark or light period. After a dark period, chloroplasts accumulated more CKs than after a light period. The differences were moderate for free bases and ribosides, but highly significant for glucosides. Tobacco chloroplasts from dark-treated leaves contained zeatin riboside-O-glucoside and dihydrozeatin riboside-O-glucoside, as well as a relatively high CK oxidase activity. These data show that chloroplasts contain a whole spectrum of CKs and the enzymatic activity necessary for their metabolism.
Collapse
Affiliation(s)
- E Benková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Koitabashi R, Suzuki T, Kawazu T, Sakai A, Kuroiwa H, Kuroiwa T. 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem ofBrassica campestris L. JOURNAL OF PLANT RESEARCH 1997; 110:1-6. [PMID: 27520037 DOI: 10.1007/bf02506836] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/1996] [Accepted: 10/29/1996] [Indexed: 05/26/2023]
Abstract
1,8-cineole is a volatile growth inhibitor produced bySalvia species. We examined the effect of this allelopathic compound on the growth of other plants usingBrassica campestris as the test plant. Cineole inhibited germination and growth ofB. campestris in a dosedependent manner. WhenB. campestris was grown for 5 days with various concentrations of cineole, the length of the roots was found to be shorter as the concentration of cineole increased, whereas the length of the hypocotyl remained constant up to 400 μM cineole, indicating that cineole specifically inhibited growth of the root. The mitotic index in the root apical meristem of 3-day-old seedlings decreased from 5.6% to 1.6% when exposed to 400 μM cineole, showing that cineole inhibits the proliferation of root cells. We then examined the effect of cineole on DNA synthesis by indirect immunofluorescence microscopy using antibody raised against 5-bromo-2'-deoxyuridine (BrdU, an analogue of thymidine) in thin sections of samples embedded in Technovit 7100 resin. The results clearly demonstrated that cineole inhibits DNA synthesis in both cell nuclei and organelles in root apical meristem, suggesting that cineole may interfere with the growth of other plant species by inhibiting DNA synthesis in the root apical meristem.
Collapse
Affiliation(s)
- R Koitabashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, 113, Tokyo, Japan
- Tochigi Research Laboratories, Kao Corporation, 2606 Akabane, Ichikaimachi, 321-34, Haga, Tochigi, Japan
| | - T Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, 113, Tokyo, Japan
- Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 371, Maebashi, Gunma, Japan
| | - T Kawazu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, 113, Tokyo, Japan
| | - A Sakai
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, 113, Tokyo, Japan
| | - H Kuroiwa
- Department of Biology, Kyouritsu Women's Junior College University, 102, Tokyo, Japan
| | - T Kuroiwa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, 113, Tokyo, Japan
| |
Collapse
|
26
|
Suzuki T, Fujikura K, Higashiyama T, Takata K. DNA staining for fluorescence and laser confocal microscopy. J Histochem Cytochem 1997; 45:49-53. [PMID: 9010468 DOI: 10.1177/002215549704500107] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We examined five nucleic acid binding fluorescent dyes, propidium iodide, SYBR Green I, YO-PRO-1, TOTO-3, and TO-PRO-3, for nuclear DNA staining, visualized by fluorescence and laser confocal microscopy. The optimal concentration, co-staining of RNA, and bleaching speeds were examined. SYBR Green I and TO-PRO-3 almost preferentially stained the nuclear DNA, and the other dyes co-stained the cytoplasmic RNA. RNAse treatment completely prevented the cytoplasmic RNA staining. In conventional fluorescence microscopy, these dyes can be used in combination with fluorescence-labeled antibodies. Among the dyes tested, TOTO-3 and TO-PRO-3 stained the DNAs with far-red fluorescence under red excitation. Under Kr/Ar-laser illumination, TOTO-3 and TO-PRO-3 were best suited as the nuclear staining dyes in the specimens immunolabeled with fluorescein and rhodamine (or Texas red).
Collapse
Affiliation(s)
- T Suzuki
- Department of Cell Biology, Gunma University, Japan
| | | | | | | |
Collapse
|
27
|
Suzuki T, Kawano S, Sakai A, Hirai A, Kuroiwa T. Variability of mitochondrial subgenomic molecules in the meristematic cells of higher plants. Genes Genet Syst 1996; 71:329-33. [PMID: 9037778 DOI: 10.1266/ggs.71.329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MtDNAs from BY-2 cells and rice root were analyzed by random amplified polymorphic DNA (RAPD) assay and Southern hybridization analysis. A number of differences were observed in the RAPD patterns amplified from mtDNAs sampled at different phases of the BY-2 cell culture. RAPD fragments also varied with the template DNAs derived from various areas of rice root tip. When a RAPD fragment was hybridized to restriction fragments of whole DNAs, isolated from the distal area of the apical meristem and differentiated elongation zone of a root, two distinct stoichiometric differences were observed in the hybridization signals. This suggests that the organization of mt-genome in prototypic cells in the root apical meristem differs from that found in the differentiated cells.
Collapse
Affiliation(s)
- T Suzuki
- Department of Plant Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|