1
|
Bruelle C, Bédard M, Blier S, Gauthier M, Traish AM, Vincent M. The mitotic phosphorylation of p54nrb modulates its RNA binding activity. Biochem Cell Biol 2011; 89:423-33. [DOI: 10.1139/o11-030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RNA-binding protein p54nrb is involved in many nuclear processes including transcription, RNA processing, and retention of hyperedited RNAs. In interphase cells, p54nrb localizes to the nucleoplasm and concentrates with protein partners in the paraspeckles via an interaction with the non-coding RNA Neat1. During mitosis, p54nrb becomes multiphosphorylated and the effects of this modification are not known. In the present study, we show that p54nrb phosphorylation does not affect the interactions with its protein partners but rather diminishes its general RNA-binding ability. Biochemical assays indicate that in vitro phosphorylation of a GST-p54nrb construct by CDK1 abolishes the interaction with 5′ splice site RNA sequence. Site-directed mutagenesis shows that the threonine 15 residue, located N-terminal to the RRM tandem domains of p54nrb, is involved in this inhibition. In vivo analysis reveals that Neat1 ncRNA co-immunoprecipitates with p54nrb in either interphase or mitotic cells, suggesting that p54nrb–Neat1 interaction is not modulated by phosphorylation. Accordingly, in vitro phosphorylated GST-p54nrb still interacts with PIR-1 RNA, a G-rich Neat1 sequence known to interact with p54nrb. In vitro RNA binding assays show that CDK1-phosphorylation of a GST-p54nrb construct abolishes its interaction with homoribopolymers poly(A), poly(C), and poly(U) but not with poly(G). These data suggest that p54nrb interaction with RNA could be selectively modulated by phosphorylation during mitosis.
Collapse
Affiliation(s)
- Céline Bruelle
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Mikaël Bédard
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphanie Blier
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Gauthier
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Abdulmaged M. Traish
- Department of Biochemistry, Boston University School of Medicine, Center for Advanced Biomedical Research, 700 Albany Street, W607, Boston, MA 02118, USA
| | - Michel Vincent
- PROTEO Research Center and Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Murzik U, Hemmerich P, Weidtkamp-Peters S, Ulbricht T, Bussen W, Hentschel J, von Eggeling F, Melle C. Rad54B targeting to DNA double-strand break repair sites requires complex formation with S100A11. Mol Biol Cell 2008; 19:2926-35. [PMID: 18463164 PMCID: PMC2441681 DOI: 10.1091/mbc.e07-11-1167] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/14/2008] [Accepted: 04/24/2008] [Indexed: 12/25/2022] Open
Abstract
S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21(WAF1/CIP1) was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle.
Collapse
Affiliation(s)
- Ulrike Murzik
- *Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Medical Faculty, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Peter Hemmerich
- Department of Molecular Biology, Fritz Lipmann Institut (FLI), Leibniz Institute for Age Research, 07708 Jena, Germany; and
| | - Stefanie Weidtkamp-Peters
- Department of Molecular Biology, Fritz Lipmann Institut (FLI), Leibniz Institute for Age Research, 07708 Jena, Germany; and
| | - Tobias Ulbricht
- Department of Molecular Biology, Fritz Lipmann Institut (FLI), Leibniz Institute for Age Research, 07708 Jena, Germany; and
| | - Wendy Bussen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06515
| | - Julia Hentschel
- *Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Medical Faculty, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Ferdinand von Eggeling
- *Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Medical Faculty, Friedrich-Schiller-University, 07740 Jena, Germany
| | - Christian Melle
- *Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, Medical Faculty, Friedrich-Schiller-University, 07740 Jena, Germany
| |
Collapse
|
3
|
Pombo A. Advances in imaging the interphase nucleus using thin cryosections. Histochem Cell Biol 2007; 128:97-104. [PMID: 17636315 DOI: 10.1007/s00418-007-0310-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2007] [Indexed: 01/01/2023]
Abstract
The mammalian genome is partitioned amongst various chromosomes and encodes for approximately 30,000 protein-coding genes. Gene expression occurs after exit from mitosis, when chromosomes partially decondense within the cell nucleus to allow the enzymatic activities that work on chromatin to access each gene in a regulated fashion. Differential patterns of gene expression evolve during cell differentiation to give rise to the over 200 cell types in higher eukaryotes. The architectural organisation of the genome inside the interphase cell nucleus, and associated enzymatic activities, reveals dynamic and functional compartmentalization of the genome. In this review, I highlight the advantages of Tokuyasu cryosectioning on the investigation of nuclear structure and function.
Collapse
Affiliation(s)
- Ana Pombo
- Nuclear Organisation Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
4
|
Hall LL, Smith KP, Byron M, Lawrence JB. Molecular anatomy of a speckle. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:664-75. [PMID: 16761280 PMCID: PMC2563428 DOI: 10.1002/ar.a.20336] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Direct localization of specific genes, RNAs, and proteins has allowed the dissection of individual nuclear speckles in relation to the molecular biology of gene expression. Nuclear speckles (aka SC35 domains) are essentially ubiquitous structures enriched for most pre-mRNA metabolic factors, yet their relationship to gene expression has been poorly understood. Analyses of specific genes and their spliced or mature mRNA strongly support that SC35 domains are hubs of activity, not stores of inert factors detached from gene expression. We propose that SC35 domains are hubs that spatially link expression of specific pre-mRNAs to rapid recycling of copious RNA metabolic complexes, thereby facilitating expression of many highly active genes. In addition to increasing the efficiency of each step, sequential steps in gene expression are structurally integrated at each SC35 domain, consistent with other evidence that the biochemical machineries for transcription, splicing, and mRNA export are coupled. Transcription and splicing are subcompartmentalized at the periphery, with largely spliced mRNA entering the domain prior to export. In addition, new findings presented here begin to illuminate the structural underpinnings of a speckle by defining specific perturbations of phosphorylation that promote disassembly or assembly of an SC35 domain in relation to other components. Results thus far are consistent with the SC35 spliceosome assembly factor as an integral structural component. Conditions that disperse SC35 also disperse poly(A) RNA, whereas the splicing factor ASF/SF2 can be dispersed under conditions in which SC35 or SRm300 remain as intact components of a core domain.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | |
Collapse
|
5
|
Xie SQ, Martin S, Guillot PV, Bentley DL, Pombo A. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain. Mol Biol Cell 2006; 17:1723-33. [PMID: 16467386 PMCID: PMC1415300 DOI: 10.1091/mbc.e05-08-0726] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/26/2006] [Accepted: 01/30/2006] [Indexed: 11/11/2022] Open
Abstract
"Splicing speckles" are major nuclear domains rich in components of the splicing machinery and polyA(+) RNA. Although speckles contain little detectable transcriptional activity, they are found preferentially associated with specific mRNA-coding genes and gene-rich R bands, and they accumulate some unspliced pre-mRNAs. RNA polymerase II transcribes mRNAs and is required for splicing, with some reports suggesting that the inactive complexes are stored in splicing speckles. Using ultrathin cryosections to improve optical resolution and preserve nuclear structure, we find that all forms of polymerase II are present, but not enriched, within speckles. Inhibition of polymerase activity shows that speckles do not act as major storage sites for inactive polymerase II complexes but that they contain a stable pool of polymerase II phosphorylated on serine(2) residues of the C-terminal domain, which is transcriptionally inactive and may have roles in spliceosome assembly or posttranscriptional splicing of pre-mRNAs. Paraspeckle domains lie adjacent to speckles, but little is known about their protein content or putative roles in the expression of the speckle-associated genes. We find that paraspeckles are transcriptionally inactive but contain polymerase II, which remains stably associated upon transcriptional inhibition, when paraspeckles reorganize around nucleoli in the form of caps.
Collapse
Affiliation(s)
- Sheila Q Xie
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Guillot PV, Xie SQ, Hollinshead M, Pombo A. Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells. Exp Cell Res 2004; 295:460-8. [PMID: 15093744 DOI: 10.1016/j.yexcr.2004.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/20/2004] [Indexed: 10/26/2022]
Abstract
RNA polymerase II (pol II) transcribes the most varied group of genes and is present in hypo- and hyperphosphorylated forms, with residues Ser(2) and Ser(5) of the C-terminal domain (CTD) of the largest subunit as main targets of phosphorylation. The elongating (active) form is phosphorylated on Ser(2) and can be specifically recognized with the H5 antibody. It has been found in different nuclear distributions: in discrete sites throughout the nucleoplasm, consistent with a role in transcription, and/or concentrated in "splicing speckles", a nuclear compartment mostly devoid of transcriptional activity. Here, we assess the effects of cell fixation and permeabilization on the distribution of polymerase II and correlate its distribution with the preservation of cellular ultrastructure. We show that phospho-Ser(2) polymerase II can redistribute to, or be differentially retained in, "speckles" in conditions that do not preserve cellular ultrastructure. The fixation protocols that disrupt polymerase II distribution also cause partial or total loss of TATA-binding protein, Sm antigen and PML staining in PML bodies, and have no noticeable effect in the labeling of SC35 in "splicing speckles" or coilin in Cajal bodies. When nuclear ultrastructure is preserved, phospho-Ser(2) polymerase II is found in discrete sites throughout the nucleoplasm, without visible enrichment within splicing speckles. A minor proportion of the total amount of the phospho-Ser(2) form is present in these domains.
Collapse
Affiliation(s)
- Pascale V Guillot
- MRC-Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | | | | |
Collapse
|
7
|
Didichenko SA, Thelen M. Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 2001; 276:48135-42. [PMID: 11606566 DOI: 10.1074/jbc.m104610200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide 3-kinase C2alpha (PI3K-C2alpha) belongs to the class II phosphatidylinositol 3-kinases, which are defined by their in vitro usage of phosphatidylinositol and phosphatidylinositol 4-phosphate as substrates. All type II phosphatidylinositol 3-kinases contain at their C terminus a C2-like domain. Here we demonstrate that Homo sapiens phosphoinositide 3-kinase C2alpha (HsPI3K-C2alpha) has dual cellular localization present in the cytoplasm and in the nucleus. A distinct nuclear localization signal sequence was identified by expressing HsPI3K-C2alpha-green fluorescent protein fusion proteins in HeLa cells. The nuclear localization signal was mapped to a stretch of 11 amino acids (KRKTKISRKTR) located within C2-like domain of the kinase. In the cytoplasm and the nucleus HsPI3K-C2alpha associates with macromolecular complexes that are resistant to detergent extraction. Indirect immunofluorescence reveals that in the nucleus HsPI3K-C2alpha is enriched at distinct subnuclear domains known as nuclear speckles, which contain pre-mRNA processing factors and are functionally connected to RNA metabolism. Phosphorylation of HsPI3K-C2alpha is induced by inhibition of RNA polymerase II-dependent transcription and coincides with enlargement and rounding up of the nuclear speckles. The results suggest that phosphorylation of HsPI3K-C2alpha is inversely linked to mRNA transcription and supports the importance of phosphoinositides for nuclear activity.
Collapse
Affiliation(s)
- S A Didichenko
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH 6500 Bellinzona, Switzerland
| | | |
Collapse
|
8
|
Fu Z, Chakraborti T, Morse S, Bennett GS, Shaw G. Four casein kinase I isoforms are differentially partitioned between nucleus and cytoplasm. Exp Cell Res 2001; 269:275-86. [PMID: 11570820 DOI: 10.1006/excr.2001.5324] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The casein kinase I (CKI) family consists of at least seven vertebrate genes, some of which can be alternatively spliced. Previously, we have studied the four splice variants of the chicken CKIalpha gene. The four proteins differ only by the presence or absence of two peptides, a 28-amino-acid "L" insert in the catalytic domain and a 12-amino-acid "S" insert near the extreme C-terminus. Here cells were transfected with DNA encoding all four isoforms fused to the green fluorescent protein (GFP) and the localization of each protein was examined. We noted that the L insert includes the sequence PVGKRKR, which has the characteristics of a nuclear localization signal (NLS), and we show that the CKIalphaL and CKIalphaLS isoforms which contain this sequence are targeted to the nucleus, where a fraction becomes associated with nuclear speckles. In contrast the two isoforms lacking the L insert remain predominantly cytoplasmic. Mutation of the first lysine in the putative NLS to asparagine prevented the nuclear entry of GFP-CKIalphaL. Therefore different CKIalpha isoforms are targeted to different cellular compartments in a fashion modulated by alternate transcription and in these locations presumably phosphorylate and regulate different cellular substrates.
Collapse
Affiliation(s)
- Z Fu
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
9
|
Lavoie SB, Albert AL, Handa H, Vincent M, Bensaude O. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 2001; 312:675-85. [PMID: 11575923 DOI: 10.1006/jmbi.2001.4991] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We identify and characterize several phosphorylated forms of the hSpt5 subunit of the DRB sensitivity-inducing factor (DSIF). A 175-kDa phosphorylated form of hSpt5 is bound to nuclei of interphase HeLa cells. This form is rapidly dephosphorylated when cultured cells are exposed to various drugs belonging to distinct chemical families. All these compounds are known to inhibit the protein kinase Cdk9, which phosphorylates in vitro hSpt5 and Rpb1, the largest subunit of RNA polymerase II. The efficiency to promote the dephosphorylation of both proteins matches their capacity to inhibit purified Cdk9 kinase, suggesting that Cdk9 is the major kinase phosphorylating hSpt5 and Rpb1 in vivo. We show that Cdk9 phosphorylates both the CTR1 and the CTR2 domains of recombinant hSpt5. These domains contain numerous serine-proline and threonine-proline residues similar to those found in the carboxyl-terminal domain (CTD) of Rpb1. The structural homology between hSpt5 CTRs and the Rpb1 CTD is further highlighted by the presence on both proteins of a phosphoepitope recognized by the monoclonal antibody CC-3. Of particular interest, the peptidyl-prolyl isomerase Pin1 interacts with Cdk9-phosphorylated hSpt5. Cdk9 dependent phosphorylation of Rpb1 and hSpt5 followed by Pin1 interaction might thus contribute to the regulation of transcription, pre-mRNA maturation, and the dynamics of these proteins in interphase and mitosis.
Collapse
Affiliation(s)
- S B Lavoie
- Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
10
|
Ran Q, Wadhwa R, Bischof O, Venable S, Smith JR, Pereira-Smith OM. Characterization of a novel zinc finger gene with increased expression in nondividing normal human cells. Exp Cell Res 2001; 263:156-62. [PMID: 11161714 DOI: 10.1006/excr.2000.5068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the cloning and characterization of a novel KRAB zinc finger gene, ZFQR, which has eight tandemly repeated zinc fingers, a complete KRAB box at the N-terminal region, and a unique C-terminal sequence. It is expressed in a variety of human tissues, and mRNA levels are upregulated in nondividing senescent and quiescent human fibroblasts. Overexpression of the protein in quiescent cells stimulated with serum growth factors results in inhibition of entry into the cell cycle. The latter activity is lost when the N-terminal KRAB domain is deleted. The KRAB domain is also required for the transcriptional repression activity of ZFQR and in maintaining association of the protein with the nuclear matrix. The gene has been mapped to human chromosome 19q13.4. The association of ZFQR with the nuclear matrix, transcriptional repression activity, increased expression in senescent and quiescent cells, and the ability to inhibit quiescent cells stimulated with growth factors from entering the cell cycle suggests a role for ZFQR in the maintenance of the nondividing state of normal human cells.
Collapse
Affiliation(s)
- Q Ran
- Departments of Cell Biology and Medicine, Division of Molecular Virology, Roy M. and Phyllis Gough Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA
| | | | | | | | | | | |
Collapse
|
11
|
Baumann CT, Lim CS, Hager GL. Intracellular localization and trafficking of steroid receptors. Cell Biochem Biophys 1999; 31:119-27. [PMID: 10593254 DOI: 10.1007/bf02738167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- C T Baumann
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | |
Collapse
|
12
|
Kaytor MD, Duvick LA, Skinner PJ, Koob MD, Ranum LP, Orr HT. Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. Hum Mol Genet 1999; 8:1657-64. [PMID: 10441328 DOI: 10.1093/hmg/8.9.1657] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) belongs to a group of neurological disorders caused by a CAG repeat expansion in the coding region of the associated gene. To gain insight into the pathogenesis of SCA7 and possible functions of ataxin-7, we examined the subcellular localization of ataxin-7 in transfected COS-1 cells using SCA7 cDNA clones with different CAG repeat tract lengths. In addition to a diffuse distribution throughout the nucleus, ataxin-7 associated with the nuclear matrix and the nucleolus. The location of the putative SCA7 nuclear localization sequence (NLS) was confirmed by fusing an ataxin-7 fragment with the normally cytoplasmic protein chicken muscle pyruvate kinase. Mutation of this NLS prevented protein from entering the nucleus. Thus, expanded ataxin-7 may carry out its pathogenic effects in the nucleus by altering a matrix-associated nuclear structure and/or by disrupting nucleolar function.
Collapse
Affiliation(s)
- M D Kaytor
- Institute of Human Genetics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lavoie SB, Albert AL, Thibodeau A, Vincent M. Heat shock-induced alterations in phosphorylation of the largest subunit of RNA polymerase II as revealed by monoclonal antibodies CC-3 and MPM-2. Biochem Cell Biol 1999. [DOI: 10.1139/o99-037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphorylation of the carboxy-terminal domain of the largest subunit of RNA polymerase II plays an important role in the regulation of transcriptional activity and is also implicated in pre-mRNA processing. Different stresses, such as a heat shock, induce a marked alteration in the phosphorylation of this domain. The expression of stress genes by RNA polymerase II, to the detriment of other genes, could be attributable to such modifications of the phosphorylation sites. Using two phosphodependent antibodies recognizing distinct hyperphosphorylated forms of RNA polymerase II largest subunit, we studied the phosphorylation state of the subunit in different species after heat shocks of varying intensities. One of these antibodies, CC-3, preferentially recognizes the carboxy-terminal domain of the largest subunit under normal conditions, but its reactivity is diminished during stress. In contrast, the other antibody used, MPM-2, demonstrated a strong reactivity after a heat shock in most species studied. Therefore, CC-3 and MPM-2 antibodies discriminate between phosphoisomers that may be functionally different. Our results further indicate that the pattern of phosphorylation of RNA polymerase II in most species varies in response to environmental stress.Key words: RNA polymerase II, heat shock, phosphorylation, CC-3, MPM-2.
Collapse
|
14
|
Wei X, Somanathan S, Samarabandu J, Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 1999; 146:543-58. [PMID: 10444064 PMCID: PMC2150559 DOI: 10.1083/jcb.146.3.543] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 06/25/1999] [Indexed: 11/22/2022] Open
Abstract
Transcription sites are detected by labeling nascent transcripts with BrUTP in permeabilized 3T3 mouse fibroblasts followed by laser scanning confocal microscopy. Inhibition and enzyme digestion studies confirm that the labeled sites are from RNA transcripts and that RNA polymerase I (RP I) and II (RP II) are responsible for nucleolar and extranucleolar transcription, respectively. An average of 2,000 sites are detected per nucleus with over 90% in the extranucleolar compartment where they are arranged in clusters and three-dimensional networklike arrays. The number of transcription sites, their three-dimensional organization and arrangement into functional zones (Wei et al. 1998) is strikingly maintained after extraction for nuclear matrix. Significant levels of total RP II mediated transcription sites (45%) were associated with splicing factor-rich nuclear speckles even though the speckles occupied <10% of the total extranucleolar space. Moreover, the vast majority of nuclear speckles (>90%) had moderate to high levels of associated transcription activity. Transcription sites were found along the periphery as well as inside the speckles themselves. These spatial relations were confirmed in optical sections through individual speckles and after in vivo labeling of nascent transcripts. Our results demonstrate that nuclear speckles and their surrounding regions are major sites of RP II-mediated transcription in the cell nucleus, and support the view that both speckle- and nonspeckle-associated regions of the nucleus contain sites for the coordination of transcription and splicing processes.
Collapse
Affiliation(s)
- Xiangyun Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Jagath Samarabandu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
15
|
Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J Cell Sci 1999; 112 ( Pt 15):2493-500. [PMID: 10393805 DOI: 10.1242/jcs.112.15.2493] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monoclonal antibody MPM-2 recognizes a subset of M phase phosphoproteins in a phosphorylation-dependent manner. It is believed that phosphorylation at MPM-2 antigenic sites could regulate mitotic events since most of the MPM-2 antigens identified to date have M phase functions. In addition, many of these proteins are substrates of the mitotic regulator Pin1, a peptidyl-prolyl isomerase which is present throughout the cell cycle and which is thought to alter its mitotic targets by changing their conformation. In interphase cells, most MPM-2 reactivity is confined to nuclear speckles. We report here that a hyperphosphorylated form of the RNA polymerase II largest subunit is the major MPM-2 interphase antigen. These findings were made possible by the availability of another monoclonal antibody, CC-3, that was previously used to identify a 255 kDa nuclear matrix protein associated with spliceosomal components as a hyperphosphorylated form of the RNA polymerase II largest subunit. MPM-2 recognizes a phosphoepitope of the large subunit that becomes hyperphosphorylated upon heat shock in contrast to the phosphoepitope defined by CC-3, whose reactivity is diminished by the heat treatment. Therefore, these two antibodies may discriminate between distinct functional forms of RNA polymerase II. We also show that RNA polymerase II large subunit interacts with Pin1 in HeLa cells. Pin1 may thus regulate transcriptional and post-transcriptional events by catalyzing phosphorylation-dependent conformational changes of the large RNA polymerase II subunit.
Collapse
Affiliation(s)
- A Albert
- Département de médecine and CREFSIP, Pavillon C.-E.-Marchand, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | |
Collapse
|
16
|
Abstract
Biochemical evidence indicates that pre-mRNA splicing factors physically interact with the C-terminal domain of the largest subunit of RNA polymerase II. We have investigated the in vivo function of this interaction. In mammalian cells, truncation of the CTD of RNA pol II LS prevents the targeting of the splicing machinery to a transcription site. In the absence of the CTD, pre-mRNA splicing is severely reduced. The presence of unspliced RNA alone is not sufficient for the accumulation of splicing factors at the transcription site, nor for its efficient splicing. Our results demonstrate a critical role for the CTD of RNA pol II LS in the intranuclear targeting of splicing factors to transcription sites in vivo.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
17
|
Collas P, Liang MR, Vincent M, Aleström P. Active transgenes in zebrafish are enriched in acetylated histone H4 and dynamically associate with RNA Pol II and splicing complexes. J Cell Sci 1999; 112 ( Pt 7):1045-54. [PMID: 10198286 DOI: 10.1242/jcs.112.7.1045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the functional organization of active and silent integrated luciferase transgenes in zebrafish, with the aim of accounting for the variegation of transgene expression in this species. We demonstrate the enrichment of transcriptionally active transgenes in acetylated histone H4 and the dynamic association of the transgenes with splicing factor SC35 and RNA Pol II. Analysis of interphase nuclei and extended chromatin fibers by immunofluorescence and in situ hybridization reveals a co-localization of transgenes with acetylated H4 in luciferase-expressing animals only. Enrichment of expressed transgenes in acetylated H4 is further demonstrated by their co-precipitation from chromatin using anti-acetylated H4 antibodies. Little correlation exists, however, between the level of histone acetylation and the degree of transgene expression. In transgene-expressing zebrafish, most transgenes co-localize with Pol II and SC35, whereas no such association occurs in non-expressing individuals. Inhibition of Pol II abolishes transgene expression and disrupts association of transgenes with SC35, although inactivated transgenes remains enriched in acetylated histones. Exposure of embryos to the histone deacetylation inhibitor TSA induces expression of most silent transgenes. Chromatin containing activated transgenes becomes enriched in acetylated histones and the transgenes recruit SC35 and Pol II. The results demonstrate a correlation between H4 acetylation and transgene activity, and argue that active transgenes dynamically recruit splicing factors and Pol II. The data also suggest that dissociation of splicing factors from transgenes upon Pol II inhibition is not a consequence of changes in H4 acetylation.
Collapse
Affiliation(s)
- P Collas
- Department of Biochemistry, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | | | | | |
Collapse
|
18
|
Snaar SP, Vincent M, Dirks RW. RNA polymerase II localizes at sites of human cytomegalovirus immediate-early RNA synthesis and processing. J Histochem Cytochem 1999; 47:245-54. [PMID: 9889260 DOI: 10.1177/002215549904700213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pre-mRNA synthesis in eukaryotic cells is preceded by the formation of a transcription initiation complex and binding of unphosphorylated RNA polymerase II (Pol II) at the promoter region of a gene. Transcription initiation and elongation are accompanied by the hyperphosphorylation of the carboxy-terminal domain (CTD) of Pol II large subunit. Recent biochemical studies provided evidence that RNA processing factors, including those required for splicing, associate with hyperphosphorylated CTDs forming "transcription factories." To directly visualize the existence of such factories, we simultaneously detected human cytomegalovirus immediate-early (IE) DNA and RNA with splicing factors and Pol II in rat 9G cells inducible for IE gene expression. Combined in situ hybridization and immunocytochemistry revealed that, after induction, both splicing factors and Pol II are present at the sites of IE mRNA synthesis and of IE mRNA processing that extend from the transcribing gene. Noninduced cells revealed no such associations. When IE mRNA-synthesizing cells were treated with a transcription inhibitor, these associations disappeared within 30 min. Our results show that the association of Pol II and splicing factors with IE DNA is dependent on its transcriptional activity and furthermore suggest that splicing factors are still associated with Pol II during active splicing.
Collapse
Affiliation(s)
- S P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
19
|
Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998; 95:41-53. [PMID: 9778246 DOI: 10.1016/s0092-8674(00)81781-x] [Citation(s) in RCA: 720] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene, a polyglutamine neurodegenerative disorder, develop ataxia with ataxin-1 localized to aggregates within cerebellar Purkinje cells nuclei. To examine the importance of nuclear localization and aggregation in pathogenesis, mice expressing ataxin-1[82] with a mutated NLS were established. These mice did not develop disease, demonstrating that nuclear localization is critical for pathogenesis. In a second series of transgenic mice, ataxin-1[77] containing a deletion within the self-association region was expressed within Purkinje cells nuclei. These mice developed ataxia and Purkinje cell pathology similar to the original SCA1 mice. However, no evidence of nuclear ataxin-1 aggregates was found. Thus, although nuclear localization of ataxin-1 is necessary, nuclear aggregation of ataxin-1 is not required to initiate pathogenesis in transgenic mice.
Collapse
Affiliation(s)
- I A Klement
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Andreassen PR, Lacroix FB, Villa-Moruzzi E, Margolis RL. Differential subcellular localization of protein phosphatase-1 alpha, gamma1, and delta isoforms during both interphase and mitosis in mammalian cells. J Cell Biol 1998; 141:1207-15. [PMID: 9606212 PMCID: PMC2137188 DOI: 10.1083/jcb.141.5.1207] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein phosphatase-1 (PP-1) is involved in the regulation of numerous metabolic processes in mammalian cells. The major isoforms of PP-1, alpha, gamma1, and delta, have nearly identical catalytic domains, but they vary in sequence at their extreme NH2 and COOH termini. With specific antibodies raised against the unique COOH-terminal sequence of each isoform, we find that the three PP-1 isoforms are each expressed in all mammalian cells tested, but that they localize within these cells in a strikingly distinct and characteristic manner. Each isoform is present both within the cytoplasm and in the nucleus during interphase. Within the nucleus, PP-1 alpha associates with the nuclear matrix, PP-1 gamma1 concentrates in nucleoli in association with RNA, and PP-1 delta localizes to nonnucleolar whole chromatin. During mitosis, PP-1 alpha is localized to the centrosome, PP-1 gamma1 is associated with microtubules of the mitotic spindle, and PP-1 delta strongly associates with chromosomes. We conclude that PP-1 isoforms are targeted to strikingly distinct and independent sites in the cell, permitting unique and independent roles for each of the isoforms in regulating discrete cellular processes.
Collapse
Affiliation(s)
- P R Andreassen
- Institut de Biologie Structurale Jean-Pierre Ebel (CEA-CNRS), 38027 Grenoble cedex 1, France
| | | | | | | |
Collapse
|
21
|
Abstract
The possible existence in eukaryotic cells of an internal, non-chromatin nuclear structural framework that facilitates gene readout as a set of spatially concerted reactions has become a popular but controversial theater of investigation. This article endeavors to present a circumspect review of the nuclear matrix concept as we presently know it, framed around two contrasting hypotheses: (1) that an internal nuclear framework actively enhances gene expression (in much the same way the cytoskeleton mediates cell locomotion, mitosis and intracellular vesicular traffic) versus (2) that the interphase chromosomes have fixed, inherited positions and that the DNA replication, transcripton and RNA processing machinery diffusionally arrives at sites of gene readout, with some aspects of nuclear structure thus being more a result than a cause of gene expression. On balance, the available information suggests that interactions among various gene expression machines may contribute to isolated nuclear matrix preparations. Some components of isolated nuclear matrix preparations may also reflect induced or reconfigured protein-protein associations. The protein characterization and ultrastructural analysis of the isolated nuclear matrix has advanced significantly in recent years, although controversies remain. Important new clues are now coming in from promising contemporary lines of research that report on nuclear structure in living cells.
Collapse
Affiliation(s)
- T Pederson
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA.
| |
Collapse
|
22
|
Grondin B, Côté F, Bazinet M, Vincent M, Aubry M. Direct interaction of the KRAB/Cys2-His2 zinc finger protein ZNF74 with a hyperphosphorylated form of the RNA polymerase II largest subunit. J Biol Chem 1997; 272:27877-85. [PMID: 9346935 DOI: 10.1074/jbc.272.44.27877] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously identified ZNF74 as a developmentally expressed gene commonly deleted in DiGeorge syndrome. ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix and belongs to a large subfamily of Cys2-His2 zinc finger proteins containing a KRAB (Kruppel-associated box) repressor motif. We now report on the multifunctionality of the zinc finger domain of ZNF74. This nucleic acid binding domain is shown here to function as a nuclear matrix targeting sequence and to be involved in protein-protein interaction. By far-Western analysis and coimmunoprecipitation studies, we demonstrate that ZNF74 interacts, via its zinc finger domain, with the hyperphosphorylated largest subunit of RNA polymerase II (pol IIo) but not with the hypophosphorylated form. The importance of the phosphorylation in this interaction is supported by the observation that phosphatase treatment inhibits ZNF74 binding. Double immunofluorescence experiments indicate that ZNF74 colocalizes with the pol IIo and the SC35 splicing factor in irregularly shaped subnuclear domains. Thus, ZNF74 sublocalization in nuclear domains enriched in pre-mRNA maturating factors, its RNA binding activity, and its direct phosphodependent interaction with the pol IIo, a form of the RNA polymerase functionally associated with pre- mRNA processing, suggest a role for this member of the KRAB multifinger protein family in RNA processing.
Collapse
Affiliation(s)
- B Grondin
- Institut de Recherches Cliniques de Montréal et Département de Médecine, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
23
|
Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 1997; 389:971-4. [PMID: 9353120 DOI: 10.1038/40153] [Citation(s) in RCA: 389] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative disorders caused by an expansion of a polyglutamine tract. It is characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To understand the pathogenesis of SCA1, we examined the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures approximately 0.5 microm across, whereas the expanded ataxin-1 localizes to a single approximately 2-microm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic leukaemia protein. Nuclear matrix preparations demonstrate that ataxin-1 associates with the nuclear matrix in Purkinje and COS cells. We therefore propose that a critical aspect of SCA1 pathogenesis involves the disruption of a nuclear matrix-associated domain.
Collapse
Affiliation(s)
- P J Skinner
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Neri LM, Riederer BM, Valmori A, Capitani S, Martelli AM. Different concentrations of Mg++ ions affect nuclear matrix protein distribution during thermal stabilization of isolated nuclei. J Histochem Cytochem 1997; 45:1317-28. [PMID: 9313794 DOI: 10.1177/002215549704501001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nuclear matrix, a proteinaceous network believed to be a scaffolding structure determining higher-order organization of chromatin, is usually prepared from intact nuclei by a series of extraction steps. In most cell types investigated the nuclear matrix does not spontaneously resist these treatments but must be stabilized before the application of extracting agents. Incubation of isolated nuclei at 37C or 42C in buffers containing Mg++ has been widely employed as stabilizing agent. We have previously demonstrated that heat treatment induces changes in the distribution of three nuclear scaffold proteins in nuclei prepared in the absence of Mg++ ions. We studied whether different concentrations of Mg++ (2.0-5 mM) affect the spatial distribution of nuclear matrix proteins in nuclei isolated from K562 erythroleukemia cells and stabilized by heat at either 37C or 42C. Five proteins were studied, two of which were RNA metabolism-related proteins (a 105-kD component of splicing complexes and an RNP component), one a 126-kD constituent of a class of nuclear bodies, and two were components of the inner matrix network. The localization of proteins was determined by immunofluorescent staining and confocal scanning laser microscope. Mg++ induced significant changes of antigen distribution even at the lowest concentration employed, and these modifications were enhanced in parallel with increase in the concentration of the divalent cation. The different sensitivity to heat stabilization and Mg++ of these nuclear proteins might reflect a different degree of association with the nuclear scaffold and can be closely related to their functional or structural role.
Collapse
Affiliation(s)
- L M Neri
- Istituto di Anatomia Umana Normale, Università di Ferrara, Italy
| | | | | | | | | |
Collapse
|
25
|
Nickerson JA, Krockmalnic G, Wan KM, Penman S. The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc Natl Acad Sci U S A 1997; 94:4446-50. [PMID: 9114009 PMCID: PMC20742 DOI: 10.1073/pnas.94.9.4446] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleus is an intricately structured integration of many functional domains whose complex spatial organization is maintained by a nonchromatin scaffolding, the nuclear matrix. We report here a method for preparing the nuclear matrix with improved preservation of ultrastructure. After the removal of soluble proteins, the structures of the nucleus were extensively cross-linked with formaldehyde. Surprisingly, the chromatin could be efficiently removed by DNase I digestion leaving a well preserved nuclear matrix. The nuclear matrix uncovered by this procedure consisted of highly structured fibers, connected to the nuclear lamina and built on an underlying network of branched 10-nm core filaments. The relative ease with which chromatin and the nuclear matrix could be separated despite extensive prior cross-linking suggests that there are few attachment points between the two structures other than the connections at the bases of chromatin loops. This is an important clue for understanding chromatin organization in the nucleus.
Collapse
Affiliation(s)
- J A Nickerson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
26
|
Reyes JC, Muchardt C, Yaniv M. Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J Cell Biol 1997; 137:263-74. [PMID: 9128241 PMCID: PMC2139781 DOI: 10.1083/jcb.137.2.263] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1996] [Revised: 02/06/1997] [Indexed: 02/04/2023] Open
Abstract
Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling pattern that was excluded from the nucleoli and from regions of condensed chromatin. Dual labeling failed to reveal significant colocalization of BRG1 or hBRM proteins with RNA polymerase II or with nuclear speckles involved in splicing. Chromatin fractionation experiments showed that both soluble and insoluble active chromatin are enriched in the hSWI/SNF proteins as compared with bulk chromatin. hSWI/SNF proteins were also found to be associated with the nuclear matrix or nuclear scaffold, suggesting that a fraction of the hSWI/SNF complex could be involved in the chromatin organization properties associated with matrix attachment regions.
Collapse
Affiliation(s)
- J C Reyes
- Unité des Virus Oncogènes, UA1644 du Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
27
|
Dubois MF, Vincent M, Vigneron M, Adamczewski J, Egly JM, Bensaude O. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II. Nucleic Acids Res 1997; 25:694-700. [PMID: 9016617 PMCID: PMC146510 DOI: 10.1093/nar/25.4.694] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit (RPB1) plays a central role in transcription. The CTD is unphosphorylated when the polymerase assembles into a preinitiation complex of transcription and becomes heavily phosphorylated during promoter clearance and entry into elongation of transcription. A kinase associated to the general transcription factor TFIIH, in the preinitiation complex, phosphorylates the CTD. The TFIIH-associated CTD kinase activity was found to decrease in extracts from heat-shocked HeLa cells compared to unstressed cells. This loss of activity correlated with a decreased solubility of the TFIIH factor. The TFIIH-kinase impairment during heat-shock was accompanied by the disappearance of a particular phosphoepitope (CC-3) on the RPB1 subunit. The CC-3 epitope was localized on the C-terminal end of the CTD and generated in vitro when the RPB1 subunit was phosphorylated by the TFIIH-associated kinase but not by another CTD kinase such as MAP kinase. In apparent discrepancy, the overall RPB1 subunit phosphorylation increased during heat-shock. The decreased activity in vivo of the TFIIH kinase might be compensated by a stress-activated CTD kinase such as MAP kinase. These results also suggest that heat-shock gene transcription may have a weak requirement for TFIIH kinase activity.
Collapse
Affiliation(s)
- M F Dubois
- Laboratoire de Génétique Moléculaire, URA CNRS 1302, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Neri LM, Riederer BM, Marugg RA, Capitani S, Martelli AM. Nuclear scaffold proteins are differently sensitive to stabilizing treatment by heat or Cu++. J Histochem Cytochem 1997; 45:295-305. [PMID: 9016318 DOI: 10.1177/002215549704500214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Collapse
Affiliation(s)
- L M Neri
- Istituto di Anatomia Umana Normale, Università di Ferrara, Italy
| | | | | | | | | |
Collapse
|
29
|
Grondin B, Bazinet M, Aubry M. The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem 1996; 271:15458-67. [PMID: 8663113 DOI: 10.1074/jbc.271.26.15458] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously cloned ZNF74, a developmentally expressed zinc finger gene commonly deleted in DiGeorge syndrome. Here, the intron/exon organization of the human gene and the functional properties of the expressed protein are presented. This zinc finger gene from the transcription factor IIIA/Kruppel family contains three exons. A truncated Kruppel-associated box (KRAB) located at the N terminus of the predicted 64-kDa zinc finger protein is encoded by exon 2. The remainder of the protein including the zinc finger domain as well as the 3'-untranslated region (UTR) is encoded by exon 3. Both 5'-UTR (exon 1) and 3'-UTR contain repetitive Alu elements. In vitro translation of a cDNA encoding the entire ZNF74 coding region produced a 63-kDa protein as determined on sodium dodecyl sulfate-polyacrylamide gel. A bacterially expressed fusion protein shown to bind tightly to 65zinc was used to test the nucleic acid binding properties of ZNF74. By RNA binding assays, ZNF74 was found to bind specifically to poly(U) and poly(G) RNA homopolymers. The restricted binding to these homopolymers and not to poly(A) and poly(C) suggested that ZNF74 displays RNA sequence preferences. RNA binding was mediated by the zinc finger domain. Immunofluorescence studies on transfected cells revealed ZNF74 nuclear localization. The labeling pattern observed in the nuclei clearly excluded the nucleoli. The zinc finger region lacks a classical nuclear localization signal but was found to be responsible for nuclear targeting. Subcellular and in situ sequential fractionations further showed that ZNF74 is associated with the nuclear matrix. The RNA binding properties of this protein and its tight association with the nuclear matrix, a subnuclear compartment involved in DNA replication as well as RNA synthesis and processing, suggest a role for ZNF74 in RNA metabolism.
Collapse
Affiliation(s)
- B Grondin
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|