1
|
Gössweiner-Mohr N, Siligan C, Pluhackova K, Umlandt L, Koefler S, Trajkovska N, Horner A. The Hidden Intricacies of Aquaporins: Remarkable Details in a Common Structural Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202056. [PMID: 35802902 DOI: 10.1002/smll.202202056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Evolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of four representatives, key aspects of AQP stability, gating, selectivity, pore geometry, and oligomerization, with a potential impact on channel functionality, are identified. The general view of AQPs possessing a continuous open water pore is challenged and it is depicted that AQPs' selectivity is not exclusively shaped by pore-lining residues but also by the relative arrangement of transmembrane helices. Moreover, this analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, a numbering scheme of the conserved AQP scaffold is established, facilitating direct comparison of, for example, disease-causing mutations and prediction of potential structural consequences. Additionally, the results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Collapse
Affiliation(s)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, University of Stuttgart, Cluster of Excellence EXC 2075, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Linnea Umlandt
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Natasha Trajkovska
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
2
|
Banitalebi S, Skauli N, Geiseler S, Ottersen OP, Amiry-Moghaddam M. Disassembly and Mislocalization of AQP4 in Incipient Scar Formation after Experimental Stroke. Int J Mol Sci 2022; 23:ijms23031117. [PMID: 35163040 PMCID: PMC8835637 DOI: 10.3390/ijms23031117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
There is an urgent need to better understand the mechanisms involved in scar formation in the brain. It is well known that astrocytes are critically engaged in this process. Here, we analyze incipient scar formation one week after a discrete ischemic insult to the cerebral cortex. We show that the infarct border zone is characterized by pronounced changes in the organization and subcellular localization of the major astrocytic protein AQP4. Specifically, there is a loss of AQP4 from astrocytic endfoot membranes that anchor astrocytes to pericapillary basal laminae and a disassembly of the supramolecular AQP4 complexes that normally abound in these membranes. This disassembly may be mechanistically coupled to a downregulation of the newly discovered AQP4 isoform AQP4ex. AQP4 has adhesive properties and is assumed to facilitate astrocyte mobility by permitting rapid volume changes at the leading edges of migrating astrocytes. Thus, the present findings provide new insight in the molecular basis of incipient scar formation.
Collapse
Affiliation(s)
- Shervin Banitalebi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Samuel Geiseler
- Cardiovascular Research Group IMB, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- President's Office, Karolinska Institutet, Nobels väg 6, 171 77 Stockholm, Sweden
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
3
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Aleksejenko N, Heller J. Super-resolution imaging to reveal the nanostructure of tripartite synapses. Neuronal Signal 2021; 5:NS20210003. [PMID: 34737894 PMCID: PMC8536832 DOI: 10.1042/ns20210003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Even though neurons are the main drivers of information processing in the brain and spinal cord, other cell types are important to mediate adequate flow of information. These include electrically passive glial cells such as microglia and astrocytes, which recently emerged as active partners facilitating proper signal transduction. In disease, these cells undergo pathophysiological changes that propel disease progression and change synaptic connections and signal transmission. In the healthy brain, astrocytic processes contact pre- and postsynaptic structures. These processes can be nanoscopic, and therefore only electron microscopy has been able to reveal their structure and morphology. However, electron microscopy is not suitable in revealing dynamic changes, and it is labour- and time-intensive. The dawn of super-resolution microscopy, techniques that 'break' the diffraction limit of conventional light microscopy, over the last decades has enabled researchers to reveal the nanoscopic synaptic environment. In this review, we highlight and discuss recent advances in our understanding of the nano-world of the so-called tripartite synapses, the relationship between pre- and postsynapse as well as astrocytic processes. Overall, novel super-resolution microscopy methods are needed to fully illuminate the intimate relationship between glia and neuronal cells that underlies signal transduction in the brain and that might be affected in diseases such as Alzheimer's disease and epilepsy.
Collapse
Affiliation(s)
- Natalija Aleksejenko
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City University, Glasnevin, Ireland
| | - Janosch P. Heller
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City University, Glasnevin, Ireland
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Cytoprotective IgG antibodies in sera from a subset of patients with AQP4-IgG seropositive neuromyelitis optica spectrum disorder. Sci Rep 2021; 11:21962. [PMID: 34753987 PMCID: PMC8578624 DOI: 10.1038/s41598-021-01294-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system. Most NMOSD patients are seropositive for immunoglobulin G (IgG) autoantibodies against astrocyte water channel aquaporin-4 (AQP4), called AQP4-IgG. AQP4-IgG binding to aquaporin-4 causes complement-dependent cytotoxicity (CDC), leading to inflammation and demyelination. Here, CDC was measured in AQP4-expressing cells exposed to human complement and heat-inactivated sera from 108 AQP4-IgG seropositive NMOSD subjects and 25 non-NMOSD controls. AQP4-IgG positive sera produced a wide range of CDC, with 50% maximum cytotoxicity produced by as low as 0.2% serum concentration. Unexpectedly, 58 samples produced no cytotoxicity, and of those, four sera were cytoprotective against cytotoxic AQP4-IgG. Cytoprotection was found against different cytotoxic monoclonal AQP4-IgGs and NMOSD patient sera, and in primary astrocyte cultures. Mechanistic studies revealed that the protective factor is an IgG antibody that did not inhibit complement directly, but interfered with binding of cytotoxic AQP4-IgG to AQP4 and consequent C1q binding and complement activation. Further studies suggested that non-pathogenic AQP4-IgG, perhaps with altered glycosylation, may contribute to reduced or ineffectual binding of cytotoxic AQP4-IgG, as well as reduced cell-surface AQP4. The presence of natural cytoprotective antibodies in AQP4-IgG seropositive sera reveals an added level of complexity in NMOSD disease pathogenesis, and suggests the potential therapeutic utility of ‘convalescent’ serum or engineered protective antibody to interfere with pathogenic antibody in AQP4-IgG seropositive NMOSD.
Collapse
|
6
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
7
|
Li J, Bazzi SA, Schmitz F, Tanno H, McDaniel JR, Lee CH, Joshi C, Kim JE, Monson N, Greenberg BM, Hedfalk K, Melamed E, Ippolito GC. Molecular Level Characterization of Circulating Aquaporin-4 Antibodies in Neuromyelitis Optica Spectrum Disorder. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1034. [PMID: 34168058 PMCID: PMC8225010 DOI: 10.1212/nxi.0000000000001034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/27/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine whether distinct aquaporin-4 (AQP4)-IgG lineages play a role in neuromyelitis optica spectrum disorder (NMOSD) pathogenesis, we profiled the AQP4-IgG polyclonal serum repertoire and identified, quantified, and functionally characterized distinct AQP4-IgG lineages circulating in 2 patients with NMOSD. METHODS We combined high-throughput sequencing and quantitative immunoproteomics to simultaneously determine the constituents of both the B-cell receptor (BCR) and the serologic (IgG) anti-AQP4 antibody repertoires in the peripheral blood of patients with NMOSD. The monoclonal antibodies identified by this platform were recombinantly expressed and functionally characterized in vitro. RESULTS Multiple antibody lineages comprise serum AQP4-IgG repertoires. Their distribution, however, can be strikingly different in polarization (polyclonal vs pauciclonal). Among the 4 serum AQP4-IgG monoclonal antibodies we identified in 2 patients, 3 induced complement-dependent cytotoxicity in a model mammalian cell line (p < 0.01). CONCLUSIONS The composition and polarization of AQP4-IgG antibody repertoires may play an important role in NMOSD pathogenesis and clinical presentation. Here, we present a means of coupling both cellular (BCR) and serologic (IgG) antibody repertoire analysis, which has not previously been performed in NMOSD. Our analysis could be applied in the future to clinical management of patients with NMOSD to monitor disease activity over time as well as applied to other autoimmune diseases to facilitate a deeper understanding of disease pathogenesis relative to autoantibody clones.
Collapse
Affiliation(s)
- Jie Li
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Sam A Bazzi
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Florian Schmitz
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Hidetaka Tanno
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Jonathan R McDaniel
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Chang-Han Lee
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Chaitanya Joshi
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Jin Eyun Kim
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Nancy Monson
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Benjamin M Greenberg
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Kristina Hedfalk
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Esther Melamed
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX
| | - Gregory C Ippolito
- From the Department of Chemical Engineering (J.L., H.T., J.R.M., C.-H.L.), University of Texas at Austin, TX; Department of Neurology (S.A.B., E.M.), Dell Medical School, University of Texas at Austin, TX; Department of Chemistry & Molecular Biology (F.S., K.H.), University of Gothenburg, Sweden; Department of Neurology and Neurotherapeutics (C.J., N.M., B.M.G.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Biomedical Engineering (J.E.K.), University of Texas at Austin, TX; and Department of Molecular Biosciences (G.C.I.), University of Texas at Austin, TX.
| |
Collapse
|
8
|
Asavapanumas N, Tradtrantip L, Verkman AS. Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opin Biol Ther 2021; 21:1073-1086. [PMID: 33513036 DOI: 10.1080/14712598.2021.1884223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is characterized by central nervous system inflammation and demyelination. In AQP4-IgG seropositive NMOSD, circulating immunoglobulin G (IgG) autoantibodies against astrocyte water channel aquaporin-4 (AQP4) cause tissue injury. Compelling evidence supports a pathogenic role for complement activation following AQP4-IgG binding to AQP4. Clinical studies supported the approval of eculizumab, an inhibitor of C5 cleavage, in AQP4-IgG seropositive NMOSD. AREAS COVERED This review covers in vitro, animal models, and human evidence for complement-dependent and complement-independent tissue injury in AQP4-IgG seropositive NMOSD. Complement targets are discussed, including complement proteins, regulators and anaphylatoxin receptors, and corresponding drug candidates. EXPERT OPINION Though preclinical data support a central pathogenic role of complement activation in AQP4-IgG seropositive NMOSD, they do not resolve the relative contributions of complement-dependent vs. complement-independent disease mechanisms such as antibody-dependent cellular cytotoxicity, T cell effector mechanisms, and direct AQP4-IgG-induced cellular injury. The best evidence that complement-dependent mechanisms predominate in AQP4-IgG seropositive NMOSD comes from eculizumab clinical data. Various drug candidates targeting distinct complement effector mechanisms may offer improved safety and efficacy. However, notwithstanding the demonstrated efficacy of complement inhibition in AQP4-IgG seropositive NMOSD, the ultimate niche for complement inhibition is not clear given multiple drug options with alternative mechanisms of action.Abbreviations: AAV2, Adeno-associated virus 2; ADCC, antibody-dependent cellular cytotoxicity; ANCA, antineutrophilic cytoplasmic autoantibody; AQP4, aquaporin-4; AQP4-IgG, AQP4-immunoglobulin G; C1-INH, C1-esterase inhibitor; C3aR, C3a receptor; C4BP, C4 binding protein; C5aR, C5a receptor; CDC, complement-dependent cytotoxicity; CFHR1, complement factor H related 1; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; EndoS, endoglycosidase S; FHL-1, factor-H-like protein 1; GFAP, glial fibrillary acidic protein; Iba-1, ionized calcium-binding adaptor protein-1; IgG, immunoglobulin G; IVIG, intravenous human immunoglobulin G; MAC, membrane attack complex; MBL, maltose-binding lectin; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; NK cell, natural killer cell; NMOSD, neuromyelitis optica spectrum disorder; OAP, orthogonal arrays of particles; PNH, paroxysmal nocturnal hemoglobinuria.
Collapse
Affiliation(s)
- Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Jorgačevski J, Zorec R, Potokar M. Insights into Cell Surface Expression, Supramolecular Organization, and Functions of Aquaporin 4 Isoforms in Astrocytes. Cells 2020; 9:cells9122622. [PMID: 33297299 PMCID: PMC7762321 DOI: 10.3390/cells9122622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporin 4 (AQP4) is the most abundant water channel in the central nervous system (CNS). Its expression is confined to non-neuronal glial cells, predominantly to astrocytes that represent a heterogeneous glial cell type in the CNS. The membrane of astrocyte processes, which align brain capillaries and pia, is particularly rich in AQP4. Several isoforms of AQP4 have been described; however, only some (AQP4a (M1), AQP4 c (M23), AQP4e, and AQP4ex) have been identified in the plasma membrane assemblies of astrocytes termed orthogonal arrays of particles (OAPs). Intracellular splicing isoforms (AQP4b, AQP4d, AQP4f, AQP4-Δ4) have been documented, and most of them are postulated to have a role in the cell surface distribution of the plasma membrane isoforms and in the formation of OAPs in murine and human astrocytes. Although OAPs have been proposed to play various roles in the functioning of astrocytes and CNS tissue as a whole, many of these still need to be described. OAPs are studied primarily from the perspective of understanding water permeability regulation through the plasma membrane and of their involvement in cell adhesion and in the dynamics of astrocytic processes. This review describes the cellular distribution of various AQP4 isoforms and their implications in OAP assembly, which is regulated by several intracellular and extracellular proteins.
Collapse
Affiliation(s)
- Jernej Jorgačevski
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (J.J.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (J.J.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (J.J.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1543-7020; Fax: +386-1543-7036
| |
Collapse
|
10
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
de Bellis M, Cibelli A, Mola MG, Pisani F, Barile B, Mastrodonato M, Banitalebi S, Amiry-Moghaddam M, Abbrescia P, Frigeri A, Svelto M, Nicchia GP. Orthogonal arrays of particle assembly are essential for normal aquaporin-4 expression level in the brain. Glia 2020; 69:473-488. [PMID: 32946135 DOI: 10.1002/glia.23909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/11/2022]
Abstract
Astrocyte endfeet are endowed with aquaporin-4 (AQP4)-based assemblies called orthogonal arrays of particles (OAPs) whose function is still unclear. To investigate the function of OAPs and of AQP4 tetramers, we have generated a novel "OAP-null" mouse model selectively lacking the OAP forming M23-AQP4 isoform. We demonstrated that AQP4 transcript levels were not reduced by using qPCR. Blue native (BN)/SDS-PAGE and Western blot performed on OAP-null brain and primary astrocyte cultures showed the complete depletion of AQP4 assemblies, the selective expression of M1-AQP4-based tetramers, and a substantial reduction in AQP4 total expression level. Fluorescence quenching and super-resolution microscopy experiments showed that AQP4 tetramers were functionally expressed in astrocyte plasma membrane and their dimensions were reduced compared to wild-type assemblies. Finally, as shown by light and electron microscopy, OAP depletion resulted in a massive reduction in AQP4 expression and a loss of perivascular AQP4 staining at astrocyte endfeet, with only sparse labeling throughout the brain areas analyzed. Our study relies on the unique property of AQP4 to form OAPs, using a novel OAP-null mouse model for the first time, to show that (a) AQP4 assembly is essential for normal AQP4 expression level in the brain and (b) most of AQP4 is organized into OAPs under physiological conditions. Therefore, AQP4 tetramers cannot be used by astrocytes as an alternative to OAPs without affecting AQP4 expression levels, which is important in the physiological and pathological conditions in which OAP aggregation/disaggregation dynamics have been implicated.
Collapse
Affiliation(s)
- Manuela de Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Shervin Banitalebi
- Department of Molecular Medicine, Division of Anatomy, University of Oslo, Oslo, Norway
| | | | - Pasqua Abbrescia
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
He Y, Bao YT, Chen HS, Chen YT, Zhou XJ, Yang YX, Li CY. The Effect of Shen Qi Wan Medicated Serum on NRK-52E Cells Proliferation and Migration by Targeting Aquaporin 1 (AQP1). Med Sci Monit 2020; 26:e922943. [PMID: 32491998 PMCID: PMC7293146 DOI: 10.12659/msm.922943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Shen Qi Wan (SQW) as a well-known formula for the amelioration of kidney yang deficiency syndrome (KYDS), and it has been widely employed in traditional Chinese medicine (TCM). This study aimed to investigate the effect and underlying mechanism of SQW medicated serum on proliferation and migration in NRK-52E cells. MATERIAL AND METHODS We employed the real-time cell analysis (RTCA) system to investigate the effect of SQW medicated serum on proliferation and migration in NRK-52E cells. In addition, the migration was further investigated by using a wound-healing assay. The mRNA and protein expression level of aquaporin 1 (AQP1) of NRK-52E cells with SQW medicated serum-treated were quantified by real-time quantitative polymerase chain reaction (q-PCR) and western blot assay, respectively. Furthermore, NRK-52E cells were transfected with lentivirus AQP1-RNAi to assess migratory cell abilities in vitro. RESULTS The migratory abilities of NRK-52E cells were significantly increased after SQW medicated serum treatment (P<0.05), and no significant difference in cell proliferation. In addition, SQW medicated serum was significantly upregulated the mRNA and protein expression level of AQP1 in NRK-52E cells (P<0.05). Additionally, the in vitro metastasis test proved that knockdown of AQP1 suppressed migratory abilities according to RTCA and wound healing test while was reversed by SQW medicated serum (P<0.05). CONCLUSIONS Our study demonstrates that SQW medicated serum effectively promotes the migration of NRK-52E cells by increasing AQP1 expression, and AQP1 may be as a therapeutic target of SQW for renal injury treatment under KYDS.
Collapse
Affiliation(s)
- Ying He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, P.R. China
| | - Yu Ting Bao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Hong Shu Chen
- Department of Traditional Chinese Medicine (TCM) Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yi Tao Chen
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Xiao Jie Zhou
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yuan Xiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Chang Yu Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
13
|
Lisjak M, Potokar M, Zorec R, Jorgačevski J. Indirect Role of AQP4b and AQP4d Isoforms in Dynamics of Astrocyte Volume and Orthogonal Arrays of Particles. Cells 2020; 9:cells9030735. [PMID: 32192013 PMCID: PMC7140617 DOI: 10.3390/cells9030735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the central nervous system (CNS). It is predominantly expressed in astrocytes lining blood–brain and blood–liquor boundaries. AQP4a (M1), AQP4c (M23), and AQP4e, present in the plasma membrane, participate in the cell volume regulation of astrocytes. The function of their splicing variants, AQP4b and AQP4d, predicted to be present in the cytoplasm, is unknown. We examined the cellular distribution of AQP4b and AQP4d in primary rat astrocytes and their role in cell volume regulation. The AQP4b and AQP4d isoforms exhibited extensive cytoplasmic localization in early and late endosomes/lysosomes and in the Golgi apparatus. Neither isoform localized to orthogonal arrays of particles (OAPs) in the plasma membrane. The overexpression of AQP4b and AQP4d isoforms in isoosmotic conditions reduced the density of OAPs; in hypoosmotic conditions, they remained absent from OAPs. In hypoosmotic conditions, the AQP4d isoform was significantly redistributed to early endosomes, which correlated with the increased trafficking of AQP4-laden vesicles. The overexpression of AQP4d facilitated the kinetics of cell swelling, without affecting the regulatory volume decrease. Therefore, although they reside in the cytoplasm, AQP4b and AQP4d isoforms may play an indirect role in astrocyte volume changes.
Collapse
Affiliation(s)
- Marjeta Lisjak
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.L.); (M.P.); (R.Z.)
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.L.); (M.P.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.L.); (M.P.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.L.); (M.P.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +38615437081
| |
Collapse
|
14
|
Duan T, Verkman AS. Experimental animal models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress and shortcomings. Brain Pathol 2019; 30:13-25. [PMID: 31587392 DOI: 10.1111/bpa.12793] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) is a heterogeneous group of neuroinflammatory conditions associated with demyelination primarily in spinal cord and optic nerve, and to a lesser extent in brain. Most NMOSD patients are seropositive for IgG autoantibodies against aquaporin-4 (AQP4-IgG), the principal water channel in astrocytes. There has been interest in establishing experimental animal models of seropositive NMOSD (herein referred to as NMO) in order to elucidate NMO pathogenesis mechanisms and to evaluate drug candidates. An important outcome of early NMO animal models was evidence for a pathogenic role of AQP4-IgG. However, available animal models of NMO, based largely on passive transfer to rodents of AQP4-IgG or transfer of AQP4-sensitized T cells, often together with pro-inflammatory maneuvers, only partially recapitulate the clinical and pathological features of human NMO, and are inherently biased toward humoral or cellular immune mechanisms. This review summarizes current progress and shortcomings in experimental animal models of seropositive NMOSD, and opines on the import of advancing animal models.
Collapse
Affiliation(s)
- Tianjiao Duan
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143.,Department of Neurology, Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, 94143
| |
Collapse
|
15
|
Mamtilahun M, Tang G, Zhang Z, Wang Y, Tang Y, Yang GY. Targeting Water in the Brain: Role of Aquaporin-4 in Ischemic Brain Edema. Curr Drug Targets 2019; 20:748-755. [DOI: 10.2174/1389450120666190214115309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
Brain edema primarily occurs as a consequence of various cerebral injuries including
ischemic stroke. Excessive accumulation of brain water content causes a gradual expansion of brain
parenchyma, decreased blood flow and increased intracranial pressure and, ultimately, cerebral herniation
and death. Current clinical treatment for ischemic edema is very limited, therefore, it is urgent to
develop novel treatment strategies. Mounting evidence has demonstrated that AQP4, a water channel
protein, is closely correlated with brain edema and could be an optimal therapeutic target for the reduction
of ischemic brain edema. AQP4 is prevalently distributed in the central nervous system, and
mainly regulates water flux in brain cells under normal and pathological conditions. This review focuses
on the underlying mechanisms of AQP4 related to its dual role in edema formation and elimination.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guanghui Tang
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Glober NK, Sprague S, Ahmad S, Mayfield KG, Fletcher LM, Digicaylioglu MH, Sayre NL. Acetazolamide Treatment Prevents Redistribution of Astrocyte Aquaporin 4 after Murine Traumatic Brain Injury. NEUROSCIENCE JOURNAL 2019; 2019:2831501. [PMID: 31187032 PMCID: PMC6521570 DOI: 10.1155/2019/2831501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
After traumatic brain injury (TBI), multiple ongoing processes contribute to worsening and spreading of the primary injury to create a secondary injury. One major process involves disrupted fluid regulation to create vascular and cytotoxic edema in the affected area. Although understanding of factors that influence edema is incomplete, the astrocyte water channel Aquaporin 4 (AQP4) has been identified as an important mediator and therefore attractive drug target for edema prevention. The FDA-approved drug acetazolamide has been administered safely to patients for years in the United States. To test whether acetazolamide altered AQP4 function after TBI, we utilized in vitro and in vivo models of TBI. Our results suggest that AQP4 localization is altered after TBI, similar to previously published reports. Treatment with acetazolamide prevented AQP4 reorganization, both in human astrocyte in vitro and in mice in vivo. Moreover, acetazolamide eliminated cytotoxic edema in our in vivo mouse TBI model. Our results suggest a possible clinical role for acetazolamide in the treatment of TBI.
Collapse
Affiliation(s)
- Nancy K. Glober
- Department of Emergency Medicine, Stanford University, Palo Alto, California, USA
| | - Shane Sprague
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sadiya Ahmad
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Katherine G. Mayfield
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lauren M. Fletcher
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Murat H. Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Naomi L. Sayre
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| |
Collapse
|
17
|
Soltys J, Liu Y, Ritchie A, Wemlinger S, Schaller K, Schumann H, Owens GP, Bennett JL. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J Clin Invest 2019; 129:2000-2013. [PMID: 30958797 DOI: 10.1172/jci122942] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune CNS disorder mediated by pathogenic aquaporin-4 (AQP4) water channel autoantibodies (AQP4-IgG). Although AQP4-IgG-driven complement-dependent cytotoxicity (CDC) is critical for the formation of NMO lesions, the molecular mechanisms governing optimal classical pathway activation are unknown. We investigated the molecular determinants driving CDC in NMO using recombinant AQP4-specific autoantibodies (AQP4 rAbs) derived from affected patients. We identified a group of AQP4 rAbs targeting a distinct extracellular loop C epitope that demonstrated enhanced CDC on target cells. Targeted mutations of AQP4 rAb Fc domains that enhance or diminish C1q binding or antibody Fc-Fc interactions showed that optimal CDC was driven by the assembly of multimeric rAb platforms that increase multivalent C1q binding and facilitate C1q activation. A peptide that blocks antibody Fc-Fc interaction inhibited CDC induced by AQP4 rAbs and polyclonal NMO patient sera. Super-resolution microscopy revealed that AQP4 rAbs with enhanced CDC preferentially formed organized clusters on supramolecular AQP4 orthogonal arrays, linking epitope-dependent multimeric assembly with enhanced C1q binding and activation. The resulting model of AQP4-IgG CDC provides a framework for understanding classical complement activation in human autoantibody-mediated disorders and identifies a potential new therapeutic avenue for treating NMO.
Collapse
Affiliation(s)
- John Soltys
- Neuroscience and Medical Scientist Training Programs
| | | | | | | | | | | | | | - Jeffrey L Bennett
- Neuroscience and Medical Scientist Training Programs.,Department of Neurology, and.,Department of Ophthalmology, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
18
|
Paulino J, Pang X, Hung I, Zhou HX, Cross TA. Influenza A M2 Channel Clustering at High Protein/Lipid Ratios: Viral Budding Implications. Biophys J 2019; 116:1075-1084. [PMID: 30819568 DOI: 10.1016/j.bpj.2019.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 11/27/2022] Open
Abstract
Protein dynamics in crowded environments is important for understanding protein functions in vivo and is especially relevant for membrane proteins because of the roles of protein-protein interactions in membrane protein functions and their regulation. Here, using solid-state NMR spectroscopy in combination with coarse-grained molecular dynamics simulations, we report that the rotational correlation time for the transmembrane domain of the influenza A M2 proton channel in lipid bilayers increases dramatically at an elevated protein/lipid ratio. This increase is attributable to persistent protein-protein interactions, thus revealing for the first time, to the best of our knowledge, extensive cluster formation of the M2 tetrameric channel. Such clustering appears to have direct biological relevance during budding of the nascent influenza virus, which does not use the endosomal sorting complexes required for transport machinery. Indeed, initial coarse-grained molecular dynamics simulations of the longer M2 construct known as the conductance domain suggest clustering-induced membrane curvature formation.
Collapse
Affiliation(s)
- Joana Paulino
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Xiaodong Pang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Huan-Xiang Zhou
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois
| | - Timothy A Cross
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida; National High Magnetic Field Laboratory, Tallahassee, Florida; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida.
| |
Collapse
|
19
|
Pisani F, Simone L, Mola MG, De Bellis M, Mastrapasqua M, Ruggieri M, Trojano M, Nicchia GP, Svelto M, Frigeri A. Host-Cell Type Dependent Features of Recombinant Human Aquaporin-4 Orthogonal Arrays of Particles-New Insights for Structural and Functional Studies. Cells 2019; 8:cells8020119. [PMID: 30717425 PMCID: PMC6406603 DOI: 10.3390/cells8020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as ‘orthogonal arrays of particles’ (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, 71013 San Giovanni Rotondo (FG), Italy.
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Mastrapasqua
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maddalena Ruggieri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Trojano
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy.
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
20
|
Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells 2019; 8:cells8020090. [PMID: 30691235 PMCID: PMC6406241 DOI: 10.3390/cells8020090] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Aquaporin-4 (AQP4) is a water channel expressed on astrocytic endfeet in the brain. The role of AQP4 has been studied in health and in a range of pathological conditions. Interest in AQP4 has increased since it was discovered to be the target antigen in the inflammatory autoimmune disease neuromyelitis optica spectrum disorder (NMOSD). Emerging data suggest that AQP4 may also be implicated in the glymphatic system and may be involved in the clearance of beta-amyloid in Alzheimer’s disease (AD). In this review, we will describe the role of AQP4 in the adult and developing brain as well as its implication for disease.
Collapse
|
21
|
Jensen HH, Pedersen GA, Morgen JJ, Parsons M, Pedersen SF, Nejsum LN. The Na + /H + exchanger NHE1 localizes as clusters to cryptic lamellipodia and accelerates collective epithelial cell migration. J Physiol 2018; 597:849-867. [PMID: 30471113 DOI: 10.1113/jp277383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Exogenous Na+ /H+ exchanger 1 (NHE1) expression stimulated the collective migration of epithelial cell sheets Stimulation with epidermal growth factor, a key morphogen, primarily increased migration of the front row of cells, whereas NHE1 increased that of submarginal cell rows, and the two stimuli were additive Accordingly, NHE1 localized not only to the leading edges of leader cells, but also in cryptic lamellipodia in submarginal cell rows NHE1 expression disrupted the morphology of epithelial cell sheets and three-dimensional cysts ABSTRACT: Collective cell migration plays essential roles in embryonic development, in normal epithelial repair processes, and in many diseases including cancer. The Na+ /H+ exchanger 1 (NHE1, SLC9A1) is an important regulator of motility in many cells and has been widely studied for its roles in cancer, although its possible role in collective migration of normal epithelial cells has remained unresolved. In the present study, we show that NHE1 expression in MDCK-II kidney epithelial cells accelerated collective cell migration. NHE1 localized to the leading edges of leader cells, as well as to cryptic lamellipodia in submarginal cell rows. Epidermal growth factor, a kidney morphogen, increased displacement of the front row of collectively migrating cells and reduced the number of migration fingers. NHE1 expression increased the number of migration fingers and increased displacement of submarginal cell rows, resulting in additive effects of NHE1 and epidermal growth factor. Finally, NHE1 expression resulted in disorganized development of MDCK-II cell cysts. Thus, NHE1 contributes to collective migration and epithelial morphogenesis, suggesting roles for the transporter in embryonic and early postnatal development.
Collapse
Affiliation(s)
- Helene H Jensen
- Department of Clinical Medicine, Aarhus University, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | - Jeanette J Morgen
- Department of Clinical Medicine, Aarhus University, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Stine F Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
22
|
Baumgart F, Arnold AM, Rossboth BK, Brameshuber M, Schütz GJ. What we talk about when we talk about nanoclusters. Methods Appl Fluoresc 2018; 7:013001. [PMID: 30412469 DOI: 10.1088/2050-6120/aaed0f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superresolution microscopy results have sparked the idea that many membrane proteins are not randomly distributed across the plasma membrane but are instead arranged in nanoclusters. Frequently, these new results seemed to confirm older data based on biochemical and electron microscopy experiments. Recently, however, it was recognized that multiple countings of the very same fluorescently labeled protein molecule can be easily confused with true protein clusters. Various strategies have been developed, which are intended to solve the problem of discriminating true protein clusters from imaging artifacts. We believe that there is currently no perfect algorithm for this problem; instead, different approaches have different strengths and weaknesses. In this review, we discuss single molecule localization microscopy in view of its ability to detect nanoclusters of membrane proteins. To capture the different views on nanoclustering, we chose an unconventional style for this article: we placed its scientific content in the setting of a fictive conference, where five researchers from different fields discuss the problem of detecting and quantifying nanoclusters. Using this style, we feel that the different approaches common for different research areas can be well illustrated. Similarities to a short story by Raymond Carver are not unintentional.
Collapse
|
23
|
AQP4 and HIVAN. Exp Mol Pathol 2018; 105:71-75. [PMID: 29778884 DOI: 10.1016/j.yexmp.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/13/2018] [Indexed: 11/21/2022]
|
24
|
Heller JP, Rusakov DA. The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy. Front Cell Neurosci 2017; 11:374. [PMID: 29225567 PMCID: PMC5705901 DOI: 10.3389/fncel.2017.00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Synaptic connections between individual nerve cells are fundamental to the process of information transfer and storage in the brain. Over the past decades a third key partner of the synaptic machinery has been unveiled: ultrathin processes of electrically passive astroglia which often surround pre- and postsynaptic structures. The recent advent of super-resolution (SR) microscopy has begun to uncover the dynamic nanoworld of synapses and their astroglial environment. Here we overview and discuss the current progress in our understanding of the synaptic nanoenvironment, as gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We argue that such methods are essential to achieve a new level of comprehension pertinent to the principles of signal integration in the brain.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Verkman AS, Smith AJ, Phuan PW, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 2017; 21:1161-1170. [PMID: 29072508 DOI: 10.1080/14728222.2017.1398236] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Aquaporin-4 (AQP4) is a water transporting protein expressed at the plasma membrane of astrocytes throughout the central nervous system (CNS). Analysis of AQP4 knockout mice has suggested its broad involvement in brain water balance, neuroexcitation, glial scarring, neuroinflammation, and even neurodegenerative and neuropsychiatric disorders. Broad clinical utility of AQP4 modulators has been speculated. Area covered: This review covers the biology of AQP4, evidence for its roles in normal CNS function and neurological disorders, and progress in AQP4 drug discovery. Expert opinion: Critical examination of available data reduces the lengthy potential applications list to AQP4 inhibitors for early therapy of ischemic stroke and perhaps for reduction of glial scarring following CNS injury. Major challenges in identification and clinical development of AQP4 inhibitors include the apparent poor druggability of AQPs, the many homologous AQP isoforms with broad tissue distribution and functions, technical issues with water transport assays, predicted undesired CNS and non-CNS actions, and the need for high blood-brain barrier permeation. To date, despite considerable effort, validated small-molecule AQP4 inhibitors have not been advanced. However, a biologic ('aquaporumab') is in development for neuromyelitis optica, an autoimmune inflammatory demyelinating disease where CNS pathology is initiated by binding of anti-AQP4 autoantibodies to astrocyte AQP4.
Collapse
Affiliation(s)
- Alan S Verkman
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Alex J Smith
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Puay-Wah Phuan
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Lukmanee Tradtrantip
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA
| | - Marc O Anderson
- a Departments of Medicine and Physiology , University of California , San Francisco , CA , USA.,b Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA
| |
Collapse
|
26
|
Roche JV, Törnroth-Horsefield S. Aquaporin Protein-Protein Interactions. Int J Mol Sci 2017; 18:ijms18112255. [PMID: 29077056 PMCID: PMC5713225 DOI: 10.3390/ijms18112255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1) interactions between aquaporin tetramers; (2) interactions between aquaporin monomers within a tetramer (hetero-tetramerization); and (3) transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.
Collapse
Affiliation(s)
- Jennifer Virginia Roche
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
27
|
Rosito S, Nicchia GP, Palazzo C, Lia A, Buccoliero C, Pisani F, Svelto M, Trojano M, Frigeri A. Supramolecular aggregation of aquaporin-4 is different in muscle and brain: correlation with tissue susceptibility in neuromyelitis optica. J Cell Mol Med 2017; 22:1236-1246. [PMID: 29055082 PMCID: PMC5783885 DOI: 10.1111/jcmm.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/26/2017] [Indexed: 11/27/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by autoantibodies (NMO‐IgG) against the water channel aquaporin‐4 (AQP4). Though AQP4 is also expressed outside the CNS, for example in skeletal muscle, patients with NMO generally do not show clinical/diagnostic evidence of skeletal muscle damage. Here, we have evaluated whether AQP4 supramolecular organization is at the basis of the different tissue susceptibility. Using immunofluorescence we found that while the sera of our cohort of patients with NMO gave typical perivascular staining in the CNS, they were largely negative in the skeletal muscle. This conclusion was obtained using human, rat and mouse skeletal muscle including the AQP4‐KO mouse. A biochemical analysis using a new size exclusion chromatography approach for AQP4 suprastructure fractionation revealed substantial differences in supramolecular AQP4 assemblies and isoform abundance between brain and skeletal muscle matching a lower binding affinity of NMO‐IgG to muscle compared to the brain. Super‐resolution microscopy analysis with g‐STED revealed different AQP4 organization in native tissues, while in the brain perivascular astrocyte endfoot membrane AQP4 was mainly organized in large interconnected and raft‐like clusters, in the sarcolemma of fast‐twitch fibres AQP4 aggregates often appeared as small, relatively isolated linear entities. In conclusion, our results provide evidence that AQP4 supramolecular structure is different in brain and skeletal muscle, which is likely to result in different tissues susceptibility to the NMO disease.
Collapse
Affiliation(s)
- Stefania Rosito
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Palazzo
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Anna Lia
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Buccoliero
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
28
|
AQP4e-Based Orthogonal Arrays Regulate Rapid Cell Volume Changes in Astrocytes. J Neurosci 2017; 37:10748-10756. [PMID: 28978666 DOI: 10.1523/jneurosci.0776-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2017] [Accepted: 09/23/2017] [Indexed: 01/28/2023] Open
Abstract
Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. It is predominantly expressed in astrocytes at the blood-brain and blood-liquor interfaces. Although several AQP4 isoforms have been identified in the mammalian brain, two, AQP4a (M1) and AQP4c (M23), have been confirmed to cluster into plasma membrane supramolecular structures, termed orthogonal arrays of particles (OAPs) and to enhance water transport through the plasma membrane. However, the role of the newly described water-conductive mammalian isoform AQP4e is unknown. Here, the dynamics of AQP4e aggregation into OAPs and its role in the regulation of astrocyte water homeostasis have been studied. Using super-resolution structured illumination, atomic force, and confocal microscopies, the results revealed that, in female rat astrocytes, AQP4e isoform colocalizes with OAPs, affecting its structural dynamics. In hypoosmotic conditions, which elicit cell edema, OAP formation was considerably enhanced by overexpressed AQP4e. Moreover, the kinetics of the cell swelling and of the regulatory volume decrease was faster in astrocytes overexpressing AQP4e compared with untransfected controls. Furthermore, the increase in maximal cell volume elicited by hypoosmotic stimulation was significantly smaller in AQP4e-overexpressing astrocytes. For the first time, this study demonstrates an active role of AQP4e in the regulation of OAP structural dynamics and in water homeostasis.SIGNIFICANCE STATEMENT Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. To date, only AQP4a and AQP4c isoforms have been confirmed to enhance water transport through plasmalemma and to cluster into orthogonal arrays of particles (OAPs). We here studied the dynamics, aggregation, and role in the regulation of astrocyte water homeostasis of the newly described water-conductive mammalian isoform AQP4e. Our main findings are as follows: brain edema mimicking hypoosmotic conditions stimulates the formation of new OAPs with larger diameters, due to the incorporation of additional cytoplasmic AQP4 channels and the redistribution of AQP4 channels of the existing OAPs; and AQP4e affects the dynamics of cell swelling and regulatory volume decrease in astrocytes exposed to hypoosmotic conditions.
Collapse
|
29
|
Soltys JN, Meyer SA, Schumann H, Gibson EA, Restrepo D, Bennett JL. Determining the Spatial Relationship of Membrane-Bound Aquaporin-4 Autoantibodies by STED Nanoscopy. Biophys J 2017; 112:1692-1702. [PMID: 28445760 DOI: 10.1016/j.bpj.2017.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Determining the spatial relationship of individual proteins in dense assemblies remains a challenge for superresolution nanoscopy. The organization of aquaporin-4 (AQP4) into large plasma membrane assemblies provides an opportunity to image membrane-bound AQP4 antibodies (AQP4-IgG) and evaluate changes in their spatial distribution due to alterations in AQP4 isoform expression and AQP4-IgG epitope specificity. Using stimulated emission depletion nanoscopy, we imaged secondary antibody labeling of monoclonal AQP4-IgGs with differing epitope specificity bound to isolated tetramers (M1-AQP4) and large orthogonal arrays of AQP4 (M23-AQP4). Imaging secondary antibodies bound to M1-AQP4 allowed us to infer the size of individual AQP4-IgG binding events. This information was used to model the assembly of larger AQP4-IgG complexes on M23-AQP4 arrays. A scoring algorithm was generated from these models to characterize the spatial arrangement of bound AQP4-IgG antibodies, yielding multiple epitope-specific patterns of bound antibodies on M23-AQP4 arrays. Our results delineate an approach to infer spatial relationships within protein arrays using stimulated emission depletion nanoscopy, offering insight into how information on single antibody fluorescence events can be used to extract information from dense protein assemblies under a biologic context.
Collapse
Affiliation(s)
- John N Soltys
- Medical Scientist Training and Neuroscience Graduate Training Programs, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie A Meyer
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah Schumann
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily A Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
30
|
Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1326-1334. [PMID: 28477975 DOI: 10.1016/j.bbamem.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP137-138AA, N153Q and V150G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4.
Collapse
|
31
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
32
|
Heller JP, Michaluk P, Sugao K, Rusakov DA. Probing nano-organization of astroglia with multi-color super-resolution microscopy. J Neurosci Res 2017; 95:2159-2171. [PMID: 28151556 DOI: 10.1002/jnr.24026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/28/2016] [Indexed: 01/04/2023]
Abstract
Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca2+ fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age- and use-dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super-resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano-physiology. We were able to follow nanoscopic morphology of GFAP-enriched astrocytes, which adapt a flattened shape in culture and a sponge-like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane-targeted pHluorin and lymphocyte-specific protein tyrosine kinase (N-terminal domain) -green fluorescent protein (lck-GFP), to better understand the molecular cascades underlying some common astroglia-targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function-specific studies. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| | - Piotr Michaluk
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| | - Kohtaroh Sugao
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom.,Molecular Pathophysiology Research, Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, 104-8356, Japan
| | - Dmitri A Rusakov
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| |
Collapse
|
33
|
Smith AJ, Verkman AS. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections. Biophys J 2016; 109:2511-2522. [PMID: 26682810 DOI: 10.1016/j.bpj.2015.10.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022] Open
Abstract
The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4(-/-) astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution.
Collapse
Affiliation(s)
- Alex J Smith
- Departments of Medicine and Physiology, University of California at San Francisco, San Francisco, California.
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California at San Francisco, San Francisco, California.
| |
Collapse
|
34
|
Gleiser C, Wagner A, Fallier-Becker P, Wolburg H, Hirt B, Mack AF. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs-A Comparative Perspective. Int J Mol Sci 2016; 17:E1411. [PMID: 27571065 PMCID: PMC5037691 DOI: 10.3390/ijms17091411] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.
Collapse
Affiliation(s)
- Corinna Gleiser
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| | - Andreas Wagner
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, Eberhard Karls Universität Tübingen, 72076 Tubingen, Germany.
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, Eberhard Karls Universität Tübingen, 72076 Tubingen, Germany.
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls Universität Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
35
|
Astrocyte Aquaporin Dynamics in Health and Disease. Int J Mol Sci 2016; 17:ijms17071121. [PMID: 27420057 PMCID: PMC4964496 DOI: 10.3390/ijms17071121] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state.
Collapse
|
36
|
Abstract
Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology.
Collapse
Affiliation(s)
- Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| | - Christopher Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
37
|
Hinson SR, Lennon VA, Pittock SJ. Autoimmune AQP4 channelopathies and neuromyelitis optica spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:377-403. [PMID: 27112688 DOI: 10.1016/b978-0-444-63432-0.00021-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving group of central nervous system (CNS)-inflammatory autoimmune demyelinating diseases unified by a pathogenic autoantibody specific for the aquaporin-4 (AQP4) water channel. It was historically misdiagnosed as multiple sclerosis (MS), which lacks a distinguishing biomarker. The discovery of AQP4-IgG moved the focus of CNS demyelinating disease research from emphasis on the oligodendrocyte and myelin to the astrocyte. NMO is recognized today as a relapsing disease, extending beyond the optic nerves and spinal cord to include brain (especially in children) and skeletal muscle. Brain magnetic resonance imaging abnormalities, identifiable in 60% of patients at the second attack, are consistent with MS in 10% of cases. NMOSD-typical lesions (another 10%) occur in AQP4-enriched regions: circumventricular organs (causing intractable nausea and vomiting) and the diencephalon (causing sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Advances in understanding the immunobiology of AQP4 autoimmunity have necessitated continuing revision of NMOSD clinical diagnostic criteria. Assays that selectively detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 are promising prognostically. When referring to AQP4 autoimmunity, we suggest substituting the term "autoimmune aquaporin-4 channelopathy" for the term "NMO spectrum disorders." Randomized clinical trials are currently assessing the efficacy and safety of newer immunotherapies. Increasing therapeutic options based on understanding the molecular pathogenesis is anticipated to improve the outcome for patients with AQP4 channelopathy.
Collapse
Affiliation(s)
- Shannon R Hinson
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Vanda A Lennon
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Sean J Pittock
- Departments of Laboratory Medicine/Pathology and Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA.
| |
Collapse
|
38
|
Mangiatordi GF, Alberga D, Siragusa L, Goracci L, Lattanzi G, Nicolotti O. Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1462-71. [PMID: 25839357 DOI: 10.1016/j.bbamem.2015.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability.
Collapse
Affiliation(s)
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica "M. Merlin", Università di Bari "Aldo Moro" and INFN, Via E. Orabona, 4, I-70126 Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy
| | - Lydia Siragusa
- Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, UK
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica "M. Merlin", Università di Bari "Aldo Moro" and INFN, Via E. Orabona, 4, I-70126 Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Via Orabona, 4, Università di Bari "Aldo Moro", Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy.
| |
Collapse
|
39
|
Jukkola P, Gu C. Regulation of neurovascular coupling in autoimmunity to water and ion channels. Autoimmun Rev 2015; 14:258-67. [PMID: 25462580 PMCID: PMC4303502 DOI: 10.1016/j.autrev.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 12/27/2022]
Abstract
Much progress has been made in understanding autoimmune channelopathies, but the underlying pathogenic mechanisms are not always clear due to broad expression of some channel proteins. Recent studies show that autoimmune conditions that interfere with neurovascular coupling in the central nervous system (CNS) can lead to neurodegeneration. Cerebral blood flow that meets neuronal activity and metabolic demand is tightly regulated by local neural activity. This process of reciprocal regulation involves coordinated actions of a number of cell types, including neurons, glia, and vascular cells. In particular, astrocytic endfeet cover more than 90% of brain capillaries to assist blood-brain barrier (BBB) function, and wrap around synapses and nodes of Ranvier to communicate with neuronal activity. In this review, we highlight four types of channel proteins that are expressed in astrocytes, regarding their structures, biophysical properties, expression and distribution patterns, and related diseases including autoimmune disorders. Water channel aquaporin 4 (AQP4) and inwardly rectifying potassium (Kir4.1) channels are concentrated in astrocytic endfeet, whereas some voltage-gated Ca(2+) and two-pore domain K(+) channels are expressed throughout the cell body of reactive astrocytes. More channel proteins are found in astrocytes under normal and abnormal conditions. This research field will contribute to a better understanding of pathogenic mechanisms underlying autoimmune disorders.
Collapse
Affiliation(s)
- Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV. Photocontrollable fluorescent proteins for superresolution imaging. Annu Rev Biophys 2014; 43:303-29. [PMID: 24895855 DOI: 10.1146/annurev-biophys-051013-022836] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization-based and nonlinear ensemble-based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine.
Collapse
|
41
|
Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2014; 40:317-28. [PMID: 24996934 DOI: 10.1007/s11064-014-1374-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4-dependent edema formation.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | | | | | | |
Collapse
|
42
|
Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol 2014; 23:684-95. [PMID: 24118484 DOI: 10.1111/bpa.12085] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022] Open
Abstract
The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, University of California, San Francisco, CA; Department of Physiology, University of California, San Francisco, CA
| | | | | | | |
Collapse
|
43
|
Human immunoglobulin G reduces the pathogenicity of aquaporin-4 autoantibodies in neuromyelitis optica. Exp Neurol 2014; 255:145-53. [PMID: 24636863 DOI: 10.1016/j.expneurol.2014.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Neuromyelitis optica (NMO) pathogenesis involves binding of anti-aquaporin-4 (AQP4) autoantibodies (NMO-IgG) present in serum to AQP4 on astrocytes, which causes complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). Human immunoglobulin G (hIgG) is effective for treatment of humorally mediated neurological autoimmune diseases and has been reported to improve disease outcome in a limited number of NMO patients. Here, we investigated hIgG actions on NMO-IgG pathogenicity using an in vivo rat model of NMO and in vitro assays. In rats administered NMO-IgG by intracerebral injection, the size of neuroinflammatory demyelinating lesions was reduced by ~50% when hIgG was administered by intraperitoneal injection to reach levels of 10-25mg/mL in rat serum, comparable with human therapeutic levels. In vitro, hIgG at 10mg/mL reduced by 90% NMO-IgG-mediated CDC following addition of NMO-IgG and human complement to AQP4-expressing cells. The hIgG effect was mainly on the classical complement pathway. hIgG at 10mg/mL also reduced by up to 90% NMO-IgG-mediated ADCC as assayed with human natural killer cells as effector cells. However, hIgG at up to 40mg/mL did not affect AQP4 cell surface expression or its supramolecular assembly in orthogonal arrays of particles, nor did it affect NMO-IgG binding to AQP4. We conclude that hIgG reduces NMO-IgG pathogenicity by inhibition of CDC and ADCC, providing a mechanistic basis to support further clinical evaluation of its therapeutic efficacy in NMO.
Collapse
|
44
|
Smith AJ, Jin BJ, Ratelade J, Verkman AS. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. ACTA ACUST UNITED AC 2014; 204:559-73. [PMID: 24515349 PMCID: PMC3926963 DOI: 10.1083/jcb.201308118] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An aggregation state–dependent mechanism for segregation of plasma membrane protein complexes confers specific functional roles to the M1 and M23 isoforms of the water channel AQP4. The astrocyte water channel aquaporin-4 (AQP4) is expressed as heterotetramers of M1 and M23 isoforms in which the presence of M23–AQP4 promotes formation of large macromolecular aggregates termed orthogonal arrays. Here, we demonstrate that the AQP4 aggregation state determines its subcellular localization and cellular functions. Individually expressed M1–AQP4 was freely mobile in the plasma membrane and could diffuse into rapidly extending lamellipodial regions to support cell migration. In contrast, M23–AQP4 formed large arrays that did not diffuse rapidly enough to enter lamellipodia and instead stably bound adhesion complexes and polarized to astrocyte end-feet in vivo. Co-expressed M1– and M23–AQP4 formed aggregates of variable size that segregated due to diffusional sieving of small, mobile M1–AQP4-enriched arrays into lamellipodia and preferential interaction of large, M23–AQP4-enriched arrays with the extracellular matrix. Our results therefore demonstrate an aggregation state–dependent mechanism for segregation of plasma membrane protein complexes that confers specific functional roles to M1– and M23–AQP4.
Collapse
Affiliation(s)
- Alex J Smith
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143
| | | | | | | |
Collapse
|
45
|
Sengupta P, van Engelenburg SB, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev 2014; 114:3189-202. [PMID: 24417572 DOI: 10.1021/cr400614m] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prabuddha Sengupta
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
46
|
Truong-Quang BA, Lenne PF. Membrane microdomains: from seeing to understanding. FRONTIERS IN PLANT SCIENCE 2014; 5:18. [PMID: 24600455 PMCID: PMC3927121 DOI: 10.3389/fpls.2014.00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2014] [Indexed: 05/08/2023]
Abstract
The plasma membrane is a composite material, which forms a semi-permeable barrier and an interface for communication between the intracellular and extracellular environments. While the existence of membrane microdomains with nanoscale organization has been proved by the application of numerous biochemical and physical methods, direct observation of these heterogeneities using optical microscopy has remained challenging for decades, partly due to the optical diffraction limit, which restricts the resolution to ~200 nm. During the past years, new optical methods which circumvent this fundamental limit have emerged. Not only do these techniques allow direct visualization, but also quantitative characterization of nanoscopic structures. We discuss how these emerging optical methods have refined our knowledge of membrane microdomains and how they may shed light on the basic principles of the mesoscopic membrane organization.
Collapse
Affiliation(s)
| | - Pierre-François Lenne
- *Correspondence: Pierre-François Lenne, Developmental Biology Institute of Marseilles, UMR 7288 CNRS, Aix-Marseille Université, 13288 Marseille Cedex 9, France e-mail:
| |
Collapse
|
47
|
Abstract
Aquaporin-4 (AQP4) is one of the most abundant molecules in the brain and is particularly prevalent in astrocytic membranes at the blood-brain and brain-liquor interfaces. While AQP4 has been implicated in a number of pathophysiological processes, its role in brain physiology has remained elusive. Only recently has evidence accumulated to suggest that AQP4 is involved in such diverse functions as regulation of extracellular space volume, potassium buffering, cerebrospinal fluid circulation, interstitial fluid resorption, waste clearance, neuroinflammation, osmosensation, cell migration, and Ca(2+) signaling. AQP4 is also required for normal function of the retina, inner ear, and olfactory system. A review will be provided of the physiological roles of AQP4 in brain and of the growing list of data that emphasize the polarized nature of astrocytes.
Collapse
|
48
|
Brunstein M, Wicker K, Hérault K, Heintzmann R, Oheim M. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks. OPTICS EXPRESS 2013; 21:26162-73. [PMID: 24216840 DOI: 10.1364/oe.21.026162] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most structured illumination microscopes use a physical or synthetic grating that is projected into the sample plane to generate a periodic illumination pattern. Albeit simple and cost-effective, this arrangement hampers fast or multi-color acquisition, which is a critical requirement for time-lapse imaging of cellular and sub-cellular dynamics. In this study, we designed and implemented an interferometric approach allowing large-field, fast, dual-color imaging at an isotropic 100-nm resolution based on a sub-diffraction fringe pattern generated by the interference of two colliding evanescent waves. Our all-mirror-based system generates illumination pat-terns of arbitrary orientation and period, limited only by the illumination aperture (NA = 1.45), the response time of a fast, piezo-driven tip-tilt mirror (10 ms) and the available fluorescence signal. At low µW laser powers suitable for long-period observation of life cells and with a camera exposure time of 20 ms, our system permits the acquisition of super-resolved 50 µm by 50 µm images at 3.3 Hz. The possibility it offers for rapidly adjusting the pattern between images is particularly advantageous for experiments that require multi-scale and multi-color information. We demonstrate the performance of our instrument by imaging mitochondrial dynamics in cultured cortical astrocytes. As an illustration of dual-color excitation dual-color detection, we also resolve interaction sites between near-membrane mitochondria and the endoplasmic reticulum. Our TIRF-SIM microscope provides a versatile, compact and cost-effective arrangement for super-resolution imaging, allowing the investigation of co-localization and dynamic interactions between organelles--important questions in both cell biology and neurophysiology.
Collapse
|
49
|
Hiersemenzel K, Brown ER, Duncan RR. Imaging large cohorts of single ion channels and their activity. Front Endocrinol (Lausanne) 2013; 4:114. [PMID: 24027557 PMCID: PMC3762133 DOI: 10.3389/fendo.2013.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 01/16/2023] Open
Abstract
As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca(2+) indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca(2+) indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells.
Collapse
Affiliation(s)
- Katia Hiersemenzel
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Euan R. Brown
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Rory R. Duncan
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
- *Correspondence: Rory R. Duncan, Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK e-mail:
| |
Collapse
|
50
|
Levin MH, Bennett JL, Verkman AS. Optic neuritis in neuromyelitis optica. Prog Retin Eye Res 2013; 36:159-71. [PMID: 23545439 PMCID: PMC3770284 DOI: 10.1016/j.preteyeres.2013.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease associated with recurrent episodes of optic neuritis and transverse myelitis, often resulting in permanent blindness and/or paralysis. The discovery of autoantibodies (AQP4-IgG) that target aquaporin-4 (AQP4) has accelerated our understanding of the cellular mechanisms driving NMO pathogenesis. AQP4 is a bidirectional water channel expressed on the plasma membranes of astrocytes, retinal Müller cells, skeletal muscle, and some epithelial cells in kidney, lung and the gastrointestinal tract. AQP4 tetramers form regular supramolecular assemblies at the cell plasma membrane called orthogonal arrays of particles. The pathological features of NMO include perivascular deposition of immunoglobulin and activated complement, loss of astrocytic AQP4, inflammatory infiltration with granulocyte and macrophage accumulation, and demyelination with axon loss. Current evidence supports a causative role of AQP4-IgG in NMO, in which binding of AQP4-IgG to AQP4 orthogonal arrays on astrocytes initiates complement-dependent and antibody-dependent cell-mediated cytotoxicity and inflammation. Immunosuppression and plasma exchange are the mainstays of therapy for NMO optic neuritis. Novel therapeutics targeting specific steps in NMO pathogenesis are entering the development pipeline, including blockers of AQP4-IgG binding to AQP4 and inhibitors of granulocyte function. However, much work remains in understanding the unique susceptibility of the optic nerves in NMO, in developing animal models of NMO optic neuritis, and in improving therapies to preserve vision.
Collapse
Affiliation(s)
- Marc H Levin
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|