1
|
Ferraris S, Scalia AC, Nascimben M, Perero S, Rimondini L, Spriano S, Cochis A. Bacteriostatic, silver-doped, zirconia-based thin coatings for temporary fixation devices tuning stem cells' expression of adhesion-relevant genes and proteins. BIOMATERIALS ADVANCES 2025; 176:214360. [PMID: 40449285 DOI: 10.1016/j.bioadv.2025.214360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/22/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Temporary fixation devices must support bone healing, be easily removed without bone tissue overgrowth, and reduce the risk of infection. To match these needs, mechanically and chemically stable thin coatings, based on a zirconia matrix doped with silver (ZrO2-Ag), were sputtered on Ti6Al4V. Coatings with two silver concentrations were produced: a low (0.2 % at Ag) concentration (AL) for bacteriostatic effect and a high (0.5 % at Ag) concentration (AH) for antibacterial properties. Surfaces were characterized for silver content and release, mechanical adhesion, morphology, roughness, wettability, and surface zeta potential, reporting high stability and a continuous Ag release over 28 days. Direct cytocompatibility was shown for human mesenchymal stem cells (hMSC), while antibacterial properties were verified towards Staphylococcus aureus. Results revealed non-toxic and anti-adhesion effects of AL that were deeply investigated towards hMSC by a multi-omics approach. Transcriptomics revealed a down-regulation of cadherins- and integrins-related genes involved in the cell-to-cell and cell-to-substrate adhesion, whereas proteomics confirmed a reduced expression of adhesion proteins (Talin and Ras homolog family member A - RhoA). The OMICS profiles were matched by bioinformatics analysis, confirming a cluster of preserved biological functions strongly related to the cells' adhesion but not to apoptosis. Therefore, AL is a good candidate for bone temporary fixation devices, not interfering with bone healing (cytocompatible), avoiding bone adhesion on the implant surface, and being bacteriostatic.
Collapse
Affiliation(s)
- Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Alessandro C Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Italy
| | - Mauro Nascimben
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Italy
| | - Sergio Perero
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Italy
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, Italy.
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Italy
| |
Collapse
|
2
|
López-Gay JM, Nunley H, Spencer M, di Pietro F, Guirao B, Bosveld F, Markova O, Gaugue I, Pelletier S, Lubensky DK, Bellaïche Y. Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue. Science 2020; 370:370/6514/eabb2169. [PMID: 33060329 DOI: 10.1126/science.abb2169] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Biological systems tailor their properties and behavior to their size throughout development and in numerous aspects of physiology. However, such size scaling remains poorly understood as it applies to cell mechanics and mechanosensing. By examining how the Drosophila pupal dorsal thorax epithelium responds to morphogenetic forces, we found that the number of apical stress fibers (aSFs) anchored to adherens junctions scales with cell apical area to limit larger cell elongation under mechanical stress. aSFs cluster Hippo pathway components, thereby scaling Hippo signaling and proliferation with area. This scaling is promoted by tricellular junctions mediating an increase in aSF nucleation rate and lifetime in larger cells. Development, homeostasis, and repair entail epithelial cell size changes driven by mechanical forces; our work highlights how, in turn, mechanosensitivity scales with cell size.
Collapse
Affiliation(s)
- Jesús M López-Gay
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Hayden Nunley
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meryl Spencer
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Florencia di Pietro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Boris Guirao
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Floris Bosveld
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Olga Markova
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Isabelle Gaugue
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - David K Lubensky
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA. .,Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France. .,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| |
Collapse
|
3
|
Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH. Targeting Cell Adhesion Molecules via Carbonate Apatite-Mediated Delivery of Specific siRNAs to Breast Cancer Cells In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11070309. [PMID: 31269666 PMCID: PMC6680929 DOI: 10.3390/pharmaceutics11070309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
While several treatment strategies are applied to cure breast cancer, it still remains one of the leading causes of female deaths worldwide. Since chemotherapeutic drugs have severe side effects and are responsible for development of drug resistance in cancer cells, gene therapy is now considered as one of the promising options to address the current treatment limitations. Identification of the over-expressed genes accounting for constitutive activation of certain pathways, and their subsequent knockdown with specific small interfering RNAs (siRNAs), could be a powerful tool in inhibiting proliferation and survival of cancer cells. In this study, we delivered siRNAs against mRNA transcripts of over-regulated cell adhesion molecules such as catenin alpha 1 (CTNNA1), catenin beta 1 (CTNNB1), talin-1 (TLN1), vinculin (VCL), paxillin (PXN), and actinin-1 (ACTN1) in human (MCF-7 and MDA-MB-231) and murine (4T1) cell lines as well as in the murine female Balb/c mice model. In order to overcome the barriers of cell permeability and nuclease-mediated degradation, the pH-sensitive carbonate apatite (CA) nanocarrier was used as a delivery vehicle. While targeting CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 resulted in a reduction of cell viability in MCF-7 and MDA-MB-231 cells, delivery of all these siRNAs via carbonate apatite (CA) nanoparticles successfully reduced the cell viability in 4T1 cells. In 4T1 cells, delivery of CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 siRNAs with CA caused significant reduction in phosphorylated and total AKT levels. Furthermore, reduced band intensity was observed for phosphorylated and total MAPK upon transfection of 4T1 cells with CTNNA1, CTNNB1, and VCL siRNAs. Intravenous delivery of CTNNA1 siRNA with CA nanoparticles significantly reduced tumor volume in the initial phase of the study, while siRNAs targeting CTNNB1, TLN1, VCL, PXN, and ACTN1 genes significantly decreased the tumor burden at all time points. The tumor weights at the end of the treatments were also notably smaller compared to CA. This successfully demonstrates that targeting these dysregulated genes via RNAi and by using a suitable delivery vehicle such as CA could serve as a promising therapeutic treatment modality for breast cancers.
Collapse
Affiliation(s)
- Maeirah Afzal Ashaie
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Izyani Kamaruzman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nabilah Ibnat
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| |
Collapse
|
4
|
Kojima C, Narita Y, Nakajima Y, Morimoto N, Yoshikawa T, Takahashi N, Handa A, Waku T, Tanaka N. Modulation of Cell Adhesion and Differentiation on Collagen Gels by the Addition of the Ovalbumin Secretory Signal Peptide. ACS Biomater Sci Eng 2019; 5:5698-5704. [DOI: 10.1021/acsbiomaterials.8b01505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yuri Narita
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusuke Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Naoya Morimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takashi Yoshikawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nobuyuki Takahashi
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Akihiro Handa
- R & D Division, Kewpie Corporation, 2-5-7 Sengawa-cho, Chofu, Tokyo, 182-0002, Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
6
|
Knüppel L, Heinzelmann K, Lindner M, Hatz R, Behr J, Eickelberg O, Staab-Weijnitz CA. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis. Respir Res 2018; 19:67. [PMID: 29673351 PMCID: PMC5909279 DOI: 10.1186/s12931-018-0768-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Methods Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. Results FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. Conclusions These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.
Collapse
Affiliation(s)
- Larissa Knüppel
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany
| | | | - Rudolf Hatz
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany.,Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jürgen Behr
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany.,Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany.,Member of the German Center of Lung Research (DZL), Munich, Germany.,Colorado Anschutz Medical Campus, Pulmonary and Critical Care Medicine University, Denver, Colorado, USA
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität and Helmholtz Zentrum Munich, Max-Lebsche-Platz 31, 81377, Munich, Germany. .,Member of the German Center of Lung Research (DZL), Munich, Germany.
| |
Collapse
|
7
|
Lisowska J, Rödel CJ, Manet S, Miroshnikova YA, Boyault C, Planus E, De Mets R, Lee HH, Destaing O, Mertani H, Boulday G, Tournier-Lasserve E, Balland M, Abdelilah-Seyfried S, Albiges-Rizo C, Faurobert E. Cerebral Cavernous Malformation 1/2 complex controls ROCK1 and ROCK2 complementary functions for endothelial integrity. J Cell Sci 2018; 131:jcs.216093. [DOI: 10.1242/jcs.216093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This cross-talk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in CCM genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. Our study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1/2-depleted endothelial monolayers and rescues cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down of Rock2 but not Rock1 in WT zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it identifies solely the ROCK1 isoform as therapeutic target for the CCM disease.
Collapse
Affiliation(s)
- Justyna Lisowska
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Sandra Manet
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Yekaterina A. Miroshnikova
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Cyril Boyault
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Emmanuelle Planus
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Richard De Mets
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5588 LIPhy, F-38041 Grenoble, France
| | - Hsiao-Hui Lee
- Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| | - Olivier Destaing
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Hichem Mertani
- INSERM UMR 1052, CNRS 5286 CRCL Centre Léon Bérard F-69373 Lyon Cedex 08, France
| | - Gwénola Boulday
- INSERM, UMR-S1161, Paris, F-75010, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S1161, Paris, F-75010, France
- AP-HP, Groupe hospitalier Saint-Louis Lariboisiere-Fernand-Widal, Paris, F-75010, France
| | - Elisabeth Tournier-Lasserve
- INSERM, UMR-S1161, Paris, F-75010, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S1161, Paris, F-75010, France
- AP-HP, Groupe hospitalier Saint-Louis Lariboisiere-Fernand-Widal, Paris, F-75010, France
| | - Martial Balland
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5588 LIPhy, F-38041 Grenoble, France
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Corinne Albiges-Rizo
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Eva Faurobert
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| |
Collapse
|
8
|
Zhang SM, Yu LL, Qu T, Hu Y, Yuan DZ, Zhang S, Xu Q, Zhao YB, Zhang JH, Yue LM. The Changes of Cytoskeletal Proteins Induced by the Fast Effect of Estrogen in Mouse Blastocysts and Its Roles in Implantation. Reprod Sci 2017; 24:1639-1646. [PMID: 28299994 DOI: 10.1177/1933719117697126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
It is necessary for estrogen to activate mouse blastocysts, so that they can attach to endometrial epithelium in implantation and in our previous research, we have proved estrogen can induce a fast increase in intracellular calcium of mouse blastocysts through acting on G protein-coupled receptor 30 (GPR30), which further promotes their implantation. Moreover, there has been evidence that cytoskeletal proteins are involved in integrin-mediated adhesion of many kinds of cells, which also plays an important role in implantation. To prove estrogen induces rapidly the changes of cytoskeletal proteins in mouse blastocysts and its roles in implantation, we first used immunofluorescence staining and laser confocal microscopy to investigate the fast effect of estrogen on the expression and localization of cytoskeletal proteins in mouse blastocysts. Second, we used electroporation associated with RNA interference to knock down one of the important cytoskeletal proteins, talin, in the mouse blastocyst cells to investigate the fast effect of estrogen on the localization of integrins and the binding activity of integrins with their ligand fibronectin (FN). At last, mouse blastocysts with different treatments were cultured with FN or uterine epithelial cell line Ishikawa in vitro, respectively, and transferred into the bilateral uterine horns of recipient mice, to study the role of the fast effect of estrogen on cytoskeletal proteins in blastocysts adhesion and implantation. Our results indicated that estradiol (E2), E2 conjugated with bovine serum album (E2-BSA) and G-1 (a GPR30-specific agonist) could induce cytoskeletal protein talin, vinculin, and actin to cluster in the mouse blastocysts, while G15 (a GPR30-specific antagonist) and BAPTA (a calcium chelator) may block this effect induced by E2-BSA. Furthermore, E2-BSA could induce the clustering and relocalization of integrin β1 and β3 and increase the FN-binding activity of integrins in blastocyst cells, while E2-BSA could not induce these effects in the blastocysts pretreated with talin-small interfering RNA (siRNA). Meanwhile, the adhesion rate and implantation rate of blastocysts pretreated with talin-siRNA were significantly lower than those pretreated with control-siRNA. We provided the first evidence that the fast effect of estrogen might cause the clustering of the cytoskeletal proteins in mouse blastocyst cells and further induce the changes of localization and functional activity of integrins in the blastocyst cells, which play important roles in blastocyst implantation.
Collapse
Affiliation(s)
- Shi-Mao Zhang
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- 2 Chengdu Women and Children's Central Hospital, Chengdu, Sichuan, China
| | - Lin-Lin Yu
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- 2 Chengdu Women and Children's Central Hospital, Chengdu, Sichuan, China
| | - Ting Qu
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ying Hu
- 3 Department of Obstetrics &Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| | - Dong-Zhi Yuan
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Zhang
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qian Xu
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - You-Bo Zhao
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jin-Hu Zhang
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Li-Min Yue
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Imperlini E, Gnecchi M, Rognoni P, Sabidò E, Ciuffreda MC, Palladini G, Espadas G, Mancuso FM, Bozzola M, Malpasso G, Valentini V, Palladini G, Orrù S, Ferraro G, Milani P, Perlini S, Salvatore F, Merlini G, Lavatelli F. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep 2017; 7:15661. [PMID: 29142197 PMCID: PMC5688098 DOI: 10.1038/s41598-017-15424-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
AL amyloidosis is characterized by widespread deposition of immunoglobulin light chains (LCs) as amyloid fibrils. Cardiac involvement is frequent and leads to life-threatening cardiomyopathy. Besides the tissue alteration caused by fibrils, clinical and experimental evidence indicates that cardiac damage is also caused by proteotoxicity of prefibrillar amyloidogenic species. As in other amyloidoses, the damage mechanisms at cellular level are complex and largely undefined. We have characterized the molecular changes in primary human cardiac fibroblasts (hCFs) exposed in vitro to soluble amyloidogenic cardiotoxic LCs from AL cardiomyopathy patients. To evaluate proteome alterations caused by a representative cardiotropic LC, we combined gel-based with label-free shotgun analysis and performed bioinformatics and data validation studies. To assess the generalizability of our results we explored the effects of multiple LCs on hCF viability and on levels of a subset of cellular proteins. Our results indicate that exposure of hCFs to cardiotropic LCs translates into proteome remodeling, associated with apoptosis activation and oxidative stress. The proteome alterations affect proteins involved in cytoskeletal organization, protein synthesis and quality control, mitochondrial activity and metabolism, signal transduction and molecular trafficking. These results support and expand the concept that soluble amyloidogenic cardiotropic LCs exert toxic effects on cardiac cells.
Collapse
Affiliation(s)
- Esther Imperlini
- IRCCS SDN, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Massimiliano Gnecchi
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eduard Sabidò
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Chiara Ciuffreda
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Guadalupe Espadas
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco Mattia Mancuso
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Margherita Bozzola
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giuseppe Malpasso
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Veronica Valentini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefania Orrù
- IRCCS SDN, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Movement Sciences, "Parthenope" University, Naples, Italy
| | - Giovanni Ferraro
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefano Perlini
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Naples, Italy. .,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Pavia, Italy.
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
|
11
|
Novotna Z, Reznickova A, Rimpelova S, Vesely M, Kolska Z, Svorcik V. Tailoring of PEEK bioactivity for improved cell interaction: plasma treatment in action. RSC Adv 2015. [DOI: 10.1039/c5ra03861h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the extensive use of polyetheretherketone (PEEK) in biomedical applications, information about cell adhesion on this biomaterial is limited.
Collapse
Affiliation(s)
- Zdenka Novotna
- Department of Solid State Engineering
- University of Chemistry and Technology
- Prague
- Czech Republic
| | - Alena Reznickova
- Department of Solid State Engineering
- University of Chemistry and Technology
- Prague
- Czech Republic
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology
- University of Chemistry and Technology
- Prague
- Czech Republic
| | - Martin Vesely
- Department of Organic Technology
- University of Chemistry and Technology
- Prague
- Czech Republic
| | - Zdenka Kolska
- Faculty of Science
- J. E. Purkyne University in Usti nad Labem
- Usti nad Labem
- Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering
- University of Chemistry and Technology
- Prague
- Czech Republic
| |
Collapse
|
12
|
Duthie SJ, Beattie JH, Gordon MJ, Pirie LP, Nicol F, Reid MD, Duncan GJ, Cantlay L, Horgan G, McNeil CJ. Nutritional B vitamin deficiency alters the expression of key proteins associated with vascular smooth muscle cell proliferation and migration in the aorta of atherosclerotic apolipoprotein E null mice. GENES AND NUTRITION 2014; 10:446. [PMID: 25446494 DOI: 10.1007/s12263-014-0446-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
Abstract
Low B vitamin status is linked with human vascular disease. We employed a proteomic and biochemical approach to determine whether nutritional folate deficiency and/or hyperhomocysteinemia altered metabolic processes linked with atherosclerosis in ApoE null mice. Animals were fed either a control fat (C; 4 % w/w lard) or a high-fat [HF; 21 % w/w lard and cholesterol (0/15 % w/w)] diet with different B vitamin compositions for 16 weeks. Aorta tissue was prepared and global protein expression, B vitamin, homocysteine and lipoprotein status measured. Changes in the expression of aorta proteins were detected in response to multiple B vitamin deficiency combined with a high-fat diet (P < 0.05) and were strongly linked with lipoprotein concentrations measured directly in the aorta adventitia (P < 0.001). Pathway analysis revealed treatment effects in the aorta-related primarily to cytoskeletal organisation, smooth muscle cell adhesion and invasiveness (e.g., fibrinogen, moesin, transgelin, vimentin). Combined B vitamin deficiency induced striking quantitative changes in the expression of aorta proteins in atherosclerotic ApoE null mice. Deregulated expression of these proteins is associated with human atherosclerosis. Cellular pathways altered by B vitamin status included cytoskeletal organisation, cell differentiation and migration, oxidative stress and chronic inflammation. These findings provide new insight into the molecular mechanisms through which B vitamin deficiency may accelerate atherosclerosis.
Collapse
Affiliation(s)
- Susan J Duthie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schubert R, Strohmeyer N, Bharadwaj M, Ramanathan SP, Krieg M, Friedrichs J, Franz CM, Muller DJ. Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single-cell force spectroscopy. FEBS Lett 2014; 588:3639-48. [PMID: 24928443 DOI: 10.1016/j.febslet.2014.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Single-cell force spectroscopy (SCFS) is becoming a widely used method to quantify the adhesion of a living cell to a substrate, another cell or tissue. The high sensitivity of SCFS permits determining the contributions of individual cell adhesion molecules (CAMs) to the adhesion force of an entire cell. However, to prepare adherent cells for SCFS, they must first be detached from tissue-culture flasks or plates. EDTA and trypsin are often applied for this purpose. Because cellular properties can be affected by this treatment, cells need to recover before being further characterized by SCFS. Here we introduce atomic force microscopy (AFM)-based SCFS to measure the mechanical and adhesive properties of HeLa cells and mouse embryonic kidney fibroblasts while they are recovering after detachment from tissue-culture. We find that mechanical and adhesive properties of both cell lines recover quickly (<10 min) after detachment using EDTA, while trypsin-detached fibroblasts require >60 min to fully recover. Our assay introduced to characterize the recovery of mammalian cells after detachment can in future be used to estimate the recovery behavior of other adherent cell types.
Collapse
Affiliation(s)
- Rajib Schubert
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Subramanian P Ramanathan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Institute for Biofunctional Polymer Materials, Hohe Str. 6, 01069 Dresden, Germany
| | - Clemens M Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | - Daniel J Muller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
14
|
Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. ACTA ACUST UNITED AC 2013; 202:545-61. [PMID: 23918940 PMCID: PMC3734079 DOI: 10.1083/jcb.201303044] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of CCM1/2 leads to destabilization of ICAP-1 and up-regulation of β1 integrin, resulting in the destabilization of intercellular junctions due to increased cell contractility and aberrant extracellular matrix remodeling. The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.
Collapse
Affiliation(s)
- Eva Faurobert
- INSERM U823, Institut Albert Bonniot, Grenoble F-38042, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14:503-17. [PMID: 23860236 PMCID: PMC4116690 DOI: 10.1038/nrm3624] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.
Collapse
Affiliation(s)
- David A Calderwood
- Departments of Pharmacology and of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, S. Parks Rd., Oxford, OX1 3QU, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH
| |
Collapse
|
16
|
Chen Y, Rice W, Gu Z, Li J, Huang J, Brenner MB, Van Hoek A, Xiong J, Gundersen GG, Norman JC, Hsu VW, Fenton RA, Brown D, Lu HAJ. Aquaporin 2 promotes cell migration and epithelial morphogenesis. J Am Soc Nephrol 2012; 23:1506-17. [PMID: 22859853 DOI: 10.1681/asn.2012010079] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aquaporin 2 (AQP2) water channel, expressed in kidney collecting ducts, contributes critically to water homeostasis in mammals. Animals lacking or having significantly reduced levels of AQP2, however, have not only urinary concentrating abnormalities but also renal tubular defects that lead to neonatal mortality from renal failure. Here, we show that AQP2 is not only a water channel but also an integrin-binding membrane protein that promotes cell migration and epithelial morphogenesis. AQP2 expression modulates the trafficking and internalization of integrin β1, facilitating its turnover at focal adhesions. In vitro, disturbing the interaction between AQP2 and integrin β1 by mutating the RGD motif led to reduced endocytosis, retention of integrin β1 at the cell surface, and defective cell migration and tubulogenesis. Similarly, in vivo, AQP2-null mice exhibited significant retention of integrin β1 at the basolateral membrane and had tubular abnormalities. In summary, these data suggest that the water channel AQP2 interacts with integrins to promote renal epithelial cell migration, contributing to the structural and functional integrity of the mammalian kidney.
Collapse
Affiliation(s)
- Ying Chen
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cai EP, Casimir M, Schroer SA, Luk CT, Shi SY, Choi D, Dai XQ, Hajmrle C, Spigelman AF, Zhu D, Gaisano HY, MacDonald PE, Woo M. In vivo role of focal adhesion kinase in regulating pancreatic β-cell mass and function through insulin signaling, actin dynamics, and granule trafficking. Diabetes 2012; 61:1708-18. [PMID: 22498697 PMCID: PMC3379666 DOI: 10.2337/db11-1344] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic β-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)-driven Cre-loxP recombination system to specifically delete FAK in pancreatic β-cells. These RIPcre(+)fak(fl/fl) mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell viability and proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal-related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient β-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca(2+) influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic β-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking.
Collapse
Affiliation(s)
- Erica P. Cai
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Marina Casimir
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Cynthia T. Luk
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Sally Yu Shi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Diana Choi
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Hajmrle
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Dan Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y. Gaisano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Corresponding author: Minna Woo, , or Patrick E. MacDonald,
| | - Minna Woo
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Corresponding author: Minna Woo, , or Patrick E. MacDonald,
| |
Collapse
|
18
|
Zheng Y, Qiu J, Hu J, Wang G. Concepts and hypothesis: integrin cytoplasmic domain-associated protein-1 (ICAP-1) as a potential player in cerebral cavernous malformation. J Neurol 2012; 260:10-9. [DOI: 10.1007/s00415-012-6567-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 11/28/2022]
|
19
|
O’TOOLE TIMOTHYE, BIALKOWSKA KATARZYNA, LI XIAOHONG, FOX JOANE. Tiam1 is recruited to β1-integrin complexes by 14-3-3ζ where it mediates integrin-induced Rac1 activation and motility. J Cell Physiol 2011; 226:2965-78. [PMID: 21302295 PMCID: PMC6385608 DOI: 10.1002/jcp.22644] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
14-3-3 is an adaptor protein that localizes to the leading edge of spreading cells, returning to the cytoplasm as spreading ceases. Previously, we showed that integrin-induced Rac1 activation and spreading were inhibited by sequestration of 14-3-3ζ and restored by its overexpression. Here, we determined whether 14-3-3 mediates integrin signaling by localizing a guanine nucleotide exchange factor (GEF) to Rac1-activating integrin complexes. We showed that GST-14-3-3ζ recruited the Rac1-GEF, Tiam1, from cell lysates through Tiam1 residues 1-182 (N(1-182) Tiam1). The physiological relevance of this interaction was examined in serum-starved Hela cells plated on fibronectin. Both Tiam1 and N(1-182) Tiam1 were recruited to 14-3-3-containing β1-integrin complexes, as shown by co-localization and co-immunoprecipitation. Integrin-induced Rac1 activation was inhibited when Tiam1 was depleted with siRNA or by overexpression of catalytically inactive N(1-182) Tiam1, which was incorporated into 14-3-3/β1-integrin complexes and inhibited spreading in a manner that was overcome by constitutively active Rac1. Integrin-induced Rac1 activation, spreading, and migration were also inhibited by overexpression of 14-3-3ζ S58D, which was unable to recruit Tiam1 from lysates, co-immunoprecipitate with Tiam1, or mediate its incorporation into β1-integrin complexes. Taken together, these findings suggest a previously unrecognized mechanism of integrin-induced Rac1 activation in which 14-3-3 dimers localize Tiam1 to integrin complexes, where it mediates integrin-dependent Rac1 activation, thus initiating motility-inducing pathways. Moreover, since Tiam1 is recruited to other sites of localized Rac1 activation through its PH-CC-EX domain, the present findings show that a mechanism involving its N-terminal 182 residues is utilized to recruit Tiam1 to motility-inducing integrin complexes.
Collapse
Affiliation(s)
- TIMOTHY E. O’TOOLE
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - KATARZYNA BIALKOWSKA
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - XIAOHONG LI
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - JOAN E.B. FOX
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
20
|
Renault-Mihara F, Katoh H, Ikegami T, Iwanami A, Mukaino M, Yasuda A, Nori S, Mabuchi Y, Tada H, Shibata S, Saito K, Matsushita M, Kaibuchi K, Okada S, Toyama Y, Nakamura M, Okano H. Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. EMBO Mol Med 2011; 3:682-96. [PMID: 21898827 PMCID: PMC3377108 DOI: 10.1002/emmm.201100179] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 08/11/2011] [Accepted: 08/31/2011] [Indexed: 01/04/2023] Open
Abstract
The migratory response of astrocytes is essential for restricting inflammation and preserving tissue function after spinal cord injury (SCI), but the mechanisms involved are poorly understood. Here, we observed stimulation of in vitro astrocyte migration by the new potent glycogen synthase kinase-3 (GSK-3) inhibitor Ro3303544 and investigated the effect of Ro3303544 administration for 5 days following SCI in mice. This treatment resulted in accelerated migration of reactive astrocytes to sequester inflammatory cells that spared myelinated fibres and significantly promoted functional recovery. Moreover, the decreased extent of chondroitin sulphate proteoglycans and collagen IV demonstrated that scarring was reduced in Ro3303544-treated mice. A variety of in vitro and in vivo experiments further suggested that GSK-3 inhibition stimulated astrocyte migration by decreasing adhesive activity via reduced surface expression of β1-integrin. Our results reveal a novel benefit of GSK-3 inhibition for SCI and suggest that the stimulation of astrocyte migration is a feasible therapeutic strategy for traumatic injury in the central nervous system.
Collapse
|
21
|
Weng J, Liao M, Zou S, Bao J, Zhou J, Qu L, Feng R, Feng X, Zhao Z, Jing Z. Downregulation of FHL1 Expression in Thoracic Aortic Dissection: Implications in Aortic Wall Remodeling and Pathogenesis of Thoracic Aortic Dissection. Ann Vasc Surg 2011; 25:240-7. [DOI: 10.1016/j.avsg.2010.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
|
22
|
Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS NANO 2010; 4:6587-98. [PMID: 20979372 DOI: 10.1021/nn1018279] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon-based materials, including graphene and carbon nanotubes, have been considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for stem cell differentiation, and components of implant devices. Despite the potential biomedical applications of these materials, only limited information is available regarding the cellular events, including cell viability, adhesion, and spreading, that occur when mammalian cells interface with carbon-based nanomaterials. Here, we report behaviors of mammalian cells, specifically NIH-3T3 fibroblast cells, grown on supported thin films of graphene and carbon nanotubes to investigate biocompatibility of the artificial surface. Proliferation assay, cell shape analysis, focal adhesion study, and quantitative measurements of cell adhesion-related gene expression levels by RT-PCR reveal that the fibroblast cells grow well, with different numbers and sizes of focal adhesions, on graphene- and carbon nanotube-coated substrates. Interestingly, the gene transfection efficiency of cells grown on the substrates was improved up to 250% that of cells grown on a cover glass. The present study suggests that these nanomaterials hold high potential for bioapplications showing high biocompatibility, especially as surface coating materials for implants, without inducing notable deleterious effects while enhancing some cellular functions (i.e., gene transfection and expression).
Collapse
Affiliation(s)
- Soo-Ryoon Ryoo
- Department of Chemistry, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
23
|
Kopp PM, Bate N, Hansen TM, Brindle NPJ, Praekelt U, Debrand E, Coleman S, Mazzeo D, Goult BT, Gingras AR, Pritchard CA, Critchley DR, Monkley SJ. Studies on the morphology and spreading of human endothelial cells define key inter- and intramolecular interactions for talin1. Eur J Cell Biol 2010; 89:661-73. [PMID: 20605055 PMCID: PMC2958305 DOI: 10.1016/j.ejcb.2010.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 01/07/2023] Open
Abstract
Talin binds to and activates integrins and is thought to couple them to cytoskeletal actin. However, functional studies on talin have been restricted by the fact that most cells express two talin isoforms. Here we show that human umbilical vein endothelial cells (HUVEC) express only talin1, and that talin1 knockdown inhibited focal adhesion (FA) assembly preventing the cells from maintaining a spread morphology, a phenotype that was rescued by GFP-mouse talin1. Thus HUVEC offer an ideal model system in which to conduct talin structure/function studies. Talin contains an N-terminal FERM domain (comprised of F1, F2 and F3 domains) and a C-terminal flexible rod. The F3 FERM domain binds β-integrin tails, and mutations in F3 that inhibited integrin binding (W359A) or activation (L325R) severely compromised the ability of GFP-talin1 to rescue the talin1 knockdown phenotype despite the presence of a second integrin-binding site in the talin rod. The talin rod contains several actin-binding sites (ABS), and mutations in the C-terminal ABS that reduced actin-binding impaired talin1 function, whereas those that increased binding resulted in more stable FAs. The results show that both the N-terminal integrin and C-terminal actin-binding functions of talin are essential to cell spreading and FA assembly. Finally, mutations that relieve talin auto-inhibition resulted in the rapid and excessive production of FA, highlighting the importance of talin regulation within the cell.
Collapse
Affiliation(s)
- Petra M Kopp
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gingras AR, Bate N, Goult BT, Patel B, Kopp PM, Emsley J, Barsukov IL, Roberts GCK, Critchley DR. Central region of talin has a unique fold that binds vinculin and actin. J Biol Chem 2010; 285:29577-87. [PMID: 20610383 PMCID: PMC2937989 DOI: 10.1074/jbc.m109.095455] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 05/13/2010] [Indexed: 12/22/2022] Open
Abstract
Talin is an adaptor protein that couples integrins to F-actin. Structural studies show that the N-terminal talin head contains an atypical FERM domain, whereas the N- and C-terminal parts of the talin rod include a series of α-helical bundles. However, determining the structure of the central part of the rod has proved problematic. Residues 1359-1659 are homologous to the MESDc1 gene product, and we therefore expressed this region of talin in Escherichia coli. The crystal structure shows a unique fold comprised of a 5- and 4-helix bundle. The 5-helix bundle is composed of nonsequential helices due to insertion of the 4-helix bundle into the loop at the C terminus of helix α3. The linker connecting the bundles forms a two-stranded anti-parallel β-sheet likely limiting the relative movement of the two bundles. Because the 5-helix bundle contains the N and C termini of this module, we propose that it is linked by short loops to adjacent bundles, whereas the 4-helix bundle protrudes from the rod. This suggests the 4-helix bundle has a unique role, and its pI (7.8) is higher than other rod domains. Both helical bundles contain vinculin-binding sites but that in the isolated 5-helix bundle is cryptic, whereas that in the isolated 4-helix bundle is constitutively active. In contrast, both bundles are required for actin binding. Finally, we show that the MESDc1 protein, which is predicted to have a similar fold, is a novel actin-binding protein.
Collapse
Affiliation(s)
- Alexandre R. Gingras
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| | - Neil Bate
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| | - Benjamin T. Goult
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| | - Bipin Patel
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| | - Petra M. Kopp
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| | - Jonas Emsley
- the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, and
| | - Igor L. Barsukov
- the School of Biological Sciences, University of Liverpool, BioSciences Building, Liverpool L69 7ZB, United Kingdom
| | - Gordon C. K. Roberts
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| | - David R. Critchley
- From the Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN
| |
Collapse
|
25
|
Lin YP, Cheng YJ, Huang JY, Lin HC, Yang BC. Zap70 controls the interaction of talin with integrin to regulate the chemotactic directionality of T-cell migration. Mol Immunol 2010; 47:2022-9. [PMID: 20488542 DOI: 10.1016/j.molimm.2010.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/13/2010] [Accepted: 04/19/2010] [Indexed: 12/18/2022]
Abstract
Aberrant lymphocyte infiltration is crucial for many disorders such as tumor immune escape and autoimmunity. In this study, we have investigated T-cell migration in a three-dimensional collagen matrix containing tumor spheroids and by using micro-Slide chemotaxis and found that Zap70 regulates directionality during cell chemotaxis. Jurkat cells actively migrated toward SDF-1, nutrition, and spheroids of MCF-7 breast carcinoma cells embedded in collagen matrix. Inhibition of Zap70 activity impaired transmigration and mu-Slide chemotaxis but not the random movement of T cells in the collagen/fibronectin matrix. P116 cells, a Zap70 deficient variant of Jurkat, showed active random movement but failed to migrate against chemoattractants. P116 cells exhibited a reduced polarization of cell morphology, showing less lamellipodia formation accompanied with a fast pseudopod turnover rate. Instead of direct interacting with F-actin, Zap70 formed a complex with talin which is an integrin scaffold for F-actin. SDF-1 enhanced Zap70 phosphorylation and also stimulated binding of talin and beta1 integrin activation. P116 cells showed reduced complex of talin and beta1 integrin in parallel with impaired integrin activation. Collectively, Zap70 modulates integrin activation by interacting with talin, which contributes to directionality of T-cell migration, severing as a potential target for anti-inflammation therapy.
Collapse
Affiliation(s)
- Yu-Ping Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70428, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Lee M, Lee HJ, Seo WD, Park KH, Lee YS. Sialylation of integrin beta1 is involved in radiation-induced adhesion and migration in human colon cancer cells. Int J Radiat Oncol Biol Phys 2010; 76:1528-36. [PMID: 20338479 DOI: 10.1016/j.ijrobp.2009.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/06/2009] [Accepted: 11/02/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE Previously, we reported that radiation-induced ST6 Gal I gene expression was responsible for an increase of integrin beta1 sialylation. In this study, we have further investigated the function of radiation-mediated integrin beta1 sialylation in colon cancer cells. METHODS AND MATERIALS We performed Western blotting and lectin affinity assay to analyze the expression and level of sialylated integrin beta1. After exposure to ionizing radiation (IR), adhesion and migration of cells were measured by in vitro adhesion and migration assay. RESULTS IR increased sialylation of integrin beta1 responsible for its increased protein stability and adhesion and migration of colon cancer cells. However, for cells with an N-glycosylation site mutant of integrin beta1 located on the I-like domain (Mu3), these effects were dramatically inhibited. In addition, integrin beta1-mediated radioresistance was not observed in cells containing this mutant. When sialylation of integrin beta1 was targeted with a sulfonamide chalcone compound, inhibition of radiation-induced sialylation of integrin beta1 and inhibition of radiation-induced adhesion and migration occurred. CONCLUSION The increase of integrin beta1 sialylation by ST6 Gal I is critically involved in radiation-mediated adhesion and migration of colon cancer cells. From these findings, integrin beta1 sialylation may be a novel target for overcoming radiation-induced survival, especially radiation-induced adhesion and migration.
Collapse
Affiliation(s)
- Minyoung Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Winograd-Katz SE, Itzkovitz S, Kam Z, Geiger B. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown. ACTA ACUST UNITED AC 2009; 186:423-36. [PMID: 19667130 PMCID: PMC2728402 DOI: 10.1083/jcb.200901105] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell adhesion to the extracellular matrix is mediated by elaborate networks of multiprotein complexes consisting of adhesion receptors, cytoskeletal components, signaling molecules, and diverse adaptor proteins. To explore how specific molecular pathways function in the assembly of focal adhesions (FAs), we performed a high-throughput, high-resolution, microscopy-based screen. We used small interfering RNAs (siRNAs) to target human kinases, phosphatases, and migration- and adhesion-related genes. Multiparametric image analysis of control and of siRNA-treated cells revealed major correlations between distinct morphological FA features. Clustering analysis identified different gene families whose perturbation induced similar effects, some of which uncoupled the interfeature correlations. Based on these findings, we propose a model for the molecular hierarchy of FA formation, and tested its validity by dynamic analysis of FA formation and turnover. This study provides a comprehensive information resource on the molecular regulation of multiple cell adhesion features, and sheds light on signaling mechanisms regulating the formation of integrin adhesions.
Collapse
Affiliation(s)
- Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
28
|
Sun W, Hu W, Xu R, Jin J, Szulc ZM, Zhang G, Galadari SH, Obeid LM, Mao C. Alkaline ceramidase 2 regulates beta1 integrin maturation and cell adhesion. FASEB J 2008; 23:656-66. [PMID: 18945876 DOI: 10.1096/fj.08-115634] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polypeptide core of the integrin beta1 subunit (beta1) is glycosylated sequentially in the endoplasmic reticulum and the Golgi complex to form beta1 precursor and mature beta1, respectively. The beta1 precursor to mature beta1 conversion, termed beta1 maturation, regulates the cell surface levels and function of beta1-containing integrins, beta1 integrins. Here we demonstrate that the human alkaline ceramidase 2 (ACER2), a Golgi enzyme, regulates beta1 maturation by controlling the generation of sphingosine. ACER2 overexpression inhibited beta1 maturation, thus leading to a decrease in the levels of mature beta1 in T-REx HeLa cells, whereas RNA interference-mediated knockdown of ACER2 enhanced beta1 maturation in MCF-7 cells. ACER2 overexpression decreased the cell surface levels of beta1 integrins, thus inhibiting cell adhesion to fibronectin or collagen, whereas ACER2 knockdown has the opposite effects. Treatment with all-trans retinoic acid (ATRA) increased both the expression of ACER2 and the generation of sphingosine in HeLa cells and inhibited beta1 maturation. ACER2 knockdown attenuated the inhibitory effects of ATRA on both beta1 maturation and cell adhesion. In contrast, treatment with phorbol myristate acetate (PMA), a protein kinase C activator, decreased the expression of ACER2 and sphingosine in T-REx HeLa cells, thus enhancing beta1 maturation. ACER2 overexpression inhibited the stimulatory effects of PMA on both beta1 maturation and cell adhesion. These results suggest that the ACER2/sphingosine pathway plays an important role in regulating beta1 maturation and cell adhesion mediated by beta1 integrins.
Collapse
Affiliation(s)
- Wei Sun
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kwapiszewska G, Wygrecka M, Marsh LM, Schmitt S, Trösser R, Wilhelm J, Helmus K, Eul B, Zakrzewicz A, Ghofrani HA, Schermuly RT, Bohle RM, Grimminger F, Seeger W, Eickelberg O, Fink L, Weissmann N. Fhl-1, a new key protein in pulmonary hypertension. Circulation 2008; 118:1183-94. [PMID: 18725486 DOI: 10.1161/circulationaha.107.761916] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a severe disease with a poor prognosis. Different forms of PH are characterized by pronounced vascular remodeling, resulting in increased vascular resistance and subsequent right heart failure. The molecular pathways triggering the remodeling process are poorly understood. We hypothesized that underlying key factors can be identified at the onset of the disease. Thus, we screened for alterations to protein expression in lung tissue at the onset of PH in a mouse model of hypoxia-induced PH. METHODS AND RESULTS Using 2-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight analysis, we identified 36 proteins that exhibited significantly altered expression after short-term hypoxic exposure. Among these, Fhl-1, which is known to be involved in muscle development, was one of the most prominently upregulated proteins. Further analysis by immunohistochemistry, Western blot, and laser-assisted microdissection followed by quantitative polymerase chain reaction confirmed the upregulation of Fhl-1, particularly in the pulmonary vasculature. Comparable upregulation was confirmed (1) after full establishment of hypoxia-induced PH, (2) in 2 rat models of PH (monocrotaline-treated and hypoxic rats treated with the vascular endothelial growth factor receptor antagonist SU5416), and (3) in lungs from patients with idiopathic pulmonary arterial hypertension. Furthermore, we demonstrated that regulation of Fhl-1 was hypoxia-inducible transcription factor dependent. Abrogation of Fhl-1 expression in primary human pulmonary artery smooth muscle cells by small-interfering RNA suppressed, whereas Fhl-1 overexpression increased, migration and proliferation. Coimmunoprecipitation experiments identified Talin1 as a new interacting partner of Fhl-1. CONCLUSIONS Protein screening identified Fhl-1 as a novel protein regulated in various forms of PH, including idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Grazyna Kwapiszewska
- Med Klinik II, University of Giessen Lung Center, Klinik Strasse 36, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Helsten TL, Bunch TA, Kato H, Yamanouchi J, Choi SH, Jannuzi AL, Féral CC, Ginsberg MH, Brower DL, Shattil SJ. Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol Biol Cell 2008; 19:3589-98. [PMID: 18508915 PMCID: PMC2488300 DOI: 10.1091/mbc.e08-01-0085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/23/2008] [Accepted: 05/15/2008] [Indexed: 12/31/2022] Open
Abstract
Integrin-mediated cell adhesion is essential for development of multicellular organisms. In worms, flies, and vertebrates, talin forms a physical link between integrin cytoplasmic domains and the actin cytoskeleton. Loss of either integrins or talin leads to similar phenotypes. In vertebrates, talin is also a key regulator of integrin affinity. We used a ligand-mimetic Fab fragment, TWOW-1, to assess talin's role in regulating Drosophila alphaPS2 betaPS affinity. Depletion of cellular metabolic energy reduced TWOW-1 binding, suggesting alphaPS2 betaPS affinity is an active process as it is for vertebrate integrins. In contrast to vertebrate integrins, neither talin knockdown by RNA interference nor talin head overexpression had a significant effect on TWOW-1 binding. Furthermore, replacement of the transmembrane or talin-binding cytoplasmic domains of alphaPS2 betaPS with those of human alphaIIb beta3 failed to enable talin regulation of TWOW-1 binding. However, substitution of the extracellular and transmembrane domains of alphaPS2 betaPS with those of alphaIIb beta3 resulted in a constitutively active integrin whose affinity was reduced by talin knockdown. Furthermore, wild-type alphaIIb beta3 was activated by overexpression of Drosophila talin head domain. Thus, despite evolutionary conservation of talin's integrin/cytoskeleton linkage function, talin is not sufficient to regulate Drosophila alphaPS2 betaPS affinity because of structural features inherent in the alphaPS2 betaPS extracellular and/or transmembrane domains.
Collapse
Affiliation(s)
- Teresa L Helsten
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 2008; 88:489-513. [PMID: 18391171 DOI: 10.1152/physrev.00021.2007] [Citation(s) in RCA: 612] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To migrate, a cell first extends protrusions such as lamellipodia and filopodia, forms adhesions, and finally retracts its tail. The actin cytoskeleton plays a major role in this process. The first part of this review (sect. II) describes the formation of the lamellipodial and filopodial actin networks. In lamellipodia, the WASP-Arp2/3 pathways generate a branched filament array. This polarized dendritic actin array is maintained in rapid treadmilling by the concerted action of ADF, profilin, and capping proteins. In filopodia, formins catalyze the processive assembly of nonbranched actin filaments. Cell matrix adhesions mechanically couple actin filaments to the substrate to convert the treadmilling into protrusion and the actomyosin contraction into traction of the cell body and retraction of the tail. The second part of this review (sect. III) focuses on the function and the regulation of major proteins (vinculin, talin, tensin, and alpha-actinin) that control the nucleation, the binding, and the barbed-end growth of actin filaments in adhesions.
Collapse
Affiliation(s)
- Christophe Le Clainche
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|
32
|
Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin AP, Faurobert E, Gerber-Scokaert D, Planus E, Albiges-Rizo C. Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 2008; 87:491-506. [PMID: 18417250 DOI: 10.1016/j.ejcb.2008.02.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 12/20/2022] Open
Abstract
Cell-matrix adhesions are essential for cell migration, tissue organization and differentiation, therefore playing central roles in embryonic development, remodeling and homeostasis of tissues and organs. Matrix adhesion-dependent signals cooperate with other pathways to regulate biological functions such as cell survival, cell proliferation, wound healing, and tumorigenesis. Cell migration and invasion are integrated processes requiring the continuous, coordinated assembly and disassembly of integrin-mediated adhesions. An understanding of how integrins regulate cell migration and invasiveness through the dynamic regulation of adhesions is fundamental to both physiological and pathological situations. A variety of cell-matrix adhesions has been identified, namely, focal complexes, focal adhesions, fibrillar adhesions, podosomes, and invadopodia (podosome-type adhesions). These adhesion sites contain integrin clusters able to develop specialized structures, which are different in their architecture and dynamics although they share almost the same proteins. Here we compare recent advances and developments in the elucidation of the organization and dynamics of focal adhesions and podosome-type adhesions, in order to understand how such subcellular sites - though closely related in their composition - can be structurally and functionally different. The underlying question is how their respective physiological or pathological roles are related to their distinct organization.
Collapse
Affiliation(s)
- Marc R Block
- Université Joseph Fourier, Institut Albert Bonniot, Equipe DySAD, Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Overlapping functions of the two talin homologues in Dictyostelium. EUKARYOTIC CELL 2008; 7:906-16. [PMID: 18375618 DOI: 10.1128/ec.00464-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Talin is a cytoskeletal protein involved in constructing and regulating focal adhesions in animal cells. The cellular slime mold Dictyostelium discoideum has two talin homologues, talA and talB, and earlier studies have characterized the single knockout mutants. talA(-) cells show reduced adhesion to the substrates and slightly impaired cytokinesis leading to a high proportion of multinucleated cells in the vegetative stage, while the development is normal. In contrast, talB(-) cells are characterized by reduced motility in the developmental stage, and they are arrested at the tight-mound stage. Here, we created and analyzed a double mutant with a disruption of both talA and talB. Defects in adhesion to the substrates, cytokinesis, and development were more severe in cells with a disruption of both talA and talB. The talA(-) talB(-) cells failed to attach to the substrates in the vegetative stage, exhibited a higher proportion of multinucleated cells than talA(-) cells, and showed more-reduced motility during the development and an earlier developmental arrest than talB(-) cells at the loose-mound stage. Moreover, overexpression of either talA or talB compensated for the loss of the other talin, respectively. The analysis of talA(-) talB(-) cells also revealed that talin was required for the formation of paxillin-rich adhesion sites and that there was another adhesion mechanism which is independent of talin in the developmental stage. This is the first study demonstrating overlapping functions of two talin homologues, and our data further indicate the importance of talin.
Collapse
|
34
|
Millon-Frémillon A, Bouvard D, Grichine A, Manet-Dupé S, Block MR, Albiges-Rizo C. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent beta1-integrin affinity. ACTA ACUST UNITED AC 2008; 180:427-41. [PMID: 18227284 PMCID: PMC2213582 DOI: 10.1083/jcb.200707142] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain–associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1–deficient mouse embryonic fibroblasts and cells expressing active β1 integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1–dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.
Collapse
|
35
|
Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, Fässler R. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. ACTA ACUST UNITED AC 2007; 204:3113-8. [PMID: 18086864 PMCID: PMC2150972 DOI: 10.1084/jem.20071827] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Platelet adhesion and aggregation at sites of vascular injury are essential for normal hemostasis but may also lead to pathological thrombus formation, causing diseases such as myocardial infarction or stroke. Heterodimeric receptors of the integrin family play a central role in the adhesion and aggregation of platelets. In resting platelets, integrins exhibit a low affinity state for their ligands, and they shift to a high affinity state at sites of vascular injury. It has been proposed that direct binding of the cytoskeletal protein talin1 to the cytoplasmic domain of the integrin β subunits is necessary and sufficient to trigger the activation of integrins to this high affinity state, but direct in vivo evidence in support of this hypothesis is still lacking. Here, we show that platelets from mice lacking talin1 are unable to activate integrins in response to all known major platelet agonists while other cellular functions are still preserved. As a consequence, mice with talin-deficient platelets display a severe hemostatic defect and are completely resistant to arterial thrombosis. Collectively, these experiments demonstrate that talin is required for inside-out activation of platelet integrins in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Smith SJ, McCann RO. A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry 2007; 46:10886-98. [PMID: 17722883 DOI: 10.1021/bi700637a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focal adhesion complexes are plasma membrane-associated multicomponent complexes that are essential for integrin-linked signal transduction as well as cell adhesion and cell motility. The cytoskeletal protein Talin1 links integrin adhesion receptors with the actin cytoskeleton. Talin1 and the other animal and amoebozoan talins are members of the I/LWEQ module superfamily, which also includes fungal Sla2 and animal Hip1/Hip1R. The I/LWEQ module is a conserved C-terminal structural element that is critical for I/LWEQ module protein function. The I/LWEQ module of Talin1 binds to F-actin and targets the protein to focal adhesions in vivo. The I/LWEQ modules of Sla2 and Hip1 are required for the participation of these proteins in endocytosis. In addition to these roles in I/LWEQ module protein function, we have recently shown that the I/LWEQ module also contains a determinant for protein dimerization. Taken together, these results suggest that actin binding, subcellular targeting, and dimerization are associated in I/LWEQ module proteins. In this report we have used alanine-scanning mutagenesis of a putative coiled coil at the C-terminus of the Talin1 I/LWEQ module to show that the amino acids responsible for dimerization are necessary for F-actin binding, the stabilization of actin filaments, the cross-linking of actin filaments, and focal adhesion targeting. Our results suggest that this conserved dimerization motif in the I/LWEQ module plays an essential role in the function of Talin1 as a component of focal adhesions and, by extension, the other I/LWEQ module proteins in other multicomponent assemblies involved in cell adhesion and vesicle trafficking.
Collapse
Affiliation(s)
- Steven J Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536-0509, USA
| | | |
Collapse
|
37
|
Katz M, Amit I, Citri A, Shay T, Carvalho S, Lavi S, Milanezi F, Lyass L, Amariglio N, Jacob-Hirsch J, Ben-Chetrit N, Tarcic G, Lindzen M, Avraham R, Liao YC, Trusk P, Lyass A, Rechavi G, Spector NL, Lo SH, Schmitt F, Bacus SS, Yarden Y. A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nat Cell Biol 2007; 9:961-9. [PMID: 17643115 DOI: 10.1038/ncb1622] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 06/28/2007] [Indexed: 02/08/2023]
Abstract
Cell migration driven by the epidermal growth factor receptor (EGFR) propels morphogenesis and involves reorganization of the actin cytoskeleton. Although de novo transcription precedes migration, transcript identity remains largely unknown. Through their actin-binding domains, tensins link the cytoskeleton to integrin-based adhesion sites. Here we report that EGF downregulates tensin-3 expression, and concomitantly upregulates cten, a tensin family member that lacks the actin-binding domain. Knockdown of cten or tensin-3, respectively, impairs or enhances mammary cell migration. Furthermore, cten displaces tensin-3 from the cytoplasmic tail of integrin beta1, thereby instigating actin fibre disassembly. In invasive breast cancer, cten expression correlates not only with high EGFR and HER2, but also with metastasis to lymph nodes. Moreover, treatment of inflammatory breast cancer patients with an EGFR/HER2 dual-specificity kinase inhibitor significantly downregulated cten expression. In conclusion, a transcriptional tensin-3-cten switch may contribute to the metastasis of mammary cancer.
Collapse
Affiliation(s)
- Menachem Katz
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang L, Liang Y, Li Z, Cai X, Zhang W, Wu G, Jin J, Fang Z, Yang Y, Zha X. Increase in β1-6 GlcNAc branching caused byN-acetylglucosaminyltransferase V directs integrin β1 stability in human hepatocellular carcinoma cell line SMMC-7721. J Cell Biochem 2007; 100:230-41. [PMID: 16924681 DOI: 10.1002/jcb.21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, an enzymatic inactive mutant of GnT-V (delta cGnT-V) was constructed and transfected in SMMC 7721 cell line. Integrin beta1 in delta cGnT-V transfectants (delta c-7721) showed attenuation of the number of beta1-6 GlcNAc branching, whereas those in wtGnT-V transfectants (wt-7721) presented a beta1-6 GlcNAc-rich pattern. High integrin beta1 expression was observed in wt-7721 compared with mock cells (7721 cell transfected with the vector pcDNA3), while transfection of delta cGnT-V decreased the integrin beta1 expression, despite of no significant changes on integrin beta1 mRNA level in these cell lines. Pulse-chase experiment showed that Integrin beta1 in delta c-7721 was prone to quick degradation and its half-life was less than 3 h, on the contrary, the alleviating degradation of beta1 subunit was observed in wt-7721 where the beta1 subunit half-life was about 16 h, meanwhile, the degradation rate of beta1 subunit in mock cells was in between, about 10 h. More effective in promoting cell migration toward fibronectin and invasion through Matrigel was observed in wt-7721 while this was almost suppressed in delta c-7721. Our results suggest that the addition of beta1-6 GlcNAc branching caused more fully glycosylated mature form on integrin beta1 and inhibited beta1 protein degradation. Glycosylation caused by GnT-V directs integrin beta1 stability and more delivery to plasma membrane, subsequently promotes Fn-based cell migration and invasion.
Collapse
Affiliation(s)
- Liying Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion. BMC Cell Biol 2006; 7:40. [PMID: 17150103 PMCID: PMC1702346 DOI: 10.1186/1471-2121-7-40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 12/06/2006] [Indexed: 11/24/2022] Open
Abstract
Background Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. Results We show here that, based on their distribution in cDNA libraries, Talin-a and Talin-b are differentially expressed during C. intestinalis development. The I/LWEQ modules of the two proteins also have different affinities for F-actin. Consistent with the hypothesis that Talin-a and Talin-b have different roles in cell adhesion, the distinct I/LWEQ modules of Talin-a and Talin-b possess different subcellular targeting determinants. The I/LWEQ module of Talin-a is targeted to focal adhesions, where it most likely serves as the link between integrin and the actin cytoskeleton. The Talin-b I/LWEQ module is not targeted to focal adhesions, but instead preferentially labels F-actin stress fibers. These different properties of C. intestinalis the Talin-a and Talin-b I/LWEQ modules mimic the differences between mammalian Talin1 and Talin2. Conclusion Vertebrates and D. discoideum contain two talin genes that encode proteins with different functions. The urochordate C. intestinalis has a single talin gene but produces two separate talins by alternative splicing that vary in a domain crucial for talin function. This suggests that multicellular organisms require multiple talins as components of adhesion complexes. In C. intestinalis, alternative splicing, rather than gene duplication followed by neo-functionalization, accounts for the presence of multiple talins with different properties. Given that C. intestinalis is an excellent model system for chordate biology, the study of Talin-a and Talin-b will lead to a deeper understanding of cell adhesion in the chordate lineage and how talin functions have been parceled out to multiple proteins during metazoan evolution.
Collapse
|
40
|
Franco SJ, Senetar MA, Simonson WTN, Huttenlocher A, McCann RO. The conserved C-terminal I/LWEQ module targets Talin1 to focal adhesions. CELL MOTILITY AND THE CYTOSKELETON 2006; 63:563-81. [PMID: 16830345 DOI: 10.1002/cm.20145] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cytoskeletal protein Talin1 is a critical link between integrins and the actin cytoskeleton, where it is required for the structural and signaling functions of integrin-containing adhesion complexes. However, the elements in Talin1 that are responsible for localizing it to adhesion complexes are not known. In this report we have used a series of constructs based on the modular structure of Talin1 to determine the structural elements that specify the subcellular localization of Talin1. We show that the conserved actin-binding I/LWEQ module at the C-terminus of Talin1 is necessary and sufficient for targeting to focal adhesion complexes. We also used truncation and site-directed mutagenesis to demonstrate that this novel targeting function correlates with, but is separable from, the actin-binding properties of the Talin1 I/LWEQ module. In addition, we have shown that focal adhesion targeting, unlike actin binding, is not conserved among I/LWEQ module proteins. Finally, we have demonstrated that the subcellular localization of the Talin1 I/LWEQ module is regulated by an intrasteric interaction with an upstream alpha-helix, suggesting that both the actin binding and adhesion-targeting elements are masked in full-length Talin1. Our results define a novel role for the I/LWEQ module as the primary adhesion-complex targeting determinant of Talin1 and suggest that pathways that can relieve inhibition of I/LWEQ module function will be important for regulating the structural and signaling properties of adhesion complexes.
Collapse
Affiliation(s)
- Santos J Franco
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Alphabeta heterodimeric integrins mediate dynamic adhesive cell-cell and cell-extracellular matrix (ECM) interactions in metazoa that are critical in growth and development, hemostasis, and host defense. A central feature of these receptors is their capacity to change rapidly and reversibly their adhesive functions by modulating their ligand-binding affinity. This is normally achieved through interactions of the short cytoplasmic integrin tails with intracellular proteins, which trigger restructuring of the ligand-binding site through long-range conformational changes in the ectodomain. Ligand binding in turn elicits conformational changes that are transmitted back to the cell to regulate diverse responses. The publication of the integrin alphaVbeta3 crystal structure has provided the context for interpreting decades-old biochemical studies. Newer NMR, crystallographic, and EM data, reviewed here, are providing a better picture of the dynamic integrin structure and the allosteric changes that guide its diverse functions.
Collapse
Affiliation(s)
- M A Arnaout
- Structural Biology Program, Leukocyte Biology and Inflammation Program, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachussetts 02129, USA.
| | | | | |
Collapse
|
42
|
Patel B, Gingras AR, Bobkov AA, Fujimoto LM, Zhang M, Liddington RC, Mazzeo D, Emsley J, Roberts GCK, Barsukov IL, Critchley DR. The activity of the vinculin binding sites in talin is influenced by the stability of the helical bundles that make up the talin rod. J Biol Chem 2006; 281:7458-67. [PMID: 16407302 DOI: 10.1074/jbc.m508058200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The talin rod contains approximately 11 vinculin binding sites (VBSs), each defined by hydrophobic residues in a series of amphipathic helices that are normally buried within the helical bundles that make up the rod. Consistent with this, talin failed to compete for binding of the vinculin Vd1 domain to an immobilized talin polypeptide containing a constitutively active VBS. However, talin did bind to GST-Vd1 in pull-down assays, and isothermal titration calorimetry measurements indicate a K(d) of approximately 9 mum. Interestingly, Vd1 binding exposed a trypsin cleavage site in the talin rod between residues 898 and 899, indicating that there are one or more active VBSs in the N-terminal part of the talin rod. This region comprises a five helix bundle (residues 482-655) followed by a seven-helix bundle (656-889) and contains five VBSs (helices 4, 6, 9, 11, and 12). The single VBS within 482-655 is cryptic at room temperature. In contrast, talin 482-889 binds Vd1 with high affinity (K(d) approximately 0.14 mum), indicating that one or more of the four VBSs within 656-889 are active, and this likely represents the vinculin binding region in intact talin. In support of this, hemagglutinin-tagged talin 482-889 localized efficiently to focal adhesions, whereas 482-655 did not. Differential scanning calorimetry showed a strong negative correlation between Vd1 binding and helical bundle stability, and a 755-889 mutant with a more stable fold bound Vd1 much less well than wild type. We conclude that the stability of the helical bundles that make up the talin rod is an important factor determining the activity of the individual VBSs.
Collapse
Affiliation(s)
- Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The cytoskeletal protein talin plays a key role in coupling the integrin family of cell adhesion molecules to the actin cytoskeleton. In this paper I present a brief review on talin and summarize our recent studies, in which we have taken both genetic and structural approaches to further elucidate the function of the protein.
Collapse
|
44
|
Fillingham I, Gingras AR, Papagrigoriou E, Patel B, Emsley J, Critchley DR, Roberts GCK, Barsukov IL. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 2005; 13:65-74. [PMID: 15642262 DOI: 10.1016/j.str.2004.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 11/02/2004] [Accepted: 11/05/2004] [Indexed: 01/01/2023]
Abstract
The cytoskeletal protein talin plays a key role in activating integrins and in coupling them to the actin cytoskeleton. Its N-terminal globular head, which binds beta integrins, is linked to an extended rod having a C-terminal actin binding site and several vinculin binding sites (VBSs). The NMR structure of residues 755-889 of the rod (containing a VBS) is shown to be an amphipathic four-helix bundle with a left-handed topology. A talin peptide corresponding to the VBS binds the vinculin head; the X-ray crystallographic structure of this complex shows that the residues which interact with vinculin are buried in the hydrophobic core of the talin fragment. NMR shows that the interaction involves a major structural change in the talin fragment, including unfolding of one of its helices, making the VBS accessible to vinculin. Interestingly, the talin 755-889 fragment binds more than one vinculin head molecule, suggesting that the talin rod may contain additional as yet unrecognized VBSs.
Collapse
Affiliation(s)
- Ian Fillingham
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The cytoskeletal proteins talin and vinculin form part of a macromolecular complex on the cytoplasmic face of integrin-mediated cellular junctions with the extracellular matrix. Recent genetic, biochemical and structural data show that talin is essential for the assembly of such junctions, whereas vinculin appears to be important in regulating adhesion dynamics and cell migration.
Collapse
Affiliation(s)
- D R Critchley
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
46
|
Lee HS, Bellin RM, Walker DL, Patel B, Powers P, Liu H, Garcia-Alvarez B, de Pereda JM, Liddington RC, Volkmann N, Hanein D, Critchley DR, Robson RM. Characterization of an actin-binding site within the talin FERM domain. J Mol Biol 2004; 343:771-84. [PMID: 15465061 DOI: 10.1016/j.jmb.2004.08.069] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 08/10/2004] [Accepted: 08/16/2004] [Indexed: 11/24/2022]
Abstract
Talin is a large cytoskeletal protein that couples integrins to F-actin. Three actin-binding sites (ABS1-3) have been reported: one in the N-terminal head, and two in the C-terminal rod domain. Although the C-terminal ABS3 has been partially characterized, the presence and properties of ABS1 within the talin head are less well defined. We show here that the talin head binds F-actin in vitro and in vivo at a specific site within the actin filament. Thus, purified talin head liberated from gizzard talin by calpain cleavage cosediments with F-actin in a low salt buffer at pH 6.4 (conditions that are optimal for binding intact talin), and using recombinant polypeptides, we have mapped ABS1 to the FERM domain within the talin head. Both the F2 and F3 FERM subdomains contribute to binding, and EGFP-tagged FERM subdomains colocalize with actin stress fibers when expressed in COS cells. High-resolution electron microscopy of actin filaments decorated with F2F3 localizes binding to a site that is distinct from that recognized by members of the calponin-homology superfamily. Finally, we show that the FERM domain can couple F-actin to PIPkin, and by inference to integrins, since they bind to the same pocket in the F3 subdomain. This suggests that the talin FERM domain functions as a linker between PIPkin or integrins and F-actin at sites of cell-matrix adhesions.
Collapse
Affiliation(s)
- Ho-Sup Lee
- Muscle Biology Group, Departments of Biochemistry, Biophysics, and Molecular Biology and of Animal Science, Iowa State University, Ames, IA 50011-3260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 631] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
48
|
Papagrigoriou E, Gingras AR, Barsukov IL, Bate N, Fillingham IJ, Patel B, Frank R, Ziegler WH, Roberts GCK, Critchley DR, Emsley J. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J 2004; 23:2942-51. [PMID: 15272303 PMCID: PMC514914 DOI: 10.1038/sj.emboj.7600285] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 06/03/2004] [Indexed: 01/18/2023] Open
Abstract
The interaction between the cytoskeletal proteins talin and vinculin plays a key role in integrin-mediated cell adhesion and migration. We have determined the crystal structures of two domains from the talin rod spanning residues 482-789. Talin 482-655, which contains a vinculin-binding site (VBS), folds into a five-helix bundle whereas talin 656-789 is a four-helix bundle. We show that the VBS is composed of a hydrophobic surface spanning five turns of helix 4. All the key side chains from the VBS are buried and contribute to the hydrophobic core of the talin 482-655 fold. We demonstrate that the talin 482-655 five-helix bundle represents an inactive conformation, and mutations that disrupt the hydrophobic core or deletion of helix 5 are required to induce an active conformation in which the VBS is exposed. We also report the crystal structure of the N-terminal vinculin head domain in complex with an activated form of talin. Activation of the VBS in talin and the recruitment of vinculin may support the maturation of small integrin/talin complexes into more stable adhesions.
Collapse
Affiliation(s)
| | | | - Igor L Barsukov
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Neil Bate
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Ian J Fillingham
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Ronald Frank
- Department of Chemical Biology, German Research Centre for Biotechnology (GBF), Braunschweig, Germany
| | - Wolfgang H Ziegler
- Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | | | | | - Jonas Emsley
- Department of Biochemistry, University of Leicester, Leicester, UK
- Present address: Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK. Tel: +44 116 252 5143; Fax: +44 116 252 3473; E-mail: or
| |
Collapse
|
49
|
Tsujioka M, Yoshida K, Inouye K. Talin B is required for force transmission in morphogenesis of Dictyostelium. EMBO J 2004; 23:2216-25. [PMID: 15141168 PMCID: PMC419915 DOI: 10.1038/sj.emboj.7600238] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 04/21/2004] [Indexed: 11/08/2022] Open
Abstract
Talin plays a key role in the assembly and stabilisation of focal adhesions, but whether it is directly involved in force transmission during morphogenesis remains to be elucidated. We show that the traction force of Dictyostelium cells mutant for one of its two talin genes talB is considerably smaller than that of wild-type cells, both in isolation and within tissues undergoing morphogenetic movement. The motility of mutant cells in tightly packed tissues in vivo or under strong resistance conditions in vitro was lower than that of wild-type cells, but their motility under low external force conditions was not impaired, indicating inefficient transmission of force in mutant cells. Antibody staining revealed that the talB gene product (talin B) exists as small units subjacent to the cell membrane at adhesion sites without forming large focal adhesion-like assemblies. The total amount of talin B on the cell membrane was larger in prestalk cells, which exert larger force than prespore cells during morphogenesis. We conclude that talin B is involved in force transmission between the cytoskeleton and cell exterior.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kunito Yoshida
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kei Inouye
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. Tel.: +81 75 753 4130; Fax: +81 75 753 4137; E-mail:
| |
Collapse
|
50
|
Tremuth L, Kreis S, Melchior C, Hoebeke J, Rondé P, Plançon S, Takeda K, Kieffer N. A Fluorescence Cell Biology Approach to Map the Second Integrin-binding Site of Talin to a 130-Amino Acid Sequence within the Rod Domain. J Biol Chem 2004; 279:22258-66. [PMID: 15031296 DOI: 10.1074/jbc.m400947200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoskeletal protein talin, which provides a direct link between integrins and actin filaments, has been shown to contain two distinct binding sites for integrin beta subunits. Here, we report the precise delimitation and a first functional analysis of the talin rod domain integrin-binding site. Partially overlapping cDNAs covering the entire human talin gene were transiently expressed as DsRed fusion proteins in Chinese hamster ovary cells expressing alpha(IIb)beta(3), linked to green fluorescent protein (GFP). Two-color fluorescence analysis of the transfected cells, spread on fibrinogen, revealed distinct subcellular staining patterns including focal adhesion, actin filament, and granular labeling for different talin fragments. The rod domain fragment G (residues 1984-2344), devoid of any known actin- or vinculin-binding sites, colocalized with beta(3)-GFP in focal adhesions. Direct in vitro interaction of fragment G with native platelet integrin alpha(IIb)beta(3) or with the recombinant wild type, but not the Y747A mutant beta(3) cytoplasmic tail, linked to glutathione S-transferase, was demonstrated by surface plasmon resonance analysis and pull-down assays, respectively. Here, we demonstrate for the first time the in vivo relevance of this interaction by fluorescence resonance energy transfer between beta(3)-GFP and DsRed-talin fragment G. Further in vitro pull-down studies allowed us to map out the integrin-binding site within fragment G to a stretch of 130 residues (fragment J, residues 1984-2113) that also localized to focal adhesions. Finally, we show by a cell biology approach that this integrin-binding site within the talin rod domain is important for beta(3)-cytoskeletal interactions but does not participate in alpha(IIb)beta(3) activation.
Collapse
Affiliation(s)
- Laurent Tremuth
- Laboratoire de Biologie et Physiologie Intégrée (CNRS/GDRE-ITI), Université du Luxembourg, 162A, Avenue de la Faïencerie, L-1511, Luxembourg, France
| | | | | | | | | | | | | | | |
Collapse
|