1
|
Trier I, Black EM, Joo YK, Kabeche L. ATR protects centromere identity by promoting DAXX association with PML nuclear bodies. Cell Rep 2023; 42:112495. [PMID: 37163376 DOI: 10.1016/j.celrep.2023.112495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Centromere protein A (CENP-A) defines centromere identity and nucleates kinetochore formation for mitotic chromosome segregation. Here, we show that ataxia telangiectasia and Rad3-related (ATR) kinase, a master regulator of the DNA damage response, protects CENP-A occupancy at interphase centromeres in a DNA damage-independent manner. In unperturbed cells, ATR localizes to promyelocytic leukemia nuclear bodies (PML NBs), which house the histone H3.3 chaperone DAXX (death domain-associated protein 6). We find that ATR inhibition reduces DAXX association with PML NBs, resulting in the DAXX-dependent loss of CENP-A and an aberrant increase in H3.3 at interphase centromeres. Additionally, we show that ATR-dependent phosphorylation within the C terminus of DAXX regulates CENP-A occupancy at centromeres and DAXX localization. Lastly, we demonstrate that acute ATR inhibition during interphase leads to kinetochore formation defects and an increased rate of lagging chromosomes. These findings highlight a mechanism by which ATR protects centromere identity and genome stability.
Collapse
Affiliation(s)
- Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
2
|
Ishikura S, Yoshida K, Tsunoda T, Shirasawa S. Death domain-associated protein DAXX regulates non-coding RNA transcription at the centromere through the transcription regulator ZFAT. J Biol Chem 2022; 298:102528. [PMID: 36162510 PMCID: PMC9579039 DOI: 10.1016/j.jbc.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022] Open
Abstract
The centromere is an essential chromosomal structure for faithful chromosome segregation during cell division. No protein-coding genes exist at the centromeres, but centromeric DNA is actively transcribed into noncoding RNA (ncRNA). This centromeric transcription and its ncRNA products play important roles in centromere functions. We previously reported that the transcriptional regulator ZFAT (zinc-finger protein with AT hook) plays a pivotal role in ncRNA transcription at the centromere; however, it was unclear how ZFAT involvement was regulated. Here, we show that the death domain–associated protein (DAXX) promotes centromeric localization of ZFAT to regulate ncRNA transcription at the centromere. Coimmunoprecipitation analysis of endogenous proteins clearly reveals that DAXX interacts with ZFAT. In addition, we show that ectopic coexpression of ZFAT with DAXX increases the centromeric levels of both ZFAT and ncRNA, compared with ectopic expression of ZFAT alone. On the other hand, we found that siRNA-mediated depletion of DAXX decreases the centromeric levels of both ZFAT and ncRNA in cells ectopically expressing ZFAT. These results suggest that DAXX promotes the centromeric localization of ZFAT and ZFAT-regulated centromeric ncRNA transcription. Furthermore, we demonstrate that depletion of endogenous DAXX protein is sufficient to cause a decrease in the ncRNA levels at the centromeres of chromosomes 17 and X in which ZFAT regulates the transcription, indicating a physiological significance of DAXX in ZFAT-regulated centromeric ncRNA transcription. Taken together, these results demonstrate that DAXX regulates centromeric ncRNA transcription through ZFAT.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazumasa Yoshida
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
3
|
Quevedo R, Spreafico A, Bruce J, Danesh A, El Ghamrasni S, Giesler A, Hanna Y, Have C, Li T, Yang SYC, Zhang T, Asa SL, Haibe-Kains B, Krzyzanowska M, Smith AC, Singh S, Siu LL, Pugh TJ. Centromeric cohesion failure invokes a conserved choreography of chromosomal mis-segregations in pancreatic neuroendocrine tumor. Genome Med 2020; 12:38. [PMID: 32345369 PMCID: PMC7189550 DOI: 10.1186/s13073-020-00730-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (PANETs) are rare, slow growing cancers that often present with local and distant metastasis upon detection. PANETS contain distinct karyotypes, epigenetic dysregulation, and recurrent mutations in MEN1, ATRX, and DAXX (MAD+); however, the molecular basis of disease progression remains uncharacterized. METHODS We evaluated associations between aneuploidy and the MAD+ mutational state of 532 PANETs from 11 published genomic studies and 19 new cases using a combination of exome, targeted panel, shallow WGS, or RNA-seq. We mapped the molecular timing of MAD+ PANET progression using cellular fractions corrected for inferred tumor content. RESULTS In 287 PANETs with mutational data, MAD+ tumors always exhibited a highly recurrent signature of loss of heterozygosity (LOH) and copy-number alterations affecting 11 chromosomes, typically followed by genome doubling upon metastasis. These LOH chromosomes substantially overlap with those that undergo non-random mis-segregation due to ectopic CENP-A localization to flanking centromeric regions in DAXX-depleted cell lines. Using expression data from 122 PANETs, we found decreased gene expression in the regions immediately adjacent to the centromere in MAD+ PANETs. Using 43 PANETs from AACR GENIE, we inferred this signature to be preceded by mutations in MEN1, ATRX, and DAXX. We conducted a meta-analysis on 226 PANETs from 8 CGH studies to show an association of this signature with metastatic incidence. Our study shows that MAD+ tumors are a genetically diverse and aggressive subtype of PANETs that display extensive chromosomal loss after MAD+ mutation, which is followed by genome doubling. CONCLUSIONS We propose an evolutionary model for a subset of aggressive PANETs that is initiated by mutation of MEN1, ATRX, and DAXX, resulting in defects in centromere cohesion from ectopic CENP-A deposition that leads to selective loss of chromosomes and the LOH phenotype seen in late-stage metastatic PANETs. These insights aid in disease risk stratification and nominate potential therapeutic vulnerabilities to treat this disease.
Collapse
Affiliation(s)
- Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Division of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario, Canada
| | - Jeff Bruce
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Amanda Giesler
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Cherry Have
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tong Zhang
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Sylvia L Asa
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Monika Krzyzanowska
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Simron Singh
- Susan Leslie Clinic for Neuroendocrine Cancer, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada. .,Division of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Ontario Institute for Cancer Research, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, 101 College Street, TMDT, Room 9-305, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
4
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
5
|
Jin C, Hacking S, Komforti MK, Nasim M. A Comparison of Death Domain-Associated Protein 6 in Different Endometrial Carcinomas Histotypes. Biomark Insights 2019; 14:1177271919864892. [PMID: 31384126 PMCID: PMC6651668 DOI: 10.1177/1177271919864892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/04/2022] Open
Abstract
Background: Death domain-associated protein 6 (DAXX) is involved in regulating apoptosis via subcellular localization. The presence of DAXX point mutations correlates well with loss of nuclear expression on immunohistochemistry (IHC). In this study, we sought to determine (1) whether DAXX expression pattern is the same across different uterine carcinoma subtypes, and (2) which uterine carcinomas show loss of nuclear DAXX IHC. Design: We studied 65 uterine carcinomas of the following histologic types: 30 endometrioid (12 FIGO [The International Federation of Gynecology and Obstetrics] grade 1, 12 FIGO grade 2, and 6 FIGO grade 3), 8 serous, 14 clear cell, and 13 undifferentiated/dedifferentiated type (UEC/DDEC). Nuclear DAXX IHC was assessed in each tumor and was graded semi-quantitatively as follows: 0% to 50%, 50% to 75%, and greater than 75% of lesional cells react. Results: A total of 61% (25/41) of high-grade carcinomas (FIGO grade 3, serous, clear cell, and UEC/DDEC]) showed retained DAXX nuclear staining in >75% of lesional cells, compared with only 4.2% (1/24) of the low-grade carcinomas (FIGO grades 1 and 2) (P = .0001), where DAXX expression was cytoplasmic. In addition, in the 11 DDEC cases, all the differentiated components showed loss of nuclear DAXX compared with the undifferentiated components which retained nuclear DAXX expression. Conclusions: We demonstrate that loss of nuclear DAXX is present in low-grade endometrial carcinomas and the differentiated components in UEC/DDEC, but not in high-grade ones, suggesting DAXX’s role in tumor progression and its potential as a therapeutic target in high-grade endometrial carcinomas.
Collapse
Affiliation(s)
- Cao Jin
- Department of Pathology, Northwell Health Systems, New Hyde Park, NY, USA
| | - Sean Hacking
- Department of Pathology, Northwell Health Systems, New Hyde Park, NY, USA
| | | | - Mansoor Nasim
- Department of Pathology, Northwell Health Systems, New Hyde Park, NY, USA
| |
Collapse
|
6
|
Morozov VM, Giovinazzi S, Ishov AM. CENP-B protects centromere chromatin integrity by facilitating histone deposition via the H3.3-specific chaperone Daxx. Epigenetics Chromatin 2017; 10:63. [PMID: 29273057 PMCID: PMC5741900 DOI: 10.1186/s13072-017-0164-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022] Open
Abstract
Background The main chromatin unit, the nucleosome, can be modulated by the incorporation of histone variants that, in combination with posttranslational histones modifications, determine epigenetics properties of chromatin. Understanding the mechanism that creates a histone variants landscape at different genomic elements is expected to elevate our comprehension of chromatin assembly and function. The Daxx chaperone deposits transcription-associated histone H3.3 at centromeres, but mechanism of centromere-specific Daxx targeting remains unclear. Results In this study, we identified an unexpected function of the constitutive centromeric protein CENP-B that serves as a “beacon” for H3.3 incorporation. CENP-B depletion reduces Daxx association and H3.3 incorporation at centromeres. Daxx/CENP-B interaction and Daxx centromeric association are SUMO dependent and requires SIMs of Daxx. Depletion of SUMO-2, but not SUMO-1, decreases Daxx/CENP-B interaction and reduces centromeric accumulation of Daxx and H3.3, demonstrating distinct functions of SUMO paralogs in H3.3 chaperoning. Finally, disruption of CENP-B/Daxx-dependent H3.3 pathway deregulates heterochromatin marks H3K9me3, ATRX and HP1α at centromeres and elevates chromosome instability. Conclusion The demonstrated roles of CENP-B and SUMO-2 in H3.3 loading reveal a novel mechanism controlling chromatin maintenance and genome stability. Given that CENP-B is the only centromere protein that binds centromere-specific DNA elements, our study provides a new link between centromere DNA and unique epigenetic landscape of centromere chromatin. Electronic supplementary material The online version of this article (10.1186/s13072-017-0164-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, and University of Florida Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL, 32610, USA
| | - Serena Giovinazzi
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, and University of Florida Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL, 32610, USA.,Division of Food Safety, Florida Department of Agriculture and Consumer Services, Tallahassee, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, and University of Florida Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Xu JF, Zhao ZG, Ye LL, Zhuge W, Han Z, Zhang TM, Ye SS, Chen WJ, Zhu S, Shi L, Zhang J, Guo AZ, Xue XY, Shen X. Prognostic significance of Daxx NCR (Nuclear/Cytoplasmic Ratio) in gastric cancer. Cancer Med 2017; 6:2063-2075. [PMID: 28812328 PMCID: PMC5603835 DOI: 10.1002/cam4.1144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/17/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
In addition to regulating apoptosis via its interaction with the death domain of Fas receptor, death domain associated protein 6 (Daxx) is also known to be involved in transcriptional regulation, suggesting that the function of Daxx depends on its subcellular localization. In this study, we aimed to explore Daxx subcellular localization in gastric cancer (GC) cells and correlate the findings with clinical data in GC patients. Seventy pairs of tissue samples (GC and adjacent normal tissue) were analyzed immunohistochemically for Daxx expression and localization (nuclear and cytoplasmic). The Daxx Nuclear/Cytoplasmic ratio (Daxx NCR) values in tissue microarray data with 522 tumor samples were further analyzed. The defined Prior cohort (n = 277, treatment between 2006 and 2009) and Recent cohort (n = 245, treatment between 2010 and 2011) were then used to examine the relationship between Daxx NCR and clinical data. The Daxx NCR was found to be clinically informative and significantly higher in GC tissue. Using Daxx NCR (risk ratio = 2.0), both the Prior and Recent cohorts were divided into high‐ and low‐risk groups. Relative to the low‐risk group, the high‐risk patients had a shorter disease free survival (DFS) and overall survival (OS) in both cohorts. Importantly, postoperative chemotherapy was found having differential effect on high‐ and low‐risk patients. Such chemotherapy brought no survival benefit, (and could potentially be detrimental,) to high‐risk patients after surgery. Daxx NCR could be used as a prognosis factor in GC patients, and may help select the appropriate population to benefit from chemotherapy after surgery.
Collapse
Affiliation(s)
- Jian-Feng Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi-Guang Zhao
- Department of Pathology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Le-le Ye
- Basic Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weishan Zhuge
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Te-Ming Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Si-Si Ye
- Basic Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Jing Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanli Zhu
- Basic Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Shi
- Department of Gastroenterology, Jinhua First People 's Hospital, Jinhua, Zhejiang, China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ai-Zhen Guo
- Department of Internal Medicine, Yangpu Hosptial, Tongji University School of Medicine, Shanghai, China
| | - Xiang-Yang Xue
- Basic Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Dixon CR, Platani M, Makarov AA, Schirmer EC. Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML. Cells 2017; 6:cells6020009. [PMID: 28346356 PMCID: PMC5492013 DOI: 10.3390/cells6020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome this obstacle, we specifically targeted the mapped histone-binding site of A/C lamins by microinjecting antibodies specific to this region predicting that this would make the genome more mobile. No increase in chromatin mobility was observed; however, interestingly, injected cells failed to go through mitosis, while control antibody-injected cells did. This effect was not due to crosslinking of the lamin polymer, as Fab fragments also blocked mitosis. The lack of genome mobility suggested other lamin-chromatin interactions. To determine what these might be, mini-lamin A constructs were expressed with or without the histone-binding site that assembled into independent intranuclear structures. HP1, CenpB and PML proteins accumulated at these structures for both constructs, indicating that other sites supporting chromatin interactions exist on lamin A. Together, these results indicate that lamin A-chromatin interactions are highly redundant and more diverse than generally acknowledged and highlight the importance of trying to experimentally separate their individual functions.
Collapse
Affiliation(s)
- Charles R Dixon
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Melpomeni Platani
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Alexandr A Makarov
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
9
|
Niikura Y, Kitagawa R, Kitagawa K. CENP-A Ubiquitylation Is Inherited through Dimerization between Cell Divisions. Cell Rep 2016; 15:61-76. [PMID: 27052173 DOI: 10.1016/j.celrep.2016.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022] Open
Abstract
The presence of chromatin containing the histone H3 variant CENP-A dictates the location of the centromere in a DNA sequence-independent manner. But the mechanism by which centromere inheritance occurs is largely unknown. We previously reported that CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. Here, we show that pre-existing ubiquitylated CENP-A is necessary for recruitment of newly synthesized CENP-A to the centromere and that CENP-A ubiquitylation is inherited between cell divisions. In vivo and in vitro analyses using dimerization mutants and dimerization domain fusion mutants revealed that the inheritance of CENP-A ubiquitylation requires CENP-A dimerization. Therefore, we propose models in which CENP-A ubiquitylation is inherited and, through dimerization, determines centromere location. Consistent with this model is our finding that overexpression of a monoubiquitin-fused CENP-A mutant induces neocentromeres at noncentromeric regions of chromosomes.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Risa Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
10
|
Scherer M, Wagenknecht N, Reuter N, Stamminger T. Silencing of Human Cytomegalovirus Gene Expression Mediated by Components of PML Nuclear Bodies. EPIGENETICS - A DIFFERENT WAY OF LOOKING AT GENETICS 2016. [DOI: 10.1007/978-3-319-27186-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Yao Z, Zhang Q, Li X, Zhao D, Liu Y, Zhao K, Liu Y, Wang C, Jiang M, Li N, Cao X. Death domain-associated protein 6 (Daxx) selectively represses IL-6 transcription through histone deacetylase 1 (HDAC1)-mediated histone deacetylation in macrophages. J Biol Chem 2014; 289:9372-9. [PMID: 24550390 DOI: 10.1074/jbc.m113.533992] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
As a multifunctional nuclear protein, death domain-associated protein 6 (Daxx) regulates a wide range of biological processes, including cell apoptosis and gene transcription. However, the function of Daxx in innate immunity remains unclear. In our study, we show that Daxx is highly expressed in macrophages and localized in nucleus of macrophages. The expression of Daxx is significantly up-regulated by stimulation with TLR ligands LPS and poly(I:C). Silence of Daxx selectively represses IL-6 expression at transcription level in LPS-activated macrophages. Upon stimulation of LPS, Daxx specifically binds to the promoter of IL-6 and inhibits histone acetylation at IL-6 promoter region. Further mechanism analyses show that histone deacetylase 1 (HDAC1) interacts with Daxx and binds to the promoter of IL-6. Daxx silencing decreases the association of HDAC1 to IL-6 promoter. Therefore, our data reveal that Daxx selectively represses IL-6 transcription through HDAC1-mediated histone deacetylation in LPS-induced macrophages, acting as a negative regulator of IL-6 during innate immunity and potentially preventing inflammatory response because of overproduction of IL-6.
Collapse
Affiliation(s)
- Zhenyu Yao
- From the National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, Cantaloube S, Kurumizaka H, Imhof A, Almouzni G. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell 2014; 53:631-44. [PMID: 24530302 DOI: 10.1016/j.molcel.2014.01.018] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/02/2013] [Accepted: 01/07/2014] [Indexed: 01/17/2023]
Abstract
Centromeres are essential for ensuring proper chromosome segregation in eukaryotes. Their definition relies on the presence of a centromere-specific H3 histone variant CenH3, known as CENP-A in mammals. Its overexpression in aggressive cancers raises questions concerning its effect on chromatin dynamics and contribution to tumorigenesis. We find that CenH3 overexpression in human cells leads to ectopic enrichment at sites of active histone turnover involving a heterotypic tetramer containing CenH3-H4 with H3.3-H4. Ectopic localization of this particle depends on the H3.3 chaperone DAXX rather than the dedicated CenH3 chaperone HJURP. This aberrant nucleosome occludes CTCF binding and has a minor effect on gene expression. Cells overexpressing CenH3 are more tolerant of DNA damage. Both the survival advantage and CTCF occlusion in these cells are dependent on DAXX. Our findings illustrate how changes in histone variant levels can disrupt chromatin dynamics and suggests a possible mechanism for cell resistance to anticancer treatments.
Collapse
Affiliation(s)
- Nicolas Lacoste
- Institut Curie, Centre de Recherche, Paris75248, France; CNRS, UMR3664, Paris75248, France; Equipe Labellisée Ligue Contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France
| | - Adam Woolfe
- Institut Curie, Centre de Recherche, Paris75248, France; CNRS, UMR3664, Paris75248, France; Equipe Labellisée Ligue Contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France
| | - Hiroaki Tachiwana
- Institut Curie, Centre de Recherche, Paris75248, France; CNRS, UMR3664, Paris75248, France; Equipe Labellisée Ligue Contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France
| | - Ana Villar Garea
- Histone Modifications Group, Scientific Coordinator ZfP (Zentrallabor für Proteinanalytik), Adolf Butenandt Institut, University of Munich, Schillerstraße 44, 80336 Munich, Germany
| | - Teresa Barth
- Histone Modifications Group, Scientific Coordinator ZfP (Zentrallabor für Proteinanalytik), Adolf Butenandt Institut, University of Munich, Schillerstraße 44, 80336 Munich, Germany
| | - Sylvain Cantaloube
- Institut Curie, Centre de Recherche, Paris75248, France; CNRS, UMR3664, Paris75248, France; Equipe Labellisée Ligue Contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Axel Imhof
- Histone Modifications Group, Scientific Coordinator ZfP (Zentrallabor für Proteinanalytik), Adolf Butenandt Institut, University of Munich, Schillerstraße 44, 80336 Munich, Germany
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris75248, France; CNRS, UMR3664, Paris75248, France; Equipe Labellisée Ligue Contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France.
| |
Collapse
|
13
|
Daxx upregulation within the cytoplasm of reovirus-infected cells is mediated by interferon and contributes to apoptosis. J Virol 2013; 87:3447-60. [PMID: 23302889 DOI: 10.1128/jvi.02324-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm.
Collapse
|
14
|
Kwan PS, Lau CC, Chiu YT, Man C, Liu J, Tang KD, Wong YC, Ling MT. Daxx regulates mitotic progression and prostate cancer predisposition. Carcinogenesis 2012; 34:750-9. [PMID: 23239745 DOI: 10.1093/carcin/bgs391] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitotic progression of mammalian cells is tightly regulated by the E3 ubiquitin ligase anaphase promoting complex (APC)/C. Deregulation of APC/C is frequently observed in cancer cells and is suggested to contribute to chromosome instability and cancer predisposition. In this study, we identified Daxx as a novel APC/C inhibitor frequently overexpressed in prostate cancer. Daxx interacts with the APC/C coactivators Cdc20 and Cdh1 in vivo, with the binding of Cdc20 dependent on the consensus destruction boxes near the N-terminal of the Daxx protein. Ectopic expression of Daxx, but not the D-box deleted mutant (DaxxΔD-box), inhibited the degradation of APC/Cdc20 and APC/Cdh1 substrates, leading to a transient delay in mitotic progression. Daxx is frequently upregulated in prostate cancer tissues; the expression level positively correlated with the Gleason score and disease metastasis (P = 0.027 and 0.032, respectively). Furthermore, ectopic expression of Daxx in a non-malignant prostate epithelial cell line induced polyploidy under mitotic stress. Our data suggest that Daxx may function as a novel APC/C inhibitor, which promotes chromosome instability during prostate cancer development.
Collapse
Affiliation(s)
- Pak Shing Kwan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Morozov VM, Gavrilova EV, Ogryzko VV, Ishov AM. Dualistic function of Daxx at centromeric and pericentromeric heterochromatin in normal and stress conditions. Nucleus 2012; 3:276-85. [PMID: 22572957 DOI: 10.4161/nucl.20180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear structures ND10/PML NBs are linked to multiple processes, including the maintenance of intranuclear homeostasis by sequestering proteins into "nuclear depot." This function presumes release of proteins from PML NBs and their redistribution to the alternative, supposedly "active" locations, in response to the external stress application. To further investigate this nuclear depot function, we focused on the intranuclear distribution of protein Daxx that in normal conditions is mainly accumulated at PML NBs, and has a minor association with centromeres and pericentromeres (CEN/periCEN). Here we report that application of physiological Heat Shock (HS) changes this balance forcing very robust and reversible accumulation of Daxx on CEN/periCEN heterochromatin. Heterochromatin architecture is essential for the proper orchestration of nuclear processes, while transcription from this part of genome is required for its maintenance. To understand functional consequences of Daxx deposition at CEN/periCEN, we tested for Daxx-dependency of heterochromatin transcription. Depletion of Daxx reduces accumulation of CEN RNA in normal conditions and periCEN RNA after HS application. Searching for the mechanism of Daxx-dependent regulation of heterochromatin transcription, we found that depletion of Daxx decreases incorporation of transcription-associated histone H3 variant, H3.3, into both CEN and periCEN. Surprisingly, HS-induced deposition of Daxx does not further elevate incorporation of H3.3 into CEN/periCEN that remained steady during stress and recovery. Instead, depletion of Daxx leads to HS-induced changes in the balance of epigenetic modifications at heterochromatin, most dramatically elevating levels of active H3K4Me2 modification at periCEN. We propose dualistic function of Daxx-containing complexes at CEN/periCEN: (1) regulation of H3.3 loading in normal conditions and (2) protection of epigenetic status upon stress-induced accumulation, thus collectively guarding epigenetic identity of CEN/periCEN heterochromatin.
Collapse
Affiliation(s)
- Viacheslav M Morozov
- University of Florida, Cancer & Genetics Research Complex and Department of Anatomy and Cell Biology, Gainesville, FL, USA
| | | | | | | |
Collapse
|
16
|
Wang R, Li KM, Zhou CH, Xue JL, Ji CN, Chen JZ. Cdc20 mediates D-box-dependent degradation of Sp100. Biochem Biophys Res Commun 2011; 415:702-6. [PMID: 22086178 DOI: 10.1016/j.bbrc.2011.10.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 11/23/2022]
Abstract
Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand our knowledge of both Sp100 and Cdc20 as well as their role in ubiquitination.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
Niu YL, Li C, Zhang GY. Blocking Daxx trafficking attenuates neuronal cell death following ischemia/reperfusion in rat hippocampus CA1 region. Arch Biochem Biophys 2011; 515:89-98. [PMID: 21843499 DOI: 10.1016/j.abb.2011.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/30/2011] [Accepted: 07/30/2011] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that the death-associated protein (Daxx) shuttles between nucleus and cytoplasm under ischemic stress, and the subcellular localization of Daxx plays an important role in ischemic neuron death. In this study, by blocking the Daxx trafficking, the rat hippocampus CA1 neurons were protected against cerebral ischemia/reperfusion, and the molecular mechanism underlying this neuroprotection was studied. We found that pretreatment of SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), or an anti-oxidant, N-acetylcysteine (NAC), could not only prevent Daxx from trafficking but also increase the number of the surviving CA1 pyramidal cells of hippocampus at 5days of reperfusion. Furthermore, knock-down of endogenous Daxx exerted similar neuroprotective effect during ischemia/reperfusion. We found the treatment of SP600125 or NAC could decrease the activation of Ask1 during ischemia/reperfusion and suppress the assembly of the Fas·Daxx·Ask1 signaling module, and in succession inhibit JNK activation and c-Jun phosphorylation. This study provides the Daxx trafficking as a new potential therapeutic target for ischemic brain injury.
Collapse
Affiliation(s)
- Yu-Lan Niu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, China
| | | | | |
Collapse
|
18
|
McFarlane S, Preston CM. Human cytomegalovirus immediate early gene expression in the osteosarcoma line U2OS is repressed by the cell protein ATRX. Virus Res 2011; 157:47-53. [PMID: 21310198 DOI: 10.1016/j.virusres.2011.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 11/15/2022]
Abstract
The control of human cytomegalovirus (HCMV) immediate early (IE) gene expression in infected human fibroblasts was compared with that in the U2OS human osteosarcoma cells. Viral IE expression was stimulated by the virion protein pp71 and repressed by the cell protein hDaxx in fibroblasts, as expected from published data. Neither of these events occurred in infected U2OS cells, suggesting that this cell line lacks one or more factors that repress HCMV IE expression. The chromatin remodeling factor ATRX is absent from U2OS cells, therefore the effect of introducing this protein by electroporation of plasmid DNA was investigated. Provision of ATRX inhibited HCMV IE expression, and the presence of the HCMV-specified virion phosphoprotein pp71 overcame the repression. The experiments demonstrate that ATRX can act as a cellular intrinsic antiviral defense in U2OS cells by blocking gene expression from incoming HCMV genomes. In contrast, ATRX did not affect the replication of herpes simplex virus type 1, showing that there are differences in the way U2OS cells respond to the presence of the herpesviral genomes.
Collapse
Affiliation(s)
- Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | |
Collapse
|
19
|
Escobar-Cabrera E, Lau DKW, Giovinazzi S, Ishov AM, McIntosh LP. Structural characterization of the DAXX N-terminal helical bundle domain and its complex with Rassf1C. Structure 2010; 18:1642-53. [PMID: 21134643 DOI: 10.1016/j.str.2010.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 12/27/2022]
Abstract
DAXX is a scaffold protein with diverse roles including transcription and cell cycle regulation. Using NMR spectroscopy, we demonstrate that the C-terminal half of DAXX is intrinsically disordered, whereas a folded domain is present near its N terminus. This domain forms a left-handed four-helix bundle (H1, H2, H4, H5). However, due to a crossover helix (H3), this topology differs from that of the Sin3 PAH domain, which to date has been used as a model for DAXX. The N-terminal residues of the tumor suppressor Rassf1C fold into an amphipathic α helix upon binding this DAXX domain via a shallow cleft along the flexible helices H2 and H5 (K(D) ∼60 μM). Based on a proposed DAXX recognition motif as hydrophobic residues preceded by negatively charged groups, we found that peptide models of p53 and Mdm2 also bound the helical bundle. These data provide a structural foundation for understanding the diverse functions of DAXX.
Collapse
Affiliation(s)
- Eric Escobar-Cabrera
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | | | | | | | | |
Collapse
|
20
|
Dimitropoulou P, Caswell R, McSharry BP, Greaves RF, Spandidos DA, Wilkinson GWG, Sourvinos G. Differential relocation and stability of PML-body components during productive human cytomegalovirus infection: detailed characterization by live-cell imaging. Eur J Cell Biol 2010; 89:757-68. [PMID: 20599291 DOI: 10.1016/j.ejcb.2010.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/14/2010] [Accepted: 05/26/2010] [Indexed: 01/30/2023] Open
Abstract
In controlling the switch from latency to lytic infection, the immediate early (IE) genes lie at the core of herpesvirus pathogenesis. To image the 72kDa human cytomegalovirus (HCMV) major IE protein (IE1-72K), a recombinant virus encoding IE1 fused with EGFP was constructed. Using this construct, the IE1-EGFP fusion was detected at ND10 (PML-bodies) within 2h post infection (p.i.) and the complete disruption of ND10 imaged through to 6h p.i. HCMV genomes and IE2-86K protein could be detected adjacent to the slowly degrading IE1-72K/ND10 foci. IE1-72K associates with metaphase chromatin, recruiting both PML and STAT2. hDaxx, STAT1 and IE2-86K did not re-locate to metaphase chromatin; the fate of hDaxx is particularly important as this protein contributes to an intrinsic barrier to HCMV infection. While IE1-72K participates in a complex with chromatin, PML, STAT2 and Sp100, IE1-72K releases hDaxx from ND10 yet does not appear to remain associated with it.
Collapse
Affiliation(s)
- Panagiota Dimitropoulou
- Department of Virology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
21
|
Lukashchuk V, Everett RD. Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 2010; 84:4026-40. [PMID: 20147399 PMCID: PMC2849514 DOI: 10.1128/jvi.02597-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/31/2010] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early gene product ICP0 activates lytic infection and relieves cell-mediated repression of viral gene expression. This repression is conferred by preexisting cellular proteins and is commonly referred to as intrinsic antiviral resistance or intrinsic defense. PML and Sp100, two core components of nuclear substructures known as ND10 or PML nuclear bodies, contribute to intrinsic resistance, but it is clear that other proteins must also be involved. We have tested the hypothesis that additional ND10 factors, particularly those that are involved in chromatin remodeling, may have roles in intrinsic resistance against HSV-1 infection. The two ND10 component proteins investigated in this report are ATRX and hDaxx, which are known to interact with each other and comprise components of a repressive chromatin-remodeling complex. We generated stable cell lines in which endogenous ATRX or hDaxx expression is severely suppressed by RNA interference. We found increases in both gene expression and plaque formation induced by ICP0-null mutant HSV-1 in both ATRX- and hDaxx-depleted cells. Reconstitution of wild-type hDaxx expression reversed the effects of hDaxx depletion, but reconstitution with a mutant form of hDaxx unable to interact with ATRX did not. Our results suggest that ATRX and hDaxx act as a complex that contributes to intrinsic antiviral resistance to HSV-1 infection, which is counteracted by ICP0.
Collapse
Affiliation(s)
- Vera Lukashchuk
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | - Roger D. Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| |
Collapse
|
22
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
23
|
Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes. J Virol 2009; 83:8514-24. [PMID: 19535445 DOI: 10.1128/jvi.00785-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability of herpes simplex virus to persist in cells depends on the extent of viral-gene expression, which may be controlled by epigenetic mechanisms. We used quiescent infection with the viral mutants d109 and d106 to explore the effects of cell type and the presence of the viral protein ICP0 on the expression and chromatin structure of the human cytomegalovirus (HCMV) tk and gC promoters on the viral genome. Expression from the HCMV promoter on the d109 genome decreased with time and was considerably less in HEL cells than in Vero cells. Expression from the HCMV promoter in d106 was considerably more abundant than in d109, and this increased with time in both cell types. The same pattern of expression was seen on the tk and gC genes on the viral genomes, although the levels of tk and gC RNA were approximately 10(2)- and 10(5)-fold lower than those of wild-type virus in d106 and d109, respectively. In micrococcal-nuclease digestion experiments, nucleosomes were evident on the d109 genome, and the amount of total H3 as determined by chromatin immunoprecipitation was considerably greater on d109 than d106 genomes. The acetylation of histone H3 on the d106 genomes was evident at early and late times postinfection in Vero cells, but only at late times in HEL cells. The same pattern was observed for H3 acetylated on lysine 9. Trimethylation of H3K9 on d109 genomes was evident only at late times postinfection in Vero cells, while it was observed both early and late in HEL cells. Heterochromatin protein 1gamma (HP1gamma) was generally present only on d109 genomes at late times postinfection of HEL cells. The observations of chromatin structure correlate with the expression patterns of the three analyzed genes on the quiescent genomes. Therefore, several mechanisms generally affect the expression and contribute to the silencing of persisting genomes. These are the abundance of nucleosomes, the acetylation state of the histones, and heterochromatin. The extents to which these different mechanisms contribute to repression vary in different cell types and are counteracted by the presence of ICP0.
Collapse
|
24
|
Properties of virion transactivator proteins encoded by primate cytomegaloviruses. Virol J 2009; 6:65. [PMID: 19473490 PMCID: PMC2693105 DOI: 10.1186/1743-422x-6-65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE) gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF) UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1) genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV), strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All UL82 homologs stimulated the early release of ATRX from nuclear domain 10. Conclusion All of the UL82 homolog proteins analysed activated gene expression, but surprising differences in other aspects of their properties were revealed. The results provide new information on early events in infection with cytomegaloviruses.
Collapse
|
25
|
Everett RD, Parsy ML, Orr A. Analysis of the functions of herpes simplex virus type 1 regulatory protein ICP0 that are critical for lytic infection and derepression of quiescent viral genomes. J Virol 2009; 83:4963-77. [PMID: 19264778 PMCID: PMC2682082 DOI: 10.1128/jvi.02593-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/23/2009] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein ICP0 is important for stimulating the initiation of the lytic cycle and efficient reactivation of latent or quiescent infection. Extensive investigation has suggested several potential functions for ICP0, including interference in the interferon response, disruption of functions connected with PML nuclear bodies (ND10), and inhibition of cellular histone deacetylase (HDAC) activity through an interaction with the HDAC-1 binding partner CoREST. Analysis of the significance of these potential functions and whether they are direct or indirect effects of ICP0 is complicated because HSV-1 mutants expressing mutant forms of ICP0 infect cells with widely differing efficiencies. On the other hand, transfection approaches for ICP0 expression do not allow studies of whole cell populations because of their limited efficiency. To overcome these problems, we have established a cell line in which ICP0 expression can be induced at levels pertaining during the early stages of HSV-1 infection in virtually all cells in the culture. Such cells enable 100% complementation of ICP0-null mutant HSV-1. Using cells expressing the wild type and a variety of mutant forms of ICP0, we have used this system to analyze the role of defined domains of the protein in stimulating lytic infection and derepression from quiescence. Activity in these core functions correlated well the ability of ICP0 to disrupt ND10 and inhibit the recruitment of ND10 proteins to sites closely associated with viral genomes at the onset of infection, whereas the CoREST binding region was neither sufficient nor necessary for ICP0 function in lytic and reactivating infections.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | |
Collapse
|
26
|
Lukashchuk V, McFarlane S, Everett RD, Preston CM. Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol 2008; 82:12543-54. [PMID: 18922870 PMCID: PMC2593304 DOI: 10.1128/jvi.01215-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 10/06/2008] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (HCMV) tegument protein pp71, encoded by gene UL82, stimulates viral immediate-early (IE) transcription. pp71 interacts with the cellular protein hDaxx at nuclear domain 10 (ND10) sites, resulting in the reversal of hDaxx-mediated repression of viral transcription. We demonstrate that pp71 displaces an hDaxx-binding protein, ATRX, from ND10 prior to any detectable effects on hDaxx itself and that this event contributes to the role of pp71 in alleviating repression. Introduction of pp71 into cells by transfection, infection with a pp71-expressing herpes simplex virus type 1 vector, or by generation of transformed cell lines promoted the rapid relocation of ATRX from ND10 to the nucleoplasm without alteration of hDaxx levels or localization. A pp71 mutant protein unable to interact with hDaxx did not affect the intranuclear distribution of ATRX. Infection with HCMV at a high multiplicity of infection resulted in rapid displacement of ATRX from ND10, the effect being observed maximally by 2 h after adsorption, whereas infection with the UL82-null HCMV mutant ADsubUL82 did not affect ATRX localization even at 7 h postinfection. Cell lines depleted of ATRX by transduction with shRNA-expressing lentiviruses supported increased IE gene expression and virus replication after infection with ADsubUL82, demonstrating that ATRX has a role in repressing IE transcription. The results show that ATRX, in addition to hDaxx, is a component of cellular intrinsic defenses that limit HCMV IE transcription and that displacement of ATRX from ND10 by pp71 is important for the efficient initiation of viral gene expression.
Collapse
Affiliation(s)
- Vera Lukashchuk
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
27
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
28
|
Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, Awasthi S. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med 2008; 45:111-8. [PMID: 18456001 PMCID: PMC2664084 DOI: 10.1016/j.freeradbiomed.2008.04.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/02/2008] [Accepted: 04/06/2008] [Indexed: 11/26/2022]
Abstract
Within the last two decades, 4-hydroxynonenal has emerged as an important second messenger involved in the regulation of various cellular processes. Our recent studies suggest that HNE can induce apoptosis in various cells through the death receptor Fas (CD95)-mediated extrinsic pathway as well as through the p53-dependent intrinsic pathway. Interestingly, through its interaction with the nuclear protein Daxx, HNE can self-limit its apoptotic role by translocating Daxx to cytoplasm where it binds to Fas and inhibits Fas-mediated apoptosis. In this paper, after briefly describing recent studies on various biological activities of HNE, based on its interactions with Fas, Daxx, and p53, we speculate on possible mechanisms through which HNE may affect a multitude of cellular processes and draw a parallel between signaling roles of H(2)O(2) and HNE.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans 2008; 35:1397-400. [PMID: 18031230 DOI: 10.1042/bst0351397] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SUMO (small ubiquitin-related modifier) modification is emerging as an important post-translational control in transcription. In general, SUMO modification is associated with transcriptional repression. Although many SUMO-modified transcription factors and co-activators have been identified, little is known about the mechanism underlying SUMOylation-elicited transcriptional repression. Here, we summarize that SUMO modification of transcription factors such as androgen receptor, glucocorticoid receptor, Smad4 and CBP [CREB (cAMP-response-element-binding protein)-binding protein] co-activator results in the recruitment of a transcriptional co-repressor Daxx, thereby causing transcriptional repression. Such a SUMO-dependent recruitment of Daxx is mediated by the interaction between the SUMO moiety of SUMOylated factors and Daxx SUMO-interacting motif. Interestingly, the transrepression effect of Daxx on these SUMOylated transcription factors can be relieved by SUMOylated PML (promyelocytic leukaemia) via altering Daxx partition from the targeted gene promoter to PML nuclear bodies. Because Daxx SUMO-interacting motif is a common binding site for SUMOylated factors, a model of competition for Daxx recruitment between SUMOylated PML and SUMOylated transcription factors was proposed. Together, our findings strongly suggest that Daxx functions as a SUMO reader in the SUMO-dependent regulation of transcription and subnuclear compartmentalization.
Collapse
|
30
|
Everett RD, Parada C, Gripon P, Sirma H, Orr A. Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 2008; 82:2661-72. [PMID: 18160441 PMCID: PMC2258993 DOI: 10.1128/jvi.02308-07] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/17/2007] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants that fail to express the viral immediate-early protein ICP0 have a pronounced defect in viral gene expression and plaque formation in limited-passage human fibroblasts. ICP0 is a RING finger E3 ubiquitin ligase that induces the degradation of several cellular proteins. PML, the organizer of cellular nuclear substructures known as PML nuclear bodies or ND10, is one of the most notable proteins that is targeted by ICP0. Depletion of PML from human fibroblasts increases ICP0-null mutant HSV-1 gene expression, but not to wild-type levels. In this study, we report that depletion of Sp100, another major ND10 protein, results in a similar increase in ICP0-null mutant gene expression and that simultaneous depletion of both proteins complements the mutant virus to a greater degree. Although chromatin assembly and modification undoubtedly play major roles in the regulation of HSV-1 infection, we found that inhibition of histone deacetylase activity with trichostatin A was unable to complement the defect of ICP0-null mutant HSV-1 in either normal or PML-depleted human fibroblasts. These data lend further weight to the hypothesis that ND10 play an important role in the regulation of HSV-1 gene expression.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Yeung PL, Chen LY, Tsai SC, Zhang A, Chen JD. Daxx contains two nuclear localization signals and interacts with importin alpha3. J Cell Biochem 2008; 103:456-70. [PMID: 17661348 DOI: 10.1002/jcb.21408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Daxx plays a major role in several important signaling pathways including transcription and cell death. It has been postulated that Daxx regulates both events from the nucleus; however, the mechanism by which Daxx is localized in the nucleus remains obscure. Here we show that nuclear localization of Daxx is controlled by two independent signals and importin 3. Domain analysis reveals that Daxx contains two separate nuclear localizing domains. Site-directed mutagenesis reveals that the basic aa sequence RLKRK at residues 227-231 (NLS1) is responsible for nuclear localization of N-terminal domain, while aa sequence KKSRKEKK at residues 630-637 (NLS2) is responsible for nuclear localization of the C-terminal domain. Mutations of a NLS consensus sequence RKKRR at residues 391-395 and several other basic aa clusters have no effect on Daxx nuclear localization. In full-length Daxx, NLS1 contributes partially to nuclear localization, while NLS2 plays a major role. Markedly, it is essential to disrupt both NLS1 and NLS2 in order to completely block nuclear localization of the full-length protein and to prevent its association with PML nuclear bodies. Furthermore, Daxx interacts selectively with importin alpha3 through its NLS1 and NLS2 sequences. Conversely, importin alpha3 utilizes two NLS-binding sites for Daxx interaction, suggesting that the importin/mediates nuclear import of Daxx. Finally, we show that nuclear localization of Daxx is essential for its transcriptional effects on GR and p53. Together, these data unveil a molecular mechanism that controls nuclear localization of Daxx and support a nuclear role of Daxx in transcriptional regulation.
Collapse
Affiliation(s)
- Percy Luk Yeung
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
32
|
Everett RD, Murray J, Orr A, Preston CM. Herpes simplex virus type 1 genomes are associated with ND10 nuclear substructures in quiescently infected human fibroblasts. J Virol 2007; 81:10991-1004. [PMID: 17670833 PMCID: PMC2045565 DOI: 10.1128/jvi.00705-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/20/2007] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) genomes become associated with structures related to cellular nuclear substructures known as ND10 or promyelocytic leukemia nuclear bodies during the early stages of lytic infection. This paper describes the relationship between HSV-1 genomes and ND10 in human fibroblasts that maintain the viral genomes in a quiescent state. We report that quiescent HSV-1 genomes detected by fluorescence in situ hybridization (FISH) are associated with enlarged ND10-like structures, frequently such that the FISH-defined viral foci are apparently enveloped within a sphere of PML and other ND10 proteins. The number of FISH viral foci in each quiescently infected cell is concordant with the input multiplicity of infection, with each structure containing no more than a small number of viral genomes. A proportion of the enlarged ND10-like foci in quiescently infected cells contain accumulations of the heterochromatin protein HP1 but not other common markers of heterochromatin such as histone H3 di- or trimethylated on lysine residue 9. Many of the virally induced enlarged ND10-like structures also contain concentrations of conjugated ubiquitin. Quiescent infections can be established in cells that are highly depleted for PML. However, during the initial stages of establishment of a quiescent infection in such cells, other ND10 proteins (Sp100, hDaxx, and ATRX) are recruited into virally induced foci that are likely to be associated with HSV-1 genomes. These observations illustrate that the intimate connections between HSV-1 genomes and ND10 that occur during lytic infection also extend to quiescent infections.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Jung YS, Kim HY, Lee YJ, Kim E. Subcellular localization of Daxx determines its opposing functions in ischemic cell death. FEBS Lett 2007; 581:843-52. [PMID: 17289031 DOI: 10.1016/j.febslet.2007.01.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/03/2007] [Accepted: 01/22/2007] [Indexed: 12/26/2022]
Abstract
This study examined the role of Daxx in ischemic stress. Upon ischemic stress, nuclear export of Daxx to the cytoplasm was observed in primary myocytes as well as in various cell lines. Daxx silencing using siRNAs was detrimental in tethering PML-nuclear body (PML-NB) constituents together. Overexpression of Daxx (W621A) caused nuclear export of p53 independently of PML and promoted ischemic cell death via activation of JNK. Conversely, overexpression of Daxx (S667A) prevented dissociation of PML-NB constituents and protected cells from ischemic death. Collectively, our results demonstrate that the subcellular localization of Daxx determines its role in ischemic cell death.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Department of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, Wang X, Liou YC, Ye Z, Lin SC. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res 2007; 67:66-74. [PMID: 17210684 DOI: 10.1158/0008-5472.can-06-1671] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Daxx, a death domain-associated protein, has been implicated in proapoptosis, antiapoptosis, and transcriptional regulation. Many factors known to play critically important roles in controlling apoptosis and gene transcription have been shown to associate with Daxx, including the Ser/Thr protein kinase HIPK2, promyelocytic leukemia protein, histone deacetylases, and the chromatin remodeling protein ATRX. Although it is clear that Daxx may exert multiple functions, the underlying mechanisms remain far from clear. Here, we show that Axin, originally identified for its scaffolding role to control beta-catenin levels in Wnt signaling, strongly associates with Daxx at endogenous levels. The Daxx/Axin complex formation is enhanced by UV irradiation. Axin tethers Daxx to the tumor suppressor p53, and cooperates with Daxx, but not DaxxDeltaAxin, which is unable to interact with Axin, to stimulate HIPK2-mediated Ser(46) phosphorylation and transcriptional activity of p53. Interestingly, Axin and Daxx seem to selectively activate p53 target genes, with strong activation of PUMA, but not p21 or Bax. Daxx-stimulated p53 transcriptional activity was significantly diminished by small interfering RNA against Axin; Daxx fails to inhibit colony formation in Axin(-/-) cells. Moreover, UV-induced cell death was attenuated by the knockdown of Axin and Daxx. All these results show that Daxx cooperates with Axin to stimulate p53, and implicate a direct role for Axin, HIPK2, and p53 in the proapoptotic function of Daxx. We have hence unraveled a novel aspect of p53 activation and shed new light on the ultimate understanding of the Daxx protein, perhaps most pertinently, in relation to stress-induced cell death.
Collapse
Affiliation(s)
- Qinxi Li
- Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Fujian 361005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen A, Wang PY, Yang YC, Huang YH, Yeh JJ, Chou YH, Cheng JT, Hong YR, Li SSL. SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. J Cell Biochem 2006; 98:895-911. [PMID: 16475184 DOI: 10.1002/jcb.20703] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is known that Fas death domain-associated protein (Daxx) possesses both putative nuclear and cytoplasmic functions. However, the nuclear transport mechanism is largely unknown. This study examined the nuclear location signal (NLS) of Daxx and whether the nuclear transport of Daxx was mediated by small ubiquitin-related modifier (SUMO). Two NLS motifs of Daxx, leucine (L)-rich nuclear export signal (NES)-like motif (188IXXLXXLLXL197) and C-terminal lysine (K) rich NLS2 (amino acids 627-634) motif, were identified and the K630 and K631 on the NLS2 motif were characterized as the major sumoylation sites of Daxx by in vitro sumoylation analysis. Proteins of inactive SUMO (SUMO-delta), a sumoylation-incompetent mutant, and Daxx NLS mutants (Daxx-NES(mut) and Daxx NLS2(mut)) were dispersed in cytoplasm. The cytoplasmic dispersed Daxx mutants could be relocalized to nucleus by cotransfection with active SUMO, but not with inactive SUMO-delta, demonstrating the role of SUMO on regulating the cytoplasmonuclear transport of Daxx. However, inactive SUMO-delta could also be relocalized to nucleus during cotransfection with wild-type Daxx, suggesting that SUMO regulation of the cytoplasmonuclear transport of its target protein Daxx does not need covalent modification. This study shows that cytoplasmic SUMO has a biological role in enhancing the cytoplasmonuclear transport of its target protein Daxx and it may be done through the non-sumoylation interactions.
Collapse
Affiliation(s)
- Angela Chen
- Center for Nanoscience, Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 2006; 80:7995-8005. [PMID: 16873256 PMCID: PMC1563828 DOI: 10.1128/jvi.00734-06] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/30/2006] [Indexed: 12/19/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (also known as ND10) are nuclear substructures that contain several proteins, including PML itself, Sp100, and hDaxx. PML has been implicated in many cellular processes, and ND10 are frequently associated with the replicating genomes of DNA viruses. During herpes simplex virus type 1 (HSV-1) infection, the viral regulatory protein ICP0 localizes to ND10 and induces the degradation of PML, thereby disrupting ND10 and dispersing their constituent proteins. ICP0-null mutant viruses are defective in PML degradation and ND10 disruption, and concomitantly they initiate productive infection very inefficiently. Although these data are consistent with a repressive role for PML and/or ND10 during HSV-1 infection, evidence in support of this hypothesis has been inconclusive. By use of short interfering RNA technology, we demonstrate that depletion of PML increases both gene expression and plaque formation by an ICP0-negative HSV-1 mutant, while having no effect on wild-type HSV-1. We conclude that PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Nguyen H, Sankaran S, Dandekar S. Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes. Virology 2006; 354:58-68. [PMID: 16876223 DOI: 10.1016/j.virol.2006.04.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/17/2006] [Accepted: 04/24/2006] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) Core protein is implicated in the development of hepatocellular carcinoma (HCC). We utilized a HepG2 human hepatocyte cell line with inducible expression of HCV Core protein (HCV-1b) to investigate the early effects of Core protein on hepatocyte gene expression and to identify molecular processes modulated by the Core protein. A significant change was observed in the expression of 407 genes, which included genes regulating apoptosis, immune response, and cell cycle. Some of these genes were previously known to be tumor markers. The decreased expression of chemo-attractants such as TNFSF10, CCL20, and osteopontin was observed, which suggested that HCV Core expression could lead to suppression of inflammatory response as well as trafficking of macrophages and neutrophils to the site of HCV infection. An increased expression of anti-apoptosis factors including PAK2, API5, BH1, Tax1BP1, DAXX, and TNFAIP3/A20 was observed. Some of these genes were also linked to the regulation of NFKB activation and that the alteration of their expression levels, by HCV Core, might lead to the suppression NFKB activation of inflammatory responses. Our data suggested that Core expression may contribute to the viral persistence by protecting infected hepatocytes from cell death by the suppressing apoptosis and inflammatory reaction to HCV viral infection.
Collapse
Affiliation(s)
- Hau Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, Topper Hall, Room 3146, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
38
|
Muromoto R, Ishida M, Sugiyama K, Sekine Y, Oritani K, Shimoda K, Matsuda T. Sumoylation of Daxx Regulates IFN-Induced Growth Suppression of B Lymphocytes and the Hormone Receptor-Mediated Transactivation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1160-70. [DOI: 10.4049/jimmunol.177.2.1160] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Preston CM, Nicholl MJ. Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 2006; 87:1113-1121. [PMID: 16603511 DOI: 10.1099/vir.0.81566-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early (IE) transcription is stimulated by virion phosphoprotein pp71, the product of gene UL82. It has previously been shown that pp71 interacts with the cellular protein hDaxx and, in the studies presented here, the significance of this interaction was investigated for HCMV IE gene expression. In co-transfection experiments, the presence of hDaxx increased the transcriptional response of the HCMV major IE promoter (MIEP) to pp71, but it was not possible to determine whether the effect was due to an interaction between the two proteins or to stimulation of hDaxx synthesis by pp71. The use of small interfering RNA (siRNA) in long- and short-term transfection approaches reduced intracellular hDaxx levels to no more than 3 % of normal. Infection of hDaxx-depleted cells with herpes simplex virus recombinants containing the HCMV MIEP revealed significantly greater promoter activity when hDaxx levels were minimal. Similarly, reducing intracellular hDaxx amounts resulted in greater IE gene expression during infection with an HCMV mutant lacking pp71, but had no effect on IE transcription during infection with wild-type HCMV. The results suggest that hDaxx is not important as a positive-acting factor for the stimulation of HCMV IE transcription by pp71. Instead, it appears that hDaxx acts as a repressor of IE gene expression, and it is proposed here that the interaction of pp71 with hDaxx is important to relieve repression and permit efficient initiation of productive replication.
Collapse
Affiliation(s)
- Chris M Preston
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Mary Jane Nicholl
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
40
|
Tzeng SL, Cheng YW, Li CH, Lin YS, Hsu HC, Kang JJ. Physiological and functional interactions between Tcf4 and Daxx in colon cancer cells. J Biol Chem 2006; 281:15405-11. [PMID: 16569639 DOI: 10.1074/jbc.m601807200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Daxx, a human cell death-associated protein, was isolated as a Tcf4-interacting protein, using a yeast two-hybrid screen. Co-immunoprecipitation in HEK-293T cells and yeast two-hybrid screen in Y190 cells were performed to identify the interaction between Tcf4 with Daxx and to map the binding regions of Tcf4. In the nucleus, Daxx reduced DNA binding activity of Tcf4 and repressed Tcf4 transcriptional activity. Overexpression of Daxx altered the expression of genes downstream of Tcf4, including cyclin D1 and Hath-1, and induced G1 phase arrest in colon cancer cells. A reduction in Daxx protein expression was also observed in colon adenocarcinoma tissue when compared with normal colon tissue. This evidence suggests a possible physiological function of Daxx, via interaction with Tcf4, to regulate proliferation and differentiation of colon cells.
Collapse
Affiliation(s)
- Shu-Ling Tzeng
- Institute of Toxicology, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Salomoni P, Khelifi AF. Daxx: death or survival protein? Trends Cell Biol 2006; 16:97-104. [PMID: 16406523 DOI: 10.1016/j.tcb.2005.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/21/2005] [Accepted: 12/08/2005] [Indexed: 12/26/2022]
Abstract
The death domain-associated protein (Daxx) was originally cloned as a CD95 (FAS)-interacting protein and modulator of FAS-induced cell death. Daxx accumulates in both the nucleus and the cytoplasm; in the nucleus, Daxx is found associated with the promyelocytic leukaemia (PML) nuclear body and with alpha-thalassemia/mental retardation syndrome protein (ATRX)-positive heterochromatic regions. In the cytoplasm, Daxx has been reported to interact with various proteins involved in cell death regulation. Despite a significant number of studies attempting to determine Daxx function in apoptotic and non-apoptotic cell death, its precise role in this process is only partially understood. Here, we critically review the current understanding of Daxx function and shed new light on this interesting field.
Collapse
|
42
|
Abstract
The apoptotic demolition of the nucleus is accomplished by diverse proapoptotic factors, most of which are activated in the cytoplasm and gain access to the nucleoplasm during the cell death process. The nucleus is also the main target for genotoxic insult, a potent apoptotic trigger. Signals generated in the nucleus by DNA damage have to propagate to all cellular compartments to ensure the coordinated execution of cell demise. The nucleocytoplasmic shuttling of signalling and execution factors is thus an integral part of the apoptotic programme. Several proteins implicated in apoptotic cell death have been shown to migrate in and out of the nucleus following apoptosis induction. This review summarises the current knowledge on nucleocytoplasmic trafficking of apoptosis-relevant proteins. The effects of apoptosis induction on the nucleocytoplasmic transport machinery are also discussed. Finally, a potential role of nuclear transport as a critical control point of the apoptotic signal cascade is proposed.
Collapse
Affiliation(s)
- E Ferrando-May
- Molecular Toxicology Group, Faculty of Biology, University of Konstanz, PO Box X911, 78457 Konstanz, Germany.
| |
Collapse
|
43
|
Boehrer S, Nowak D, Hochmuth S, Kim SZ, Trepohl B, Afkir A, Hoelzer D, Mitrou PS, Weidmann E, Chow KU. Daxx overexpression in T-lymphoblastic Jurkat cells enhances caspase-dependent death receptor- and drug-induced apoptosis in distinct ways. Cell Signal 2005; 17:581-95. [PMID: 15683733 DOI: 10.1016/j.cellsig.2004.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 12/19/2022]
Abstract
The role of Daxx, in particular, its ability to promote or hinder apoptosis, still remains controversial. In order to elucidate the functional relevance of Daxx in apoptosis signaling of malignant lymphocytes, Jurkat T-cells were stably transfected with a Daxx-expressing vector or with the respective Daxx-negative control vector. We thus demonstrate that ectopic expression of Daxx substantially increases the rate of apoptosis upon incubation with death receptor agonists such as Fas and TRAIL as well as upon incubation with the cytotoxic drug doxorubicin (DOX). Analysis of the molecular changes induced in the extrinsic and intrinsic apoptosis pathways reveals that augmentation of apoptosis by Daxx overexpression is conveyed by distinctly different mechanisms. Although enforced apoptosis caused by ectopic Daxx expression is caspase-dependent in both cases, major differences between Fas/TRAIL-induced apoptosis and doxorubicin-induced apoptosis are observed in expression patterns of X-linked inhibitor of apoptosis (XIAP), p53, Bid, ZIP kinase, and prostate apoptosis response gene 4 (Par-4). Moreover, we could show that addition of a CD95 blocking antibody to the clones treated with doxorubicin was able to increase apoptosis as compared to doxorubicin treatment alone and was accompanied by an enhancement of the mitochondrial branch of apoptosis. In conclusion, we here outline the major molecular mechanisms underlying the apoptosis-promoting effect of Daxx in neoplastic lymphocytes and demonstrate fundamental molecular differences elicited by the overexpression of Daxx in the extrinsic and intrinsic signaling pathways.
Collapse
Affiliation(s)
- Simone Boehrer
- University Hospital, Department of Internal Medicine III, Hematology and Oncology, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Down-regulation of cytokine secretion and repression of apoptosis hDaxx in macrophages. Chin J Cancer Res 2005. [DOI: 10.1007/s11670-005-0009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Abstract
Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
Collapse
Affiliation(s)
- Erica S Johnson
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
46
|
Rogers RS, Inselman A, Handel MA, Matunis MJ. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 2004; 113:233-43. [PMID: 15349788 DOI: 10.1007/s00412-004-0311-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 01/26/2023]
Abstract
The XY body is a specialized chromatin territory that forms during meiotic prophase of spermatogenesis and comprises the transcriptionally repressed sex chromosomes. Remodeling of the XY chromatin is brought about by recruitment of specific proteins to the X and Y chromosomes during meiosis, and also by post-translational modifications of histones and other chromatin-associated proteins. Here, we demonstrate that SUMO, a small ubiquitin-related modifier protein that regulates a wide variety of nuclear functions in somatic cells, dramatically localizes to the XY body. SUMO was first detected in the XY body of early pachytene spermatocytes and gradually accumulated, reaching maximal levels there during the mid to late pachytene stages. Several known SUMO substrates, including PML and DAXX, were also found to accumulate in the XY body of mid to late stage pachytene spermatocytes. These same proteins localize to PML nuclear bodies of somatic interphase nuclei. Together, these findings indicate a role for SUMO modification in regulating the structure and function of the XY body and reveal molecular similarities between the XY body and PML nuclear bodies.
Collapse
Affiliation(s)
- Richard S Rogers
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
47
|
Chung TL, Hsiao HH, Yeh YY, Shia HL, Chen YL, Liang PH, Wang AHJ, Khoo KH, Shoei-Lung Li S. In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. J Biol Chem 2004; 279:39653-62. [PMID: 15272016 DOI: 10.1074/jbc.m405637200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein sumoylation by small ubiquitin-like modifier (SUMO) proteins is an important post-translational regulatory modification. A role in the control of chromosome dynamics was first suggested when SUMO was identified as high-copy suppressor of the centromere protein CENP-C mutants. CENP-C itself contains a consensus sumoylation sequence motif that partially overlaps with its DNA binding and centromere localization domain. To ascertain whether CENP-C can be sumoylated, tandem mass spectrometry (MS) based strategy was developed for high sensitivity identification and sequencing of sumoylated isopeptides present among in-gel-digested tryptic peptides of SDS-PAGE fractionated target proteins. Without a predisposition to searching for the expected isopeptides based on calculated molecular mass and relying instead on the characteristic MS/MS fragmentation pattern to identify sumolylation, we demonstrate that several other lysine residues located not within the perfect consensus sumoylation motif psiKXE/D, where psi represents a large hydrophobic amino acid, and X represents any amino acid, can be sumolylated with a reconstituted in vitro system containing only the SUMO proteins, E1-activating enzyme and E2-conjugating enzyme (Ubc9). In all cases, target sites that can be sumoylated by SUMO-2 were shown to be equally susceptible to SUMO-1 attachments which include specific sites on SUMO-2 itself, Ubc9, and the recombinant CENP-C fragments. Two non-consensus sites on one of the CENP-C fragments were found to be sumoylated in addition to the predicted site on the other fragment. The developed methodologies should facilitate future studies in delineating the dynamics and substrate specificities of SUMO-1/2/3 modifications and the respective roles of E3 ligases in the process.
Collapse
Affiliation(s)
- Tung-Liang Chung
- Department of Biotechnology, College of Life Sciences, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
La M, Kim K, Park J, Won J, Lee JH, Fu YM, Meadows GG, Joe CO. Daxx-mediated transcriptional repression of MMP1 gene is reversed by SPOP. Biochem Biophys Res Commun 2004; 320:760-5. [PMID: 15240113 DOI: 10.1016/j.bbrc.2004.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Indexed: 11/26/2022]
Abstract
Daxx-mediated transcriptional repression was modulated by a speckled POZ domain protein SPOP which was first identified as an autoantigen from the serum of a scleroderma patient. This is the first report on the biochemical and functional interactions between Daxx and SPOP. The COOH-terminal region of Daxx interacts with the NH2-terminal region of SPOP. SPOP reversed the transcriptional repression mediated by Daxx which binds with ETS1 transcription factor to repress ETS1-responsive gene expression. Mutagenesis study suggests that the ability of SPOP to self-associate as well as its ability to bind with Daxx was important for the modulation of Daxx-mediated transcriptional repression.
Collapse
Affiliation(s)
- Muhnho La
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Muromoto R, Sugiyama K, Takachi A, Imoto S, Sato N, Yamamoto T, Oritani K, Shimoda K, Matsuda T. Physical and functional interactions between Daxx and DNA methyltransferase 1-associated protein, DMAP1. THE JOURNAL OF IMMUNOLOGY 2004; 172:2985-93. [PMID: 14978102 DOI: 10.4049/jimmunol.172.5.2985] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Daxx has been shown to play an essential role in type I IFN-alphabeta-mediated suppression of B cell development and apoptosis. Recently, we demonstrated that Tyk2 is directly involved in IFN signaling for the induction and translocation of Daxx, which may result in growth arrest and/or apoptosis of B lymphocyte progenitors. To clarify how Daxx regulates B cell development, we examined Daxx interacting partners by yeast two-hybrid screening. DNA methyltransferase 1 (DNMT1)-associated protein (DMAP1) was identified and demonstrated to interact with Daxx. The interaction regions in both proteins were mapped, and the cellular localization of the interaction was examined. Both Daxx and DMAP1 formed a complex with DNMT1 and colocalized in the nucleus. DMAP1 enhanced Daxx-mediated repression of glucocorticoid receptor transcriptional activity. Furthermore, Daxx protected protein degradation of DMAP1 in vivo. These results provide the novel molecular link between Daxx and DNMT1, which establishes a repressive transcription complex in the nucleus.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Muromoto R, Sugiyama K, Yamamoto T, Oritani K, Shimoda K, Matsuda T. Physical and functional interactions between Daxx and TSG101. Biochem Biophys Res Commun 2004; 316:827-33. [PMID: 15033475 DOI: 10.1016/j.bbrc.2004.02.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Indexed: 11/23/2022]
Abstract
Daxx has been reported to mediate the Fas/JNK-dependent signals in the cytoplasm. However, several evidences have suggested that Daxx is located mainly in the nucleus and functions as a transcriptional regulator. Recently, we identified DMAP1, a TSG101-interacting protein as a Daxx binding partner by yeast two-hybrid screening. TSG101 has been shown to act as transcriptional co-repressor of nuclear hormone receptors. Here we examined whether TSG101also interacts with Daxx directly. The association of Daxx and TSG101 was confirmed using co-expressed tagged proteins. The interaction regions in both proteins were also mapped, and the cellular localization of the interaction was examined. TSG101 formed a complex with Daxx through its coiled-coil domain and co-localized in the nucleus. Furthermore, TSG101 enhanced Daxx-mediated repression of glucocorticoid receptor transcriptional activity. These results provide the novel molecular interactions between Daxx and TSG101, which establish an efficient repressive transcription complex in the nucleus.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|