1
|
Lin CH, Chen YC, Chan SP, Ou CY. TIAM-1 differentially regulates dendritic and axonal microtubule organization in patterning neuronal development through its multiple domains. PLoS Genet 2022; 18:e1010454. [PMID: 36223408 PMCID: PMC9612824 DOI: 10.1371/journal.pgen.1010454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Axon and dendrite development require the cooperation of actin and microtubule cytoskeletons. Microtubules form a well-organized network to direct polarized trafficking and support neuronal processes formation with distinct actin structures. However, it is largely unknown how cytoskeleton regulators differentially regulate microtubule organization in axon and dendrite development. Here, we characterize the role of actin regulators in axon and dendrite development and show that the RacGEF TIAM-1 regulates dendritic patterns through its N-terminal domains and suppresses axon growth through its C-terminal domains. TIAM-1 maintains plus-end-out microtubule orientation in posterior dendrites and prevents the accumulation of microtubules in the axon. In somatodendritic regions, TIAM-1 interacts with UNC-119 and stabilizes the organization between actin filaments and microtubules. UNC-119 is required for TIAM-1 to control axon growth, and its expression levels determine axon length. Taken together, TIAM-1 regulates neuronal microtubule organization and patterns axon and dendrite development respectively through its different domains.
Collapse
Affiliation(s)
- Chih-Hsien Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chun Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Yen Ou
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
2
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep 2021; 11:13560. [PMID: 34193880 PMCID: PMC8245453 DOI: 10.1038/s41598-021-92489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanism of muscle atrophy has been studied a lot, but there is no comprehensive analysis focusing on the denervated muscle atrophy. The gene network that controls the development of denervated muscle atrophy needs further elucidation. We examined differentially expressed genes (DEGs) from five denervated muscle atrophy microarray datasets and predicted microRNAs that target these DEGs. We also included the differentially expressed microRNAs datasets of denervated muscle atrophy in previous studies as background information to identify potential key microRNAs. Finally, we compared denervated muscle atrophy with disuse muscle atrophy caused by other reasons, and obtained the Den-genes which only differentially expressed in denervated muscle atrophy. In this meta-analysis, we obtained 429 up-regulated genes, 525 down-regulated genes and a batch of key microRNAs in denervated muscle atrophy. We found eight important microRNA-mRNA interactions (miR-1/Jun, miR-1/Vegfa, miR-497/Vegfa, miR-23a/Vegfa, miR-206/Vegfa, miR-497/Suclg1, miR-27a/Suclg1, miR-27a/Mapk14). The top five KEGG pathways enriched by Den-genes are Insulin signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and B cell receptor signaling pathway. Our research has delineated the RNA regulatory network of denervated muscle atrophy, and uncovered the specific genes and terms in denervated muscle atrophy.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Bo Jin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Zhidan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China. .,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China.
| |
Collapse
|
4
|
Kodera N, Abe H, Nguyen PDN, Ono S. Native cyclase-associated protein and actin from Xenopus laevis oocytes form a unique 4:4 complex with a tripartite structure. J Biol Chem 2021; 296:100649. [PMID: 33839148 PMCID: PMC8113726 DOI: 10.1016/j.jbc.2021.100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/26/2022] Open
Abstract
Cyclase-associated protein (CAP) is a conserved actin-binding protein that regulates multiple aspects of actin dynamics, including polymerization, depolymerization, filament severing, and nucleotide exchange. CAP has been isolated from different cells and tissues in an equimolar complex with actin, and previous studies have shown that a CAP–actin complex contains six molecules each of CAP and actin. Intriguingly, here, we successfully isolated a complex of Xenopus cyclase-associated protein 1 (XCAP1) with actin from oocyte extracts, which contained only four molecules each of XCAP1 and actin. This XCAP1–actin complex remained stable as a single population of 340 kDa species during hydrodynamic analyses using gel filtration or analytical ultracentrifugation. Examination of the XCAP1–actin complex by high-speed atomic force microscopy revealed a tripartite structure: one middle globular domain and two globular arms. The two arms were observed in high and low states. The arms at the high state were spontaneously converted to the low state by dissociation of actin from the complex. However, when extra G-actin was added, the arms at the low state were converted to the high state. Based on the known structures of the N-terminal helical-folded domain and C-terminal CARP domain, we hypothesize that the middle globular domain corresponds to a tetramer of the N-terminal helical-folded domain of XCAP1 and that each arm in the high state corresponds to a heterotetramer containing a dimer of the C-terminal CARP domain of XCAP1 and two G-actin molecules. This novel configuration of a CAP–actin complex should help to understand how CAP promotes actin filament disassembly.
Collapse
Affiliation(s)
- Noriyuki Kodera
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Abe
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | | | - Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Kepser LJ, Khudayberdiev S, Hinojosa LS, Macchi C, Ruscica M, Marcello E, Culmsee C, Grosse R, Rust MB. Cyclase-associated protein 2 (CAP2) controls MRTF-A localization and SRF activity in mouse embryonic fibroblasts. Sci Rep 2021; 11:4789. [PMID: 33637797 PMCID: PMC7910472 DOI: 10.1038/s41598-021-84213-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Recent studies identified cyclase-associated proteins (CAPs) as important regulators of actin dynamics that control assembly and disassembly of actin filaments (F-actin). While these studies significantly advanced our knowledge of their molecular functions, the physiological relevance of CAPs largely remained elusive. Gene targeting in mice implicated CAP2 in heart physiology and skeletal muscle development. Heart defects in CAP2 mutant mice were associated with altered activity of serum response factor (SRF), a transcription factor involved in multiple biological processes including heart function, but also skeletal muscle development. By exploiting mouse embryonic fibroblasts (MEFs) from CAP2 mutant mice, we aimed at deciphering the CAP2-dependent mechanism relevant for SRF activity. Reporter assays and mRNA quantification by qPCR revealed reduced SRF-dependent gene expression in mutant MEFs. Reduced SRF activity in CAP2 mutant MEFs was associated with altered actin turnover, a shift in the actin equilibrium towards monomeric actin (G-actin) as well as and reduced nuclear levels of myocardin-related transcription factor A (MRTF-A), a transcriptional SRF coactivator that is shuttled out of the nucleus and, hence, inhibited upon G-actin binding. Moreover, pharmacological actin manipulation with jasplakinolide restored MRTF-A distribution in mutant MEFs. Our data are in line with a model in which CAP2 controls the MRTF-SRF pathway in an actin-dependent manner. While MRTF-A localization and SRF activity was impaired under basal conditions, serum stimulation induced nuclear MRTF-A translocation and SRF activity in mutant MEFs similar to controls. In summary, our data revealed that in MEFs CAP2 controls basal MRTF-A localization and SRF activity, while it was dispensable for serum-induced nuclear MRTF-A translocation and SRF stimulation.
Collapse
Affiliation(s)
- Lara-Jane Kepser
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Laura Soto Hinojosa
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Robert Grosse
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Marco B Rust
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany.
| |
Collapse
|
7
|
Rust MB, Khudayberdiev S, Pelucchi S, Marcello E. CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Front Cell Dev Biol 2020; 8:586631. [PMID: 33072768 PMCID: PMC7543520 DOI: 10.3389/fcell.2020.586631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt'n of actin dynamics.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus-Liebig-University Giessen, Giessen, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Dynamic Phosphorylation and Dephosphorylation of Cyclase-Associated Protein 1 by Antagonistic Signaling through Cyclin-Dependent Kinase 5 and cAMP Are Critical for the Protein Functions in Actin Filament Disassembly and Cell Adhesion. Mol Cell Biol 2020; 40:MCB.00282-19. [PMID: 31791978 DOI: 10.1128/mcb.00282-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclase-associated protein 1 (CAP1) is a conserved actin-regulating protein that enhances actin filament dynamics and also regulates adhesion in mammalian cells. We previously found that phosphorylation at the Ser307/Ser309 tandem site controls its association with cofilin and actin and is important for CAP1 to regulate the actin cytoskeleton. Here, we report that transient Ser307/Ser309 phosphorylation is required for CAP1 function in both actin filament disassembly and cell adhesion. Both the phosphomimetic and the nonphosphorylatable CAP1 mutant, which resist transition between phosphorylated and dephosphorylated forms, had defects in rescuing the reduced rate of actin filament disassembly in the CAP1 knockdown HeLa cells. The phosphorylation mutants also had defects in alleviating the elevated focal adhesion kinase (FAK) activity and the enhanced focal adhesions in the knockdown cells. In dissecting further phosphoregulatory cell signals for CAP1, we found that cyclin-dependent kinase 5 (CDK5) phosphorylates both Ser307 and Ser309 residues, whereas cAMP signaling induces dephosphorylation at the tandem site, through its effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). No evidence supports an involvement of activated protein phosphatase in executing the dephosphorylation downstream from cAMP, whereas preventing CAP1 from accessing its kinase CDK5 appears to underlie CAP1 dephosphorylation induced by cAMP. Therefore, this study provides direct cellular evidence that transient phosphorylation is required for CAP1 functions in both actin filament turnover and adhesion, and the novel mechanistic insights substantially extend our knowledge of the cell signals that function in concert to regulate CAP1 by facilitating its transient phosphorylation.
Collapse
|
9
|
Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nat Commun 2019; 10:5320. [PMID: 31757941 PMCID: PMC6876575 DOI: 10.1038/s41467-019-13213-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
The ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes. The cofilin family proteins are actin disassembly factors but the disassembly mechanism is poorly understood. Here authors show that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold and reveal how CAP destabilizes the interface between terminal actin subunits.
Collapse
|
10
|
Hasan R, Zhou GL. The Cytoskeletal Protein Cyclase-Associated Protein 1 (CAP1) in Breast Cancer: Context-Dependent Roles in Both the Invasiveness and Proliferation of Cancer Cells and Underlying Cell Signals. Int J Mol Sci 2019; 20:E2653. [PMID: 31151140 PMCID: PMC6600220 DOI: 10.3390/ijms20112653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
As a conserved actin-regulating protein, CAP (adenylyl Cyclase-Associated Protein) functions to facilitate the rearrangement of the actin cytoskeleton. The ubiquitously expressed isoform CAP1 drives mammalian cell migration, and accordingly, most studies on the involvement of CAP1 in human cancers have largely been based on the rationale that up-regulated CAP1 will stimulate cancer cell migration and invasiveness. While findings from some studies reported so far support this case, lines of evidence largely from our recent studies point to a more complex and profound role for CAP1 in the invasiveness of cancer cells, where the potential activation of cell adhesion signaling is believed to play a key role. Moreover, CAP1 was also found to control proliferation in breast cancer cells, through the regulation of ERK (External signal-Regulated Kinase). Alterations in the activities of FAK (Focal Adhesion Kinase) and ERK from CAP1 depletion that are consistent to the opposite adhesion and proliferation phenotypes were detected in the metastatic and non-metastatic breast cancer cells. In this review, we begin with the overview of the literature on CAP, by highlighting the molecular functions of mammalian CAP1 in regulating the actin cytoskeleton and cell adhesion. We will next discuss the role of the FAK/ERK axis, and possibly Rap1, in mediating CAP1 signals to control breast cancer cell adhesion, invasiveness, and proliferation, largely based on our latest findings. Finally, we will discuss the relevance of these novel mechanistic insights to ultimately realizing the translational potential of CAP1 in targeted therapeutics for breast cancer.
Collapse
Affiliation(s)
- Rokib Hasan
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA.
| | - Guo-Lei Zhou
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA.
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.
| |
Collapse
|
11
|
Mechanism of CAP1-mediated apical actin polymerization in pollen tubes. Proc Natl Acad Sci U S A 2019; 116:12084-12093. [PMID: 31123151 DOI: 10.1073/pnas.1821639116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Srv2p/CAP1 is an essential regulator of actin turnover, but its exact function in regulating actin polymerization, particularly the contribution of its actin nucleotide exchange activity, remains incompletely understood. We found that, although Arabidopsis CAP1 is distributed uniformly in the cytoplasm, its loss of function has differential effects on the actin cytoskeleton within different regions of the pollen tube. Specifically, the F-actin level increases in the shank but decreases in the apical region of cap1 pollen tubes. The reduction in apical F-actin results mainly from impaired polymerization of membrane-originated actin within cap1 pollen tubes. The actin nucleotide exchange activity of CAP1 is involved in apical actin polymerization. CAP1 acts synergistically with pollen ADF and profilin to promote actin turnover in vitro, and it can overcome the inhibitory effects of ADF and synergize with profilin to promote actin nucleotide exchange. Consistent with its role as a shuttle molecule between ADF and profilin, the cytosolic concentration of CAP1 is much lower than that of ADF and profilin in pollen. Thus, CAP1 synergizes with ADF and profilin to drive actin turnover in pollen and promote apical actin polymerization in pollen tubes in a manner that involves its actin nucleotide exchange activity.
Collapse
|
12
|
Kotila T, Kogan K, Enkavi G, Guo S, Vattulainen I, Goode BL, Lappalainen P. Structural basis of actin monomer re-charging by cyclase-associated protein. Nat Commun 2018; 9:1892. [PMID: 29760438 PMCID: PMC5951797 DOI: 10.1038/s41467-018-04231-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 11/10/2022] Open
Abstract
Actin polymerization powers key cellular processes, including motility, morphogenesis, and endocytosis. The actin turnover cycle depends critically on "re-charging" of ADP-actin monomers with ATP, but whether this reaction requires dedicated proteins in cells, and the underlying mechanism, have remained elusive. Here we report that nucleotide exchange catalyzed by the ubiquitous cytoskeletal regulator cyclase-associated protein (CAP) is critical for actin-based processes in vivo. We determine the structure of the CAP-actin complex, which reveals that nucleotide exchange occurs in a compact, sandwich-like complex formed between the dimeric actin-binding domain of CAP and two ADP-actin monomers. In the crystal structure, the C-terminal tail of CAP associates with the nucleotide-sensing region of actin, and this interaction is required for rapid re-charging of actin by both yeast and mammalian CAPs. These data uncover the conserved structural basis and biological role of protein-catalyzed re-charging of actin monomers.
Collapse
Affiliation(s)
- Tommi Kotila
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Siyang Guo
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, 00014, Helsinki, Finland
- Laboratory of Physics, Tampere University of Technology, 33101, Tampere, Finland
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
13
|
Iwase S, Ono S. Conserved hydrophobic residues in the CARP/β-sheet domain of cyclase-associated protein are involved in actin monomer regulation. Cytoskeleton (Hoboken) 2017; 74:343-355. [PMID: 28696540 DOI: 10.1002/cm.21385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/12/2023]
Abstract
Cyclase-associated protein (CAP) is a multidomain protein that promotes actin filament dynamics. The C-terminal region of CAP contains a CAP and X-linked retinitis pigmentosa 2 protein (CARP) domain (or a β-sheet domain), which binds to actin monomer and is essential for enhancing exchange of actin-bound nucleotides. However, how the CARP domain binds to actin is not clearly understood. Here, we report that conserved hydrophobic residues in the CARP domain play important roles in the function of CAP to regulate actin dynamics. Single mutations of three conserved surface-exposed hydrophobic residues in the CARP domain of CAS-2, a Caenorhabditis elegans CAP, significantly reduce its binding to actin monomers and suppress its nucleotide exchange activity on actin. As a result, these mutants are weaker than wild-type to compete with ADF/cofilin to promote recycling of actin monomers for polymerization. A double mutation (V367A/I373A) eliminates these actin-regulatory functions of CAS-2. These hydrophobic residues and previously identified functional residues are scattered on a concave β-sheet of the CARP domain, suggesting that a wide area of the β-sheet is involved in binding to actin. These observations suggest that the CARP domain of CAP binds to actin in a distinct manner from other known actin-binding proteins.
Collapse
Affiliation(s)
- Shohei Iwase
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, Georgia.,Department of Cell Biology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shoichiro Ono
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, Georgia.,Department of Cell Biology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation. Biochem J 2016; 473:4427-4441. [PMID: 27729544 DOI: 10.1042/bcj20160329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
Cyclase-associated protein (CAP) is a conserved actin-regulatory protein that functions together with actin depolymerizing factor (ADF)/cofilin to enhance actin filament dynamics. CAP has multiple functional domains, and the function to regulate actin monomers is carried out by its C-terminal half containing a Wiskott-Aldrich Syndrome protein homology 2 (WH2) domain, a CAP and X-linked retinitis pigmentosa 2 (CARP) domain, and a dimerization motif. WH2 and CARP are implicated in binding to actin monomers and important for enhancing filament turnover. However, the role of the dimerization motif is unknown. Here, we investigated the function of the dimerization motif of CAS-2, a CAP isoform in the nematode Caenorhabditis elegans, in actin monomer regulation. CAS-2 promotes ATP-dependent recycling of ADF/cofilin-bound actin monomers for polymerization by enhancing exchange of actin-bound nucleotides. The C-terminal half of CAS-2 (CAS-2C) has nearly as strong activity as full-length CAS-2. Maltose-binding protein (MBP)-tagged CAS-2C is a dimer. However, MBP-CAS-2C with a truncation of either one or two C-terminal β-strands is monomeric. Truncations of the dimerization motif in MBP-CAS-2C nearly completely abolish its activity to sequester actin monomers from polymerization and enhance nucleotide exchange on actin monomers. As a result, these CAS-2C variants, also in the context of full-length CAS-2, fail to compete with ADF/cofilin to release actin monomers for polymerization. CAS-2C variants lacking the dimerization motif exhibit enhanced binding to actin filaments, which is mediated by WH2. Taken together, these results suggest that the evolutionarily conserved dimerization motif of CAP is essential for its C-terminal region to exert the actin monomer-specific regulatory function.
Collapse
|
15
|
Kumar A, Paeger L, Kosmas K, Kloppenburg P, Noegel AA, Peche VS. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2. Front Cell Neurosci 2016; 10:180. [PMID: 27507934 PMCID: PMC4960234 DOI: 10.3389/fncel.2016.00180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.
Collapse
Affiliation(s)
- Atul Kumar
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Lars Paeger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany; Biocenter, Institute for Zoology, University of Cologne, CologneGermany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| | - Vivek S Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, CologneGermany; Center for Molecular Medicine Cologne, University of Cologne, CologneGermany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, CologneGermany
| |
Collapse
|
16
|
Butkevich E, Klopfenstein DR, Schmidt CF. Game of Zones: how actin-binding proteins organize muscle contraction. WORM 2016; 5:e1161880. [PMID: 27383012 PMCID: PMC4911971 DOI: 10.1080/21624054.2016.1161880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
Abstract
Locomotion of C. elegans requires coordinated, efficient transmission of forces generated on the molecular scale by myosin and actin filaments in myocytes to dense bodies and the hypodermis and cuticle enveloping body wall muscles. The complex organization of the acto-myosin scaffold with its accessory proteins provides a fine-tuned machinery regulated by effectors that guarantees that sarcomere units undergo controlled, reversible cycles of contraction and relaxation. Actin filaments in sarcomeres dynamically undergo polymerization and depolymerization. In a recent study, the actin-binding protein DBN-1, the C. elegans ortholog of human drebrin and drebrin-like proteins, was discovered to stabilize actin in muscle cells. DBN-1 reversibly changes location between actin filaments and myosin-rich regions during muscle contraction. Mutations in DBN-1 result in mislocalization of other actin-binding proteins. Here we discuss implications of this finding for the regulation of sarcomere actin stability and the organization of other actin-binding proteins.
Collapse
Affiliation(s)
- Eugenia Butkevich
- Georg August University, Third Institute of Physics - Biophysics , Göttingen, Germany
| | - Dieter R Klopfenstein
- Georg August University, Third Institute of Physics - Biophysics , Göttingen, Germany
| | - Christoph F Schmidt
- Georg August University, Third Institute of Physics - Biophysics , Göttingen, Germany
| |
Collapse
|
17
|
Field J, Ye DZ, Shinde M, Liu F, Schillinger KJ, Lu M, Wang T, Skettini M, Xiong Y, Brice AK, Chung DC, Patel VV. CAP2 in cardiac conduction, sudden cardiac death and eye development. Sci Rep 2015; 5:17256. [PMID: 26616005 PMCID: PMC4663486 DOI: 10.1038/srep17256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023] Open
Abstract
Sudden cardiac death kills 180,000 to 450,000 Americans annually, predominantly males. A locus that confers a risk for sudden cardiac death, cardiac conduction disease, and a newly described developmental disorder (6p22 syndrome) is located at 6p22. One gene at 6p22 is CAP2, which encodes a cytoskeletal protein that regulates actin dynamics. To determine the role of CAP2 in vivo, we generated knockout (KO) mice. cap2−/cap2− males were underrepresented at weaning and ~70% died by 12 weeks of age, but cap2−/cap2− females survived at close to the expected levels and lived normal life spans. CAP2 knockouts resembled patients with 6p22 syndrome in that mice were smaller and they developed microphthalmia and cardiac disease. The cardiac disease included cardiac conduction disease (CCD) and, after six months of age, dilated cardiomyopathy (DCM), most noticeably in the males. To address the mechanisms underlying these phenotypes, we used Cre-mediated recombination to knock out CAP2 in cardiomyocytes. We found that the mice developed CCD, leading to sudden cardiac death from complete heart block, but no longer developed DCM or the other phenotypes, including sex bias. These studies establish a direct role for CAP2 and actin dynamics in sudden cardiac death and cardiac conduction disease.
Collapse
Affiliation(s)
- Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Diana Z Ye
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Manasi Shinde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Fang Liu
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Kurt J Schillinger
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA.,Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - MinMin Lu
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Tao Wang
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Michelle Skettini
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Yao Xiong
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| | - Angela K Brice
- University Laboratory Animal Resources and School of Veterinary Medicine, Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel C Chung
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Pennsylvania 19041 USA
| | - Vickas V Patel
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA.,Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania 19041 USA
| |
Collapse
|
18
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 2015; 57:275-90. [DOI: 10.1111/dgd.12213] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| |
Collapse
|
20
|
Kosmas K, Eskandarnaz A, Khorsandi AB, Kumar A, Ranjan R, Eming SA, Noegel AA, Peche VS. CAP2 is a regulator of the actin cytoskeleton and its absence changes infiltration of inflammatory cells and contraction of wounds. Eur J Cell Biol 2015; 94:32-45. [DOI: 10.1016/j.ejcb.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022] Open
|
21
|
Ono S. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor. J Cell Sci 2014; 126:3249-58. [PMID: 23908377 DOI: 10.1242/jcs.128231] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other proteins regulate activities and localization of CAP. CAP has crucial roles in cell signaling, development, vesicle trafficking, cell migration and muscle sarcomere assembly. This Commentary discusses the recent advances in our understanding of the functions of CAP and its implications as an important regulator of actin cytoskeletal dynamics, which are involved in various cellular activities.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin. Biochem J 2013; 453:249-59. [PMID: 23672398 DOI: 10.1042/bj20130491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.
Collapse
|
23
|
Makkonen M, Bertling E, Chebotareva NA, Baum J, Lappalainen P. Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism. J Biol Chem 2012. [PMID: 23184938 DOI: 10.1074/jbc.m112.435719] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclase-associated proteins (CAPs) are among the most highly conserved regulators of actin dynamics, being present in organisms from mammals to apicomplexan parasites. Yeast, plant, and mammalian CAPs are large multidomain proteins, which catalyze nucleotide exchange on actin monomers from ADP to ATP and recycle actin monomers from actin-depolymerizing factor (ADF)/cofilin for new rounds of filament assembly. However, the mechanism by which CAPs promote nucleotide exchange is not known. Furthermore, how apicomplexan CAPs, which lack many domains present in yeast and mammalian CAPs, contribute to actin dynamics is not understood. We show that, like yeast Srv2/CAP, mouse CAP1 interacts with ADF/cofilin and ADP-G-actin through its N-terminal α-helical and C-terminal β-strand domains, respectively. However, in the variation to yeast Srv2/CAP, mouse CAP1 has two adjacent profilin-binding sites, and it interacts with ATP-actin monomers with high affinity through its WH2 domain. Importantly, we revealed that the C-terminal β-sheet domain of mouse CAP1 is essential and sufficient for catalyzing nucleotide exchange on actin monomers, although the adjacent WH2 domain is not required for this function. Supporting these data, we show that the malaria parasite Plasmodium falciparum CAP, which is entirely composed of the β-sheet domain, efficiently promotes nucleotide exchange on actin monomers. Collectively, this study provides evidence that catalyzing nucleotide exchange on actin monomers via the β-sheet domain is the most highly conserved function of CAPs from mammals to apicomplexan parasites. Other functions, including interactions with profilin and ADF/cofilin, evolved in more complex organisms to adjust the specific role of CAPs in actin dynamics.
Collapse
Affiliation(s)
- Maarit Makkonen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | |
Collapse
|