1
|
Shin JH, Jeong CW. Zipper Is Necessary for Branching Morphogenesis of the Terminal Cells in the Drosophila melanogaster's Tracheal System. BIOLOGY 2021; 10:biology10080729. [PMID: 34439961 PMCID: PMC8389600 DOI: 10.3390/biology10080729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The Drosophila melanogaster, also commonly known as the fruit fly, has a relatively simple structure, allowing scientists to study its anatomy. This research was carried out to investigate how a protein called Zipper may be important for the development of the model organism during the early developmental stages. The study concentrated on the respiratory system, also known as the tracheal system, more specifically the leading cells in the tracheal system also known as terminal cells. Zipper was shown to be in the cytoplasm of terminal cells, indicating that it may function in the D. melanogaster’s tracheal system. Then, comparisons between normal fruit flies and those engineered so that the RNA for zipper does not function were made. Visual and quantitative comparisons demonstrated less branching of the terminal cells for the mutants, while no differences were found for lumenogenesis—tube formation within the branched structures. Therefore, this study demonstrates the role of Zipper in branching of the terminal cells in the D. melanogaster’s tracheal system. This study adds onto the existing scientific literature by demonstrating the role of a specific protein in an important biological process occurring in most living organisms. Abstract Branching morphogenesis and seamless tube formation in Drosophila melanogaster are essential for the development of vascular and tracheal systems, and instructive in studying complex branched structures such as human organs. Zipper is a myosin II’s actin-binding heavy chain; hence, it is important for contracting actin, cell proliferation, and cell sheet adhesion for branching of the tracheal system in post-larval development of the D. melanogaster. Nevertheless, the specific role of Zipper in the larva is still in question. This paper intended to investigate the specific role of Zipper in branching morphogenesis and lumenogenesis in early developmental stages. It did so by checking the localization of the protein in the cytoplasm of the terminal cells and also by analyzing the morphology of zipper RNAi loss-of-function mutants in regard to branching and lumen formation in the terminal cells. A rescue experiment of RNAi mutants was also performed to check the sufficiency of Zipper in branching morphogenesis. Confocal imaging showed the localization of Zipper in the cytoplasm of the terminal cells, and respective quantitative analyses demonstrated that zipper RNAi terminal cells develop significantly fewer branches. Such a result hinted that Zipper is required for the regulation of branching in the terminal cells of D. melanogaster. Nevertheless, Zipper is not significantly involved in the formation of seamless tubes. One hypothesis is that Zipper’s contractility at the lateral epidermis’ leading edge allows cell sheet movement and respective elongation; as a result of such an elongation, further branching may occur in the elongated region of the cell, hence defining branching morphogenesis in the terminal cells of the tracheal system.
Collapse
Affiliation(s)
- Jong-Hyeon Shin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Correspondence:
| | - Chan-Woo Jeong
- Department of Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea;
| |
Collapse
|
2
|
Mathew R, Rios-Barrera LD, Machado P, Schwab Y, Leptin M. Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO J 2020; 39:e105332. [PMID: 32657472 PMCID: PMC7429744 DOI: 10.15252/embj.2020105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Plasma membranes fulfil many physiological functions. In polarized cells, different membrane compartments take on specialized roles, each being allocated correct amounts of membrane. The Drosophila tracheal system, an established tubulogenesis model, contains branched terminal cells with subcellular tubes formed by apical plasma membrane invagination. We show that apical endocytosis and late endosome‐mediated trafficking are required for membrane allocation to the apical and basal membrane domains. Basal plasma membrane growth stops if endocytosis is blocked, whereas the apical membrane grows excessively. Plasma membrane is initially delivered apically and then continuously endocytosed, together with apical and basal cargo. We describe an organelle carrying markers of late endosomes and multivesicular bodies (MVBs) that is abolished by inhibiting endocytosis and which we suggest acts as transit station for membrane destined to be redistributed both apically and basally. This is based on the observation that disrupting MVB formation prevents growth of both compartments.
Collapse
Affiliation(s)
- Renjith Mathew
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - L Daniel Rios-Barrera
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Zhang W, Leon-Ricardo BX, van Schooten B, Van Belleghem SM, Counterman BA, McMillan WO, Kronforst MR, Papa R. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biol Evol 2019; 11:2963-2975. [PMID: 31518398 PMCID: PMC6821300 DOI: 10.1093/gbe/evz202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Butterfly eyes are complex organs that are composed of a diversity of proteins and they play a central role in visual signaling and ultimately, speciation, and adaptation. Here, we utilized the whole eye transcriptome to obtain a more holistic view of the evolution of the butterfly eye while accounting for speciation events that co-occur with ancient hybridization. We sequenced and assembled transcriptomes from adult female eyes of eight species representing all major clades of the Heliconius genus and an additional outgroup species, Dryas iulia. We identified 4,042 orthologous genes shared across all transcriptome data sets and constructed a transcriptome-wide phylogeny, which revealed topological discordance with the mitochondrial phylogenetic tree in the Heliconius pupal mating clade. We then estimated introgression among lineages using additional genome data and found evidence for ancient hybridization leading to the common ancestor of Heliconius hortense and Heliconius clysonymus. We estimated the Ka/Ks ratio for each orthologous cluster and performed further tests to demonstrate genes showing evidence of adaptive protein evolution. Furthermore, we characterized patterns of expression for a subset of these positively selected orthologs using qRT-PCR. Taken together, we identified candidate eye genes that show signatures of adaptive molecular evolution and provide evidence of their expression divergence between species, tissues, and sexes. Our results demonstrate: 1) greater evolutionary changes in younger Heliconius lineages, that is, more positively selected genes in the cydno-melpomene-hecale group as opposed to the sara-hortense-erato group, and 2) suggest an ancient hybridization leading to speciation among Heliconius pupal-mating species.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing, China
- Department of Ecology and Evolution, University of Chicago
| | | | - Bas van Schooten
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| | | | | | | | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico
| |
Collapse
|
4
|
Wisidagama DR, Thomas SM, Lam G, Thummel CS. Functional analysis of Aarf domain-containing kinase 1 in Drosophila melanogaster. Dev Dyn 2019; 248:762-770. [PMID: 31175694 DOI: 10.1002/dvdy.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ADCK proteins are predicted mitochondrial kinases. Most studies of these proteins have focused on the Abc1/Coq8 subfamily, which contributes to Coenzyme Q biosynthesis. In contrast, little is known about ADCK1 despite its evolutionary conservation in yeast, Drosophila, Caenorhabditis elegans and mammals. RESULTS We show that Drosophila ADCK1 mutants die as second instar larvae with double mouth hooks and tracheal breaks. Tissue-specific genetic rescue and RNAi studies show that ADCK1 is necessary and sufficient in the trachea for larval viability. In addition, tracheal-rescued ADCK1 mutant adults have reduced lifespan, are developmentally delayed, have reduced body size, and normal levels of basic metabolites. CONCLUSION The larval lethality and double mouth hooks seen in ADCK1 mutants are often associated with reduced levels of the steroid hormone ecdysone, suggesting that this gene could contribute to controlling ecdysone levels or bioavailability. Similarly, the tracheal defects in these animals could arise from defects in intracellular lipid trafficking. These studies of ADCK1 provide a new context to define the physiological functions of this poorly understood member of the ADCK family of predicted mitochondrial proteins.
Collapse
Affiliation(s)
- Dona R Wisidagama
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stefan M Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
5
|
Best BT. Single-cell branching morphogenesis in the Drosophila trachea. Dev Biol 2018; 451:5-15. [PMID: 30529233 DOI: 10.1016/j.ydbio.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/23/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022]
Abstract
The terminal cells of the tracheal epithelium in Drosophila melanogaster are one of the few known cell types that undergo subcellular morphogenesis to achieve a stable, branched shape. During the animal's larval stages, the cells repeatedly sprout new cytoplasmic processes. These grow very long, wrapping around target tissues to which the terminal cells adhere, and are hollowed by a gas-filled subcellular tube for oxygen delivery. Our understanding of this ramification process remains rudimentary. This review aims to provide a comprehensive summary of studies on terminal cells to date, and attempts to extrapolate how terminal branches might be formed based on the known genetic and molecular components. Next to this cell-intrinsic branching mechanism, we examine the extrinsic regulation of terminal branching by the target tissue and the animal's environment. Finally, we assess the degree of similarity between the patterns established by the branching programs of terminal cells and other branched cells and tissues from a mathematical and conceptual point of view.
Collapse
Affiliation(s)
- Benedikt T Best
- Director's Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany
| |
Collapse
|
6
|
Abstract
Tango1 enables ER-to-Golgi trafficking of large proteins. We show here that loss of Tango1, in addition to disrupting protein secretion and ER/Golgi morphology, causes ER stress and defects in cell shape. We find that the previously observed dependence of smaller cargos on Tango1 is a secondary effect. If large cargos like Dumpy, which we identify as a Tango1 cargo, are removed from the cell, nonbulky proteins reenter the secretory pathway. Removal of blocking cargo also restores cell morphology and attenuates the ER-stress response. Thus, failures in the secretion of nonbulky proteins, ER stress, and defective cell morphology are secondary consequences of bulky cargo retention. By contrast, ER/Golgi defects in Tango1-depleted cells persist in the absence of bulky cargo, showing that they are due to a secretion-independent function of Tango1. Therefore, maintenance of ER/Golgi architecture and bulky cargo transport are the primary functions for Tango1.
Collapse
|
7
|
Eom HJ, Liu Y, Kwak GS, Heo M, Song KS, Chung YD, Chon TS, Choi J. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses. Sci Rep 2017. [PMID: 28621308 PMCID: PMC5472918 DOI: 10.1038/srep46473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, Korea
| | - Yuedan Liu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, the Ministry of Environment Protection of PRC, Guangzhou 510065, China
| | - Gyu-Suk Kwak
- Department of Biological Sciences, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea
| | - Muyoung Heo
- Department of Physics, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea
| | - Kyung Seuk Song
- Toxicity Evaluation Center, Korea Conformity Laboratories (KCL), 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999, Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, Korea
| | - Tae-Soo Chon
- Department of Biological Sciences, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, Korea
| |
Collapse
|
8
|
Khan MT, Dalvin S, Nilsen F, Male R. Microsomal triglyceride transfer protein in the ectoparasitic crustacean salmon louse ( Lepeophtheirus salmonis). J Lipid Res 2017; 58:1613-1623. [PMID: 28601811 PMCID: PMC5538283 DOI: 10.1194/jlr.m076430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/10/2017] [Indexed: 11/20/2022] Open
Abstract
The salmon louse, Lepeophtheirus salmonis, is an endemic ectoparasite on salmonid fish that is challenging for the salmon farming industry and wild fish. Salmon lice produce high numbers of offspring, necessitating sequestration of large amounts of lipids into growing oocytes as a major energy source for larvae, most probably mediated by lipoproteins. The microsomal triglyceride transfer protein (MTP) is essential for the assembly of lipoproteins. Salmon lice have three L. salmonis MTP (LsMTP) transcript variants encoding two different protein isoforms, which are predicted to contain three β-sheets (N, C, and A) and a central helical domain, similar to MTPs from other species. In adult females, the LsMTPs are differently transcribed in the sub-cuticular tissues, the intestine, the ovary, and in the mature eggs. RNA interference-mediated knockdown of LsMTP in mature females gave offspring with significantly fewer neutral lipids in their yolk and only 10-30% survival. The present study suggests the importance of LsMTP in reproduction and lipid metabolism in adult female L. salmonis, a possible metabolic bottleneck that could be exploited for the development of new anti-parasitic treatment methods.
Collapse
Affiliation(s)
| | - Sussie Dalvin
- Sea Lice Research Centre, Institute of Marine Research, 5817 Bergen, Norway
| | - Frank Nilsen
- Departments of Biology University of Bergen, N-5020 Bergen, Norway
| | - Rune Male
- Molecular Biology, Sea Lice Research Centre, University of Bergen, N-5020 Bergen, Norway.
| |
Collapse
|
9
|
Lee S, Bao H, Ishikawa Z, Wang W, Lim HY. Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila. PLoS Genet 2017; 13:e1006555. [PMID: 28095410 PMCID: PMC5283750 DOI: 10.1371/journal.pgen.1006555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/31/2017] [Accepted: 12/28/2016] [Indexed: 11/21/2022] Open
Abstract
The heart has emerged as an important organ in the regulation of systemic lipid homeostasis; however, the underlying mechanism remains poorly understood. Here, we show that Drosophila cardiomyocytes regulate systemic lipid metabolism by producing apolipoprotein B-containing lipoproteins (apoB-lipoproteins), essential lipid carriers that are so far known to be generated only in the fat body. In a Drosophila genetic screen, we discovered that when haplo-insufficient, microsomal triglyceride transfer protein (mtp), required for the biosynthesis of apoB-lipoproteins, suppressed the development of diet-induced obesity. Tissue-specific inhibition of Mtp revealed that whereas knockdown of mtp only in the fat body decreases systemic triglyceride (TG) content on normal food diet (NFD) as expected, knockdown of mtp only in the cardiomyocytes also equally decreases systemic TG content on NFD, suggesting that the cardiomyocyte- and fat body-derived apoB-lipoproteins serve similarly important roles in regulating whole-body lipid metabolism. Unexpectedly, on high fat diet (HFD), knockdown of mtp in the cardiomyocytes, but not in fat body, protects against the gain in systemic TG levels. We further showed that inhibition of the Drosophila apoB homologue, apolipophorin or apoLpp, another gene essential for apoB-lipoprotein biosynthesis, affects systemic TG levels similarly to that of Mtp inhibition in the cardiomyocytes on NFD or HFD. Finally, we determined that HFD differentially alters Mtp and apoLpp expression in the cardiomyocytes versus the fat body, culminating in higher Mtp and apoLpp levels in the cardiomyocytes than in fat body and possibly underlying the predominant role of cardiomyocyte-derived apoB-lipoproteins in lipid metabolic regulation. Our findings reveal a novel and significant function of heart-mediated apoB-lipoproteins in controlling lipid homeostasis. The heart is increasingly recognized to serve an important role in the regulation of whole-body lipid homeostasis; however, the underlying mechanisms remained poorly understood. Here, our study in Drosophila reveals that cardiomyocytes regulate systemic lipid metabolism by producing apolipoprotein B-containing lipoproteins (apoB-lipoproteins), essential lipid carriers that are so far known to be generated only in the fat body (insect liver and adipose tissue). We found that apoB-lipoproteins generated by the Drosophila cardiomyocytes serve an equally significant role as their fat body-derived counterparts in maintaining systemic lipid homeostasis on normal food diet. Importantly, on high fat diet (HFD), the cardiomyocyte-derived apoB-lipoproteins are the major determinants of whole-body lipid metabolism, a role which could be attributed to the HFD-induced up-regulation of apoB-lipoprotein biosynthesis genes in the cardiomyocytes and their down-regulation in the fat body. Taken together, our results reveal that apoB-lipoproteins are new players in mediating the heart control of lipid metabolism, and provide first evidence supporting the notion that HFD-induced differential regulation of apoB-lipoprotein biosynthesis genes could alter the input of different tissue-derived apoB-lipoproteins in systemic lipid metabolic control.
Collapse
Affiliation(s)
- Sunji Lee
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Hong Bao
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| | - Zachary Ishikawa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (WW); (HYL)
| | - Hui-Ying Lim
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (WW); (HYL)
| |
Collapse
|
10
|
Sundaram MV, Cohen JD. Time to make the doughnuts: Building and shaping seamless tubes. Semin Cell Dev Biol 2016; 67:123-131. [PMID: 27178486 DOI: 10.1016/j.semcdb.2016.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jennifer D Cohen
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Nikolova LS, Metzstein MM. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment. Development 2015; 142:3964-73. [PMID: 26428009 DOI: 10.1242/dev.127902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae.
Collapse
Affiliation(s)
- Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
|
13
|
Baer MM, Palm W, Eaton S, Leptin M, Affolter M. Microsomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in Drosophila in a cell-autonomous manner. Development 2013. [DOI: 10.1242/dev.096248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|