1
|
Whitfield M. The annulus: composition, role and importance in sperm flagellum biogenesis and male fertility. Basic Clin Androl 2024; 34:25. [PMID: 39676174 DOI: 10.1186/s12610-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
The annulus is an electron-dense ring structure that surrounds the axoneme and compartmentalizes the sperm flagellum into two parts: the midpiece and the principal piece. The function of the annulus as a diffusion barrier in the mature spermatozoon is now well described but its function during spermiogenesis remains unclear. The intriguing spatio-temporal dynamics of the annulus during spermiogenesis and its position at the interface of the two main flagellar compartments have been highlighted for more than 50 years, and suggest a major role in this process. During the last decade, numerous studies contributed in establishing a repertoire of proteins known to be located at the annulus. Mutant mouse models of invalidation of these proteins have provided essential information and clues for novel hypotheses regarding the functions and regulation of this structure. Importantly, the recent identification in humans of homozygous mutations of genes coding for annulus proteins and leading to sterility have reinforced the importance of this ring structure for sperm physiology and male fertility. This review provides a comprehensive description of all the knowledge obtained in the last several years regarding the annulus composition and functions, both in mice and in humans.
Collapse
Affiliation(s)
- Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team 'Physiopathology and Pathophysiology of Sperm cells', 38000, Grenoble, France.
| |
Collapse
|
2
|
Fujihara Y, Oji A, Larasati T, Kojima-Kita K, Ikawa M. Human Globozoospermia-Related Gene Spata16 Is Required for Sperm Formation Revealed by CRISPR/Cas9-Mediated Mouse Models. Int J Mol Sci 2017; 18:ijms18102208. [PMID: 29065458 PMCID: PMC5666888 DOI: 10.3390/ijms18102208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
A recent genetic analysis of infertile globozoospermic patients identified causative mutations in three genes: a protein interacting with C kinase 1 (PICK1), dpy 19-like 2 (DPY19L2), and spermatogenesis associated 16 (SPATA16). Although mouse models have clarified the physiological functions of Pick1 and Dpy19l2 during spermatogenesis, Spata16 remains to be determined. Globozoospermic patients carried a homozygous point mutation in SPATA16 at 848G→A/R283Q. We generated CRISPR/Cas9-mediated mutant mice with the same amino acid substitution in the fourth exon of Spata16 to analyze the mutation site at R284Q, which corresponded with R283Q of mutated human SPATA16. We found that the point mutation in Spata16 was not essential for male fertility; however, deletion of the fourth exon of Spata16 resulted in infertile male mice due to spermiogenic arrest but not globozoospermia. This study demonstrates that Spata16 is indispensable for male fertility in mice, as well as in humans, as revealed by CRISPR/Cas9-mediated mouse models.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | - Tamara Larasati
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Kanako Kojima-Kita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
3
|
Carapito C, Duek P, Macron C, Seffals M, Rondel K, Delalande F, Lindskog C, Fréour T, Vandenbrouck Y, Lane L, Pineau C. Validating Missing Proteins in Human Sperm Cells by Targeted Mass-Spectrometry- and Antibody-based Methods. J Proteome Res 2017; 16:4340-4351. [DOI: 10.1021/acs.jproteome.7b00374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christine Carapito
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, Strasbourg F-67087, France
| | - Paula Duek
- CALIPHO
Group, SIB-Swiss Institute of Bioinformatics, CMU, rue Michel-Servet
1, CH-1211 Geneva
4, Switzerland
| | - Charlotte Macron
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, Strasbourg F-67087, France
| | - Marine Seffals
- H2P2
Core facility, UMS BioSit, University of Rennes 1, Rennes F-35040, France
| | - Karine Rondel
- Protim,
Inserm U1085, Irset, Campus de Beaulieu, Rennes F-35042, France
| | - François Delalande
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS UMR7178, 25 Rue Becquerel, Strasbourg F-67087, France
| | - Cecilia Lindskog
- Department
of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Fréour
- Service de
Médecine de la Reproduction, CHU de Nantes, 38 boulevard
Jean Monnet, Nantes F-44093, France
- Inserm UMR1064, Nantes F-44093, France
| | - Yves Vandenbrouck
- CEA, DRF, BIG,
Laboratoire de Biologie à Grande Echelle, 17, rue des Martyrs, Grenoble F-38054, France
- Inserm U1038, Grenoble F-38054, France
- Grenoble-Alpes University, Grenoble F-38054, France
| | - Lydie Lane
- CALIPHO
Group, SIB-Swiss Institute of Bioinformatics, CMU, rue Michel-Servet
1, CH-1211 Geneva
4, Switzerland
- Department
of Human Protein Sciences, Faculty of Medicine, University of Geneva, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Charles Pineau
- Protim,
Inserm U1085, Irset, Campus de Beaulieu, Rennes F-35042, France
| |
Collapse
|
4
|
Dirami T, Rode B, Wolf JP, Gacon G, Dulioust E, Touré A. Assessment of the frequency of sperm annulus defects in a large cohort of patients presenting asthenozoospermia. Basic Clin Androl 2015; 25:10. [PMID: 26576287 PMCID: PMC4645475 DOI: 10.1186/s12610-015-0026-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The annulus is a ring-shaped structure located beneath the plasma membrane that connects the midpiece and the principal piece of mammalian sperm flagellum. It has been suggested that the annulus acts as a morphological organizer, guiding flagellum assembly during spermiogenesis, and as a diffusion barrier, confining proteins to distinct compartments of the flagellum in mature sperm. Previous studies on small cohorts of patients have attempted to correlate annulus defects with the occurrence of human asthenozoospermia. An absence of the annulus has been shown to be frequently associated with asthenozoospermia. FINDINGS We tried to obtain a more precise estimate of the frequency of annulus defects, by screening a large cohort of 254 men presenting asthenozoospermia (mean progressive motility of 24 %) by the immunodetection of SLC26A8, a transmembrane protein that has been shown to be specifically localized to the annulus. By contrast to previous reports, our results indicate that annulus defects are associated with asthenozoospermia in only 1.2 % of cases. CONCLUSIONS We conclude that defects or an absence of the annulus are not frequently associated with asthenozoospermia. The use of annulus defects as a diagnostic endpoint in patients is therefore not appropriate.
Collapse
Affiliation(s)
- Thassadite Dirami
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France
| | - Baptiste Rode
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France ; Assistance Publique-Hôpitaux de Paris, GH Cochin Broca Hôtel Dieu, Laboratoire d'Histologie Embryologie - Biologie de la Reproduction, Paris, 75014 France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France
| | - Emmanuel Dulioust
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France ; Assistance Publique-Hôpitaux de Paris, GH Cochin Broca Hôtel Dieu, Laboratoire d'Histologie Embryologie - Biologie de la Reproduction, Paris, 75014 France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris, 75014 France ; CNRS UMR8104, Paris, 75014 France ; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, 75014 France ; Department of Genetics, Development and Reproduction, Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, 24 rue du faubourg Saint Jacques, Paris, 75014 France
| |
Collapse
|
5
|
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 2012; 13:608-18. [PMID: 22653444 DOI: 10.1038/embor.2012.73] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022] Open
Abstract
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments.
Collapse
|
6
|
Mannowetz N, Wandernoth P, Wennemuth G. Basigin interacts with both MCT1 and MCT2 in murine spermatozoa. J Cell Physiol 2012; 227:2154-62. [PMID: 21792931 DOI: 10.1002/jcp.22949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactate is provided to spermatogenic cells by Sertoli cells as an energy substrate and its transport is regulated by H(+)-monocarboxylate co-transporters (MCTs). In the case of several cell types it is known that MCT1 is associated with basigin and MCT2 with embigin. Here we demonstrate co-localization and co-immunoprecipitation of basigin with both MCT1 and MCT2 in sperm, whereas no interaction with embigin was detectable. An investigation of the functional activity of MCT proteins revealed that it was mainly the application of L-lactate which resulted in a decrease in pH(i) . The pH(i) changes were blocked with α-cyano-4-OH cinnamate and the preference for L-lactate-as opposed to D-Lactate-was demonstrated by the determination of ATP after exposure to both lactate isomers. We propose that basigin interacts with MCT1 and MCT2 to locate them properly in the membrane of spermatogenic cells and that this may enable sperm to utilize lactate as an energy substrate contributing to cell survival.
Collapse
Affiliation(s)
- Nadja Mannowetz
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
7
|
Mandel-Gutfreund Y, Kosti I, Larisch S. ARTS, the unusual septin: structural and functional aspects. Biol Chem 2012; 392:783-90. [PMID: 21824006 DOI: 10.1515/bc.2011.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human Septin 4 gene (Sept4) encodes two major protein isoforms; Sept4_i1 (H5/PNUTL2) and Sept4_i2/ARTS. Septins have been traditionally studied for their role in cytokinesis and their filament-forming abilities, but subsequently have been implicated in diverse functions, including membrane dynamics, cytoskeletal reorganization, vesicle trafficking, and tumorigenesis. ARTS is localized at mitochondria and promotes programmed cell death (apoptosis). These features distinguish ARTS from any other known human septin family member. This review compares the structural and functional properties of ARTS with other septins. In addition, it describes how a combination of two distinct promoters, differential splicing, and intron retention leads to the generation of two different Sept4 variants with diverse biological activity.
Collapse
Affiliation(s)
- Yael Mandel-Gutfreund
- Computational Molecular Biology Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
8
|
Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL. Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev 2011; 79:4-18. [PMID: 22031228 DOI: 10.1002/mrd.21393] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/23/2011] [Indexed: 11/11/2022]
Abstract
Sperm structure has evolved to be very compact and compartmentalized to enable the motor (the flagellum) to transport the nuclear cargo (the head) to the egg. Furthermore, sperm do not exhibit progressive motility and are not capable of undergoing acrosomal exocytosis immediately following their release into the lumen of the seminiferous tubules, the site of spermatogenesis in the testis. These cells require maturation in the epididymis and female reproductive tract before they become competent for fertilization. Here we review aspects of the structural and molecular mechanisms that promote forward motility, hyperactivated motility, and acrosomal exocytosis. As a result, we favor a model articulated by others that the flagellum senses external signals and communicates with the head by second messengers to affect sperm functions such as acrosomal exocytosis. We hope this conceptual framework will serve to stimulate thinking and experimental investigations concerning the various steps of activating a sperm from a quiescent state to a gamete that is fully competent and committed to fertilization. The three themes of compartmentalization, competence, and commitment are key to an understanding of the molecular mechanisms of sperm activation. Comprehending these processes will have a considerable impact on the management of fertility problems, the development of contraceptive methods, and, potentially, elucidation of analogous processes in other cell systems.
Collapse
Affiliation(s)
- Mariano G Buffone
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
9
|
Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G. Septins at the annulus of mammalian sperm. Biol Chem 2011; 392:799-803. [PMID: 21740329 DOI: 10.1515/bc.2011.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The annulus is an electron-dense ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Proteins from the septin family have been shown to localize to the annulus. A septin complex is assembled early in spermiogenesis with the cochaperone DNAJB13 and, in mature sperm, associates with Testis Anion Transporter 1; SLC26A8 (Tat1), a transmembrane protein of the SLC26 family. Studies in mice have shown that the annulus acts as a barrier to protein diffusion and controls correct organization of the midpiece. Consistent with these findings, absence of the annulus is associated with flagellum differentiation defects and asthenozoospermia in humans.
Collapse
|
10
|
Chao HCA, Lin YH, Kuo YC, Shen CJ, Pan HA, Kuo PL. The expression pattern of SEPT7 correlates with sperm morphology. J Assist Reprod Genet 2010; 27:299-307. [PMID: 20352323 DOI: 10.1007/s10815-010-9409-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 03/11/2010] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the expression pattern of the SEPT7 protein during spermatogenesis and its potential role in sperm function. METHODS We first investigated the expression pattern of SEPT7 during different steps of mouse spermiogenesis using an immunofluorescence assay (IFA). IFA was also applied to study the expression pattern of SEPT7 in human ejaculated spermatozoa. Nine fertile men with normal semen parameters were used as the control group, and 21 infertile men with asthenozoospermia were recruited as the patient group. We assessed the frequency of the SEPT7 signal in the various morphological subgroups. RESULTS In humans, the frequency of a defective SEPT7 signal was significantly increased in men with asthenozoospermia. The absence of a SEPT7 signal was more prevalent in sperm containing morphological defects of various types. CONCLUSIONS The expression pattern of SEPT7 suggested that this protein may be involved in the regulation of subcellular-compartment formation during spermiogenesis in the mouse. The absence of a SEPT7 signal correlated with multiple sperm defects.
Collapse
Affiliation(s)
- Hsin-Chih Albert Chao
- Division of Obstetrics and Gynecology, National Cheng Kung University College of Medicine and Hospital, Dou-Liou Branch, Yunlin, Taiwan.
| | | | | | | | | | | |
Collapse
|
11
|
Caudron F, Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 2009; 16:493-506. [PMID: 19386259 DOI: 10.1016/j.devcel.2009.04.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells from neurons and epithelial cells to unicellular fungi frequently rely on cellular appendages such as axons, dendritic spines, cilia, and buds for their biology. The emergence and differentiation of these appendages depend on the formation of lateral diffusion barriers at their bases to insulate their membranes from the rest of the cell. Here, we review recent progress regarding the molecular mechanisms and functions of such barriers. This overview underlines the importance and conservation of septin-dependent diffusion barriers, which coordinately compartmentalize both plasmatic and internal membranes. We discuss their role in memory establishment and the control of cellular aging.
Collapse
Affiliation(s)
- Fabrice Caudron
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
12
|
Yuasa J, Toyama Y, Miyauchi T, Maekawa M, Yuasa S, Ito H. Specific localization of the basigin protein in human testes from normal adults, normal juveniles, and patients with azoospermia. Andrologia 2009. [DOI: 10.1111/j.1439-0272.2001.tb01499.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Asano A, Selvaraj V, Buttke DE, Nelson JL, Green KM, Evans JE, Travis AJ. Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J Cell Physiol 2009; 218:537-48. [PMID: 19006178 PMCID: PMC2706022 DOI: 10.1002/jcp.21623] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite enormous interest in membrane raft micro-domains, no studies in any cell type have defined the relative compositions of the raft fractions on the basis of their major components--sterols, phospholipids, and proteins--or additional raft-associating lipids such as the ganglioside, G(M1). Our previous localization data in live sperm showed that the plasma membrane overlying the acrosome represents a stabilized platform enriched in G(M1) and sterols. These findings, along with the physiological requirement for sterol efflux for sperm to function, prompted us to characterize sperm membrane fractions biochemically. After confirming limitations of commonly used detergent-based approaches, we utilized a non-detergent-based method, separating membrane fractions that were reproducibly distinct based on sterol, G(M1), phospholipid, and protein compositions (both mass amounts and molar ratios). Based on fraction buoyancy and biochemical composition, we identified at least three highly reproducible sub-types of membrane raft. Electron microscopy revealed that raft fractions were free of visible contaminants and were separated by buoyancy rather than morphology. Quantitative proteomic comparisons and fluorescence localization of lipids suggested that different organelles contributed differentially to individual raft sub-types, but that multiple membrane micro-domain sub-types could exist within individual domains. This has important implications for scaffolding functions broadly associated with rafts. Most importantly, we show that the common practice of characterizing membrane domains as either "raft" or "non-raft" oversimplifies the actual biochemical complexity of cellular membranes.
Collapse
Affiliation(s)
- Atsushi Asano
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Vimal Selvaraj
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Danielle E. Buttke
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Jacquelyn L. Nelson
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Karin M. Green
- The University of Massachusetts Medical School, Proteomics and Mass Spectrometry Facility, Worcester, MA 01605
| | - James E. Evans
- The University of Massachusetts Medical School, Proteomics and Mass Spectrometry Facility, Worcester, MA 01605
| | - Alexander J. Travis
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
14
|
Lhuillier P, Rode B, Escalier D, Lorès P, Dirami T, Bienvenu T, Gacon G, Dulioust E, Touré A. Absence of annulus in human asthenozoospermia: Case Report†. Hum Reprod 2009; 24:1296-303. [DOI: 10.1093/humrep/dep020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Hong J, Kim ST, Tranguch S, Smith DF, Dey SK. Deficiency of co-chaperone immunophilin FKBP52 compromises sperm fertilizing capacity. Reproduction 2007; 133:395-403. [PMID: 17307907 DOI: 10.1530/rep-06-0180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FKBP52 is a member of the FK506-binding family of immunophilins and serves as a co-chaperone for steroid hormone nuclear receptors to govern appropriate hormone action in target tissues. Male mice missing Fkbp52 are infertile, and this infertility has been ascribed to compromised sensitivity of the anterior prostate, external genitalia, and other accessory sex organs to androgen. Here, we show additional defects contributing to infertility. We found that epididymal Fkbp52(-/-) sperm are sparse often with aberrant morphology, and they have reduced fertilizing capacity. This phenotype, initially observed in null males on a C57BL/6/129 background, is also maintained on a CD1 background. Expression studies show that while FKBP52 and androgen receptor are co-expressed in similar cell types in the epididymis, FKBP52 is also present in epididymal sperm flagella. Collectively, our results suggest that reduced number and abnormal morphology contribute to compromised fertilizing capacity of Fkbp52(-/-) sperm. This study is clinically relevant because unraveling the role of immunophilin signaling in male fertility will help identify new targets for male contraceptives and/or alleviate male infertility.
Collapse
Affiliation(s)
- Jiyoung Hong
- Pediatrics, Cell and Developmental Biology, Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
16
|
Toshimori K, Maekawa M, Ito C, Toyama Y, Suzuki-Toyota F, Saxena DK. The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction. Reprod Med Biol 2006; 5:87-93. [PMID: 29699240 DOI: 10.1007/bf03016144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The immunoglobulin superfamily (IgSF) proteins are expressed on the plasma membrane between Sertoli cells and germ cells in the testis. IgSF proteins are specifically present at the apical Sertoli-germ cell junction, that is, ectoplasmic specialization and are involved in germ cell differentiation. Some IgSF proteins are present on the surface of germ cells and undergo further biochemical modifications during sperm maturation. These IgSF proteins undergo final modifications during capacitation and/or the acrosome reaction. The function and expression of IgSF proteins in the testis and spermatozoa, as they relate to spermatogenesis and sperm-egg interaction, are discussed. (Reprod Med Biol 2006; 5: 87-93).
Collapse
Affiliation(s)
- Kiyotata Toshimori
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Mamiko Maekawa
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Chizuru Ito
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Yoshiro Toyama
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Fumie Suzuki-Toyota
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Dinesh K Saxena
- Reproductive Immunology Laboratory of National Institute for Research on Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
17
|
Toshimori K, Maekawa M, Ito C, Toyama Y, Suzuki-Toyota F, Saxena DK. The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction. Reprod Med Biol 2006. [PMID: 29699240 DOI: 10.1111/j.1447-0578.2006.00129.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The immunoglobulin superfamily (IgSF) proteins are expressed on the plasma membrane between Sertoli cells and germ cells in the testis. IgSF proteins are specifically present at the apical Sertoli-germ cell junction, that is, ectoplasmic specialization and are involved in germ cell differentiation. Some IgSF proteins are present on the surface of germ cells and undergo further biochemical modifications during sperm maturation. These IgSF proteins undergo final modifications during capacitation and/or the acrosome reaction. The function and expression of IgSF proteins in the testis and spermatozoa, as they relate to spermatogenesis and sperm-egg interaction, are discussed. (Reprod Med Biol 2006; 5: 87-93).
Collapse
Affiliation(s)
- Kiyotata Toshimori
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Mamiko Maekawa
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Chizuru Ito
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Yoshiro Toyama
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Fumie Suzuki-Toyota
- Department of Anatomy and Developmental Biology, Chiba University Graduate School of Medicine, Chiba, Japan and
| | - Dinesh K Saxena
- Reproductive Immunology Laboratory of National Institute for Research on Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
18
|
Nakai M, Chen L, Nowak RA. Tissue distribution of basigin and monocarboxylate transporter 1 in the adult male mouse: a study using the wild-type and basigin gene knockout mice. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:527-35. [PMID: 16612830 PMCID: PMC3739424 DOI: 10.1002/ar.a.20320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basigin (Bsg) is a transmembrane protein that is responsible for targeting of monocarboxylate transporters (MCTs) to the cell membrane. The present study was conducted to determine whether or not Bsg was required for the proper localization of MCT isoform 1 (MCT1) in a wide range of tissues in adult male mice. The tissue distributions of Bsg and MCT1 in wild-type (WT) mice, the tissue distribution of MCT1 in Bsg gene knockout (Bsg-KO) mice, and the protein and mRNA levels of MCT1 in both genotypes were studied. Immunohistochemistry demonstrated that Bsg colocalized with MCT1 in the cerebrum, retina, skeletal and cardiac muscle, duodenal epithelium, hepatic sinusoid, proximal uriniferous tubules, Leydig cells, and efferent ductule epithelium in WT mice. Bsg was absent but MCT1 was present in Sertoli cells, cauda epididymis, myoepithelial cells and duct of the mandibular gland, surface epithelium of the stomach and bronchioles. In Bsg-KO mice, with the exception of Leydig cells, MCT1 immunostaining was greatly reduced in intensity and its distribution was altered in tissues that expressed both Bsg and MCT1 in WT mice. Levels of the protein and mRNA for MCT1 in these tissues did not change significantly in Bsg-KO mice. On the other hand, immunostaining patterns in cells in which Bsg was absent but MCT1 was present in WT mice remained unchanged in Bsg-KO mice. These observations suggest that Bsg is required for the proper localization of MCT1 in a wide range of cells but not in every cell type.
Collapse
Affiliation(s)
- Masaaki Nakai
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
19
|
Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 2005; 8:343-52. [PMID: 15737930 DOI: 10.1016/j.devcel.2004.12.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/24/2004] [Accepted: 10/14/2004] [Indexed: 12/30/2022]
Abstract
Septins are polymerizing GTP binding proteins required for cortical organization during cytokinesis and other cellular processes. A mammalian septin gene Sept4 is expressed mainly in postmitotic neural cells and postmeiotic male germ cells. In mouse and human spermatozoa, SEPT4 and other septins are found in the annulus, a cortical ring which separates the middle and principal pieces. Sept4-/- male mice are sterile due to defective morphology and motility of the sperm flagellum. In Sept4 null spermatozoa, the annulus is replaced by a fragile segment lacking cortical material, beneath which kinesin-mediated intraflagellar transport stalls. The sterility is rescued by injection of sperm into oocytes, demonstrating that each Sept4 null spermatozoon carries an intact haploid genome. The annulus/septin ring is also disorganized in spermatozoa from a subset of human patients with asthenospermia syndrome. Thus, cortical organization based on circular assembly of the septin cytoskeleton is essential for the structural and mechanical integrity of mammalian spermatozoa.
Collapse
Affiliation(s)
- Masafumi Ihara
- Biochemistry and Cell Biology Unit, HMRO, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 2005; 8:353-64. [PMID: 15737931 DOI: 10.1016/j.devcel.2005.01.021] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 12/30/2004] [Accepted: 01/25/2005] [Indexed: 11/23/2022]
Abstract
The murine septin4 gene (Sept4) has been implicated in diverse cellular functions, including cytokinesis, apoptosis, and tumor suppression. Here, we investigated the function of Sept4 proteins during mouse development by creating a targeted deletion of the Sept4 genomic locus. Sept4 mutant mice are viable but male sterile due to immotile and structurally defective sperm. During spermatogenesis, Sept4 proteins were essential for proper mitochondrial architecture and establishment of the annulus, a ring-like structure in the tail region of sperm. In addition, Sept4 mutant sperm showed defects in the elimination of residual cytoplasm during sperm maturation and had increased staining for the caspase inhibitor XIAP. This is consistent with a role of the proapoptotic Sept4 protein ARTS in promoting caspase-mediated removal of cytoplasm via inhibition of XIAP. Our results indicate that Sept4 proteins play distinct but evolutionarily conserved functions in different cellular compartments.
Collapse
Affiliation(s)
- Holger Kissel
- Howard Hughes Medical Institute and The Rockefeller University, Laboratory of Apoptosis and Cancer Biology, 1230 York Avenue, Box 252, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Oko R, van der Hoorn FA. Rat kinesin light chain 3 associates with spermatid mitochondria. Dev Biol 2004; 275:23-33. [PMID: 15464570 PMCID: PMC3138780 DOI: 10.1016/j.ydbio.2004.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/15/2004] [Accepted: 07/19/2004] [Indexed: 01/25/2023]
Abstract
We recently discovered that in rat spermatids, kinesin light chain KLC3 can associate with outer dense fibers, major sperm tail components, and accumulates in the sperm midpiece. Here, we show that mitochondria isolated from rat-elongating spermatids have bound KLC3. Immunoelectron microscopy indicates that the association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the plasma membrane to the developing midpiece. KLC3 is able to bind in vitro to mitochondria from spermatids as well as somatic cells employing a conserved kinesin light chain motif, the tetratrico-peptide repeats. Expression of KLC3 in fibroblasts results in formation of large KLC3 clusters close to the nucleus, which also contain mitochondria: no other organelles were present in these clusters. Mitochondria are not present in KLC3 clusters after deletion of KLC3's tetratrico-peptide repeats. Our results indicate that the rat spermatid kinesin light chain KLC3 can associate with mitochondria.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Richard Oko
- Department of Anatomy & Cell Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Frans A. van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
22
|
Baracova V, Mollova M, Stamenova M, Ivanova M, Peknicova J. Identification and isolation of boar sperm specific antigens with potential role in sperm-egg interaction. J Reprod Immunol 2004; 64:91-106. [PMID: 15596229 DOI: 10.1016/j.jri.2004.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/02/2004] [Accepted: 05/18/2004] [Indexed: 11/26/2022]
Abstract
Investigations on specific and functionally active sperm antigens would bring about the elucidation of the mechanisms of gamete interaction and help the search to new approaches for prognosis and regulation of fertility. Previously, we have produced a polyclonal rabbit anti-boar spermatozoa antibody (RABSA) that might affect the fertilizing capacity of boar spermatozoa. The sperm specificity of RABSA was demonstrated by double immunodiffusion, immunoelectrophoresis and ELISA against boar spermatozoa, as well as against saline extracts of boar reproductive and somatic organs. Using indirect immunofluorescence (IIF) test, here we provide evidence that RABSA stained the acrosomes of ejaculated and capacitated boar and human spermatozoa, the fluorescence being intensified on the equatorial region after the acrosome reaction. The RABSA cognate antigen/s is a subject of interest because of their specific localization in sperm structures, which is shown to be a binding and/or fusion competence region. Using ion-exchange (Heparin-Sepharose) chromatography, we eluted an antigen with molecular mass 60 kDa (Ag60) in SDS-PAGE from NP40 extracts of capacitated boar spermatozoa. In Western blot, RABSA recognized specifically this antigen. The Ag60 did not affect the sperm-ligand activity of zona pellucida in a porcine sperm-zona binding assay. IIF experiments showed that zona-free porcine oocytes preincubated with Ag60 and RABSA presented fluorescent labeling over the entire egg surface. The biological and IIF experiments provide evidence supporting the involvement of Ag60 in functional steps required for sperm-egg binding and/or fusion, but not sperm-zona pellucida binding.
Collapse
Affiliation(s)
- V Baracova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko Shosse, Sofia 1113, Bulgaria.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Spermiogenesis affords a unique opportunity to examine the formation of plasma membrane domains. Recent attempts to chart the life cycles of well-characterized integral plasma membrane proteins during spermiogenesis have suggested that spermatids are at least as adept as epithelial cells or neurons at establishing their plasma membrane domains. They appear to expand upon the standard recipe involving concurrent domain-specific protein targeting and diffusion barriers by using a combination of intracellular storage within the secretory pathway, developmentally-regulated delivery to provisional plasma membrane domains, large-scale redistributions of diffusion barriers and integral plasma membrane proteins, and the shedding of an entire plasma membrane domain.
Collapse
Affiliation(s)
- J R Bartles
- Dept of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Intasai N, Arooncharus P, Kasinrerk W, Tayapiwatana C. Construction of high-density display of CD147 ectodomain on VCSM13 phage via gpVIII: effects of temperature, IPTG, and helper phage infection-period. Protein Expr Purif 2003; 32:323-31. [PMID: 14965780 DOI: 10.1016/j.pep.2003.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2003] [Revised: 08/25/2003] [Indexed: 11/26/2022]
Abstract
Production of VCSM13 phage displaying a high density of CD147 ectodomain (CD147Ex) was achieved when culturing conditions were modulated. A phagemid expressing CD147Ex was constructed and used to produce phage display CD147Ex gpVIII fusion protein in TG1 Escherichia coli. Displaying of CD147Ex via gpVIII was successfully increased when growing the transformed TG1 at 25 degrees C with IPTG-stimulation. In addition to temperature and IPTG-stimulation, the VCSM13 helper phage infection-period particularly affected the insertion of CD147Ex into phage progeny. By sandwich ELISA, incorporation of the CD147Ex into phage particle was confirmed. The correct size of the CD147Ex-gpVIII fusion protein at 28kDa was demonstrated by Western immunoblotting. Multivalent display of CD147Ex on phage particles will be valuable in discovering its ligand partner.
Collapse
Affiliation(s)
- Nutjeera Intasai
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
25
|
Abstract
The plasma membrane over the sperm head of several mammalian species has been shown to express a glycerolphosphatidylinositol-linked hyaluronidase known as PH-20. This protein has been associated with the sperm's interaction with the oocyte cumulus matrix and zona pellucida. The characteristics of PH-20 in equine sperm have not been clearly defined. In this study, ejaculated gel-free semen from five stallions and epididymal sperm from isolated epididymis from 10 stallions was used to characterize the PH-20 activity in equine sperm. Affinity purified anti-equine PH-20 polyclonal antibody was used to immunodetect sperm surface-associated PH-20 and immunolabel whole sperm. The intracellular calcium indicator, Fluo-3, was used to assess sperm intracellular calcium. Stallion sperm express a surface-associated hyaluronidase localized to the posterior sperm head region in ejaculated sperm. Following in vitro capacitation and acrosomal exocytosis, the inner acrosomal membrane (IAM) displays intense hyaluronidase fluorescence suggesting that the IAM and hyaluronidase plays a significant role in zona penetration by sperm. Sperm incubated in hyaluronan (HA)-containing capacitation medium display an elevated intracellular calcium concentration (P<0.01) that is associated with translocation of PH-20 antigenic sites on the sperm surface in addition to increases in protein tyrosine phosphorylation. Caput- and cauda-derived sperm display developmentally unique PH-20 immunofluorescence expression patterns. These data suggest that the differential expression of PH-20 in ejaculated and epididymal sperm could be involved in cumulus penetration, sperm-egg recognition, and oolemmal fusion in this species.
Collapse
Affiliation(s)
- S A Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, One Shields Ave., University of California, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Rutllant J, Meyers SA. Posttranslational processing of PH-20 during epididymal sperm maturation in the horse. Biol Reprod 2001; 65:1324-31. [PMID: 11673246 DOI: 10.1095/biolreprod65.5.1324] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is generally accepted that spermatozoa become functionally mature during epididymal transit. The objective of this study was to determine whether the cellular location of equine PH-20 is modified during epididymal transit and, if so, the mechanism for such modification. Sperm were isolated from caput and cauda epididymal regions from stallions undergoing castration (n = 7) and used as whole sperm cell or subjected to nitrogen cavitation for isolation of plasma membrane proteins. Both caput and cauda sperm and sperm protein extracts were subjected to N-deglycosylation, O-deglycosylation, or trypsinization. The SDS-PAGE and Western blot analysis using a polyclonal anti-equine PH-20 IgG were performed in sperm extracts, and indirect immunofluorescence on whole sperm was also performed to determine the cellular distribution of plasma membrane PH-20 following similar treatments (deglycosylation or trypsinization). Hyaluronan substrate gel electrophoresis was performed to detect hyaluronidase activity in SDS-PAGE proteins. Western blots revealed significant differences in electrophoretic migration of PH-20 proteins from caput and cauda epididymal sperm. No effect was seen from deglycosylation treatments on the Western blot pattern; caput protein extracts exposed to trypsin showed the same band pattern as extracts from the cauda epididymis. N-deglycosylation resulted in the loss of hyaluronidase activity of sperm from both epididymal regions, whereas O-deglycosylation or trypsinization did not affect hyaluronidase activity. In caput epididymal sperm, the PH-20 protein is distributed over the entire sperm head; in cauda epididymal sperm, it is restricted to the postacrosomal region. No effect from deglycosylation on the cellular distribution of PH-20 was observed; however, treatment with trypsin changed the cellular distribution of PH-20 in caput sperm similar to that of the distribution of cauda sperm. These results suggest that PH-20 distribution during epididymal maturation is dependent on proteolytic trypsin-like mechanisms and, possibly, on complementary membrane-associated factors.
Collapse
Affiliation(s)
- J Rutllant
- Department of Anatomy and Embryology, School of Veterinary Medicine, Autonomous University of Barcelona, Barcelona 08193, Spain
| | | |
Collapse
|
27
|
Yuasa J, Toyama Y, Miyauchi T, Maekawa M, Yuasa S, Ito H. Specific localization of the basigin protein in human testes from normal adults, normal juveniles, and patients with azoospermia. Andrologia 2001; 33:293-9. [PMID: 11683705 DOI: 10.1046/j.1439-0272.2001.00448.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basigin is a transmembrane protein belonging to the immunoglobulin superfamily. Specific localization of the protein in normal human testes, from those of a 2-year-old boy to those of a 50-year-old man, and in testes with Sertoli cell only syndrome and germ cell arrest, is reported. Basigin localization was determined using an immunohistochemical technique with an antibody against human basigin. In the normal adult testes, basigin was detected at the periphery of both spermatocytes older than zygotene and round spermatids. In the juvenile testes, it was expressed in accordance with the appearance of pachytene spermatocytes. In this study, pachytene spermatocytes were detected in an 11-year-old boy. Basigin was not expressed in immature testes with germ cells younger than pachytene spermatocytes, namely in testes from boys aged 2-9 years. In testes from adult patients with Sertoli cell only syndrome, basigin was expressed at the periphery of Sertoli cells, but localization was confined to the adluminal compartment of the seminiferous tubule. In testes with germ cell arrest, the protein was expressed on germ cells from pachytene spermatocytes to step 2 spermatids, where present. The results show that in the normal human testes basigin is expressed with the onset of spermatocyte differentiation. Because human basigin is expressed in adult testes with Sertoli cell only syndrome, the protein seems to be synthesized in Sertoli cells and expression continues after these cells dedifferentiate in the seminiferous epithelium.
Collapse
Affiliation(s)
- J Yuasa
- Department of Urology, School of Medicine, Chiba University, Chiba 260-8070, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Mackie AR, James PS, Ladha S, Jones R. Diffusion barriers in ram and boar sperm plasma membranes: directionality of lipid diffusion across the posterior ring. Biol Reprod 2001; 64:113-9. [PMID: 11133665 DOI: 10.1095/biolreprod64.1.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The plasma membrane of mammalian spermatozoa, like that of other differentiated cells, is compartmentalized into discrete regions or domains that are biochemically and functionally distinct from one another. Physical structures within the membrane, such as the posterior ring at the juncture of the sperm head and tail, have long been thought to act as diffusion barriers to help segregate important molecules required for fertilization within specific domains and to regulate migration of molecules between domains. In this investigation, we used a quantitative photobleaching technique (video-FRAP) to assess the efficacy of the posterior ring as a barrier to exchange of lipids between the postacrosomal and midpiece plasma membranes. A lipid reporter probe (1,1'-diduodecyl-3,3,3', 3'-tetramethylindocarbocyanine; DiIC(12)) was incorporated into the plasma membrane of live ram and boar spermatozoa, and the directionality of its diffusion across the posterior ring was measured by line-profile analysis. Results showed that DiIC(12) was able to traverse the posterior ring from the direction of the postacrosomal plasma membrane and to diffuse onto the midpiece plasma membrane. These results suggest that the posterior ring is not an immutable barrier to lipid exchange in mature spermatozoa and that there are other mechanisms for maintaining in-plane lipid asymmetry, such as differential phase behavior and interaction with the submembranous cytoskeleton.
Collapse
Affiliation(s)
- A R Mackie
- Department of Material Food Science, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | | | | | | |
Collapse
|
29
|
Wakayama T, Nagata K, Ohashi K, Mizuno K, Tanii I, Yoshinaga K, Oh-Oka T, Toshimori K. The expression and cellular localization of the sperm flagellar protein MC31/CE9 in the rat testis: possible posttranscriptional regulation during rat spermiogenesis. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:33-41. [PMID: 10770587 DOI: 10.1679/aohc.63.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We isolated the MC31 cDNA clone coding the antigen specifically recognized by the monoclonal antibody mMC31, and found that MC31 was identical to rat CE9. Therefore, this molecule is called MC31/CE9. MC31/CE9, a member of the immunoglobulin superfamily molecules, was localized on the rat sperm flagellar plasma membrane. We analyzed the expression and cellular localization of MC31/CE9 mRNA and protein in the adult rat testis by use of Northern hybridization, in situ hybridization, and immunohistochemical analyses. In the course of spermatogenesis, MC31/CE9 mRNA first appeared in type B spermatogonia. The mRNA signal intensity increased progressively to pachytene spermatocytes and remained constantly at a considerable level throughout the subsequent phases of spermatocytes and round spermatids, and then decreased gradually from step-11 spermatids to disappear in step-15 spermatids. On the other hand, MC31/CE9 protein expression showed a bimodal pattern. Immunohistochemical analysis for the MC31/CE9 protein revealed its most intense immunoreactivity on the flagella of step-8 to step-19 elongated spermatids. The cytoplasmic immunoreactivity of the MC31/CE9 protein also appeared in preleptotene to early pachytene spermatocytes and elongated spermatids, with particularly intense immunoreactivity in the Golgi complexes of zygotene and early pachytene spermatocytes (stage XIII to III) as well as step-8 to step-13 spermatids. Between these two phases, the MC31/CE9 protein proved undetectable in the cytoplasm of any spermatogenic cells. Sertoli cells and Leydig cells were devoid of MC31/CE9 mRNA and its protein. Therefore, the production of MC31/CE9 is thought to be posttranscriptionally regulated during spermiogenesis.
Collapse
Affiliation(s)
- T Wakayama
- Department of Anatomy and Reproductive Cell Biology, Miyazaki Medical College, Kiyotake, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Toshimori K. Sperm Plasma Membrane Modifications Associated with Fertilization in Mammals. J Reprod Dev 2000. [DOI: 10.1262/jrd.46.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kiyotaka Toshimori
- Department of Anatomy and Reproductive Cell Biology, Miyazaki Medical College, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
31
|
Hunnicutt GR, Koppel DE, Myles DG. Analysis of the process of localization of fertilin to the sperm posterior head plasma membrane domain during sperm maturation in the epididymis. Dev Biol 1997; 191:146-59. [PMID: 9356178 DOI: 10.1006/dbio.1997.8700] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fertilin is a heterodimeric (subunits alpha and beta) sperm plasma membrane protein. Both subunits belong to the ADAM protein family of surface proteins that contain a disintegrin and a metalloprotease domain. Fertilin functions in sperm-egg fusion by binding the sperm to the egg plasma membrane via a binding site in the disintegrin domain of fertilin beta. On testicular sperm of guinea pig, fertilin is distributed on the plasma membrane over the entire sperm head, but is found only on the posterior head once sperm have passed through the epididymis. This redistribution of fertilin to the posterior head can be partially mimicked in vitro if testicular sperm are briefly treated with trypsin. In this study we used immunofluorescence and digital image analysis to analyze how fertilin becomes restricted to the posterior head. We found that fertilin became restricted to the posterior head by migration of anterior head fertilin molecules into the posterior head domain. Comparison of immunofluorescence patterns and immunoblots of fertilin from seven regions of the epididymis showed a temporal correlation between the beginning of fertilin's migration to the posterior head and the proteolytic processing of the full-length fertilin beta precursor (the 85-kDa pro-beta form) to a 75-kDa intermediate, pro-beta*. Completion of the migration coincided with the further cleavage of pro-beta* to the 25- to 28-kDa mature form. Our data suggest that the cleavage of fertilin pro-beta to pro-beta* may initiate fertilin's migration into the posterior head domain and, after localization to that membrane domain, pro-beta* is cleaved to mature beta. We also report evidence that a common mechanism may be used to change the localization pattern of other sperm surface molecules. Other surface proteins were shown to become localized to either the posterior or the anterior head membrane domains on sperm at the same time fertilin became localized to the posterior head. These restrictions of surface protein localizations were also shown to immediately precede the development of the sperm's ability to swim and undergo the acrosome reaction, and thus redistribution of surface proteins may be necessary before sperm become functional.
Collapse
Affiliation(s)
- G R Hunnicutt
- Center for Biological Research, The Population Council, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
32
|
Spring FA, Holmes CH, Simpson KL, Mawby WJ, Mattes MJ, Okubo Y, Parsons SF. The Oka blood group antigen is a marker for the M6 leukocyte activation antigen, the human homolog of OX-47 antigen, basigin and neurothelin, an immunoglobulin superfamily molecule that is widely expressed in human cells and tissues. Eur J Immunol 1997; 27:891-7. [PMID: 9130641 DOI: 10.1002/eji.1830270414] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The high-frequency blood group antigen Ok(a) is carried on a red cell membrane glycoprotein (gp) of 35-69 kDa that is widely distributed on malignant cells of different origins. Immunostaining of hemopoietic cells and a range of normal human tissues demonstrated a wide distribution of the Ok(a) gp that appears to be nonlineage-restricted, although certain tissues show differentiation-related expression. Ok(a) gp was purified from red cell membranes by immunoaffinity chromatography using mAb A103 and amino acid sequence analysis was performed. The N-terminal 30 amino acids are identical to the predicted sequence of M6 leukocyte activation antigen (M6), a member of the Ig superfamily (IgSF) with two IgSF domains. There are homologs in rat (MRC OX-47 or CE9), in mouse (basigin or gp42), and in chicken (HT7 or neurothelin). The molecular basis of the Ok(a) mutation was established by sequencing M6 cDNA derived from normal and Ok(a-) EBV-transformed B cell lines. A point mutation in the translated portion of M6 cDNA, G331AG-->AAG gives rise to a predicted E92-->K amino acid change in the first Ig-like domain of the Ok(a-) form of the protein. Transfection of mouse NS-0 cells with normal or Ok(a-) cDNA confirmed the identity of the protein and only the Ok(a-) transfectants failed to react with monoclonal anti-Ok(a) Ab.
Collapse
Affiliation(s)
- F A Spring
- Bristol Institute for Transfusion Sciences, GB.
| | | | | | | | | | | | | |
Collapse
|
33
|
Jones R, Ma A, Hou ST, Shalgi R, Hall L. Testicular biosynthesis and epididymal endoproteolytic processing of rat sperm surface antigen 2B1. J Cell Sci 1996; 109 ( Pt 10):2561-70. [PMID: 8923217 DOI: 10.1242/jcs.109.10.2561] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of mammalian spermatozoa to the zona pellucida of homologous eggs is mediated by specific molecules on their surface membranes. In the present investigation we describe the biogenesis, epididymal processing and cellular distribution of a plasma membrane antigen (2B1) on rat spermatozoa that has a potential role in mediating zona binding. 2B1 is expressed postmeiotically in the testis as a precursor glycoprotein (approximately 60 kDa) that first appears on the plasma membrane of stage 6 to 8 round spermatids. Northern and western blot analyses show that there is a close correlation between the timing of transcription and expression of the glycoprotein on the cell surface. During spermatid elongation 2B1 is excluded from the head domain and is sequestered onto the sperm tail. As spermatozoa pass through the caput epididymidis 2B1 is endoproteolytically cleaved at a specific arginine residue (Arg 312) to produce a heterodimeric glycoprotein (approximately 40 kDa and approximately 19 kDa) containing intramolecular disulphide bridges. Endoproteolysis at Arg 312 also takes place during culture of washed testicular or caput spermatozoa in vitro and can be prevented by serine proteinase inhibitors or enhanced by trypsinisation. However, neither processing in vivo or in vitro has any effect on the domain organisation of 2B1 antigen i.e. it remains localised to the tail. These results support the hypothesis that sperm antigens that are important for fertilization are synthesized as precursor molecules in the testis and are then “activated' during epididymal maturation and capacitation, thereby ensuring that they only become fully functional at the site of fertilization.
Collapse
Affiliation(s)
- R Jones
- Department of Signalling, Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
34
|
Bartles JR, Wierda A, Zheng L. Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J Cell Sci 1996; 109 ( Pt 6):1229-39. [PMID: 8799813 DOI: 10.1242/jcs.109.6.1229] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ectoplasmic specializations are membrane-cytoskeletal assemblages found in Sertoli cells at sites of attachment to elongate spermatids or neighboring Sertoli cells. They are characterized in part by the presence of a unique junctional plaque which contains a narrow layer of parallel actin bundles sandwiched between the Sertoli cell plasma membrane and an affiliated cistern of endoplasmic reticulum. Using a monoclonal antibody, we have identified ‘espin,’ a novel actin-binding protein localized to ectoplasmic specializations. By immunogold electron microscopy, espin was localized to the parallel actin bundles of ectoplasmic specializations at sites where Sertoli cells contacted the heads of elongate spermatids. The protein was also detected at the sites of ectoplasmic specializations between neighboring Sertoli cells. Espin exhibits an apparent molecular mass of approximately 110 kDa in SDS gels. It is encoded by an approximately 2.9 kb mRNA, which was found to be specific to testis among the 11 rat organs and tissues examined. On the basis of cDNA sequence, espin is predicted to be an 836 amino acid protein which contains 8 ankyrin-like repeats in its N-terminal third, a potential P-loop, two proline-rich peptides and two peptides which contain clusters of multiple glutamates bracketed by arginines, lysines and glutamines in a pattern reminiscent of the repetitive motif found in the protein trichohyalin. The ankyrin-like repeats and a 66 amino acid peptide in the C terminus show significant sequence similarity to proteins encoded by the forked gene of Drosophila. A fusion protein containing the C-terminal 378 amino acids of espin was found to bind with high affinity (Kd = approximately 10 nM) to F-actin in vitro with a stoichiometry of approximately 1 espin per 6 actin monomers. When expressed by transfected NRK fibroblasts, the same C-terminal fragment of espin was observed to decorate actin fibers or cables. On the basis of its structure, localization and properties, we hypothesize that espin is involved in linking actin filaments to each other or to membranes, thereby potentially playing a key role in the organization and function of the ectoplasmic specialization.
Collapse
Affiliation(s)
- J R Bartles
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|