1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Zhang CL, Ma JJ, Li X, Yan HQ, Gui YK, Yan ZX, You MF, Zhang P. The role of transcytosis in the blood-retina barrier: from pathophysiological functions to drug delivery. Front Pharmacol 2025; 16:1565382. [PMID: 40308764 PMCID: PMC12040858 DOI: 10.3389/fphar.2025.1565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-retina barrier (BRB) serves as a critical interface that separates the retina from the circulatory system, playing an essential role in preserving the homeostasis of the microenvironment within the retina. Specialized tight junctions and limited vesicle trafficking restrict paracellular and transcellular transport, respectively, thereby maintaining BRB barrier properties. Additionally, transcytosis of macromolecules through retinal vascular endothelial cells constitutes a primary mechanism for transporting substances from the vascular compartment into the surrounding tissue. This review summarizes the fundamental aspects of transcytosis including its function in the healthy retina, the biochemical properties of transcytosis, and the methodologies used to study this process. Furthermore, we discuss the current understanding of transcytosis in the context of pathological BRB breakdown and present recent findings that highlight significant advances in drug delivery to the retina based on transcytosis.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Jie Ma
- Department of Audit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hai-Qing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhi-Xin Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ming-Feng You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Carrilho P, Chopra S, Pichika MR, Fleming RE, Parrow NL. Editorial: The potential of transferrin as a drug target and drug delivery system. Front Pharmacol 2025; 16:1584190. [PMID: 40160458 PMCID: PMC11949866 DOI: 10.3389/fphar.2025.1584190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Affiliation(s)
- Patricia Carrilho
- Nephrology Department, Hospital Professor Doutor Fernando Fonseca EPE, Amadora, Portugal
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Robert E. Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Nermi L. Parrow
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
4
|
Ding J, Jiang Y, Jiang N, Xing S, Ge F, Ma P, Tang Q, Miao H, Zhou J, Fang Y, Cui D, Liu D, Han Y, Yu W, Wang Y, Zhao G, Cai Y, Wang S, Sun N, Li N. Bridging the gap: unlocking the potential of emerging drug therapies for brain metastasis. Brain 2025; 148:702-722. [PMID: 39512184 DOI: 10.1093/brain/awae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024] Open
Abstract
Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis. Meanwhile, novel agents capable of penetrating the BBB have rapidly developed and been evaluated in preclinical studies and clinical trials, with both targeted therapies and immunotherapies demonstrating impressive intracranial activity against brain metastasis. In this review, we summarize the recent advances in the biological properties of the BBB/BTB and the emerging strategies for BBB/BTB permeabilization and drug delivery across the BBB/BTB. We also discuss the emerging targeted therapies and immunotherapies against brain metastasis tested in clinical trials. Additionally, we provide our viewpoints on accelerating clinical translation of novel drugs into clinic for patients of brain metastasis. Although still challenging, we expect this review to benefit the future development of novel therapeutics, specifically from a clinical perspective.
Collapse
Affiliation(s)
- Jiatong Ding
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Xing
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peiwen Ma
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhou
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dandan Cui
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongyan Liu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjie Han
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weijie Yu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuning Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanting Cai
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
An P, Tong Y, Mu R, Han L. Wnt-Regulated Therapeutics for Blood-Brain Barrier Modulation and Cancer Therapy. Bioconjug Chem 2025; 36:136-145. [PMID: 39680846 DOI: 10.1021/acs.bioconjchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The Wnt signaling pathway has a significant regulatory part in tissue development and homeostasis. Dysregulation of the Wnt signaling pathway has been associated with many diseases including cancers and various brain diseases, making this signaling pathway a promising therapeutic target for these diseases. In this review, we describe the roles of the Wnt signaling pathway in the blood-brain barrier (BBB) in intracranial tumors and peripheral tumors, from preclinical and clinical perspectives, introduce Wnt-regulated therapeutics including various types of drugs and nanomedicines as BBB modulators for brain-oriented drug delivery and as therapeutic drugs for cancer treatments, and finally discuss limitations and future perspectives for Wnt-regulated therapeutics.
Collapse
Affiliation(s)
- Pei An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Liu G, Shu W, Chen Y, Fu Y, Fang S, Zheng H, Cheng W, Lin Q, Hu Y, Jiang N, Yu B. Bone-derived PDGF-BB enhances hippocampal non-specific transcytosis through microglia-endothelial crosstalk in HFD-induced metabolic syndrome. J Neuroinflammation 2024; 21:111. [PMID: 38685040 PMCID: PMC11057146 DOI: 10.1186/s12974-024-03097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1β (IL-1β) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.
Collapse
Affiliation(s)
- Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Shu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Trauma Orthopedics, Liuzhou People's Hospital, Liuzhou, China
| | - Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Shuai Fang
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Haonan Zheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weike Cheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrong Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Kudruk S, Forsyth CM, Dion MZ, Hedlund Orbeck JK, Luo J, Klein RS, Kim AH, Heimberger AB, Mirkin CA, Stegh AH, Artzi N. Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy. Proc Natl Acad Sci U S A 2024; 121:e2306973121. [PMID: 38346200 PMCID: PMC10895370 DOI: 10.1073/pnas.2306973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.
Collapse
Affiliation(s)
- Sergej Kudruk
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Connor M. Forsyth
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Michelle Z. Dion
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jenny K. Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Jingqin Luo
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO63110
| | - Albert H. Kim
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Amy B. Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Alexander H. Stegh
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Medicine, Engineering in Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA02115
| |
Collapse
|
8
|
Bhunia S, Kolishetti N, Vashist A, Yndart Arias A, Brooks D, Nair M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023; 15:2658. [PMID: 38139999 PMCID: PMC10747851 DOI: 10.3390/pharmaceutics15122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Deborah Brooks
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Wang Z, Sharda N, Omtri RS, Li L, Kandimalla KK. Amyloid-Beta Peptides 40 and 42 Employ Distinct Molecular Pathways for Cell Entry and Intracellular Transit at the Blood-Brain Barrier Endothelium. Mol Pharmacol 2023; 104:203-213. [PMID: 37541759 PMCID: PMC10586509 DOI: 10.1124/molpharm.123.000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2023] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining the equilibrium between amyloid beta (Aβ) levels in blood and the brain by regulating Aβ transport. Our previous publications demonstrated that BBB trafficking of Aβ42 and Aβ40 is distinct and is disrupted under various pathophysiological conditions. However, the intracellular mechanisms that allow BBB endothelium to differentially handle Aβ40 and Aβ42 have not been clearly elucidated. In this study, we identified mechanisms of Aβ endocytosis in polarized human cerebral microvascular endothelial cell monolayers. Our studies demonstrated that Aβ peptides with fluorescent label (F-Aβ) were internalized by BBB endothelial cells via energy, dynamin, and actin-dependent endocytosis. Interestingly, endocytosis of F-Aβ40 but not F-Aβ42 was substantially reduced by clathrin inhibition, whereas F-Aβ42 but not F-Aβ40 endocytosis was reduced by half after inhibiting the caveolae-mediated pathway. Following endocytosis, both isoforms were sorted by the endo-lysosomal system. Although Aβ42 was shown to accumulate more in the lysosomes, which could lead to its higher degradation and/or aggregation at lower lysosomal pH, Aβ40 demonstrated robust accumulation in recycling endosomes, which may facilitate its exocytosis by the endothelial cells. These results provide a mechanistic insight into the selective ability of BBB endothelium to transport Aβ40 versus Aβ42. This knowledge contributes to the understanding of molecular pathways underlying Aβ accumulation in the BBB endothelium and associated BBB dysfunction. Moreover, it allows us to establish mechanistic rationale for altered Aβ40:Aβ42 ratios and anomalous amyloid deposition in the cerebral vasculature as well as brain parenchyma during Alzheimer's disease progression. SIGNIFICANCE STATEMENT: Differential interaction of Aβ40 and Aβ42 isoforms with the blood-brain barrier (BBB) endothelium may contribute to perturbation in Aβ42:Aβ40 ratio, which is associated with Alzheimer's disease (AD) progression and severity. The current study identified distinct molecular pathways by which Aβ40 and Aβ42 are trafficked at the BBB, which regulates equilibrium between blood and brain Aβ levels. These findings provide molecular insights into mechanisms that engender BBB dysfunction and promote Aβ accumulation in AD brain.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Nidhi Sharda
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Rajesh S Omtri
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| |
Collapse
|
10
|
Chew KS, Wells RC, Moshkforoush A, Chan D, Lechtenberg KJ, Tran HL, Chow J, Kim DJ, Robles-Colmenares Y, Srivastava DB, Tong RK, Tong M, Xa K, Yang A, Zhou Y, Akkapeddi P, Annamalai L, Bajc K, Blanchette M, Cherf GM, Earr TK, Gill A, Huynh D, Joy D, Knight KN, Lac D, Leung AWS, Lexa KW, Liau NPD, Becerra I, Malfavon M, McInnes J, Nguyen HN, Lozano EI, Pizzo ME, Roche E, Sacayon P, Calvert MEK, Daneman R, Dennis MS, Duque J, Gadkar K, Lewcock JW, Mahon CS, Meisner R, Solanoy H, Thorne RG, Watts RJ, Zuchero YJY, Kariolis MS. CD98hc is a target for brain delivery of biotherapeutics. Nat Commun 2023; 14:5053. [PMID: 37598178 PMCID: PMC10439950 DOI: 10.1038/s41467-023-40681-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.
Collapse
Affiliation(s)
- Kylie S Chew
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Robert C Wells
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Arash Moshkforoush
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Darren Chan
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kendra J Lechtenberg
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hai L Tran
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Johann Chow
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Do Jin Kim
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Devendra B Srivastava
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Raymond K Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mabel Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaitlin Xa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Alexander Yang
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Yinhan Zhou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Padma Akkapeddi
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Lakshman Annamalai
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaja Bajc
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Marie Blanchette
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Gerald Maxwell Cherf
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Timothy K Earr
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Audrey Gill
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Huynh
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Joy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kristen N Knight
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Diana Lac
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Amy Wing-Sze Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Katrina W Lexa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Nicholas P D Liau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Isabel Becerra
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Joseph McInnes
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hoang N Nguyen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Edwin I Lozano
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Elysia Roche
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Patricia Sacayon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Richard Daneman
- Department of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, USA
| | - Mark S Dennis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kapil Gadkar
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - René Meisner
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Robert G Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan J Watts
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Mihalis S Kariolis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| |
Collapse
|
11
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
12
|
Moos T, Thomsen MS, Burkhart A, Hede E, Laczek B. Targeted transport of biotherapeutics at the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1823-1838. [PMID: 38059358 DOI: 10.1080/17425247.2023.2292697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION The treatment of neurological diseases is significantly hampered by the lack of available therapeutics. A major restraint for the development of drugs is denoted by the presence of the blood-brain barrier (BBB), which precludes the transfer of biotherapeutics to the brain due to size restraints. AREAS COVERED Novel optimism for transfer of biotherapeutics to the brain has been generated via development of targeted therapeutics to nutrient transporters expressed by brain capillary endothelial cells (BCECs). Targeting approaches with antibodies acting as biological drug carriers allow for proteins and genetic material to enter the brain, and qualified therapy using targeted proteins for protein replacement has been observed in preclinical models and now emerging in the clinic. Viral vectors denote an alternative for protein delivery to the brain by uptake and transduction of BCECs, or by transport through the BBB leading to neuronal transduction. EXPERT OPINION The breaching of the BBB to large molecules has opened for treatment of diseases in the brain. A sturdier understanding of how biotherapeutics undergo transport through the BBB and how successful transport into the brain can be monitored is required to further improve the translation from successful preclinical studies to the clinic.
Collapse
Affiliation(s)
- Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Eva Hede
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bartosz Laczek
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Gnanasekaran R, Aickareth J, Hawwar M, Sanchez N, Croft J, Zhang J. CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier. J Pers Med 2023; 13:jpm13050751. [PMID: 37240921 DOI: 10.3390/jpm13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood-brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood-brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood-brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs).
Collapse
Affiliation(s)
- Revathi Gnanasekaran
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Justin Aickareth
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Majd Hawwar
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Nickolas Sanchez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jacob Croft
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
15
|
Wu JR, Hernandez Y, Miyasaki KF, Kwon EJ. Engineered nanomaterials that exploit blood-brain barrier dysfunction fordelivery to the brain. Adv Drug Deliv Rev 2023; 197:114820. [PMID: 37054953 DOI: 10.1016/j.addr.2023.114820] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated physical and functional boundarythat tightly controls the transport of materials between the blood and the brain. There is an increasing recognition that the BBB is dysfunctional in a wide range of neurological disorders; this dysfunction can be symptomatic of the disease but can also play a role in disease etiology. BBB dysfunction can be exploited for the delivery of therapeutic nanomaterials. Forexample, there can be a transient, physical disruption of the BBB in diseases such as brain injury and stroke, which allows temporary access of nanomaterials into the brain. Physicaldisruption of the BBB through external energy sources is now being clinically pursued toincrease therapeutic delivery into the brain. In other diseases, the BBB takes on new properties that can beleveraged by delivery carriers. For instance, neuroinflammation induces the expression ofreceptors on the BBB that can be targeted by ligand-modified nanomaterials and theendogenous homing of immune cells into the diseased brain can be hijacked for the delivery ofnanomaterials. Lastly, BBB transport pathways can be altered to increase nanomaterial transport. In this review, we will describe changes that can occur in the BBB in disease, and how these changes have been exploited by engineered nanomaterials forincreased transport into the brain.
Collapse
Affiliation(s)
- Jason R Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Yazmin Hernandez
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Katelyn F Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA; Sanford Consortium for Regenerative Medicine.
| |
Collapse
|
16
|
Liu HJ, Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv Drug Deliv Rev 2022; 191:114619. [PMID: 36372301 PMCID: PMC9724744 DOI: 10.1016/j.addr.2022.114619] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Despite its prevalence in the management of peripheral tumors, compared to surgery and radiation therapy, chemotherapy is still a suboptimal intervention in fighting against brain cancer and cancer brain metastases. This discrepancy is mainly derived from the complicatedly physiological characteristic of intracranial tumors, including the presence of blood-brain barrier (BBB) and limited enhanced permeability and retention (EPR) effect attributed to blood-brain tumor barrier (BBTB), which largely lead to insufficient therapeutics penetrating to tumor lesions to produce pharmacological effects. Therefore, dependable methodologies that can boost the efficacy of chemotherapy for brain tumors are urgently needed. Recently, nanomedicines have shown great therapeutic potential in brain tumors by employing various transcellular strategies, paracellular strategies, and their hybrids, such as adsorptive-mediated transcytosis, receptor-mediated transcytosis, BBB disruption technology, and so on. It is compulsory to comprehensively summarize these practices to shed light on future directions in developing therapeutic regimens for brain tumors. In this review, the biological and pathological characteristics of brain tumors, including BBB and BBTB, are illustrated. After that, the emerging delivery strategies for brain tumor management are summarized into different classifications and supported with detailed examples. Finally, the potential challenges and prospects for developing and clinical application of brain tumor-oriented nanomedicine are discussed.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
Pemberton S, Galindo DC, Schwartz MW, Banks WA, Rhea EM. Endocytosis of insulin at the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2022; 2:1062366. [PMID: 37936681 PMCID: PMC10629879 DOI: 10.3389/fddev.2022.1062366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
For insulin to act within the brain, it is primarily transported from the blood across the blood-brain barrier (BBB). However, the endocytic machinery necessary for delivering insulin to the brain remains unknown. Additionally, there are processes within the brain endothelial cell that are designed to respond to insulin binding and elicit intracellular signaling. Using pharmacological inhibitors of different types of endocytosis (clathrin-vs. caveolin-mediated), we investigated molecular mediators of both insulin BBB binding in isolated mouse brain microvessels and BBB insulin transport in mice studied by brain perfusion. We found clathrin-mediated mechanisms responsible for insulin surface binding in isolated brain microvessels while caveolin-mediated endocytosis may mediate BBB insulin transport specifically in the hypothalamus. These results further define the molecular machinery necessary for transporting insulin into the CNS and highlight the distinction between insulin internalization for transendothelial transport vs. intracellular signaling.
Collapse
Affiliation(s)
- Sarah Pemberton
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
| | - Demi C Galindo
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
| | - Michael W Schwartz
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
19
|
Arneson D, Zhang G, Ahn IS, Ying Z, Diamante G, Cely I, Palafox-Sanchez V, Gomez-Pinilla F, Yang X. Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol Life Sci 2022; 79:480. [PMID: 35951114 PMCID: PMC9372016 DOI: 10.1007/s00018-022-04495-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. METHODS We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute (7-day) phases of mTBI at single-cell resolution. RESULTS We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. CONCLUSIONS Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
20
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Miura S, Morimoto Y, Furihata T, Takeuchi S. Functional analysis of human brain endothelium using a microfluidic device integrating a cell culture insert. APL Bioeng 2022; 6:016103. [PMID: 35308826 PMCID: PMC8912992 DOI: 10.1063/5.0085564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
The blood-brain barrier (BBB) is a specialized brain endothelial barrier structure that regulates the highly selective transport of molecules under continuous blood flow. Recently, various types of BBB-on-chip models have been developed to mimic the microenvironmental cues that regulate the human BBB drug transport. However, technical difficulties in complex microfluidic systems limit their accessibility. Here, we propose a simple and easy-to-handle microfluidic device integrated with a cell culture insert to investigate the functional regulation of the human BBB endothelium in response to fluid shear stress (FSS). Using currently established immortalized human brain microvascular endothelial cells (HBMEC/ci18), we formed a BBB endothelial barrier without the substantial loss of barrier tightness under the relatively low range of FSS (0.1-1 dyn/cm2). Expression levels of key BBB transporters and receptors in the HBMEC/ci18 cells were dynamically changed in response to the FSS, and the effect of FSS reached a plateau around 1 dyn/cm2. Similar responses were observed in the primary HBMECs. Taking advantage of the detachable cell culture insert from the device, the drug efflux activity of P-glycoprotein (P-gp) was analyzed by the bidirectional permeability assay after the perfusion culture of cells. The data revealed that the FSS-stimulated BBB endothelium exhibited the 1.9-fold higher P-gp activity than that of the static culture control. Our microfluidic system coupling with the transwell model provides a functional human BBB endothelium with secured transporter activity, which is useful to investigate the bidirectional transport of drugs and its regulation by FSS.
Collapse
Affiliation(s)
- Shigenori Miura
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | |
Collapse
|
22
|
Piantino M, Louis F, Shigemoto-Mogami Y, Kitamura K, Sato K, Yamaguchi T, Kawabata K, Yamamoto S, Iwasaki S, Hirabayashi H, Matsusaki M. Brain microvascular endothelial cells derived from human induced pluripotent stem cells as in vitro model for assessing blood-brain barrier transferrin receptor-mediated transcytosis. Mater Today Bio 2022; 14:100232. [PMID: 35308041 PMCID: PMC8927846 DOI: 10.1016/j.mtbio.2022.100232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB), a selective barrier formed by brain microvascular endothelial cells (BMEC), represents a major challenge for the efficient accumulation of pharmaceutical drugs into the brain. The receptor-mediated transcytosis (RMT) has recently gained increasing interest for pharmaceutical industry as it shows a great potential to shuttle large-sized therapeutic cargos across the BBB. Confirming the presence of the RMT pathway by BMEC is therefore important for the screening of peptides or antibody libraries that bind RMT receptors. Herein, a comparative study was performed between a human cell line of BMEC (HBEC) and human induced pluripotent stem cells-derived BMEC-like cells (hiPS-BMEC). The significantly higher gene and protein expressions of transporters and tight junction proteins, excepting CD31 and VE-cadherin were exhibited by hiPS-BMEC than by HBEC, suggesting more biomimetic BBB features of hiPS-BMEC. The presence and functionality of transferrin receptor (TfR), known to use RMT pathway, were confirmed using hiPS-BMEC by competitive binding assays and confocal microscopy observations. Finally, cysteine-modified T7 and cysteine modified-Tfr-T12 peptides, previously reported to be ligands of TfR, were compared regarding their permeability using hiPS-BMEC. The hiPS-BMEC could be useful for the identification of therapeutics that can be transported across the BBB using RMT pathway.
Collapse
Affiliation(s)
- Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kimiko Kitamura
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Syunsuke Yamamoto
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shinji Iwasaki
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Zhou M, Shi SX, Liu N, Jiang Y, Karim MS, Vodovoz SJ, Wang X, Zhang B, Dumont AS. Caveolae-Mediated Endothelial Transcytosis across the Blood-Brain Barrier in Acute Ischemic Stroke. J Clin Med 2021; 10:jcm10173795. [PMID: 34501242 PMCID: PMC8432094 DOI: 10.3390/jcm10173795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS. Recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post stroke BBB deficits needs to be revised. These recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete, and treatment options remain limited. This review summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.
Collapse
Affiliation(s)
- Min Zhou
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (M.Z.); (S.X.S.); Tel.: +86-22-6036-2762 (M.Z.); +60-2323-7432 (S.X.S.)
| | - Samuel X. Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
- Correspondence: (M.Z.); (S.X.S.); Tel.: +86-22-6036-2762 (M.Z.); +60-2323-7432 (S.X.S.)
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Mardeen S. Karim
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Samuel J. Vodovoz
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Aaron S. Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| |
Collapse
|
24
|
Kosman DJ. A holistic view of mammalian (vertebrate) cellular iron uptake. Metallomics 2021; 12:1323-1334. [PMID: 32766655 DOI: 10.1039/d0mt00065e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell iron uptake in mammals is commonly distinguished by whether the iron is presented to the cell as transferrin-bound or not: TBI or NTBI. This generic perspective conflates TBI with canonical transferrin receptor, endosomal iron uptake, and NTBI with uptake supported by a plasma membrane-localized divalent metal ion transporter, most often identified as DMT1. In fact, iron uptake by mammalian cells is far more nuanced than this somewhat proscribed view suggests. This view fails to accommodate the substantial role that ZIP8 and ZIP14 play in iron uptake, while adhering to the traditional premise that a relatively high endosomal [H+] is thermodynamically required for release of iron from holo-Tf. The canonical view of iron uptake also does not encompass the fact that plasma membrane electron transport - PMET - has long been linked to cell iron uptake. In fact, the known mammalian metallo-reductases - Dcytb and the STEAP proteins - are members of this cohort of cytochrome-dependent oxido-reductases that shuttle reducing equivalents across the plasma membrane. A not commonly appreciated fact is the reduction potential of ferric iron in holo-Tf is accessible to cytoplasmic reducing equivalents - reduced pyridine and flavin mono- and di-nucleotides and dihydroascorbic acid. This allows for the reductive release of Fe2+ at the extracellular surface of the PM and subsequent transport into the cytoplasm by a neutral pH transporter - a ZIP protein. What this perspective emphasizes is that there are two TfR-dependent uptake pathways, one which does and one which does not involve clathrin-dependent, endolysosomal trafficking. This raises the question as to the selective advantage of having two Tf, TfR-dependent routes of iron accumulation. This review of canonical and non-canonical iron uptake uses cerebral iron trafficking as a point of discussion, a focus that encourages inclusion also of the importance of ferritin as a circulating 'chaperone' of ferric iron.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of Buffalo, Suite 4102, 995 Main St., Buffalo, NY 14203, USA.
| |
Collapse
|
25
|
Villalva MD, Agarwal V, Ulanova M, Sachdev PS, Braidy N. Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine (Lond) 2021; 16:1595-1611. [PMID: 34180261 DOI: 10.2217/nnm-2021-0104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Quantum dots (QDs) are nanoparticles that have an emerging application as theranostic agents in several neurodegenerative diseases. The advantage of QDs as nanomedicine is due to their unique optical properties that provide high sensitivity, stability and selectivity at a nanoscale range. Objective: To offer renewed insight into current QD research and elucidate its promising application in Alzheimer's disease (AD) diagnosis and therapy. Methods: A comprehensive literature search was conducted in PubMed and Google Scholar databases that included the following search terms: 'quantum dots', 'blood-brain barrier', 'cytotoxicity', 'toxicity' and 'Alzheimer's disease'; PRISMA guidelines were adhered to. Results: Thirty-four publications were selected to evaluate the ability of QDs to cross the blood-brain barrier, potential toxicity and current AD diagnostic and therapeutic applications. Conclusion: QD's unique optical properties and versatility to conjugate to various biomolecules, while maintaining a nanoscale size, render them a promising theranostic tool in AD.
Collapse
Affiliation(s)
- Maria D Villalva
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Marina Ulanova
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
26
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
27
|
Phipps MD, Sanders VA, Deri MA. Current State of Targeted Radiometal-Based Constructs for the Detection and Treatment of Disease in the Brain. Bioconjug Chem 2021; 32:1331-1347. [PMID: 34015928 DOI: 10.1021/acs.bioconjchem.1c00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continual development of radiopharmaceutical agents for the field of nuclear medicine is integral to promoting the necessity of personalized medicine. One way to greatly expand the selection of radiopharmaceuticals available is to broaden the range of radionuclides employed in such agents. Widening the scope of development to include radiometals with their variety of physical decay characteristics and chemical properties opens up a myriad of possibilities for new actively targeted molecules and bioconjugates. This is especially true to further advance the imaging and treatment of disease in the brain. Over the past few decades, imaging of disease in the brain has heavily relied on agents which exploit metabolic uptake. However, through utilizing the broad range of physical characteristics that radiometals offer, the ability to target other processes has become more available. The varied chemistries of radiometals also allows for them to incorporated into specifically designed diverse constructs. A major limitation to efficient treatment of disease in the brain is the ability for relevant agents to penetrate the blood-brain barrier. Thus, along with efficient disease targeting, there must be intentional thought put into overcoming this challenge. Here, we review the current field of radiometal-based agents aimed at either imaging or therapy of brain disease that have been evaluated through at least in vivo studies.
Collapse
Affiliation(s)
- Michael D Phipps
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468, United States.,Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Melissa A Deri
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States.,Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468, United States
| |
Collapse
|
28
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 559] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles. Pharmaceutics 2021; 13:pharmaceutics13040492. [PMID: 33916841 PMCID: PMC8067091 DOI: 10.3390/pharmaceutics13040492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is surrounded by the blood–brain barrier (BBB), a semipermeable border of endothelial cells that prevents pathogens, solutes and most molecules from non-selectively crossing into the CNS. Thus, the BBB acts to protect the CNS from potentially deleterious insults. Unfortunately, the BBB also frequently presents a significant barrier to therapies, impeding passage of drugs and biologicals to target cells within the CNS. This review provides an overview of different approaches to deliver therapeutics across the BBB, with an emphasis in extracellular vesicles as delivery vehicles to the CNS.
Collapse
|
30
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Fu W, You C, Ma L, Li H, Ju Y, Guo X, Shi S, Zhang T, Zhou R, Lin Y. Enhanced Efficacy of Temozolomide Loaded by a Tetrahedral Framework DNA Nanoparticle in the Therapy for Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39525-39533. [PMID: 31601097 DOI: 10.1021/acsami.9b13829] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest primary brain malignant tumors with a bleak prognosis. Craniotomy surgical resection followed by radiotherapy and chemotherapy was still the standard therapeutic strategy for GBM. As a target alkylating agent, temozolomide (TMZ) was utilized in the therapy of GBM for decades. However, effective treatment for GBM is stymied by rapid acquired resistance and bone marrow suppression. Here, we synthesize a tetrahedral framework nucleic acid (tFNA) nanoparticle that can carry TMZ to enhance the lethality on four GBM cell lines via activating the cell apoptosis and autophagy pathway. Our nanoparticle, namely, tFNA-TMZ, shows a more obvious efficacy in killing TMZ-sensitive cells (A172 and U87) than single-agent TMZ. Besides, tFNA-TMZ was able to attenuate drug resistance in TMZ-resistant cells (T98G and LN-18) via downregulating the expression of O6-methylguanine-DNA-methyltransferase. Furthermore, we modified the tFNA with GS24, a DNA aptamer that can specially bind to transferrin receptor in the cerebral vascular endothelial cell of mouse and enable the tFNA nanoparticle to cross the blood-brain barrier. In summary, our results demonstrated that tFNA-TMZ has a promising role as a nanoscale vehicle to deliver TMZ to enhance the efficacy of GBM.
Collapse
Affiliation(s)
- Wei Fu
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Chao You
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Lu Ma
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Hao Li
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Yan Ju
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Xi Guo
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
32
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
33
|
Deng H, Dutta P, Liu J. Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. NANOSCALE 2019; 11:11227-11235. [PMID: 31157808 PMCID: PMC6634982 DOI: 10.1039/c9nr02710f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Receptor-mediated transcytosis (RMT) is a fundamental mechanism for the transcellular transport of nanoparticles. RMT is a complex process, during which the nanoparticles actively interact with the membrane and the membrane profile undergoes extreme deformations for particle internalization and expulsion. In this work, we developed a stochastic model to study the endocytosis and exocytosis of nanoparticles across soft membranes. The model is based on the combination of a stochastic particle binding model with a membrane model, and accounts for both clathrin-mediated endocytosis for internalization and actin-mediated exocytosis for expulsion. Our results showed that nanoparticles must have certain avidity with enough ligand density and ligand-receptor binding affinity to be taken up, while too high avidity limited the particle release from the cell surface. We further explored the functional roles of actin during exocytosis, which has been a topic under active debate. Our simulations indicated that the membrane compression due to the actin induced tension tended to break the ligand-receptor bonds and to shrink the fusion pore. Therefore, an intermediate tension promoted the fusion pore expansion and nanoparticle release, while high tension prohibits particle release. Our model provides new and critical mechanistic insights into RMT, and represents a powerful platform for aiding the rational design of nanocarriers for controlled drug delivery.
Collapse
Affiliation(s)
- Hua Deng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
34
|
Ayloo S, Gu C. Transcytosis at the blood-brain barrier. Curr Opin Neurobiol 2019; 57:32-38. [PMID: 30708291 DOI: 10.1016/j.conb.2018.12.014] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is a functional interface separating the brain from the circulatory system and is essential for homeostasis of the central nervous system (CNS). The BBB regulates molecular flux to maintain an optimal environment for neuronal function and protects the brain from toxins and pathogens. Endothelial cells forming the walls of CNS blood vessels constitute the BBB. CNS endothelial cells exhibit two features that underlie the restrictive properties of the BBB: specialized tight junctions that prevent paracellular passage between the blood and the brain, and unusually low levels of vesicle trafficking that limit transcellular transport or transcytosis. While the prevailing view in the field was that specialized tight junctions contributed to CNS barrier properties, recent findings have revealed the importance of maintaining low rates of transcytosis at the BBB. It is now clear that suppression of transcytosis at the BBB is an active process and CNS-specific genetic programs inhibit this pathway to maintain a functional barrier.
Collapse
Affiliation(s)
- Swathi Ayloo
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
35
|
Sun J, Martin JM, Vanderpoel V, Sumbria RK. The Promises and Challenges of Erythropoietin for Treatment of Alzheimer's Disease. Neuromolecular Med 2019; 21:12-24. [PMID: 30656553 DOI: 10.1007/s12017-019-08524-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, and intracellular neurofibrillary tangles and extracellular amyloid-beta protein deposits represent the major pathological hallmarks of the disease. Currently available treatments provide some symptomatic relief but fail to modify primary pathological processes that underlie the disease. Erythropoietin (EPO), a hematopoietic growth factor, acts primarily to stimulate erythroid cell production, and is clinically used to treat anemia. EPO has evolved as a therapeutic agent for neurodegeneration and has improved neurological outcomes and AD pathology in rodents. However, penetration of the blood-brain barrier (BBB) and negative hematopoietic effects are the two major challenges for the therapeutic development of EPO for chronic neurodegenerative diseases like AD. The transferrin receptors at the BBB, which are responsible for transporting transferrin-bound iron from the blood into the brain parenchyma, can be used to shuttle therapeutic molecules across the BBB. In this review, we discuss the role of EPO as a potential neurotherapeutic for AD, challenges associated with EPO development for AD, and targeting the BBB transferrin receptor for EPO brain delivery.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA
| | - Jan Michelle Martin
- College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, 535 Watson Dr, Claremont, CA, 91711, USA. .,Department of Neurology, University of California, Irvine, CA, 92868, USA.
| |
Collapse
|
36
|
Wade QW, Chiou B, Connor JR. Iron uptake at the blood-brain barrier is influenced by sex and genotype. PHARMACOLOGY OF RESTLESS LEGS SYNDROME (RLS) 2019; 84:123-145. [DOI: 10.1016/bs.apha.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Raucher D, Dragojevic S, Ryu J. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Front Oncol 2018; 8:624. [PMID: 30619758 PMCID: PMC6304427 DOI: 10.3389/fonc.2018.00624] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common, aggressive brain tumor, ranks among the least curable cancers-owing to its strong tendency for intracranial dissemination, high proliferation potential, and inherent tumor resistance to radiation and chemotherapy. Current glioblastoma treatment strategies are further hampered by a critical challenge: adverse, non-specific treatment effects in normal tissue combined with the inability of drugs to penetrate the blood brain barrier and reach the tumor microenvironment. Thus, the creation of effective therapies for glioblastoma requires development of targeted drug-delivery systems that increase accumulation of the drug in the tumor tissue while minimizing systemic toxicity in healthy tissues. As demonstrated in various preclinical glioblastoma models, macromolecular drug carriers have the potential to improve delivery of small molecule drugs, therapeutic peptides, proteins, and genes to brain tumors. Currently used macromolecular drug delivery systems, such as liposomes and polymers, passively target solid tumors, including glioblastoma, by capitalizing on abnormalities of the tumor vasculature, its lack of lymphatic drainage, and the enhanced permeation and retention (EPR) effect. In addition to passive targeting, active targeting approaches include the incorporation of various ligands on the surface of macromolecules that bind to cell surface receptors expressed on specific cancer cells. Active targeting approaches also utilize stimulus responsive macromolecules which further improve tumor accumulation by triggering changes in the physical properties of the macromolecular carrier. The stimulus can be an intrinsic property of the tumor tissue, such as low pH, or extrinsic, such as local application of ultrasound or heat. This review article explores current preclinical studies and future perspectives of targeted drug delivery to glioblastoma by macromolecular carrier systems, including polymeric micelles, nanoparticles, and biopolymers. We highlight key aspects of the design of diverse macromolecular drug delivery systems through a review of their preclinical applications in various glioblastoma animal models. We also review the principles and advantages of passive and active targeting based on various macromolecular carriers. Additionally, we discuss the potential disadvantages that may prevent clinical application of these carriers in targeting glioblastoma, as well as approaches to overcoming these obstacles.
Collapse
Affiliation(s)
- Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Sonja Dragojevic
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Jungsu Ryu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| |
Collapse
|
38
|
Ozek C, Krolewski RC, Buchanan SM, Rubin LL. Growth Differentiation Factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. Sci Rep 2018; 8:17293. [PMID: 30470794 PMCID: PMC6251885 DOI: 10.1038/s41598-018-35716-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is the biggest risk factor for several neurodegenerative diseases. Parabiosis experiments have established that old mouse brains are improved by exposure to young mouse blood. Previously, our lab showed that delivery of Growth Differentiation Factor 11 (GDF11) to the bloodstream increases the number of neural stem cells and positively affects vasculature in the subventricular zone of old mice. Our new study demonstrates that GDF11 enhances hippocampal neurogenesis, improves vasculature and increases markers of neuronal activity and plasticity in the hippocampus and cortex of old mice. Our experiments also demonstrate that systemically delivered GDF11, rather than crossing the blood brain barrier, exerts at least some of its effects by acting on brain endothelial cells. Thus, by targeting the cerebral vasculature, GDF11 has a very different mechanism from that of previously studied circulating factors acting to improve central nervous system (CNS) function without entering the CNS.
Collapse
Affiliation(s)
- Ceren Ozek
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Richard C Krolewski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.,Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
39
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
40
|
Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 2018; 9:1991. [PMID: 29777137 PMCID: PMC5959860 DOI: 10.1038/s41467-018-04315-4] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Effective treatment for glioblastoma (GBM) is limited by the presence of the blood–brain barrier (BBB) and rapid resistance to single agent therapies. To address these issues, we developed a transferrin-functionalized nanoparticle (Tf-NP) that can deliver dual combination therapies. Using intravital imaging, we show the ability of Tf-NPs to traverse intact BBB in mice as well as achieve direct tumor binding in two intracranial orthotopic models of GBM. Treatment of tumor-bearing mice with Tf-NPs loaded with temozolomide and the bromodomain inhibitor JQ1 leads to increased DNA damage and apoptosis that correlates with a 1.5- to 2-fold decrease in tumor burden and corresponding increase in survival compared to equivalent free-drug dosing. Immunocompetent mice treated with Tf-NP-loaded drugs also show protection from the effects of systemic drug toxicity, demonstrating the preclinical potential of this nanoscale platform to deliver novel combination therapies to gliomas and other central nervous system tumors. The blood-brain barrier often limits effective delivery of treatments for glioblastoma . In this study, the authors develop transferrin-functionalized nanoparticles able to traverse the intact blood-brain barrier and deliver combination temozolomide and bromodomain inhibitor therapy to glioma-bearing mice.
Collapse
|
41
|
Dragoni S, Turowski P. Polarised VEGFA Signalling at Vascular Blood–Neural Barriers. Int J Mol Sci 2018; 19:ijms19051378. [PMID: 29734754 PMCID: PMC5983809 DOI: 10.3390/ijms19051378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
At blood–neural barriers, endothelial VEGFA signalling is highly polarised, with entirely different responses being triggered by luminal or abluminal stimulation. These recent findings were made in a field which is still in its mechanistic infancy. For a long time, endothelial polarity has intuitively been presumed, and likened to that of epithelial cells, but rarely demonstrated. In the cerebral and the retinal microvasculature, the uneven distribution of VEGF receptors 1 and 2, with the former predominant on the luminal and the latter on the abluminal face of the endothelium, leads to a completely polarised signalling response to VEGFA. Luminal VEGFA activates VEGFR1 homodimers and AKT, leading to a cytoprotective response, whilst abluminal VEGFA induces vascular leakage via VEGFR2 homodimers and p38. Whilst these findings do not provide a complete picture of VEGFA signalling in the microvasculature—there are still unclear roles for heterodimeric receptor complexes as well as co-receptors—they provide essential insight into the adaptation of vascular systems to environmental cues that are naturally different, depending on whether they are present on the blood or tissue side. Importantly, sided responses are not only restricted to VEGFA, but exist for other important vasoactive agents.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Patric Turowski
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
42
|
Weber F, Bohrmann B, Niewoehner J, Fischer JA, Rueger P, Tiefenthaler G, Moelleken J, Bujotzek A, Brady K, Singer T, Ebeling M, Iglesias A, Freskgård PO. Brain Shuttle Antibody for Alzheimer’s Disease with Attenuated Peripheral Effector Function due to an Inverted Binding Mode. Cell Rep 2018; 22:149-162. [DOI: 10.1016/j.celrep.2017.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/01/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023] Open
|
43
|
Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport. EBioMedicine 2017; 24:76-92. [PMID: 28923680 PMCID: PMC5652008 DOI: 10.1016/j.ebiom.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.
Collapse
|
44
|
Garcia-Castillo MD, Chinnapen DJF, Lencer WI. Membrane Transport across Polarized Epithelia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027912. [PMID: 28213463 DOI: 10.1101/cshperspect.a027912] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.
Collapse
Affiliation(s)
| | - Daniel J-F Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02155.,Department of Pediatrics, Harvard Digestive Diseases Center, Boston, Massachusetts 02155
| |
Collapse
|
45
|
Aeschimann W, Staats S, Kammer S, Olieric N, Jeckelmann JM, Fotiadis D, Netscher T, Rimbach G, Cascella M, Stocker A. Self-assembled α-Tocopherol Transfer Protein Nanoparticles Promote Vitamin E Delivery Across an Endothelial Barrier. Sci Rep 2017; 7:4970. [PMID: 28694484 PMCID: PMC5504013 DOI: 10.1038/s41598-017-05148-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/24/2017] [Indexed: 01/16/2023] Open
Abstract
Vitamin E is one of the most important natural antioxidants, protecting polyunsaturated fatty acids in the membranes of cells. Among different chemical isoforms assimilated from dietary regimes, RRR-α-tocopherol is the only one retained in higher animals. This is possible thanks to α-Tocopherol Transfer Protein (α-TTP), which extracts α-tocopherol from endosomal compartments in liver cells, facilitating its distribution into the body. Here we show that, upon binding to its substrate, α-TTP acquires tendency to aggregation into thermodynamically stable high molecular weight oligomers. Determination of the structure of such aggregates by X-ray crystallography revealed a spheroidal particle formed by 24 protein monomers. Oligomerization is triggered by refolding of the N-terminus. Experiments with cultured cell monolayers demonstrate that the same oligomers are efficiently transported through an endothelial barrier (HUVEC) and not through an epithelial one (Caco-2). Discovery of a human endogenous transport protein with intrinsic capability of crossing endothelial tissues opens to new ways of drug delivery into the brain or other tissues protected by endothelial barriers.
Collapse
Affiliation(s)
- Walter Aeschimann
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland
| | - Stefanie Staats
- University of Kiel, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Stephan Kammer
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland
| | | | - Jean-Marc Jeckelmann
- University of Bern, Institute of Biochemistry and Molecular Medicine, Bern, Switzerland
| | - Dimitrios Fotiadis
- University of Bern, Institute of Biochemistry and Molecular Medicine, Bern, Switzerland
| | | | - Gerald Rimbach
- University of Kiel, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Michele Cascella
- University of Oslo, Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), Oslo, Norway.
| | - Achim Stocker
- University of Bern, Department of Chemistry and Biochemistry, Bern, Switzerland.
| |
Collapse
|
46
|
Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, Lécorché P, Temsamani J, Jacquot G, Khrestchatisky M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J 2017; 31:1807-1827. [PMID: 28108572 DOI: 10.1096/fj.201600827r] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals (ldlr-/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Yves Molino
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Marion David
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karine Varini
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Françoise Jabès
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Nicolas Gaudin
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Aude Fortoul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Karima Bakloul
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Maxime Masse
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | - Anne Bernard
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Lucile Drobecq
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Jamal Temsamani
- Vect-Horus S.A.S., Faculté de Médecine, Marseille, France; and
| | | | - Michel Khrestchatisky
- Aix Marseille Université, Centre National de la Recherche Scientifique, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| |
Collapse
|
47
|
Aβ-Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Rev Mol Med 2016; 18:e13. [PMID: 27357999 DOI: 10.1017/erm.2016.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current therapies to treat Alzheimer's disease (AD) are focused on ameliorating symptoms instead of treating the underlying causes of AD. The accumulation of amyloid β (Aβ) oligomers, whether by an increase in production or by a decrease in clearance, has been described as the seed that initiates the pathological cascade in AD. Developing therapies to target these species is a vital step in improving AD treatment. Aβ-immunotherapy, especially passive immunotherapy, is a promising approach to reduce the Aβ burden. Up to now, several monoclonal antibodies (mAbs) have been tested in clinical trials on humans, but none of them have passed Phase III. In all likelihood, these trials failed mainly because patients with mild-to-moderate AD were recruited, and thus treatment may have been too late to be effective. Therefore, many ongoing clinical trials are being conducted in patients at the prodromal stage. New structures based on antibody fragments have been engineered intending to improve efficacy and safety. This review presents the properties of this variety of developing treatments and provides a perspective on state-of-the-art of passive Aβ-immunotherapy in AD.
Collapse
|
48
|
Piñero DJ, Connor JR. Iron in the Brain: An Important Contributor in Normal and Diseased States. Neuroscientist 2016. [DOI: 10.1177/107385840000600607] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron is essential for normal neurological function because of its role in oxidative metabolism and because it is a cofactor in the synthesis of neurotransmitters and myelin. In the past several years, there has been increased attention to the importance of oxidative stress in the central nervous system. Iron is the most important inducer of reactive oxygen species, therefore, the relation of iron to neurodegenerative processes is more appreciated today than it was a few years ago. Nevertheless, despite this increased attention and awareness, our knowledge of iron metabolism in the brain at the cellular and molecular levels is still limited. Iron is distributed in a heterogeneous fashion among the different regions and cells of the brain. This regional and cellular heterogeneity is preserved across many species. Brain iron concentrations are not static; they increase with age and in many diseases and decrease when iron is deficient in the diet. In infants and children, insufficient iron in the diet is associated with decreased brain iron and with changes in behavior and cognitive functioning. Abnormal iron accumulation in the diseased brain areas and, in some cases, alterations in iron-related proteins have been reported in many neurodegenerative diseases, including Hallervorden-Spatz syndrome, Alzheimer’s disease, Parkinson’s disease, and Friedreich’s ataxia. There is strong evidence for iron-mediated oxidative damage as a primary contributor to cell death in these disorders. Demyelinating diseases, such as multiple sclerosis, especially warrant study in relation to iron availability. Myelin synthesis and maintenance have a high iron requirement, thus, oligodendrocytes must have a relatively high and constant supply of iron. However, the high oxygen utilization, high density of lipids, and high iron content of white matter all combine to increase the risk of oxidative damage. We review here the current knowledge of the normal metabolism of iron in the brain and the suspected role of iron in neuropathology.
Collapse
Affiliation(s)
- Domingo J. Piñero
- George M. Leader Family Laboratory for Alzheimer’s Disease Research, Department of Neuroscience & Anatomy, Penn State University, College of Medicine, Hershey, Pennsylvania
| | - James R. Connor
- George M. Leader Family Laboratory for Alzheimer’s Disease Research, Department of Neuroscience & Anatomy, Penn State University, College of Medicine, Hershey, Pennsylvania,
| |
Collapse
|
49
|
Li S, Peng Z, Dallman J, Baker J, Othman AM, Blackwelder PL, Leblanc RM. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: A zebrafish model study. Colloids Surf B Biointerfaces 2016; 145:251-256. [PMID: 27187189 DOI: 10.1016/j.colsurfb.2016.05.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Drug delivery to the central nervous system (CNS) in biological systems remains a major medical challenge due to the tight junctions between endothelial cells known as the blood-brain-barrier (BBB). Here we use a zebrafish model to explore the possibility of using transferrin-conjugated carbon dots (C-Dots) to ferry compounds across the BBB. C-Dots have previously been reported to inhibit protein fibrillation, and they are also used to deliver drugs for disease treatment. In terms of the potential medical application of C-Dots for the treatment of CNS diseases, one of the most formidable challenges is how to deliver them inside the CNS. To achieve this in this study, human transferrin was covalently conjugated to C-Dots. The conjugates were then injected into the vasculature of zebrafish to examine the possibility of crossing the BBB in vivo via transferrin receptor-mediated endocytosis. The experimental observations suggest that the transferrin-C-Dots can enter the CNS while C-Dots alone cannot.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Zhili Peng
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Julia Dallman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - James Baker
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Abdelhameed M Othman
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu, Saudi Arabia; Department of Environmental Biotechnology, Genetic Engineering and Biotechnology, University of Sadat City, Sadat City, Egypt
| | - Patrica L Blackwelder
- University of Miami Center for Advanced Microscopy and Marine Geosciences, 1301 Memorial Drive, University of Miami, Coral Gables, FL, 33146, United States; Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive, Dania, FL, 33004, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States.
| |
Collapse
|
50
|
Paris-Robidas S, Brouard D, Emond V, Parent M, Calon F. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo. J Cereb Blood Flow Metab 2016; 36:731-42. [PMID: 26661181 PMCID: PMC4820005 DOI: 10.1177/0271678x15608201] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
Abstract
Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery.
Collapse
Affiliation(s)
- Sarah Paris-Robidas
- Faculty of Pharmacy, Université Laval, Quebec, Canada Centre de recherche du CHU de Québec, Neurosciences Axis, Quebec, Canada
| | - Danny Brouard
- Research and Development, Héma-Québec, Quebec, Canada
| | - Vincent Emond
- Faculty of Pharmacy, Université Laval, Quebec, Canada Centre de recherche du CHU de Québec, Neurosciences Axis, Quebec, Canada
| | - Martin Parent
- Faculty of Medicine, Université Laval, Quebec, Canada Centre de recherche de l'Institut universitaire en santé mentale de Québec, Quebec, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Université Laval, Quebec, Canada Centre de recherche du CHU de Québec, Neurosciences Axis, Quebec, Canada
| |
Collapse
|