1
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bennett NK, Nguyen MK, Darch MA, Nakaoka HJ, Cousineau D, Ten Hoeve J, Graeber TG, Schuelke M, Maltepe E, Kampmann M, Mendelsohn BA, Nakamura JL, Nakamura K. Defining the ATPome reveals cross-optimization of metabolic pathways. Nat Commun 2020; 11:4319. [PMID: 32859923 PMCID: PMC7455733 DOI: 10.1038/s41467-020-18084-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.
Collapse
Affiliation(s)
- Neal K Bennett
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Maxwell A Darch
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Derek Cousineau
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Markus Schuelke
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Bryce A Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. Histochem Cell Biol 2018; 150:593-605. [PMID: 30361777 DOI: 10.1007/s00418-018-1748-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The nuclear pore complex is the main transportation hub for exchange between the cytoplasm and the nucleus. It is built from nucleoporins that form distinct subcomplexes to establish this huge protein complex in the nuclear envelope. Malfunctioning of nucleoporins is well known in human malignancies, such as gene fusions of NUP214 and NUP98 in hematological neoplasms and overexpression of NUP88 in a variety of human cancers. In the past decade, the incremental utilization of next-generation sequencing has unraveled mutations in nucleoporin genes in the context of an increasing number of hereditary diseases, often in a tissue-specific manner. It emerges that, on one hand, the central nervous system and the heart are particularly sensitive to mutations in nucleoporin genes. On the other hand, nucleoporins forming the scaffold structure of the nuclear pore complex are eminently mutation-prone. These novel and exciting associations between nucleoporins and human diseases emphasize the need to shed light on these unanticipated tissue-specific roles of nucleoporins that may go well beyond their role in nucleocytoplasmic transport. In this review, the current insights into altered nucleoporin function associated with human hereditary disorders will be discussed.
Collapse
|
4
|
Bonnet A, Palancade B. Regulation of mRNA trafficking by nuclear pore complexes. Genes (Basel) 2014; 5:767-91. [PMID: 25184662 PMCID: PMC4198930 DOI: 10.3390/genes5030767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed.
Collapse
Affiliation(s)
- Amandine Bonnet
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France.
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France.
| |
Collapse
|
5
|
Kylberg K, Björk P, Fomproix N, Ivarsson B, Wieslander L, Daneholt B. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp Cell Res 2009; 316:1028-38. [PMID: 19853599 DOI: 10.1016/j.yexcr.2009.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022]
Abstract
We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.
Collapse
Affiliation(s)
- Karin Kylberg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V, Shalev H, Attia R, Rechavi G, Simon AJ, Shohat M. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 2006; 60:214-22. [PMID: 16786527 DOI: 10.1002/ana.20902] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The objective of this study was to identify the gene causing autosomal recessive infantile bilateral striatal necrosis. METHODS We have mapped the disease gene in the candidate region to approximately 230kb on 19q13.33 in 8 interrelated families including a total of 12 patients and 39 unaffected individuals. RESULTS Sequencing of the nup62 gene showed a missense mutation causing a change from glutamine to proline (Q391P) in all the patients, producing a substitution from a polar, hydrophilic residue to a nonpolar, neutral residue. All the other 12 candidate genes were sequenced, and no pathogenic sequence changes were found. Comparisons of p62 protein sequences from diverse species indicate that glutamine at position 391 is highly conserved. Five prenatal diagnoses were performed in three at-risk families. INTERPRETATION This is the second example of a nuclear pore complex protein causing mendelian disease in humans (the first one is triple A syndrome). Our findings suggest that p62 has a cell type-specific role and is important in the degeneration of the basal ganglia in humans.
Collapse
Affiliation(s)
- Lina Basel-Vanagaite
- Department of Medical Genetics, Schneider Children's Medical Center of Israel and Rabin Medical Center, Petah Tikva, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ball JR, Ullman KS. Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 2005; 114:319-30. [PMID: 16133350 DOI: 10.1007/s00412-005-0019-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 10/25/2022]
Abstract
The vertebrate pore protein Nup153 plays pivotal roles in nuclear pore function. In addition to being important to pore architecture, Nup153 is a key participant in both import and export. The scope of Nup153 function also extends beyond the canonical view of the pore as a trafficking gateway. During the transition into mitosis, Nup153 directs proteins involved in membrane remodeling to the nuclear envelope. As cells exit mitosis, Nup153 is recruited to the chromosomal surface, where nuclear pores are formed anew in a complicated process still under much experimental scrutiny. In addition, Nup153 is targeted for protease cleavage during apoptosis and in response to certain viral infections, providing molecular insight into pore reconfiguration during cell response. Overall, the versatile nature of Nup153 underscores an emerging view of the nuclear pore at the nexus of many key cellular processes.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
8
|
Xie CX, Ozawa H, Yang YM, Kawata M. Immunohistochemical study of nucleoporin p62 in the hippocampus and hypothalamus of the rat brain. Neuroreport 2000; 11:2965-7. [PMID: 11006975 DOI: 10.1097/00001756-200009110-00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We immunohistochemically studied the distribution of nucleoporin p62 in the hippocampus and hypothalamus of rat brain. Previous reports have shown the presence of p62-immunoreactivity (ir) in the nuclear rim in the non-neuronal cells, but the present study showed that of p62-ir within the nucleus in addition to the nuclear rim in the neuronal cells of the hippocampus and hypothalamic nuclei; in these areas the glucocorticoid receptor (GR) undergoes nucleocytoplasmic translocation determined by ligand. We analyzed the expression of p62-ir after adrenalectomy (ADX). ADX changed the localization of GR-ir from the nucleus to the cytoplasm, but did not change the localization or immunoreactivity of p62, suggesting that nucleoporin p62 is stable regardless of intracellular signal transduction between the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- C X Xie
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | |
Collapse
|
9
|
Schwarz RE, Wojciechowicz DC, Picon AI, Schwarz MA, Paty PB. Wheatgerm agglutinin-mediated toxicity in pancreatic cancer cells. Br J Cancer 1999; 80:1754-62. [PMID: 10468292 PMCID: PMC2363124 DOI: 10.1038/sj.bjc.6690593] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lectin binding specificities for carbohydrate allow phenotypic and functional characterization of membrane-associated glycoproteins expressed on cancer cells. This analysis examined wheatgerm agglutinin binding to pancreatic cancer cells in vitro and the resulting toxicity. Membrane preparations of nine human pancreatic carcinoma cell lines were studied for lectin binding using wheatgerm agglutinin (WGA), concanavalin A (ConA) and phytohaemagglutinin-L (PHA-L) in a lectin blot analysis. Cell proliferation in vitro was measured by thymidine incorporation in the absence or presence of lectins at various concentrations. Sialic acid binding lectins or succinyl-WGA (succWGA) served as controls. WGA toxicity was tested after swainsonine or neuraminidase pretreatment. Binding and uptake of fluorescein-labelled lectins was studied under fluorescence microscopy. All pancreatic cell lines displayed high WGA membrane binding, primarily to sialic acid residues. Other lectins were bound with weak to moderate intensity only. Lectin toxicity corresponded to membrane binding intensity, and was profound in case of WGA (ID50 at 2.5-5 microg ml(-1)). WGA exposure induced chromatin condensation, nuclear fragmentation and DNA release consistent with apoptosis. Important steps for WGA toxicity included binding to sialic acid on swainsonine-sensitive carbohydrate and lectin internalization. There was rapid cellular uptake and subsequent nuclear relocalization of WGA. In contradistinction to the other lectins studied, WGA proved highly toxic to human pancreatic carcinoma cells in vitro. WGA binding to sialic acid residues of N-linked carbohydrate, cellular uptake and subsequent affinity to N-acetyl glucosamine appear to be necessary steps. Further analysis of this mechanism of profound toxicity may provide insight relevant to the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- R E Schwarz
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The recent progress with respect to understanding the signals mediating the transport of proteins in both directions through the NPC, and cellular proteins interacting with these signals to effect the transport process has made possible a number of advances in terms of the use of this information in a clinical setting. In particular, our knowledge of the mechanism of regulation of the process, and of how we may exploit the cellular transport machinery itself in a therapeutic situation, especially where there may be transport pathways specific to particular viruses, has advanced considerably. In this context, this review expounds current understanding of the signals conferring targeting to the nucleus, and their practical and potential use in delivering molecules of interest to the nucleus in a clinical context. It also deals with targeting signals conferring nuclear protein export/ shuttling between nuclear and cytoplasmic compartments as well as with those conferring nuclear or cytoplasmic retention, and with the specific mechanisms regulating the activity of these signals, and in particular those regulating signal-dependent nuclear protein import. Detailed understanding of the processes of signal-mediated nuclear protein import/export and its regulation enables the considered application and optimization of approaches to target molecules of interest, such as plasmid DNA or toxic molecules, efficiently to the nucleus according to need in a clinical or research context, and enhance the expression or efficiency of their action, respectively. The use of nuclear targeting signals in this context is reviewed, and future possibilities in terms of the application of our growing understanding of nuclear transport and its regulation are discussed.
Collapse
Affiliation(s)
- D A Jans
- Nuclear Signaling Laboratory, John Curtin School of Medical Research, Canberra, Australia.
| | | | | |
Collapse
|
11
|
Kiseleva E, Goldberg MW, Allen TD, Akey CW. Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 1998; 111 ( Pt 2):223-36. [PMID: 9405308 DOI: 10.1242/jcs.111.2.223] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nuclear Pore Complex (NPC) regulates nucleocytoplasmic transport by providing small channels for passive diffusion and multiple docking surfaces that lead to a central translocation channel for active transport. In this study we have investigated by high resolution scanning and transmission electron microscopy the dynamics of NPC structure in salivary gland nuclei from Chironomus during Balbiani ring (BR) mRNP translocation, and present evidence of rearrangement of the transporter related to mRNP export. Analysis of the individual NPC components verified a strong evolutionary conservation of NPC structure between vertebrates and invertebrates. The transporter is an integral part of the NPC and is composed of a central short double cylinder that is retained within the inner spoke ring, and two peripheral globular assemblies which are tethered to the cytoplasmic and nucleoplasmic coaxial rings by eight conserved internal ring filaments. Distinct stages of BR mRNP nuclear export through the individual NPC components were directly visualized and placed in a linear transport sequence. The BR mRNP first binds to the NPC basket, which forms an expanded distal basket ring. In this communication we present stages of BR mRNP transport through the nucleoplasmic, central and cytoplasmic transporter subunits, which change their conformation during mRNP translocation, and the emergence of mRNP into the cytoplasm. We propose that the reorganization of the basket may be driven, in part, by an active translocation process at the transporter. Furthermore, the images provide dramatic evidence that the transporter functions as a central translocation channel with transiently open discrete gates in its globular assemblies. A model of NPC transporter reorganization accompanied with mRNP translocation is discussed.
Collapse
Affiliation(s)
- E Kiseleva
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Cristie Hospital National Health Service Trust, Manchester, M20 9BX, UK
| | | | | | | |
Collapse
|
12
|
Abstract
The past year has seen significant advances in our understanding of the mechanism of RNA movement between the nucleus and the cytoplasm. The emerging view is that proteins bind to and escort RNAs to their proper subcellular location. The discovery of peptide signals that target nuclear export and the identification of novel protein mediators of RNA export are examples of significant recent discoveries.
Collapse
Affiliation(s)
- M S Lee
- Division of Cellular and Molecular Biology Dana-Farber Cancer Institute Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 44 Binney Street, Boston, Massachusetts, 02115, USA
| | | |
Collapse
|
13
|
Ewald A, Kossner U, Scheer U, Dabauvalle MC. A biochemical and immunological comparison of nuclear and cytoplasmic pore complexes. J Cell Sci 1996; 109 ( Pt 7):1813-24. [PMID: 8832404 DOI: 10.1242/jcs.109.7.1813] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pore complexes are not confined to the nuclear envelope but can also be found in the cytoplasm of numerous cell types in the form of annulate lamellae (AL). We have induced formation of AL by exposure of rat cells (line RV) to sublethal doses of the antimitotic drug vinblastine sulfate, and compared the distribution of several nuclear pore complex proteins (nucleoporins) in the nuclear envelope and AL by immunocytochemistry, cytochemical lectin binding studies and immunoblot analyses of nuclear and AL-enriched fractions. All the antibodies used yielded punctate nuclear surface staining in immunofluorescence microscopy which is characteristic for nuclear pore complex components. When we applied antibodies against the nucleoporin p62, AL were visualized as numerous cytoplasmic dot-like structures. Immunogold electron microscopy confirmed the correspondence of the cytoplasmic bodies with stacks of AL. Antibodies to constituents of the cytoplasmic (nup180) and nucleoplasmic (nup153) filaments extending from both sides of nuclear pore complexes also stained the AL, indicating that pore complexes are intrinsically asymmetric assemblies independent of their specific intracellular topology. By contrast, AL were negative with five different antibodies against the transmembrane nuclear pore glycoprotein gp210 and the lectin concanavalin A (ConA) known to bind to the oligosaccharide side chains of gp210. Similarly, there was no staining of the AL with antibodies to the other nuclear pore membrane protein so far known in higher eukaryotes, POM121. Immunoblot analyses confirmed the presence of p62, nup180 and nup153 in both the nuclear and AL fractions and the absence of gp210 and POM121 from AL. Our results do not support the generally held view that gp210 and POM121 function in anchoring the pore complex scaffold to the pore membrane. Rather, they point to a role for these proteins in transport processes through the nuclear pore complexes. Since AL are not involved in nucleocytoplasmic transport processes they may lack components of the transport machinery.
Collapse
Affiliation(s)
- A Ewald
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, University of Würzburg, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
The nuclear pore complex (NPC) is an approximately 120 megadalton (MDa) supramolecular assembly embedded in the double-membraned nuclear envelope (NE) that mediates bidirectional molecular trafficking between the cytoplasm and the nucleus of interphase eukaryotic cells. The structure of the NPC has been studied extensively by electron microscopy (EM), and a consensus model of its basic framework has emerged. Over the past few years, there has been significant progress in dissecting the molecular constituents of the NPC and in identifying distinct NPC subcomplexes. The combination of well-characterized antibodies with different EM specimen preparation methods has allowed localization of several of these proteins within the three-dimensional (3-D) architecture of the NPC. Thus, the molecular dissection of the NPC is definitely on its way to being elucidated. Here, we review these findings and discuss the emerging structural concepts.
Collapse
Affiliation(s)
- N Panté
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
15
|
Abstract
The past two years have seen a significant increase in our understanding of nuclear protein import. Five cytosolic import factors have been identified, two of which have been shown to directly interact with components of the nuclear pore complex. These findings enable refinement of previous models for steps in the nuclear import pathway, and provide a framework for future research.
Collapse
Affiliation(s)
- F Melchior
- Scripps Research Institute, Department of Cell Biology, La Jolla, CA 92037, USA
| | | |
Collapse
|