1
|
Oliveira SG, Jardim R, Kotowski N, Dávila AMR, Sampaio-Filho HR, Ruiz KGS, Aguiar FHB. Differential expression reveals inflammatory response and oxidative stress genes in dentin caries. Arch Oral Biol 2025; 175:106274. [PMID: 40305968 DOI: 10.1016/j.archoralbio.2025.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVE This study employs RNA-Seq to investigate differentially expressed genes involved in extracellular matrix (ECM) degradation, focusing on collagenases (MMP-2 and MMP-9) and their inhibitors (TIMP-1 and TIMP-2). DESIGN Total RNA from caries and caries-free teeth was extracted from pulp, predentin, and dentin. Samples were sequenced using Illumina® technology. Quality validation was done with FASTQC, and low-quality bases were removed using TRIMMOMATIC. Reads were aligned using SALMON against the human transcriptome (CHR38), followed by quantification using Transcripts Per Million. Differential gene expression analysis was conducted using DESeq2 (FDR < 0.05, |log2FC| ≥ 1). Functional enrichment analyses employed Gene Ontology and KEGG databases. RESULTS Sequencing produced 16-37 million reads per sample, with an average alignment rate of 88.08 %. A total of 334 differentially expressed genes (DEGs) were identified: 195 upregulated and 139 downregulated. Upregulated genes included SAA1 (log2FC = 2.3, p-adj = 0.001) and ORM1 (log2FC = 2.0, p-adj = 0.002), associated with inflammation. MMP-9 was significantly downregulated (log2FC = -1.8, p-adj = 0.003), while MMP-2 showed higher expression in decayed tissues. TIMP-1 expression increased in decayed dentin; TIMP-2 was upregulated in both decayed and caries-free dentin. Protein interaction analysis identified EGFR and metallothioneins as key acute-phase proteins. CONCLUSIONS This study reveals the role of inflammatory and oxidative stress-related genes in dentin caries and shows disruption in the ECM degradation-repair balance. Increased MMP-2 and TIMP-1 expression suggests a compensatory response. MMP activity may serve as a therapeutic target to enhance tissue resilience and slow caries progression.
Collapse
Affiliation(s)
- Simone G Oliveira
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil; School of Dentistry, State University of Rio de Janeiro, Blvd. 28 de Setembro, 157 - Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil.
| | - Rodrigo Jardim
- Computational Biology and Systems Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil.
| | - Nelson Kotowski
- Computational Biology and Systems Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil
| | - Alberto M R Dávila
- Computational Biology and Systems Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, 21040-900, RJ, Brazil
| | - Hélio R Sampaio-Filho
- School of Dentistry, State University of Rio de Janeiro, Blvd. 28 de Setembro, 157 - Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Karina G S Ruiz
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil
| | - Flávio H B Aguiar
- Department of Restorative Dentistry, Division of Operative Dentistry, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil
| |
Collapse
|
2
|
Folorunso OS, Sinha NR, Singh A, Xi L, Pulimamidi VK, Cho WJ, Mittal SK, Chauhan SK. Tissue Inhibitor of Metalloproteinase 2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:754-769. [PMID: 39732392 PMCID: PMC11959424 DOI: 10.1016/j.ajpath.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/30/2024]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathologic conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined. Here, the TIMP expression in human corneal epithelial cells under homeostatic and inflammatory milieus was profiled to examine their contribution to the healing of injured corneal epithelia. Transcriptionally, TIMP2 was highly expressed in human corneal epithelial cells when stimulated with 100 ng/mL IL1B or scratch wounded. Unlike TIMP1, recombinant TIMP2 (rTIMP2) significantly promoted epithelial cell wound closure compared with untreated and TIMP2-neutralizing conditions. At 12 hours, the Ki-67+ cells significantly increased threefold in number compared with untreated cells, suggesting that rTIMP2 is associated with cell proliferation. Furthermore, rTIMP2 treatment significantly suppressed inflammatory cytokine expression (IL1B, IL6, IL8, and TNFA) and injury-induced matrix metalloproteinases (MMP1, MMP2, MMP3, MMP9, MMP10, and MMP13). Topical treatment of injured mouse cornea with 0.1 mg/mL rTIMP2 significantly promoted corneal re-epithelialization and improved tissue integrity. The treatment suppressed the expression of inflammatory cytokines and MMPs, as well as the infiltration of neutrophils at the injury site. These findings indicate that TIMP2 promotes faster wound healing by suppressing injury-induced inflammation and MMP expression, suggesting a potential therapeutic target for corneal wound management.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Nishant R Sinha
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Aastha Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Lei Xi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Vinay K Pulimamidi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - WonKyung J Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Ma Y, Chen Y, Li Y, Chen S, Zhu C, Liu Q, Li L, Cao H, Wu Z, Dong W. Seasonal modulation of the testis transcriptome reveals insights into hibernation and reproductive adaptation in Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2083-2097. [PMID: 38649597 DOI: 10.1007/s10695-024-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The Onychostoma macrolepis have a unique survival strategy, overwintering in caves and returning to the river for reproduction in summer. The current knowledge on the developmental status of its testes during winter and summer is still undiscovered. We performed RNA-seq analysis on O. macrolepis testes between January and June, using the published genome (NCBI, ASM1243209v1). Through KEGG and GO enrichment analysis, we were able to identify 2111 differentially expressed genes (DEGs) and demonstrate their functions in signaling networks associated with the development of organism. At the genomic level, we found that during the overwintering phase, genes associated with cell proliferation (ccnb1, spag5, hdac7) were downregulated while genes linked to testicular fat metabolism (slc27a2, scd, pltp) were upregulated. This indicates suppression of both mitosis and meiosis, thereby inhibiting energy expenditure through genetic regulation of testicular degeneration. Furthermore, in January, we observed the regulation of autophagy and apoptosis (becn1, casp13), which may have the function of protecting reproductive organs and ensuring their maturity for the breeding season. The results provide a basis for the development of specialized feed formulations to regulate the expression of specific genes, or editing of genes during the fish egg stage, to ensure that the testes of O. macrolepis can mature more efficiently after overwintering, thereby enhancing reproductive performance.
Collapse
Affiliation(s)
- Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
4
|
Ai Y, Ding Q, Wan Z, Tyagi S, Indeglia A, Murphy M, Tian B. Regulation of alternative polyadenylation isoforms of Timp2 is an effector event of RAS signaling in cell transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.613909. [PMID: 39386512 PMCID: PMC11463442 DOI: 10.1101/2024.09.26.613909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Alternative polyadenylation (APA) generates mRNA isoforms with different lengths of the 3' untranslated region (3' UTR). The tissue inhibitor of metalloproteinase 2 (TIMP2) plays a key role in extracellular matrix remodeling under various developmental and disease conditions. Both human and mouse genes encoding TIMP2 contain two highly conserved 3'UTR APA sites, leading to mRNA isoforms that differ substantially in 3'UTR size. APA of Timp2 is one of the most significantly regulated events in multiple cell differentiation lineages. Here we show that Timp2 APA is highly regulated in transformation of NIH3T3 cells by the oncogene HRAS G12V . Perturbations of isoform expression with long 3'UTR isoform-specific knockdown or genomic removal of the alternative UTR (aUTR) region indicate that the long 3'UTR isoform contributes to the secreted Timp2 protein much more than the short 3'UTR isoform. The short and long 3'UTR isoforms differ in subcellular localization to endoplasmic reticulum (ER). Strikingly, Timp2 aUTR enhances secreted protein expression but no effect on intracellular proteins in reporter assays. Furthermore, downregulation of Timp2 long isoform mitigates gene expression changes elicited by HRAS G12V . Together, our data indicate that regulation of Timp2 protein expression through APA isoform changes is an integral part of RAS-mediated cell transformation and 3'UTR isoforms of Timp2 can have distinct impacts on expression of secreted vs. intracellular proteins.
Collapse
|
5
|
Gowtham P, Girigoswami K, Thirumalai A, Harini K, Pallavi P, Girigoswami A. Association of TIMP2 418 G/C and MMP Gene Polymorphism with Risk of Urinary Cancers: Systematic Review and Meta-analysis. Genet Test Mol Biomarkers 2024; 28:83-90. [PMID: 38478803 DOI: 10.1089/gtmb.2023.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Aim: The matrix metalloproteinases (MMPs) inhibit tissue inhibitors of metalloproteinases (TIMPs), playing a notable role in various biological processes, and mutations in TIMP2 genes impact a variety of urinary cancers. In this study, we analyze and evaluate the potential involvement of the TIMP2 418 G/C and MMP gene polymorphism in the etiology of urinary cancer. Methodology: For suitable case-control studies, a literature search was undertaken from various database sources such as PubMed, EMBASE, and Google Scholar. Incorporated into the analysis were case-control or cohort studies that documented the correlation between TIMP2 418 G/C and urological cancers. MetaGenyo served as the tool for conducting the meta-analysis, employing a fixed-effects model. The collective odds ratios, along with their corresponding 95% confidence intervals, were calculated and presented to assess the robustness of the observed associations. Results: A total of seven studies involving controls and cases out of recorded 1265 controls and 1154 cases were analyzed to ascertain the significant association of the TIMP2 gene with urologic cancer. No statistically significant correlation was observed between allelic, recessive, dominant, and overdominant models for the genetic variant under investigation. A 95% confidence interval (CI) and odds ratio (OR) were computed for each model, considering p-values <0.05. The OR and 95% CI for the allelic model were 0.99 and 0.77-1.27, respectively, whereas the respective values were 1.00 and 0.76-1.32 for the recessive model. In the dominant contrast model, OR and 95% CI were 1.09 and 0.62-1.90, while the same were 0.93 and 0.77-1.12 for the overdominant model. A funnel plot was used to reanalyze and detect the results as statically satisfactory. Conclusions: As a result of the data obtained, the TIMP2 gene polymorphism does not correlate statistically with cancer risk. The significance of this finding can only be confirmed using a large population, extensive epidemiological research, a comprehensive survey, and a better understanding of the molecular pathways associated.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
6
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Wiśniowski T, Bryda J, Wątroba S. The role of matrix metalloproteinases in pathogenesis, diagnostics, and treatment of human prostate cancer. POSTEP HIG MED DOSW 2023. [DOI: 10.2478/ahem-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Abstract
The prostate gland is highly susceptible to oncogenic transformation, many times more than other sex tissues, such as seminal vesicles. In fact, prostate cancer (PCa) will be diagnosed in one in seven lifetime patients, making PCa the subject of intense research aimed at clarifying its biology and providing adequate treatment. PCa is the fourth most common cancer in the world in terms of the overall population and the second most common cancer for the male population. It is postulated that the development of PCa may be influenced by dietary factors, physical and sexual activity, androgens, obesity, and inflammation, but their role in the development of prostate cancer still remains unclear. Extracellular matrix metalloproteinases (MMPs) and tissue metalloproteinase inhibitors (TIMPs) play an important role in many physiological and pathological processes, including proliferation, migration, invasion, cell differentiation, participation in inflammatory processes and angiogenesis. Numerous studies point to a direct relationship between MMPs and both local tumor invasion and the formation of distant metastases. High activity of MMPs is observed in solid tumors of various origins, which positively correlates with a poor overall survival rate. Although biochemical diagnostic markers of PCa are currently available, from the point of view of clinical practice, it seems particularly important to develop new and more sensitive markers allowing for early diagnosis and long-term monitoring of patients after PCa treatment, and the assessment of MMP activity in urine and serum of patients are potential factors that could play such a role.
Collapse
|
8
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
9
|
Wroński P, Wroński S, Kurant M, Malinowski B, Wiciński M. Curcumin May Prevent Basement Membrane Disassembly by Matrix Metalloproteinases and Progression of the Bladder Cancer. Nutrients 2021; 14:32. [PMID: 35010907 PMCID: PMC8746354 DOI: 10.3390/nu14010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/25/2022] Open
Abstract
Authors present a review of crucial mechanisms contributing to the invasion of the basement membrane (BM) of the urothelium by cancer cells and to the progression of bladder cancer (BC). The breeching of the urothelial BM, facilitated by an aberrant activation of matrix metalloproteinases (MMP) is particularly perilous. Inhibition of activation of these proteinases constitutes a logic opportunity to restrain progression. Because of limited efficacy of current therapeutic methods, the search for the development of alternative approaches constitutes "the hot spot" of modern oncology. Recent studies revealed significant anticancer potential of natural phytochemicals. Especially, curcumin has emerged as a one of the most promising phytochemicals and showed its efficacy in several human malignancies. Therefore, this article addresses experimental and clinical data indicating multi-directional inhibitory effect of curcumin on the growth of bladder cancer. We particularly concentrate on the mechanisms, by which curcumin inhibits the MMP's activities, thereby securing BM integrity and alleviating the eventual cancer invasion into the bladder muscles. Authors review the recently accumulating data, that curcumin constitutes a potent factor contributing to the more effective treatment of the bladder cancer.
Collapse
Affiliation(s)
- Paweł Wroński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
- Department of Oncological Urology, The Franciszek Lukaszczyk Oncology Center, Romanowskiej 2, 85-796 Bydgoszcz, Poland
| | - Stanisław Wroński
- Department of Urology, Jan Biziel Memorial University Hospital, Ujejskiego 75, 85-168 Bydgoszcz, Poland;
| | - Marcin Kurant
- Department of Urology, District Hospital, 10 Lesna Street, 89-600 Chojnice, Poland;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
| |
Collapse
|
10
|
Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Echinoderms: Structure and Possible Functions. Cells 2021; 10:cells10092331. [PMID: 34571980 PMCID: PMC8467561 DOI: 10.3390/cells10092331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
Echinoderms are one of the most ancient groups of invertebrates. The study of their genomes has made it possible to conclude that these animals have a wide variety of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The phylogenetic analysis shows that the MMPs and TIMPs underwent repeated duplication and active divergence after the separation of Ambulacraria (Echinodermata+Hemichordata) from the Chordata. In this regard the homology of the proteinases and their inhibitors between these groups of animals cannot be established. However, the MMPs of echinoderms and vertebrates have a similar domain structure. Echinoderm proteinases can be structurally divided into three groups-archetypal MMPs, matrilysins, and furin-activatable MMPs. Gelatinases homologous to those of vertebrates were not found in genomes of studied species and are probably absent in echinoderms. The MMPs of echinoderms possess lytic activity toward collagen type I and gelatin and play an important role in the mechanisms of development, asexual reproduction and regeneration. Echinoderms have a large number of genes encoding TIMPs and TIMP-like proteins. TIMPs of these animals, with a few exceptions, have a structure typical for this class of proteins. They contain an NTR domain and 10-12 conservatively located cysteine residues. Repeated duplication and divergence of TIMP genes of echinoderms was probably associated with an increase in the functional importance of the proteins encoded by them in the physiology of the animals.
Collapse
|
11
|
Colombero C, Remy D, Antoine‐Bally S, Macé A, Monteiro P, ElKhatib N, Fournier M, Dahmani A, Montaudon E, Montagnac G, Marangoni E, Chavrier P. mTOR Repression in Response to Amino Acid Starvation Promotes ECM Degradation Through MT1-MMP Endocytosis Arrest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101614. [PMID: 34250755 PMCID: PMC8425857 DOI: 10.1002/advs.202101614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Under conditions of starvation, normal and tumor epithelial cells can rewire their metabolism toward the consumption of extracellular proteins, including extracellular matrix-derived components as nutrient sources. The mechanism of pericellular matrix degradation by starved cells has been largely overlooked. Here it is shown that matrix degradation by breast and pancreatic tumor cells and patient-derived xenograft explants increases by one order of magnitude upon amino acid and growth factor deprivation. In addition, it is found that collagenolysis requires the invadopodia components, TKS5, and the transmembrane metalloproteinase, MT1-MMP, which are key to the tumor invasion program. Increased collagenolysis is controlled by mTOR repression upon nutrient depletion or pharmacological inhibition by rapamycin. The results reveal that starvation hampers clathrin-mediated endocytosis, resulting in MT1-MMP accumulation in arrested clathrin-coated pits. The study uncovers a new mechanism whereby mTOR repression in starved cells leads to the repurposing of abundant plasma membrane clathrin-coated pits into robust ECM-degradative assemblies.
Collapse
Affiliation(s)
| | - David Remy
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | | | - Anne‐Sophie Macé
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
- Cell and Tissue Imaging Facility (PICT‐IBiSA)Institut CuriePSL Research UniversityParis75005France
| | - Pedro Monteiro
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Nadia ElKhatib
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Margot Fournier
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Ahmed Dahmani
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Elodie Montaudon
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Guillaume Montagnac
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Elisabetta Marangoni
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | | |
Collapse
|
12
|
Dolmatov IY, Kalacheva NV, Tkacheva ES, Shulga AP, Zavalnaya EG, Shamshurina EV, Girich AS, Boyko AV, Eliseikina MG. Expression of Piwi, MMP, TIMP, and Sox during Gut Regeneration in Holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirotida). Genes (Basel) 2021; 12:1292. [PMID: 34440466 PMCID: PMC8391186 DOI: 10.3390/genes12081292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mesodermal cells of holothurian Eupentacta fraudatrix can transdifferentiate into enterocytes during the regeneration of the digestive system. In this study, we investigated the expression of several genes involved in gut regeneration in E. fraudatrix. Moreover, the localization of progenitor cells of coelomocytes, juvenile cells, and their participation in the formation of the luminal epithelium of the digestive tube were studied. It was shown that Piwi-positive cells were not involved in the formation of the luminal epithelium of the digestive tube. Ef-72 kDa type IV collagenase and Ef-MMP16 had an individual expression profile and possibly different functions. The Ef-tensilin3 gene exhibited the highest expression and indicates its potential role in regeneration. Ef-Sox9/10 and Ef-Sox17 in E. fraudatrix may participate in the mechanism of transdifferentiation of coelomic epithelial cells. Their transcripts mark the cells that plunge into the connective tissue of the gut anlage and give rise to enterocytes. Ef-Sox9/10 probably controls the switching of mesodermal cells to the enterocyte phenotype, while Ef-Sox17 may be involved in the regulation of the initial stages of transdifferentiation.
Collapse
Affiliation(s)
- Igor Yu. Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia; (N.V.K.); (E.S.T.); (A.P.S.); (E.G.Z.); (E.V.S.); (A.S.G.); (A.V.B.); (M.G.E.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Eckfeld C, Häußler D, Schoeps B, Hermann CD, Krüger A. Functional disparities within the TIMP family in cancer: hints from molecular divergence. Cancer Metastasis Rev 2020; 38:469-481. [PMID: 31529339 DOI: 10.1007/s10555-019-09812-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Collapse
Affiliation(s)
- Celina Eckfeld
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Daniel Häußler
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Benjamin Schoeps
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Chris D Hermann
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Achim Krüger
- School of Medicine, Institutes of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.
| |
Collapse
|
14
|
Vočka M, Langer D, Fryba V, Petrtyl J, Hanus T, Kalousova M, Zima T, Petruzelka L. Serum levels of TIMP-1 and MMP-7 as potential biomarkers in patients with metastatic colorectal cancer. Int J Biol Markers 2019; 34:292-301. [PMID: 31578137 DOI: 10.1177/1724600819866202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinases 1 (TIMP-1) and matrix metalloproteinase 7 (MMP-7) were reported to have potent growth promoting activity. Lack of balance between MMPs and TIMPs is an important factor in the development of gastrointestinal malignancies. METHODS We collected serum samples from 97 patients with metastatic colorectal cancer and 79 samples from healthy controls. Serum levels of TIMP-1 and MMP-7 were measured immunochemically and compared with standard tumor markers carcinoembryonic antigen and CA19-9. RESULTS Serum levels of TIMP-1 and MMP-7 were significantly higher in patients with colorectal cancer compared to healthy controls (both, P < 0.001). TIMP-1 and MMP-7 correlate with the presence of colon involvement (P = 0.001; P = 0.012) and the presence of liver metastases (P = 0.002; P = 0.037), and negatively correlate with pulmonary metastases (P = 0.014; P = 0.005). MMP-7 had similar sensitivity and the same specificity as carcinoembryonic antigen. TIMP-1 and MMP-7 had better sensitivity than CA19-9. TIMP-1 and MMP-7 level correlate with worse outcome (P = 0.002). CONCLUSION The results indicate that TIMP-1 and MMP-7 are effective biomarkers in patients with metastatic colorectal cancer with good sensitivity. TIMP-1 and MMP-7 levels strongly correlate with the extent of liver disease and have prognostic value.
Collapse
Affiliation(s)
- Michal Vočka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Daniel Langer
- Surgery Department, Second Faculty of Medicine, Charles University, and Military University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Fryba
- First Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Jaromir Petrtyl
- Fourth Department of Internal Medicine - Department of Gastroenterology and Hepatology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Tomas Hanus
- Department of Urology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Czech Republic
| |
Collapse
|
15
|
Tissue Inhibitor of Metalloproteinase-2 Polymorphisms and Risk for HIV-Associated Neurocognitive Disorder. Mediators Inflamm 2019; 2019:8278095. [PMID: 31275061 PMCID: PMC6558609 DOI: 10.1155/2019/8278095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022] Open
Abstract
The imbalance between MMPs and TIMPs is associated with the HIV dissemination tissue damage pathology neurodegenerative disorders, including HAND. Genetic variations in the TIMP gene may modulate the neurocognitive disorder in HIV patients. Hence, we evaluated the genetic variants of TIMP-2 (-418G/C, 303G/A) gene with the risk of HAND. Genotyping of TIMP-2 polymorphism was performed in 50 patients with HAND, 100 no HAND, and 154 healthy controls by PCR-RFLP. TIMP-2 -418GC and 303AA genotypes represented a predominant risk for HAND severity (OR = 1.55, P = 0.30; OR = 4.58, P = 0.24). The variant -418CC genotype, -418A allele, had exhibited a significant risk for the acquisition of HAND (OR = 12.55, P = 0.026; OR = 2.66, P = 0.004). TIMP-2 303GA, 303AA genotype, and 303A allele evinced a higher risk for HAND severity (OR = 1.82, P = 0.14; OR = 1.70, P = 0.63; and OR = 1.68, P = 0.12). In HIV patients, TIMP-2 -418CC genotype and -418C allele significantly occurred in comparison to healthy controls (OR = 10.10, P = 0.006; OR = 2.02, P = 0.009). In the intermediate and early HIV disease stage, TIMP-2 -418CC genotype was significantly increased compared with healthy controls (11.1% vs. 1.3%, OR = 14.63, P = 0.01; 16.9% vs. 1.3%, OR = 14.51, P = 0.002). In patients with HAND among tobacco and alcohol users, TIMP-2 -418CC genotype displayed a risk for HAND severity (OR = 3.96, P = 0.26; OR = 4.83, P = 0.19). On multivariate logistic regression, TIMP-2 303AA genotype, advanced stage, and gender had a risk for HAND severity (OR = 28.98, P = 0.02; OR = 2.35, P = 0.070; and OR = 2.36, P = 0.04). In conclusion, TIMP-2 -418G/C polymorphism independently, along with alcohol and tobacco, may have an impact on the acquisition of HAND and its severity. TIMP-2 303G/A polymorphism bare a risk for HAND severity.
Collapse
|
16
|
Abstract
Jawed vertebrates (Gnathostomes) have 4 tissue inhibitors of metalloproteinases (TIMPs), multifunctional proteins that all inhibit members of the large matrix metalloproteinase (MMP) family but differ in their other roles, including the regulation of pro-MMP activation, cell growth, apoptosis and angiogenesis, and the structure of extracellular matrices (ECMs). Molecular phylogeny analyses indicate that vertebrate TIMP genes arose from an invertebrate ancestor through 3 successive duplications, possibly including 2 whole genome duplications, during early vertebrate phylogeny. TIMPs from invertebrates also inhibit metalloproteinases, bind to pro-MMPs, and contribute to ECM structures but are not orthologs of any particular vertebrate TIMP. The most ancient vertebrate superclass, the Agnatha (jawless fish), seems to provide a snapshot of a stage in TIMP evolution preceding the third gene duplication. This review examines the structures of TIMPs from different vertebrate orders using information relating to the structural basis of their various functions. Provisional conclusions are that during their evolutionary divergence, various TIMPs lost inhibitory activity toward some metalloproteinases, specialized in effects on different pro-MMPs, and developed new interactions with discrete targets (including integrins and receptors), while recapitulating a role in ECM structure. The analysis is limited by the sparse information available regarding the functional properties of nonmammalian TIMPs.-Brew, K. Reflections on the evolution of the vertebrate tissue inhibitors of metalloproteinases.
Collapse
Affiliation(s)
- Keith Brew
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
17
|
Liu M, An J, Huang M, Wang L, Tu B, Song Y, Ma K, Wang Y, Wang S, Zhu H, Xu N, Wu L. MicroRNA-492 overexpression involves in cell proliferation, migration, and radiotherapy response of cervical squamous cell carcinomas. Mol Carcinog 2017; 57:32-43. [PMID: 28802022 DOI: 10.1002/mc.22717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Jusheng An
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Manni Huang
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Liming Wang
- Department of Abdominal Surgery; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Binbin Tu
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Yan Song
- Department of Pathology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Shuren Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Lingying Wu
- Department of Gynecological Oncology; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing P. R. China
| |
Collapse
|
18
|
Ben Néjima D, Ben Zarkouna Y, Pujol P, Gammoudi A, Boussen H, Manai M. Clinicopathologic and Prognostic Significance of Metalloproteinase Tissue Inhibitor-2 Promoters in Tunisian Colorectal Cancer: A Case-Control Study. Appl Immunohistochem Mol Morphol 2017; 24:583-8. [PMID: 26808125 DOI: 10.1097/pai.0000000000000231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) appear to affect many aspects of cancer biology, playing a crucial role in cell signaling by regulating cell growth, apoptosis, invasion, metastasis, angiogenesis, and genomic instability. In the present study, we investigate whether TIMP-2 SNP, TIMP-2 mRNAs, and TIMP-2 protein is associated with susceptibility to colorectal cancer (CRC) in Tunisian population. Taqman and DNA sequencing techniques were used for genotyping, TIMP-2 expression of each genotype was analyzed using semiquantitative RT-PCR and TIMP-2 protein expression was analyzed using immunohistochemistry staining. Our results showed that significantly elevated CRC risk was found in individuals with CC genotype (odds ratio 1.959; 95% confidence interval, 1.055-3.637). Moreover TIMP-2 mRNA expression in the colorectal cell carcinomas was significantly higher compared with the normal colorectal tissue (0.487±0.015 vs. 0.210±0.013) (P<0.05). In addition, serum levels of TIMP-2 were significantly lower in CRC patients than in adenoma patients (P=0.01) and healthy controls (P=0.003). Serum levels of TIMP-2 correlated significantly with tumor stage and TNM stage and were the lowest in CRC patients with stage D,T4,(N1,N2,N3),M(+). In conclusion, our study demonstrate for the first time the distribution and the clinical significance of TIMP-2 promoter polymorphisms, mRNA, protein expression, and serum level in CRC Tunisian patients suggesting that the genotyping and serum level of TIMP-2 as potential markers for susceptibility to CRC will allow a precise and early identification of individuals at high risk and will aid the design of therapeutic modalities and evaluation of treatment outcome.
Collapse
Affiliation(s)
- Dalel Ben Néjima
- *Unité de biochimie et de biologie moléculaire 02/UR/09-04, Faculté des Sciences de Tunis †Service d'oncologie médicale Hôpital Abderrahmen Mami, Ariana §Service d'anatomopathologie, Institut Salah Azaiez, Tunis, Tunisia ‡Unité d'oncogénétique, Hôpital Arnaud de Villeneuve, Montpellier, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
20
|
Kim HI, Lee HS, Kim TH, Lee JS, Lee ST, Lee SJ. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget 2016; 6:42905-22. [PMID: 26556867 PMCID: PMC4767480 DOI: 10.18632/oncotarget.5466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.
Collapse
Affiliation(s)
- Han Ie Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Tae Hyun Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, U.S.A
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Seo-Jin Lee
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| |
Collapse
|
21
|
El Atat O, Antonios D, Hilal G, Hokayem N, Abou-Ghoch J, Hashim H, Serhal R, Hebbo C, Moussa M, Alaaeddine N. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells. PLoS One 2016; 11:e0162332. [PMID: 27632538 PMCID: PMC5024991 DOI: 10.1371/journal.pone.0162332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The use of adipose-derived stem cells (ADSC) in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH) activity of the initial stromal vascular fraction (SVF) and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells.
Collapse
Affiliation(s)
- Oula El Atat
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Diane Antonios
- Toxicology Laboratory, Faculty of Pharmacy, St. Joseph University, Beirut, Lebanon
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Nabil Hokayem
- Department of Plastic& Reconstructive Surgery, Hotel Dieu de France, and Faculty of Medicine St Joseph University, Beirut, Lebanon
| | - Joelle Abou-Ghoch
- Medical Genetics Unit, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Hussein Hashim
- Department of Plastic& Reconstructive Surgery, Fuad Khoury Hospital, Beirut, Lebanon
| | - Rim Serhal
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Clara Hebbo
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Mayssam Moussa
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
| | - Nada Alaaeddine
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, St. Joseph University, Beirut, Lebanon
- * E-mail:
| |
Collapse
|
22
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Amer LD, Bryant SJ. The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels. Ann Biomed Eng 2016; 44:1959-69. [PMID: 27080375 PMCID: PMC5577801 DOI: 10.1007/s10439-016-1608-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/02/2016] [Indexed: 12/28/2022]
Abstract
Enzyme-sensitive hydrogels are a promising class of materials for cell encapsulation and tissue engineering because their ability to be degraded by cell-secreted factors. However, it is well known that nearly all synthetic biomaterials elicit a foreign body response (FBR) upon implantation. Therefore, this study aimed to evaluate the in vitro and in vivo response to an enzyme-sensitive hydrogel. Hydrogels were formed from poly(ethylene glycol) with the peptide crosslinker, C-VPLS↓LYSG-C, which is susceptible to matrix metalloproteinases 2 and 9. We evaluated the hydrogel by exogenously delivered enzymes, encapsulated mesenchymal stem cells as a tissue engineering relevant cell type, and by macrophage-secreted factors in vitro and for the FBR through macrophage attachment in vitro and in a subcutaneous mouse model. These hydrogels rapidly degraded upon exposure to exogenous MMP-2 and to lesser degree with MMP-9. Encapsulated mesenchymal stem cells were capable of degrading the hydrogels via matrix metalloproteinases. Inflammatory macrophages were confirmed to attach to the hydrogels, but were not capable of rapidly degrading the hydrogels. In vivo, these hydrogels remained intact after 4 weeks and exhibited a classic FBR with inflammatory cells at the hydrogel surface and a fibrous capsule. In summary, these findings suggest that while this MMP-2/9 sensitive hydrogel is readily degraded in vitro, it does not undergo rapid degradation by the FBR. Thus, the long term stability of these hydrogels in vivo coupled with the ability for encapsulated cells to degrade the hydrogel makes them promising materials for tissue engineering.
Collapse
Affiliation(s)
- Luke D Amer
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, UCB 596, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, UCB 596, Boulder, CO, 80303, USA.
- BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
- Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
24
|
Pulz LH, Barra CN, Kleeb SR, Xavier JG, Catão-Dias JL, Sobral RA, Fukumasu H, Strefezzi RF. Increased expression of tissue inhibitor of metalloproteinase-1 correlates with improved outcome in canine cutaneous mast cell tumours. Vet Comp Oncol 2016; 15:606-614. [PMID: 27041588 DOI: 10.1111/vco.12204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/29/2015] [Indexed: 01/21/2023]
Abstract
Canine mast cell tumour (MCT) is a biologically heterogeneous disease. The extracellular matrix degradation promoted by matrix metalloproteinases (MMPs) has been studied in an attempt to elucidate the mechanisms involved in the biological behaviour of tumours. The aim of this study was to characterize the expression of MMP-2 and -9 and tissue inhibitors of metalloproteinase (TIMP)-1 and -2 in canine cutaneous MCTs and to evaluate their prognostic values. Immunohistochemical staining for MMP-2, MMP-9, TIMP-2 and TIMP-1 was performed in 46 canine cases of MCTs. TIMP-1 expression showed an independent prognostic value for post-surgical survival and disease-related mortality. Dogs with MCTs showing less than 22.9% mast cell TIMP-1 positivity were more prone to die because of the disease and had a shorter post-surgical survival. This article suggests the involvement of TIMP-1 in MCT progression, by contributing to a good outcome in patients with MCTs.
Collapse
Affiliation(s)
- L H Pulz
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - C N Barra
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - S R Kleeb
- Universidade Metodista de São Paulo, São Bernardo do Campo, Brazil
| | - J G Xavier
- Universidade Paulista, São Paulo, Brazil
| | - J L Catão-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - R A Sobral
- Onco Cane Veterinária, São Paulo, Brazil
| | - H Fukumasu
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - R F Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| |
Collapse
|
25
|
Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. J Proteomics 2016; 139:122-9. [PMID: 27003612 DOI: 10.1016/j.jprot.2016.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED The follicular fluid (FF) proteome can provide an indication of follicular quality. High-yielding dairy cows suffer from low fertility, which could be related to follicular function. However, the proteome of preovulatory follicles has never been described in cows. Our objectives were to: 1) define the bovine preovulatory FF proteome, and 2) examine differentially abundant proteins in FF of controls (CTL, n=10) and less fertile cows (LFC; failed to conceive following ≥6 inseminations, n=8). Follicles ≥7mm in diameter were aspirated in vivo, and estradiol (E2) and progesterone (P4) were examined. The FF from 10 preovulatory follicles (E2/P4>1) was analyzed; E2 was higher and follicle diameter tended to be larger in LFC. As aspirations were conducted at a fixed time, this suggests accelerated follicular growth in LFC. The 219 identified and quantified proteins consisted mainly of binding proteins, proteases, receptor ligands, enzymes and transporters. Differential abundance of 8 relevant proteins was found in LFC compared to CTL: SERPINA1, TIMP2, ITIH1, HSPG2, C8A, COL1A2, F2, and IL1RAP. These proteins could influence follicular function-e.g., decreased SERPINA1 may be related to accelerated follicular growth-and therefore, further examination of their roles in the etiology of LFC is warranted. SIGNIFICANCE High yielding dairy cows suffer from infertility that leads to major economic losses worldwide. In Israel, about 30% of dairy cows fail to conceive following ≥4 inseminations. The etiology of this low fertility is multifactorial and remains a serious challenge. Follicular fluid proteome can provide indication to follicular quality, yet the proteome of pre-ovulatory follicles has not been described in cows. This work examined the differential abundance of proteins in less fertile dairy cows compared to controls, and found 8 relevant novel proteins that could influence follicular function. The role of these proteins in the etiology of less fertile cows should be further examined.
Collapse
|
26
|
Retamal IN, Hernández R, González-Rivas C, Cáceres M, Arancibia R, Romero A, Martínez C, Tobar N, Martínez J, Smith PC. Methylglyoxal and methylglyoxal-modified collagen as inducers of cellular injury in gingival connective tissue cells. J Periodontal Res 2016; 51:812-821. [DOI: 10.1111/jre.12365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Affiliation(s)
- I. N. Retamal
- Dentistry Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago Chile
| | - R. Hernández
- Dentistry Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago Chile
| | - C. González-Rivas
- Dentistry Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago Chile
| | - M. Cáceres
- Molecular and Cell Biology Program; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - R. Arancibia
- Dentistry Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago Chile
| | - A. Romero
- Molecular and Cell Biology Program; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - C. Martínez
- Dentistry Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago Chile
| | - N. Tobar
- Institute of Nutrition and Food Technology; Laboratory of Cell Biology, University of Chile; Santiago Chile
| | - J. Martínez
- Institute of Nutrition and Food Technology; Laboratory of Cell Biology, University of Chile; Santiago Chile
| | - P. C. Smith
- Dentistry Faculty of Medicine; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
27
|
Wiggins-Dohlvik K, Oakley RP, Han MS, Stagg HW, Alluri H, Shaji CA, Davis ML, Tharakan B. Tissue inhibitor of metalloproteinase-2 inhibits burn-induced derangements and hyperpermeability in microvascular endothelial cells. Am J Surg 2016; 211:197-205. [DOI: 10.1016/j.amjsurg.2015.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 02/06/2023]
|
28
|
Wolf M, Siegert M, Rothmiller S, Scheithauer N, Strobelt R, Steinritz D, Worek F, Thiermann H, Schmidt A. Characterization of sulfur mustard resistant keratinocyte cell line HaCaT/SM. Toxicol Lett 2015; 244:49-55. [PMID: 26456177 DOI: 10.1016/j.toxlet.2015.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The cell line HaCaT/SM was derived from the human keratinocyte cell line HaCaT. HaCaT/SM cells display a high resistance against sulfur mustard (SM). Intention of the presented study was to determine the cellular and molecular differences between HaCaT/SM and HaCaT so as to evaluate which changes might be responsible for being resistant against SM. METHODS Both cell lines HaCaT and HaCaT/SM were analyzed with respect to their cell growth, nuclei perimeter, clonogenicity and secretion profile. Moreover DNA alkylation pattern under presence of SM was investigated. RESULTS In comparison to HaCaT, the HaCaT/SM showed a significant smaller nuclei perimeter. For DNA alkylation a significant difference was observed over time. The clonogenicity of HaCaT/SM was increased to 150%. The secretion profile of these cells demonstrated a strong increase of ANG, PDGF-AA, TIMP1, TIMP2, and a decrease of AREG, CCL5, CXC1, CXC2/3, CXCL6, CXCL7, CXCL8, CXCL10, MIF, Trappin-1. CONCLUSION The sulfur mustard (SM) resistant cell line HaCaT/SM demonstrates a wide range of significant differences to their origin cell line HaCaT. These differences might be responsible to provide resistance against SM and might also be useful to establish treatment concepts for humans after SM exposure.
Collapse
Affiliation(s)
- Markus Wolf
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Ludwig-Maximilians-Universität Munich, Department of Chemistry, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Nina Scheithauer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Romano Strobelt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Department of Molecular and Cellular Sports Medicine, German Sports University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| |
Collapse
|
29
|
Valacca C, Tassone E, Mignatti P. TIMP-2 Interaction with MT1-MMP Activates the AKT Pathway and Protects Tumor Cells from Apoptosis. PLoS One 2015; 10:e0136797. [PMID: 26331622 PMCID: PMC4558019 DOI: 10.1371/journal.pone.0136797] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus.
Collapse
Affiliation(s)
- Cristina Valacca
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - Evelyne Tassone
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - Paolo Mignatti
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Cell Biology, New York University School of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Heo JH, Song JY, Jeong JY, Kim G, Kim TH, Kang H, Kwon AY, An HJ. Fibulin-5 is a tumour suppressor inhibiting cell migration and invasion in ovarian cancer. J Clin Pathol 2015; 69:109-16. [PMID: 26251522 DOI: 10.1136/jclinpath-2015-203129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/16/2015] [Indexed: 11/04/2022]
Abstract
AIMS Fibulin-5 is an extracellular matrix (ECM) glycoprotein which has a role in the organisation and stabilisation of ECM structures and regulating cell proliferation and tumourigenesis. Here, the expression of fibulin-5 and its functional effects on the migration and invasion of ovarian cancer cells were assessed. METHODS Expression of fibulin-5 was detected in 44 ovarian tumour tissues by qRT-PCR, Western blotting and immunohistochemistry. We performed cell migration and invasion assays, and cell cycle analysis in fibulin-5 transfected SKOV3 (SKOV3-FBLN5) cells and the parental SKOV3 cells. We further examined the expression of three tissue inhibitors of metalloproteinases (TIMPs) and seven matrix metalloproteinases (MMPs) by RT-PCR. RESULTS mRNA and protein expression of fibulin-5 were down-regulated (0.05-fold and 0.1-fold) in ovarian carcinomas compared with control tissues (p<0.01 and p=0.022). In wound-healing and invasion assays, significantly fewer SKOV3-FBLN5 cells than SKOV3 control cells migrated and invaded (39.1%, p=0.046 and 70%, p=0.03, respectively), which was reversed by siRNA-treatment. Overexpression of fibulin-5 induced G2/M arrest and increased cyclin B1, CDC2 and CDC25C. Expression of TIMP-2 (0.56-fold), MMP-3 (0.43-fold) and MMP-13 (0.18-fold) was lower and MMP-9 expression (2.20-fold) was higher in SKOV3-FBLN5 cells than in control cells. CONCLUSIONS Fibulin-5 is significantly down-regulated in ovarian carcinoma and acts as a tumour suppressor by inhibiting the migration and invasion of ovarian cancer cells.
Collapse
Affiliation(s)
- Jin Hyung Heo
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Ji-Ye Song
- Clinical Research Institute, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Ju-Yeong Jeong
- Clinical Research Institute, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam, Korea Clinical Research Institute, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Tae Heon Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam, Korea Clinical Research Institute, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Haeyoun Kang
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Ah-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam, Korea Clinical Research Institute, CHA Bundang Medical Center, CHA University, Sungnam, Korea
| |
Collapse
|
31
|
Rhee DY, Cho HI, Park GH, Moon HR, Chang SE, Won CH, Jung JM, Park KY, Lee MW, Choi JH, Moon KC, Lee DC, Goo B. Histological and molecular analysis of the long-pulse 1,064-nm Nd:YAG laser irradiation on the ultraviolet-damaged skin of hairless mice: In association with pulse duration change. J COSMET LASER THER 2015; 18:16-21. [PMID: 26052812 DOI: 10.3109/14764172.2015.1052509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nonablative lasers have been widely used to improve photodamaged skin, although the mechanism underlying dermal collagen remodeling remains unclear. OBJECTIVE To investigate the effects and the molecular mechanisms of long-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on dermal collagen remodeling in association with different pulse durations. MATERIAL AND METHODS Five hairless mice were pretreated with ultraviolet B irradiation for 8 weeks. The dorsal quadrant of each mouse was then irradiated twice at 1-week intervals at a pulse duration of 1 ms, 12 ms, or 50 ms, and a constant fluence of 20 J/cm(2). The levels of dermal collagen, mRNAs of procollagens, matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), and various growth factors were analyzed after 4 weeks. RESULTS Long-pulse Nd:YAG treatment increased the dermal collagen level. A substantial increase in the level of procollagens, MMPs, TIMPs, and various growth factors was also observed irrespective of pulse duration, with a trend toward maximal increase at a pulse duration of 12 ms. CONCLUSION Long-pulse 1,064-nm Nd:YAG laser irradiation promotes wound-healing process, which is characterized by the induction of growth factor expression and subsequent increase in MMPs and TIMPs, followed by matrix remodeling as confirmed by new procollagen production.
Collapse
Affiliation(s)
- Do Young Rhee
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Hong Il Cho
- b Asan Institute of Life Science , Seoul , Korea
| | - Gyeong-Hun Park
- c Department of Dermatology , Dongtan Sacred Heart Hospital, Hallym University College of Medicine , Hwaseong , Korea
| | - Hye-Rim Moon
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Sung Eun Chang
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Chong Hyun Won
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Joon Min Jung
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | | | - Mi Woo Lee
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Jee Ho Choi
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Kee Chan Moon
- a Department of Dermatology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Deug-Chan Lee
- d Department of Medical Biotechnology , School of Biomedical Science, Kangwon National University , Chuncheon , Korea
| | - Boncheol Goo
- e Naeum Dermatology and Aesthetic Clinic , Seoul Korea
| |
Collapse
|
32
|
Stoichiometric expression of MMP-2/TIMP-2 in benign and malignant tumours of the salivary gland. Tumour Biol 2014; 36:2351-7. [PMID: 25412957 DOI: 10.1007/s13277-014-2842-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to determine the expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitors of matrix metalloproteinase 2 (TIMP-2) and the MMP-2/TIMP-2 expression ratio in salivary gland tumours (SGTs). Forty-three FFPE SGTs were prepared for antibody processing to MMP-2 and TIMP-2. Two investigators utilizing Sinicrope's method scored the uptake of immuno-stains. Cytoplasmic staining was considered as positive. Data was analysed using SPSS version 20. The significance level was set at p < 0.05. In benign SGTs, the mean score for MMP-2 was not significantly lower than that of TIMP-2 (p = 0.37). However, the mean scores for MMP-2 stain intensity and proportion were significantly higher in malignant than benign SGTs (p = 0.01 and p = 0.02 respectively). There was no significant difference in the mean MMP-2/TIMP-2 expression ratio of the malignant SGTs according to histological grade and histogenesis (p = 0.4 and p = 0.19 respectively). The MMP-2/TIMP-2 expression ratio has a higher prognostic value than the separate expressions of MMP-2 and TIMP-2.
Collapse
|
33
|
Mandal RK, Akhter N, Haque S, Panda AK, Mittal RD, Alqumber MAA. No correlation between TIMP2 -418 G>C polymorphism and increased risk of cancer: evidence from a meta-analysis. PLoS One 2014; 9:e88184. [PMID: 25136829 PMCID: PMC4138026 DOI: 10.1371/journal.pone.0088184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Aim Tissue inhibitor of metalloproteinase (TIMP2) is involved in the regulation of matrix metalloproteinase 2 (MMP2) and shown to implicate in cancer development and progression. The results from the published studies based on the association between TIMP2 -418 G>C polymorphism and cancer risk are inconsistent. In this meta-analysis, we aimed to evaluate the potential association between TIMP2 -418 G>C polymorphism and cancer risk. Methodology We searched PubMed (Medline) and EMBASE web databases to cover all studies based on relationship of TIMP2 -418 G>C polymorphism and risk of cancer until October 2013. The meta-analysis was performed for selected case-control studies and pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated for all genetic models. Results A total of 2225 cancer cases and 2532 controls were included from ten eligible case-control studies. Results from overall pooled analysis suggested no evidence of significant risk between TIMP2 -418 G>C polymorphism and cancer risk in any of the genetic models, such as, allele (C vs. G: OR = 1.293, 95% CI = 0.882 to 1.894, p = 0.188), homozygous (CC vs. GG: OR = 0.940, 95% CI = 0.434 to 2.039, p = 0.876), heterozygous (GC vs. GG: OR = 1.397, 95% CI = 0.888 to 2.198, p = 0.148), dominant (CC+GC vs. GG: OR = 1.387, 95% CI = 0.880 to 2.187, p = 0.159) and recessive (CC vs. GG+GC: OR = 0.901, 95% CI = 0.442 to 1.838, p = 0.774) models. No evidence of publication bias was detected during the analysis. Conclusions The present meta-analysis suggests that the TIMP2 -418 G>C polymorphism may not be involved in predisposing risk factor for cancer in overall population. However, future larger studies with group of populations are needed to analyze the possible correlation.
Collapse
Affiliation(s)
- Raju K. Mandal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Shafiul Haque
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Aditya K. Panda
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rama D. Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mohammed A. A. Alqumber
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
- * E-mail:
| |
Collapse
|
34
|
Aoki M, Miyake K, Ogawa R, Dohi T, Akaishi S, Hyakusoku H, Shimada T. siRNA Knockdown of Tissue Inhibitor of Metalloproteinase-1 in Keloid Fibroblasts Leads to Degradation of Collagen Type I. J Invest Dermatol 2014; 134:818-826. [DOI: 10.1038/jid.2013.396] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/19/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022]
|
35
|
Sessions-Bresnahan DR, Carnevale EM. The effect of equine metabolic syndrome on the ovarian follicular environment. J Anim Sci 2014; 92:1485-94. [PMID: 24663160 DOI: 10.2527/jas.2013-7275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity in many species is associated with reduced fertility and increased risk of metabolic disorders and cardiovascular dysfunction in offspring. Equine metabolic syndrome (EMS) is associated with obesity and characterized by insulin resistance, decreased adiponectin, and elevated insulin, leptin, and pro-inflammatory cytokines. These alterations can potentially disrupt follicular development and impair fertility. We hypothesized that mares with EMS have an altered follicular environment when compared to their normal counterparts, affecting gene regulation for follicle and oocyte maturation. Samples were collected from light-horse mares (11 to 27 yr) in a clinical assisted reproductive program. Mares were screened based on phenotype. Insulin sensitivity was determined by using two proxies, the reciprocal of the square root of insulin (RISQI) and the modified insulin-to-glucose ratio (MIRG). Insulin resistant mares (RISQI < 0.32 and MIRG > 5.50) were allocated to the EMS group (n = 8), and the remaining mares were considered normal controls (CON, n = 12). Follicular fluid (FF) and granulosa cells (GC) from preovulatory follicles were aspirated 24 ± 2 h after administration of a GnRH analog (SucroMate, 0.9 to 1.4 mg, i.m.) and hCG (Chorion, 1500 to 2000 IU, i.v.). After an overnight fast, blood was collected on the morning of follicle aspiration to evaluate serum concentrations of insulin, leptin, adiponectin, and inflammatory cytokines. Expression of 32 genes related to metabolism, follicle maturation, and oocyte maturation were assessed in GC. Concentrations of insulin, leptin, adiponectin, and cytokines were highly correlated between serum and FF (P < 0.001). Insulin was lower (P < 0.001) in serum and FF of CON compared to EMS, but leptin and IL1β tended (P = 0.07 and P = 0.10, respectively) to be lower in FF of CON than EMS. Tumor necrosis factor-α in serum and FF was lower (P < 0.07 and P < 0.05, respectively) in CON than EMS. Conversely, adiponectin was higher (P < 0.05) in serum and FF in CON versus EMS. In GC from CON when compared to EMS, gene expression for epiregulin was elevated (P < 0.05) and tissue inhibitor of matrix metalloproteinase-2 tended to be lower (P = 0.09). Our findings demonstrate that the intrafollicular environment in the mare is influenced by metabolic disease, consistent with findings in other species. Influences on follicular development, oocyte maturation, and subsequent offspring by perturbations due to metabolic disease need further study.
Collapse
Affiliation(s)
- D R Sessions-Bresnahan
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins 80523
| | | |
Collapse
|
36
|
Ries C. Cytokine functions of TIMP-1. Cell Mol Life Sci 2014; 71:659-72. [PMID: 23982756 PMCID: PMC11113289 DOI: 10.1007/s00018-013-1457-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are well recognized for their role in extracellular matrix remodeling by controlling the activity of matrix metalloproteinases (MMPs). Independent of MMP inhibition, TIMPs act as signaling molecules with cytokine-like activities thereby influencing various biological processes including cell growth, apoptosis, differentiation, angiogenesis, and oncogenesis. Recent studies on TIMP-1's cytokine functions have identified complex regulatory networks involving a specific surface receptor and subsequent signaling pathways including miRNA-mediated posttranscriptional regulation of gene expression that ultimately control the fate and behavior of the cells. The present review summarizes the current knowledge on TIMP-1 as a cytokine modulator of cell functions, outlines recent progress in defining molecular pathways that transmit TIMP-1 signals from the cell periphery into the nucleus, and discusses TIMP-1's role as a cytokine in the pathophysiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany,
| |
Collapse
|
37
|
Das AM, Seynhaeve ALB, Rens JAP, Vermeulen CE, Koning GA, Eggermont AMM, Ten Hagen TLM. Differential TIMP3 expression affects tumor progression and angiogenesis in melanomas through regulation of directionally persistent endothelial cell migration. Angiogenesis 2013; 17:163-77. [PMID: 24221409 DOI: 10.1007/s10456-013-9385-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/12/2013] [Indexed: 01/16/2023]
Abstract
The angiogenic potential of solid tumors, or the ability to initiate neovasculature development from pre-existing host vessels, is facilitated by soluble factors secreted by tumor cells and involves breaching of extracellular matrix barriers, endothelial cell (EC) proliferation, migration and reassembly. We evaluated the angiogenic potential of human melanoma cell lines differing in their degree of aggressiveness, based on their ability to regulate directionally persistent EC migration. We observed that conditioned-medium (CM) of the aggressive melanoma cell line BLM induced a high effective migratory response in ECs, while CMs of Mel57 and 1F6 had an inhibitory effect. Further, the melanoma cell lines exhibited a varied expression profile of tissue inhibitor of metalloproteinase-3 (TIMP3), detectable in the CM. TIMP3 expression inversely correlated with aggressiveness of the melanoma cell line, and ability of the respective CMs to induce directed EC migration. Interestingly, TIMP3 expression was found to be silenced in the BLM cell line, concurrent with its role as a tumor suppressor. Treatment with recombinant human TIMP3 and CM of modified, TIMP3 expressing, BLM cells mitigated directional EC migration, while CM of TIMP3 silenced 1F6 cells induced directed EC migration. The functional implication of TIMP3 expression on tumor growth and angiogenic potential in melanoma was evaluated in vivo. We observed that TIMP3 expression reduced tumor growth, angiogenesis and macrophage infiltration of BLM tumors while silencing TIMP3 increased tumor growth and angiogenesis of 1F6 tumors. Taken together, our results demonstrate that TIMP3 expression correlates with inhibition of directionally persistent EC migration and adversely affects the angiogenic potential and growth of melanomas.
Collapse
Affiliation(s)
- Asha M Das
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Room Ee 0104a, PO Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Recombinant TIMP-1-GPI inhibits growth of fibrosarcoma and enhances tumor sensitivity to doxorubicin. Target Oncol 2013; 9:251-61. [PMID: 23934106 PMCID: PMC4156787 DOI: 10.1007/s11523-013-0294-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/26/2013] [Indexed: 12/26/2022]
Abstract
Fibrosarcomas show a high incidence of recurrence and general resistance to apoptosis. Limiting tumor regrowth and increasing their sensitivity to chemotherapy and apoptosis represent key issues in developing more effective treatments of these tumors. Tissue inhibitor of metalloproteinase 1 (TIMP-1) broadly blocks matrix metalloproteinase (MMP) activity and can moderate tumor growth and metastasis. We previously described generation of a recombinant fusion protein linking TIMP-1 to glycosylphophatidylinositol (GPI) anchor (TIMP-1-GPI) that efficiently directs the inhibitor to cell surfaces. In the present report, we examined the effect of TIMP-1-GPI treatment on fibrosarcoma biology. Exogenously applied TIMP-1-GPI efficiently incorporated into surface membranes of human HT1080 fibrosarcoma cells. It inhibited their proliferation, migration, suppressed cancer cell clone formation, and enhanced apoptosis. Doxorubicin, the standard chemotherapeutic drug for fibrosarcoma, was tested alone or in combination with TIMP-1-GPI. In parallel, the influence of treatment on HT1080 side population cells (exhibiting tumor stem cell-like characteristics) was investigated using Hoechst 33342 staining. The sequential combination of TIMP-1-GPI and doxorubicin showed more than additive effects on apoptosis, while TIMP-1-GPI treatment alone effectively decreased “stem-cell like” side population cells of HT1080. TIMP-1-GPI treatment was validated using HT1080 fibrosarcoma murine xenografts. Growing tumors treated with repeated local injections of TIMP-1-GPI showed dramatically inhibited fibrosarcoma growth and reduced angiogenesis. Intraoperative peritumoral application of GPI-anchored TIMP-1 as an adjuvant to surgery may help maintain tumor control by targeting microscopic residual fibrosarcoma cells and increasing their sensitivity to chemotherapy
Collapse
|
39
|
Thang NM, Kumasawa K, Tsutsui T, Nakamura H, Masaki H, Ono T, Kimura T. Overexpression of endogenous TIMP-2 increases the proliferation of BeWo choriocarcinoma cells through the MAPK-signaling pathway. Reprod Sci 2013; 20:1184-92. [PMID: 23427184 DOI: 10.1177/1933719113477485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Choriocarcinoma is a highly malignant form of trophoblastic tumor that is characterized by malignant placental tumors and rapid cell growth. In vivo and in vitro studies have demonstrated that tissue inhibitor of metalloproteinase 2 (TIMP-2) is present in choriocarcinoma. However, the role of TIMP-2 in cell proliferation in choriocarcinoma has not been investigated. Exogenous TIMP-2 is known to promote cell proliferation. During growth, cells are subjected to varied concentrations of TIMP-2, which depend on the amount of TIMP-2 produced by the cells themselves. Thus, the effect of gradually increasing endogenous TIMP-2 on the proliferation of choriocarcinoma cells needs to be examined. Proliferation of BeWo human choriocarcinoma cells was stimulated by transient transfection of a plasmid expressing TIMP-2. Overexpression of endogenous TIMP-2 also activated ERK1/2 and JNK1/2 of the MAPK-signaling pathway. Furthermore, inhibition of these proteins resulted in suppression of the cell proliferation-stimulating effect of TIMP-2. These results suggest that TIMP-2 plays an important role in tumor growth in the case of BeWo cells. Moreover, proliferation of BeWo cells due to TIMP-2 expression can be used as a model for fast-growing choriocarcinomas, and TIMP-2 could be used as a novel tumor marker of choriocarcinoma.
Collapse
Affiliation(s)
- Nguyen Manh Thang
- 1Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Fluid shear stress regulates metalloproteinase-1 and 2 in human periodontal ligament cells: Involvement of extracellular signal-regulated kinase (ERK) and P38 signaling pathways. J Biomech 2012; 45:2368-75. [DOI: 10.1016/j.jbiomech.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022]
|
41
|
Chronic and intermittent hypoxia differentially regulate left ventricular inflammatory and extracellular matrix responses. Hypertens Res 2012; 35:811-8. [PMID: 22495609 PMCID: PMC3419973 DOI: 10.1038/hr.2012.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We evaluated the left ventricle (LV) response to hypoxia by comparing male Sprague Dawley rats exposed for 7 days to normoxia (control; n=18), chronic sustained hypoxia (CSH; n=12) and chronic intermittent hypoxia (CIH; n=12). Out of the 168 inflammatory, extracellular matrix and adhesion molecule genes evaluated, Ltb, Cdh4, Col5a1, Ecm1, MMP-11 and TIMP-2 increased in the LV (range: 87–138%), whereas Tnfrsf1a decreased 27%, indicating an increase in inflammatory status with CSH (all P<0.05). CIH decreased Ltb, Spp1 and Ccl5 levels, indicating reduced inflammatory status. While Laminin β2 gene levels increased 123%, MMP-9 and fibronectin gene levels both decreased 74% in CIH (all P<0.05). Right ventricle/body weight ratios increased in CSH (1.1±0.1 g g−1) compared with control (0.7±0.1 g g−1) and CIH (0.8±0.1 g g−1; both P<0.05). Lung to body weight increased in CSH, while LV/body weight ratios were similar among all three groups. With CIH, myocyte cross sectional areas increased 25% and perivascular fibrosis increased 100% (both P<0.05). Gene changes were independent of global changes and were validated by protein levels. MMP-9 protein levels decreased 94% and fibronectin protein levels decreased 42% in CIH (both P<0.05). Consistent with a decreased inflammatory status, HIF-2α and eNOS protein levels were 36% and 44% decreased, respectively, in CIH (both P<0.05). In conclusion, our results indicate that following 7 days of hypoxia, inflammation increases in response to CSH and decreases in response to CIH. This report is the first to demonstrate specific and differential changes seen in the LV during chronic sustained and CIH.
Collapse
|
42
|
Tsai HP, Chen SC, Chien HT, Jan YY, Chao TC, Chen MF, Hsieh LL. Relationships between serum HER2 ECD, TIMP-1 and clinical outcomes in Taiwanese breast cancer. World J Surg Oncol 2012; 10:42. [PMID: 22339939 PMCID: PMC3312842 DOI: 10.1186/1477-7819-10-42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serum levels of the extracellular domain of HER2/neu (HER2 ECD) have been demonstrated to be associated with clinical outcomes. A disintegrin and metalloproteinase-10, a sheddase of HER2/neu, can drive cancer progression and its activity is inhibited by tissue inhibitor of metalloproteinase-1 (TIMP-1). However, elevated TIMP-1 expression has been associated with a poor prognosis of breast cancer. Therefore, this study was performed to explore the relationships between serum HER2 ECD, TIMP-1 and clinical outcomes. METHODS One hundred and eighty-five female breast cancer patients, who received curative mastectomy without neo-adjuvant chemotherapy at Chang-Gung Memorial Hospital, were recruited with informed consent for this study. Pre-operative serum levels of HER2 ECD and TIMP-1 were measured using an enzyme-linked immunosorbent assay. RESULTS Twenty-three cases (12.4%) were classified HER2 ECD positive. HER2 ECD positivity was significantly associated with age, lymph node involvement, histological grade, estrogen receptor status, progesterone receptor status, tissue HER2/neu overexpression, and disease-free survival (DFS). In an age, stage, ER and HER2/neu status matched subgroup (N = 41), the serum level of TIMP-1 was significantly associated with HER2 ECD positivity and DFS. CONCLUSIONS A high serum TIMP-1 was significantly associated with HER2 ECD positivity and a poorer DFS among Taiwanese primary breast cancer patients with HER2 overexpression.
Collapse
Affiliation(s)
- Hsiu-Pei Tsai
- Graduate Institute of Clinical Medical Sciences,Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:146-56. [PMID: 21982799 DOI: 10.1016/j.bbapap.2011.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
When abundant and activated, matrix metalloproteinases (MMPs, or matrixins) degrade most, if not all, constituents of the extracellular matrix (ECM). The resulting massive tissue breakdown is best exemplified in humans by the menstrual lysis and shedding of the endometrium, the mucosa lining the uterus. After menstruation, MMP activity needs to be tightly controlled as the endometrium regenerates and differentiates to avoid abnormal tissue breakdown while allowing tissue repair and fine remodelling to accommodate implantation of a blastocyst. This paper reviews how MMPs are massively present and activated in the endometrium at menstruation, and how their activity is tightly controlled at other phases of the cycle. Progesterone represses expression of many but not all MMPs. Its withdrawal triggers focal expression of MMPs specifically in the areas undergoing lysis, an effect mediated by local cytokines such as interleukin-1α, LEFTY-2, tumour necrosis factor-α and others. MMP-3 is selectively expressed at that time and activates proMMP-9, otherwise present in latent form throughout the cycle. In addition, a large number of neutrophils loaded with MMPs are recruited at menstruation through induction of chemokines, such as interleukin-8. At the secretory phase, progesterone repression of MMPs is mediated by transforming growth factor-β. Tissue inhibitors of metalloproteinases (TIMPs) are abundant at all phases of the cycle to prevent any undue MMP activity, but are likely overwhelmed at menstruation. At other phases of the cycle, MMPs can elude TIMP inhibition as exemplified by recruitment of active MMP-7 to the plasma membrane of epithelial cells, allowing processing of membrane-associated growth factors needed for epithelial repair and proliferation. Finally, receptor-mediated endocytosis through low density lipoprotein receptor-related protein-1 (LRP-1) efficiently clears MMP-2 and -9 at the proliferative and secretory phases. This mechanism is probably essential to prevent any excessive ECM degradation by the active form of MMP-2 that is permanently present. However, shedding of the ectodomain of LRP-1 specifically at menstruation prevents endocytosis of MMPs allowing full degradation of the ECM. Thus endometrial MMPs are regulated at the levels of transcription, release from infiltrating neutrophils, activation, binding to the cell membrane, inhibition by TIMPs and endocytic clearance by LRP-1. This allows tight control during endometrial growth and differentiation but results in a burst of activity for menstrual tissue breakdown. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
44
|
Tong W, Zhang L. Fetal hypoxia and programming of matrix metalloproteinases. Drug Discov Today 2011; 17:124-34. [PMID: 21946060 DOI: 10.1016/j.drudis.2011.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/15/2011] [Accepted: 09/14/2011] [Indexed: 12/17/2022]
Abstract
Fetal hypoxia adversely affects the brain and heart development, yet the mechanisms responsible remain elusive. Recent studies indicate an important role of the extracellular matrix in fetal development and tissue remodeling. The matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs) have been implicated in a variety of physiological and pathological processes in the cardiovascular and central nervous systems. This review summarizes current knowledge of the mechanisms by which fetal hypoxia induces the imbalance of MMPs, TIMPs and collagen expression patterns, resulting in growth restriction and aberrant tissue remodeling in the developing heart and brain. Collectively, this information could lead to the development of preventive diagnoses and therapeutic strategies in the fetal programming of cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Wenni Tong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | |
Collapse
|
45
|
Peptide from the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) inhibits membrane activation of matrix metalloproteinase-2 (MMP-2). Matrix Biol 2011; 30:404-12. [PMID: 21839835 DOI: 10.1016/j.matbio.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
Cellular activation of latent matrix metalloproteinase-2 (proMMP-2) requires formation of a cell membrane-associated activation complex that involves specific binding between the hemopexin domain of proMMP-2 (PEX) and the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (C-TIMP-2). In this study, we tested the feasibility of inhibiting activation of proMMP-2 by exogenous inhibitors, which block the binding between PEX and TIMP-2. The recombinant C-TIMP-2 and synthetic peptides from C-TIMP-2 were used as inhibitors for proMMP-2 activation. Recombinant C-TIMP-2 bound specifically to both the catalytically inactive MMP-2(E404A) and the C-terminal domain of MMP-2 (PEX) in a concentration dependent manner with apparent K(d) of 3.9×10(-7)M and 1.7×10(-7)M, respectively. Moreover, C-TIMP-2 competed the binding between MMP-2(E404A) and full-length TIMP-2. Finally, activity assays showed that addition of C-TIMP-2 to HT-1080 fibrosarcoma cells inhibited proMMP-2 activation in a concentration-dependent manner. We then designed a synthetic peptide, P175L, consisting of 20 residues from the PEX-binding tail region of C-TIMP-2. P175L bound PEX and inhibited cell membrane-mediated activation of proMMP-2 in a concentration dependent manner. Deletion of the last 9 tail residues of C-TIMP-2 in P175L abrogated the inhibitory activities of the peptide showing that these residues were essential for function. Overall, these experiments have demonstrated that proMMP-2 activation can be inhibited by exogenous inhibitors which points to a potential strategy for MMP-2 specific inhibition.
Collapse
|
46
|
Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol 2011; 39:546-557.e8. [DOI: 10.1016/j.exphem.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 01/15/2023]
|
47
|
Szarvas T, vom Dorp F, Ergün S, Rübben H. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat Rev Urol 2011; 8:241-54. [PMID: 21487384 DOI: 10.1038/nrurol.2011.44] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) have important roles in several cancer-supporting cellular processes, such as extracellular matrix (ECM) remodeling, angiogenesis, apoptosis, epithelial-to-mesenchymal transition and cell proliferation. This broad range of activity has led to considerable interest in the use of MMPs in the clinical setting as diagnostic or prognostic biomarkers and as therapeutic targets. Levels of the different MMPs can be measured in several sample types, including paraffin-embedded or fresh frozen tissue, serum, plasma and urine, and by various analytical methodologies, such as immunohistochemistry, real-time PCR, western and northern blot analyses, enzyme-linked immunosorbent assay and zymography. Several MMPs have been identified as having potential diagnostic or prognostic utility, whether alone or in combination with currently available diagnostic tests or imaging modalities. Although the early broad-spectrum anti-MMP agents showed a lack of efficacy, our continually improving understanding of the complex physiologic and pathologic roles of MMPs might enable the development of new MMP-specific and tumor-specific therapies. Accordingly, MMPs will continue to be the subjects of intensive research in bladder cancer.
Collapse
Affiliation(s)
- Tibor Szarvas
- Department of Urology, University Hospital Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.
| | | | | | | |
Collapse
|
48
|
Lu Y, Liu S, Zhang S, Cai G, Jiang H, Su H, Li X, Hong Q, Zhang X, Chen X. Tissue inhibitor of metalloproteinase-1 promotes NIH3T3 fibroblast proliferation by activating p-Akt and cell cycle progression. Mol Cells 2011; 31:225-30. [PMID: 21350939 PMCID: PMC3932703 DOI: 10.1007/s10059-011-0023-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/09/2010] [Accepted: 11/24/2010] [Indexed: 11/29/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays various roles in cell growth in different cell types. However, few studies have focused on TIMP-1's effect on fibroblast cells. In this study, we investigated the effects of TIMP-1 overexpression on NIH3T3 fibroblast proliferation and potential transduction signaling pathways involved. Overexpression of TIMP-1, by transfection of the pLenti6/V5-DESTTIMP-1 plasmid, significantly promoted NIH3T3 proliferation as determined by the BrdU array. Neither 5 nor 15 nM GM6001 (matrix metalloproteinase system inhibitor) affected NIH3T3 proliferation, but 45 nM GM6001 inhibited proliferation. TIMP-1 overexpression activated the p-Akt pathway, but not the p-ERK or p-p38 pathway. In TIMP-1-transfected cells, cyclinD1 was upregulated and p21CIP1 and p27(KIP1) were downregulated, which promoted cell entry into the S and G2/M phases. The PI3-K inhibitor LY294002 abolished the TIMP-1-induced effects. Overexpression of intracellular TIMP-1 stimulated NIH3T3 fibroblast proliferation in a matrix metalloproteinase (MMP)-independent manner by activating the p-Akt pathway and related cell cycle progression.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| | - Shuxin Liu
- Dalian Municipal Central Hospital, Dalian, China
| | - Shujia Zhang
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
- Department of Nephrology, 1st Hospital of Haerbin, China
| | - Guangyan Cai
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| | - Hongwei Jiang
- Department of Endocrinology and Metabolism, 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Huabin Su
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| | - Xiaofan Li
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| | - Quan Hong
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| | - Xueguang Zhang
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Kidney Center and Key Lab of the People's Liberation Army (PLA), General Hospital of PLA, Beijing, China
| |
Collapse
|
49
|
Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 2010; 240:1127-41. [DOI: 10.1002/dvdy.22503] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/06/2022] Open
|
50
|
Fernandez CA, Roy R, Lee S, Yang J, Panigrahy D, Van Vliet KJ, Moses MA. The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. J Biol Chem 2010; 285:41886-95. [PMID: 20940305 DOI: 10.1074/jbc.m110.166439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs), the endogenous inhibitors of matrix metalloproteinases, have been shown to possess biological functions that are independent of their ability to inhibit matrix metalloproteinases. We have previously shown that the C-terminal domain of TIMP-2 and, in particular, Loop 6 inhibit capillary endothelial cell proliferation and angiogenesis both in vitro and in vivo. To elucidate the mechanism by which Loop 6 inhibits angiogenesis, we sought to determine whether its biological effects were the result of a known TIMP-2 protein-protein interaction or of a receptor-mediated event. In this study, we identify insulin-like growth factor-1 receptor as a binding partner of Loop 6/TIMP-2 and characterize this interaction on the endothelial cell surface and the consequences of this interaction on downstream receptor signaling.
Collapse
Affiliation(s)
- Cecilia A Fernandez
- Vascular Biology Program, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|