1
|
Kudryashova IV. The Reorganization of the Actin Matrix as a Factor of Presynaptic Plasticity. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Gramlich MW, Klyachko VA. Nanoscale Organization of Vesicle Release at Central Synapses. Trends Neurosci 2020; 42:425-437. [PMID: 31176424 DOI: 10.1016/j.tins.2019.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
Presynaptic boutons support neurotransmitter release with nanoscale precision at sub-millisecond timescales. Studies over the past two decades have revealed a rich tapestry of molecular players governing synaptic vesicle fusion at highly specialized release sites in the active zone (AZ). However, the spatiotemporal organization of release at active synapses remains elusive, in part owing to the extremely small size of the AZ and the limited resolution of conventional approaches. Recent advances in fluorescence nanoscopy have revolutionized direct investigation of presynaptic release organization and dynamics. We discuss here recent nanoscopy-based studies of the molecular architecture, the spatial organization and dynamic regulation of release sites, and the mechanisms of release site replenishment. These findings have uncovered previously unknown levels of structural and functional organization at central synapses, with important implications for synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Michael W Gramlich
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA; Present address: Department of Physics, Auburn University, Auburn, AL, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Roles of Myosin-Mediated Membrane Trafficking in TGF-β Signaling. Int J Mol Sci 2019; 20:ijms20163913. [PMID: 31408934 PMCID: PMC6719161 DOI: 10.3390/ijms20163913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Recent findings have revealed the role of membrane traffic in the signaling of transforming growth factor-β (TGF-β). These findings originate from the pivotal function of TGF-β in development, cell proliferation, tumor metastasis, and many other processes essential in malignancy. Actin and unconventional myosin have crucial roles in subcellular trafficking of receptors; research has also revealed a growing number of unconventional myosins that have crucial roles in TGF-β signaling. Unconventional myosins modulate the spatial organization of endocytic trafficking and tether membranes or transport them along the actin cytoskeletons. Current models do not fully explain how membrane traffic forms a bridge between TGF-β and the downstream effectors that produce its functional responsiveness, such as cell migration. In this review, we present a brief overview of the current knowledge of the TGF-β signaling pathway and the molecular components that comprise the core pathway as follows: ligands, receptors, and Smad mediators. Second, we highlight key role(s) of myosin motor-mediated protein trafficking and membrane domain segregation in the modulation of the TGF-β signaling pathway. Finally, we review future challenges and provide future prospects in this field.
Collapse
|
4
|
Guzman GA, Guzman RE, Jordan N, Hidalgo P. A Tripartite Interaction Among the Calcium Channel α 1- and β-Subunits and F-Actin Increases the Readily Releasable Pool of Vesicles and Its Recovery After Depletion. Front Cell Neurosci 2019; 13:125. [PMID: 31130843 PMCID: PMC6509170 DOI: 10.3389/fncel.2019.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release is initiated by the influx of Ca2+via voltage-gated calcium channels. The accessory β-subunit (CaVβ) of these channels shapes synaptic transmission by associating with the pore-forming subunit (CaVα1) and up-regulating presynaptic calcium currents. Besides CaVα1, CaVβ interacts with several partners including actin filaments (F-actin). These filaments are known to associate with synaptic vesicles (SVs) at the presynaptic terminals and support their translocation within different pools, but the role of CaVβ/F-actin association on synaptic transmission has not yet been explored. We here study how CaVβ4, the major calcium channel β isoform in mamalian brain, modifies synaptic transmission in concert with F-actin in cultured hippocampal neurons. We analyzed the effect of exogenous CaVβ4 before and after pharmacological disruption of the actin cytoskeleton and dissected calcium channel-dependent and -independent functions by comparing the effects of the wild-type subunit with the one bearing a double mutation that impairs binding to CaVα1. We found that exogenously expressed wild-type CaVβ4 enhances spontaneous and depolarization-evoked excitatory postsynaptic currents (EPSCs) without altering synaptogenesis. CaVβ4 increases the size of the readily releasable pool (RRP) of SVs at resting conditions and accelerates their recovery after depletion. The enhanced neurotransmitter release induced by CaVβ4 is abolished upon disruption of the actin cytoskeleton. The CaVα1 association-deficient CaVβ4 mutant associates with actin filaments, but neither alters postsynaptic responses nor the time course of the RRP recovery. Furthermore, this mutant protein preserves the ability to increase the RRP size. These results indicate that the interplay between CaVβ4 and F-actin also support the recruitment of SVs to the RRP in a CaVα1-independent manner. Our studies show an emerging role of CaVβ in determining SV maturation toward the priming state and its replenishment after release. We envision that this subunit plays a role in coupling exocytosis to endocytosis during the vesicle cycle.
Collapse
Affiliation(s)
- Gustavo A Guzman
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Raul E Guzman
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Hidalgo
- Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Edwards BS, Clay CM, Ellsworth BS, Navratil AM. Functional Role of Gonadotrope Plasticity and Network Organization. Front Endocrinol (Lausanne) 2017; 8:223. [PMID: 28936197 PMCID: PMC5595155 DOI: 10.3389/fendo.2017.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Gonadotrope cells of the anterior pituitary are characterized by their ability to mount a cyclical pattern of gonadotropin secretion to regulate gonadal function and fertility. Recent in vitro and in vivo evidence suggests that gonadotropes exhibit dramatic remodeling of the actin cytoskeleton following gonadotropin-releasing hormone (GnRH) exposure. GnRH engagement of actin is critical for gonadotrope function on multiple levels. First, GnRH-induced cell movements lead to spatial repositioning of the in vivo gonadotrope network toward vascular endothelium, presumably to access the bloodstream for effective hormone release. Interestingly, these plasticity changes can be modified depending on the physiological status of the organism. Additionally, GnRH-induced actin assembly appears to be fundamental to gonadotrope signaling at the level of extracellular signal-regulated kinase (ERK) activation, which is a well-known regulator of luteinizing hormone (LH) β-subunit synthesis. Last, GnRH-induced cell membrane projections are capable of concentrating LHβ-containing vesicles and disruption of the actin cytoskeleton reduces LH secretion. Taken together, gonadotrope network positioning and LH synthesis and secretion are linked to GnRH engagement of the actin cytoskeleton. In this review, we will cover the dynamics and organization of the in vivo gonadotrope cell network and the mechanisms of GnRH-induced actin-remodeling events important in ERK activation and subsequently hormone secretion.
Collapse
Affiliation(s)
- Brian S. Edwards
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Colin M. Clay
- Department of Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Amy M. Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Amy M. Navratil,
| |
Collapse
|
6
|
Souza CCR, Dombroski TCD, Machado HR, Oliveira RS, Rocha LB, Rodrigues ARA, Neder L, Chimelli L, Corrêa VMA, Larson RE, Martins AR. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age. Braz J Med Biol Res 2015; 46:164-70. [PMID: 23558932 PMCID: PMC3854355 DOI: 10.1590/1414-431x20122627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/03/2012] [Indexed: 12/04/2022] Open
Abstract
Myosin Va functions as a processive, actin-based motor molecule highly enriched
in the nervous system, which transports and/or tethers organelles, vesicles, and
mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli
disease that is associated with severe neurological deficits and a short life
span. Despite playing a critical role in development, the expression of myosin
Va in the central nervous system throughout the human life span has not been
reported. To address this issue, the cerebellar expression of myosin Va from
newborns to elderly humans was studied by immunohistochemistry using an
affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages
from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and
granular cerebellar layers. Cerebellar myosin Va expression did not differ
essentially in localization or intensity from childhood to old age, except
during the postnatal developmental period. Structures resembling granules and
climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long
processes were deeply stained by anti-myosin Va, as were punctate nuclear
structures. During the first postnatal year, myosin Va was differentially
expressed in the external granular layer (EGL). In the EGL, proliferating
prospective granule cells were not stained by anti-myosin Va antibody. In
contrast, premigratory granule cells in the EGL stained moderately. Granule
cells exhibiting a migratory profile in the molecular layer were also moderately
stained. In conclusion, neuronal myosin Va is developmentally regulated, and
appears to be required for cerebellar function from early postnatal life to
senescence.
Collapse
Affiliation(s)
- C C R Souza
- Departamento de Neurologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117:1-19. [DOI: 10.1016/j.pneurobio.2014.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/21/2023]
|
8
|
Bui L, Glavinović MI. Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus. Cogn Neurodyn 2014; 7:105-20. [PMID: 24427195 DOI: 10.1007/s11571-012-9232-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/22/2012] [Accepted: 12/01/2012] [Indexed: 11/30/2022] Open
Abstract
Short-term synaptic depression mainly reflects the depletion of the readily releasable pool (RRP) of quanta. Its dynamics, and especially the replenishment rate of the RRP, are still not well characterized in spite of decades of investigation. Main reason is that the vesicular storage and release system is treated as time-independent. If it is time-dependent all parameters thus estimated become problematic. Indeed the reports about how prolonged stimulation affects the dynamics are contradictory. To study this, we used patterned stimulation on the Schaeffer collateral fiber pathway and model-fitting of the excitatory post-synaptic currents (EPSC) recorded from CA1 neurons in rat hippocampal slices. The parameters of a vesicular storage and release model with two pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. This yields the 'basic' parameters (release coupling, replenishment coupling and RRP size) that underlie the 'derived' and commonly used parameters (fractional release and replenishment rate). The fractional release increases when [Ca(++)]o is raised, whereas the replenishment rate is [Ca(++)]o independent. Fractional release rises because release coupling increases, and the RRP becomes less able to contain quanta. During prolonged stimulation, the fractional release remains generally unaltered, whereas the replenishment rate decreases down to ~10 % of its initial value with a decay time of ~15 s, and this decrease in the replenishment rate significantly contributes to synaptic depression. In conclusion, the fractional release is [Ca(++)]o-dependent and stimulation-independent, whereas the replenishment rate is [Ca(++)]o-independent and stimulation-dependent.
Collapse
Affiliation(s)
- Loc Bui
- Department of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, QC H3G 1Y6 Canada
| | - Mladen I Glavinović
- Department of Physiology, McGill University, 3655 Sir William Osler Promenade, Montreal, QC H3G 1Y6 Canada
| |
Collapse
|
9
|
Furt F, Liu YC, Bibeau JP, Tüzel E, Vidali L. Apical myosin XI anticipates F-actin during polarized growth of Physcomitrella patens cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:417-428. [PMID: 23020796 DOI: 10.1111/tpj.12039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/07/2012] [Accepted: 09/27/2012] [Indexed: 05/28/2023]
Abstract
Tip growth is essential for land colonization by bryophytes, plant sexual reproduction and water and nutrient uptake. Because this specialized form of polarized cell growth requires both a dynamic actin cytoskeleton and active secretion, it has been proposed that the F-actin-associated motor myosin XI is essential for this process. Nevertheless, a spatial and temporal relationship between myosin XI and F-actin during tip growth is not known in any plant cell. Here, we use the highly polarized cells of the moss Physcomitrella patens to show that myosin XI and F-actin localize, in vivo, at the same apical domain and that both signals fluctuate. Surprisingly, phase analysis shows that increase in myosin XI anticipates that of F-actin; in contrast, myosin XI levels at the tip fluctuate in identical phase with a vesicle marker. Pharmacological analysis using a low concentration of the actin polymerization inhibitor latrunculin B showed that the F-actin at the tip can be significantly diminished while myosin XI remains elevated in this region, suggesting that a mechanism exists to cluster myosin XI-associated structures at the cell's apex. In addition, this approach uncovered a mechanism for actin polymerization-dependent motility in the moss cytoplasm, where myosin XI-associated structures seem to anticipate and organize the actin polymerization machinery. From our results, we inferred a model where the interaction between myosin XI-associated vesicular structures and F-actin polymerization-driven motility function at the cell's apex to maintain polarized cell growth. We hypothesize this is a general mechanism for the participation of myosin XI and F-actin in tip growing cells.
Collapse
Affiliation(s)
- Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | | | |
Collapse
|
10
|
Lee JS, Jeremic A, Shin L, Cho WJ, Chen X, Jena BP. Neuronal porosome proteome: Molecular dynamics and architecture. J Proteomics 2012; 75:3952-62. [PMID: 22659300 DOI: 10.1016/j.jprot.2012.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 11/15/2022]
Abstract
Porosomes are the universal secretory portals at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to expel intravesicular contents to the outside during cell secretion. In the past decade, the neuronal porosome complex, a 10-15nm cup-shaped lipoprotein structure has been isolated, its partial composition and 3D contour map determined, and it has been functionally reconstituted into artificial lipid membrane. Here we further determine the composition of the neuronal porosome proteome using immunoisolation and gel filtration chromatography, followed by tandem mass spectrometry. Results from the study demonstrate nearly 40 proteins to constitute the neuronal porosome proteome. Furthermore, interaction of proteins within the porosome and their resulting arrangement is predicted. The association and dissociation of proteins at the porosome following stimulation of cell secretion demonstrate the dynamic nature of the organelle.
Collapse
Affiliation(s)
- Jin-Sook Lee
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
11
|
Wang S, Lee JS, Bishop N, Jeremic A, Cho WJ, Chen X, Mao G, Taatjes DJ, Jena BP. 3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex. Histochem Cell Biol 2012; 137:703-18. [PMID: 22527693 DOI: 10.1007/s00418-012-0948-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Insights into the three-dimensional (3D) organization and function of intracellular structures at nanometer resolution, holds the key to our understanding of the molecular underpinnings of cellular structure-function. Besides this fundamental understanding of the cell at the molecular level, such insights hold great promise in identifying the disease processes by their altered molecular profiles, and help determine precise therapeutic treatments. To achieve this objective, previous studies have employed electron microscopy (EM) tomography with reasonable success. However, a major hurdle in the use of EM tomography is the tedious procedures involved in fixing, high-pressure freezing, staining, serial sectioning, imaging, and finally compiling the EM images to obtain a 3D profile of sub-cellular structures. In contrast, the resolution limit of EM tomography is several nanometers, as compared to just a single or even sub-nanometer using the atomic force microscope (AFM). Although AFM has been hugely successful in 3D imaging studies at nanometer resolution and in real time involving isolated live cellular and isolated organelles, it has had limited success in similar studies involving 3D imaging at nm resolution of intracellular structure-function in situ. In the current study, using both AFM and EM on aldehyde-fixed and semi-dry mouse pancreatic acinar cells, new insights on a number of intracellular structure-function relationships and interactions were achieved. Golgi complexes, some exhibiting vesicles in the process of budding were observed, and small vesicles were caught in the act of fusing with larger vesicles, possibly representing either secretory vesicle biogenesis or vesicle refilling following discharge, or both. These results demonstrate the power and scope of the combined engagement of EM and AFM imaging of fixed semi-dry cells, capable of providing a wealth of new information on cellular structure-function and interactions.
Collapse
Affiliation(s)
- Sunxi Wang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Roman-Vendrell C, Yu YJ, Yudowski GA. Fast modulation of μ-opioid receptor (MOR) recycling is mediated by receptor agonists. J Biol Chem 2012; 287:14782-91. [PMID: 22378794 DOI: 10.1074/jbc.m111.319616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca(2+)-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance.
Collapse
Affiliation(s)
- Cristina Roman-Vendrell
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | | |
Collapse
|
13
|
Jin Y, Sultana A, Gandhi P, Franklin E, Hamamoto S, Khan AR, Munson M, Schekman R, Weisman LS. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell 2012; 21:1156-70. [PMID: 22172676 DOI: 10.1016/j.devcel.2011.10.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 08/26/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022]
Abstract
Vesicle transport requires four steps: vesicle formation, movement, tethering, and fusion. In yeast, two Rab GTPases, Ypt31/32, are required for post-Golgi vesicle formation. A third Rab GTPase, Sec4, and the exocyst act in tethering and fusion of these vesicles. Vesicle production is coupled to transport via direct interaction between Ypt31/32 and the yeast myosin V, Myo2. Here we show that Myo2 interacts directly with Sec4 and the exocyst subunit Sec15. Disruption of these interactions results in compromised growth and the accumulation of secretory vesicles. We identified the Sec15-binding region on Myo2 and also identified residues on Sec15 required for interaction with Myo2. That Myo2 interacts with Sec15 uncovers additional roles for the exocyst as an adaptor for molecular motors and implies similar roles for structurally related tethering complexes. Moreover, these studies predict that for many pathways, molecular motors attach to vesicles prior to their formation and remain attached until fusion.
Collapse
Affiliation(s)
- Yui Jin
- Life Sciences Institute, Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cells synthesize and store within membranous sacs products such as hormones, growth factors, neurotransmitters, or digestive enzymes, for release on demand. As recently as just 15 years ago, it was believed that during cell secretion, membrane-bound secretory vesicles completely merge at the cell plasma membrane resulting in the diffusion of intravesicular contents to the cell exterior and the compensatory retrieval of the excess membrane by endocytosis. This explanation, however, failed to explain the generation of partially empty vesicles observed in electron micrographs following secretion. Logically therefore, in a 1993 News and Views article in the journal Nature, Prof. Erwin Neher wrote "It seems terribly wasteful that, during the release of hormones and neurotransmitters from a cell, the membrane of a vesicle should merge with the plasma membrane to be retrieved for recycling only seconds or minutes later." The discovery of permanent secretory portals or nanomachines at the cell plasma membrane called POROSOMES, where membrane-bound secretory vesicles transiently dock and fuse to release intravesicular contents to the cell exterior, has finally resolved this conundrum. Following this discovery, the composition of the porosome, its structure and dynamics visualized with high-resolution imaging techniques atomic force and electron microscopy, and its functional reconstitution into artificial lipid membrane have provided a molecular understanding of cell secretion. In agreement, it has been demonstrated that "secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells" (Proc Natl Acad Sci U S A 100:2070-2075, 2003); that "single synaptic vesicles fuse transiently and successively without loss of identity" (Nature 423:643-647, 2003); and that "zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity" (Proc Natl Acad Sci U S A 101:6774-6779, 2004). It made no sense all these years to argue that mammalian cells possess an "all or none" mechanism of cell secretion resulting from complete vesicle merger at the cell plasma membrane, when even single-cell organisms have developed specialized and sophisticated secretory machinery, such as the secretion apparatus of Toxoplasma gondii, contractile vacuoles in paramecium, and different types of secretory structures in bacteria. The discovery of the porosome and its functional reconstitution in artificial lipid membrane, and an understanding of its morphology, composition, and dynamics, has resulted in a paradigm shift in our understanding of the secretory process in cells.
Collapse
Affiliation(s)
- Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
15
|
Maravillas-Montero JL, Santos-Argumedo L. The myosin family: unconventional roles of actin-dependent molecular motors in immune cells. J Leukoc Biol 2011; 91:35-46. [DOI: 10.1189/jlb.0711335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Calábria LK, Peixoto PMV, Passos Lima AB, Peixoto LG, de Moraes VRA, Teixeira RR, Dos Santos CT, E Silva LO, da Silva MDFR, dos Santos AAD, Garcia-Cairasco N, Martins AR, Espreafico EM, Espindola FS. Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1300-1311. [PMID: 21718700 DOI: 10.1016/j.jinsphys.2011.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions.
Collapse
Affiliation(s)
- Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wöllert T, Patel A, Lee YL, Provance DW, Vought VE, Cosgrove MS, Mercer JA, Langford GM. Myosin5a tail associates directly with Rab3A-containing compartments in neurons. J Biol Chem 2011; 286:14352-61. [PMID: 21349835 DOI: 10.1074/jbc.m110.187286] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation velocity analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mm GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotide-free Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles.
Collapse
Affiliation(s)
- Torsten Wöllert
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS One 2011; 6:e17087. [PMID: 21359212 PMCID: PMC3040190 DOI: 10.1371/journal.pone.0017087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/16/2011] [Indexed: 12/30/2022] Open
Abstract
The neurofilament light subunit (NF-L) binds to myosin Va (Myo Va) in neurons but the sites of interaction and functional significance are not clear. We show by deletion analysis that motor domain of Myo Va binds to the NF-L rod domain that forms the NF backbone. Loss of NF-L and Myo Va binding from axons significantly reduces the axonal content of ER, and redistributes ER to the periphery of axon. Our data are consistent with a novel function for NFs as a scaffold in axons for maintaining the content and proper distribution of vesicular organelles, mediated in part by Myo Va. Based on observations that the Myo Va motor domain binds to intermediate filament (IF) proteins of several classes, Myo Va interactions with IFs may serve similar roles in organizing organelle topography in different cell types.
Collapse
|
19
|
Seabrooke S, Qiu X, Stewart BA. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction. BMC Neurosci 2010; 11:37. [PMID: 20233422 PMCID: PMC2853426 DOI: 10.1186/1471-2202-11-37] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/16/2010] [Indexed: 11/22/2022] Open
Abstract
Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | | | | |
Collapse
|
20
|
Nagy A, Piszczek G, Sellers JR. Extensibility of the extended tail domain of processive and nonprocessive myosin V molecules. Biophys J 2010; 97:3123-31. [PMID: 20006949 DOI: 10.1016/j.bpj.2009.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/31/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022] Open
Abstract
Myosin V is a single-molecule motor that moves organelles along actin. When myosin V pulls loads inside the cell in a highly viscous environment, the force on the motor is unlikely to be constant. We propose that the tether between the single-molecule motor and the cargo (i.e., the extended tail domain of the molecule) must be able to absorb the sudden mechanical motions of the motor and allow smooth relaxation of the motion of the cargo to a new position. To test this hypothesis, we compared the elastic properties of the extended tail domains of processive (mouse myosin Va) and nonprocessive (Drosophila myosin V) molecular motors. The extended tail domain of these myosins consists of mechanically strong coiled-coil regions interspersed with flexible loops. In this work we explored the mechanical properties of coiled-coil regions using atomic force microscopy. We found that the processive and nonprocessive coiled-coil fragments display different unfolding patterns. The unfolding of coiled-coil structures occurs much later during the atomic force microscopy stretch cycle for processive myosin Va than for nonprocessive Drosophila myosin V, suggesting that this elastic tether between the cargo and motor may play an important role in sustaining the processive motions of this single-molecule motor.
Collapse
Affiliation(s)
- Attila Nagy
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
21
|
Effect of thyroid hormone T3 on myosin-Va expression in the central nervous system. Brain Res 2009; 1275:1-9. [PMID: 19379719 DOI: 10.1016/j.brainres.2009.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/23/2009] [Accepted: 03/29/2009] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) are essential for brain development, where they regulate gliogenesis, myelination, cell proliferation and protein synthesis. Hypothyroidism severely affects neuronal growth and establishment of synaptic connections. Triiodothyronine (T3), the biologically active form of TH, has a central function in these activities. So, Myosin-Va (Myo-Va), a molecular motor protein involved in vesicle and RNA transport, is a good candidate as a target for T3 regulation. Here, we analyzed Myo-Va expression in euthyroid and hypothyroid adult rat brains and synaptosomes. We observed a reduction of Myo-Va expression in cultured neural cells from newborn hypothyroid rat brain, while immunocytochemical experiments showed a punctate distribution of this protein in the cytoplasm of cells. Particularly, Myo-Va co-localized with microtubules in neurites, especially in their varicosities. Myo-Va immunostaining was stronger in astrocytes and neurons of controls when compared with hypothyroid brains. In addition, supplementation of astrocyte cultures with T3 led to increased expression of Myo-Va in cells from both euthyroid and hypothyroid animals, suggesting that T3 modulates Myo-Va expression in neural cells both in vivo and in vitro. We have further analyzed Myo-Va expression in U373 cells, a human glioblastoma line, and found the same punctate cytoplasmic protein localization. As in normal neural cells, this expression was also increased by T3, suggesting that the modulatory mechanism exerted by T3 over Myo-Va remains active on astrocyte tumor cells. These data, coupled with the observation that Myo-Va is severely affected in hypothyroidism, support the hypothesis that T3 activity regulates neural motor protein expression, taking Myo-Va as a model. As a consequence, reduced T3 activity could supposedly affect axonal transport and synaptic function, and could therefore explain disturbances seen in the hypothyroid brain.
Collapse
|
22
|
Abstract
Transmitter release at high probability phasic synapses of crayfish neuromuscular junctions depresses by over 50% in 60 min when stimulated at 0.2 Hz. Inhibition of the protein phosphatase calcineurin by intracellular pre-synaptic injection of autoinhibitory peptide inhibited low-frequency depression (LFD) and resulted in facilitation of transmitter release. Since this inhibitor had no major effects when injected into the post-synaptic cell, only pre-synaptic calcineurin activity is necessary for LFD. To examine changes in phosphoproteins during LFD we performed a phosphoproteomic screen on proteins extracted from motor axons and nerve terminals after LFD induction or treatment with various drugs that affect kinase and phosphatase activity. Proteins separated by PAGE were stained with phospho-specific/total protein ratio stains (Pro-Q Diamond/SYPRO Ruby) to identify protein bands for analysis by mass spectrometry. Phosphorylation of actin and tubulin decreased during LFD, but increased when calcineurin was blocked. Tubulin and phosphoactin immunoreactivity in pre-synaptic terminals were also reduced after LFD. The actin depolymerizing drugs cytochalasin and latrunculin and the microtubule stabilizer taxol inhibited LFD. Therefore, dephosphorylation of pre-synaptic actin and tubulin and consequent changes in the cytoskeleton may regulate LFD. LFD is unlike long-term depression found in mammalian synapses because the latter requires in most instances post-synaptic calcineurin activity.Thus, this simpler invertebrate synapse discloses a novel pre-synaptic depression mechanism.
Collapse
|
23
|
Taft MH, Hartmann FK, Rump A, Keller H, Chizhov I, Manstein DJ, Tsiavaliaris G. Dictyostelium myosin-5b is a conditional processive motor. J Biol Chem 2008; 283:26902-10. [PMID: 18650439 DOI: 10.1074/jbc.m802957200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dictyostelium myosin-5b is the gene product of myoJ and one of two closely related myosin-5 isoenzymes produced in Dictyostelium discoideum. Here we report a detailed investigation of the kinetic and functional properties of the protein. In standard assay buffer conditions, Dictyostelium myosin-5b displays high actin affinity in the presence of ADP, fast ATP hydrolysis, and a high steady-state ATPase activity in the presence of actin that is rate limited by ADP release. These properties are typical for a processive motor that can move over long distances along actin filaments without dissociating. Our results show that a physiological decrease in the concentration of free Mg(2+)-ions leads to an increased rate of ADP release and shortening of the fraction of time the motor spends in the strong actin binding states. Consistently, the ability of the motor to efficiently translocate actin filaments at very low surface densities decreases with decreasing concentrations of free Mg(2+)-ions. In addition, we provide evidence that the observed changes in Dd myosin-5b motor activity are of physiological relevance and propose a mechanism by which this molecular motor can switch between processive and non-processive movement.
Collapse
Affiliation(s)
- Manuel H Taft
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Feodor-Lynen-Str. 5, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Localization of myosin-Va in subpopulations of cells in rat endocrine organs. Cell Tissue Res 2008; 333:263-79. [PMID: 18568366 DOI: 10.1007/s00441-008-0630-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
Abstract
Myosin-Va is a Ca(2+)/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat.
Collapse
|
25
|
Srinivasan G, Kim JH, von Gersdorff H. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. J Neurophysiol 2008; 99:1810-24. [PMID: 18256166 DOI: 10.1152/jn.00949.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic strength is determined by release probability and the size of the readily releasable pool of docked vesicles. Here we describe the effects of blocking myosin light chain kinase (MLCK), a cytoskeletal regulatory protein thought to be involved in myosin-mediated vesicle transport, on synaptic transmission at the mouse calyx of Held synapse. Application of three different MLCK inhibitors increased the amplitude of the early excitatory postsynaptic currents (EPSCs) in a stimulus train, without affecting the late steady-state EPSCs. A presynaptic locus of action for MLCK inhibitors was confirmed by an increase in the frequency of miniature EPSCs that left their average amplitude unchanged. MLCK inhibition did not affect presynaptic Ca(2+) currents or action potential waveform. Moreover, Ca(2+) imaging experiments showed that [Ca(2+)](i) transients elicited by 100-Hz stimulus trains were not altered by MLCK inhibition. Studies using high-frequency stimulus trains indicated that MLCK inhibitors increase vesicle pool size, but do not significantly alter release probability. Accordingly, when AMPA-receptor desensitization was minimized, EPSC paired-pulse ratios were unaltered by MLCK inhibition, suggesting that release probability remains unaltered. MLCK inhibition potentiated EPSCs even when presynaptic Ca(2+) buffering was greatly enhanced by treating slices with EGTA-AM. In addition, MLCK inhibition did not affect the rate of recovery from short-term depression. Finally, developmental studies revealed that EPSC potentiation by MLCK inhibition starts at postnatal day 5 (P5) and remains strong during synaptic maturation up to P18. Overall, our data suggest that MLCK plays a crucial role in determining the size of the pool of synaptic vesicles that undergo fast release at a CNS synapse.
Collapse
Affiliation(s)
- Geetha Srinivasan
- The Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | |
Collapse
|
26
|
Eppinga RD, Peng IF, Lin JLC, Wu CF, Lin JJC. Opposite effects of overexpressed myosin Va or heavy meromyosin Va on vesicle distribution, cytoskeleton organization, and cell motility in nonmuscle cells. ACTA ACUST UNITED AC 2008; 65:197-215. [DOI: 10.1002/cm.20255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Lee CW, Peng HB. The function of mitochondria in presynaptic development at the neuromuscular junction. Mol Biol Cell 2007; 19:150-8. [PMID: 17942598 DOI: 10.1091/mbc.e07-05-0515] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondria with high membrane potential (DeltaPsi(m)) are enriched in the presynaptic nerve terminal at vertebrate neuromuscular junctions, but the exact function of these localized synaptic mitochondria remains unclear. Here, we investigated the correlation between mitochondrial DeltaPsi(m) and the development of synaptic specializations. Using mitochondrial DeltaPsi(m)-sensitive probe JC-1, we found that DeltaPsi(m) in Xenopus spinal neurons could be reversibly elevated by creatine and suppressed by FCCP. Along naïve neurites, preexisting synaptic vesicle (SV) clusters were positively correlated with mitochondrial DeltaPsi(m), suggesting a potential regulatory role of mitochondrial activity in synaptogenesis. Indicating a specific role of mitochondrial activity in presynaptic development, mitochondrial ATP synthase inhibitor oligomycin, but not mitochondrial Na(+)/Ca(2+) exchanger inhibitor CGP-37157, inhibited the clustering of SVs induced by growth factor-coated beads. Local F-actin assembly induced along spinal neurites by beads was suppressed by FCCP or oligomycin. Our results suggest that a key role of presynaptic mitochondria is to provide ATP for the assembly of actin cytoskeleton involved in the assembly of the presynaptic specialization including the clustering of SVs and mitochondria themselves.
Collapse
Affiliation(s)
- Chi Wai Lee
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
28
|
Bhaskar L, Krishnan VS, Thampan RV. Cytoskeletal elements and intracellular transport. J Cell Biochem 2007; 101:1097-108. [PMID: 17471536 DOI: 10.1002/jcb.21347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent advances in the understanding of the functions of various components of the cytoskeleton indicate that, besides serving a structural role, the cytoskeletal elements may regulate the transport of several proteins in the cell. Studies reveal that there are co-operative interactions between the actin and microtubule cytoskeletons including functional overlap in the transport influenced by different motor families. Multiple motors are probably involved in the control of the dynamics of many proteins and intriguing hints about how these motors are co-ordinated are appearing. It has been shown that some of the intermediate elements also participate in selected intracellular transport mechanisms. In view of the author's preoccupation with the steroid receptor systems, special attention has been given to the role of the cytoskeletal elements, particularly actin, in the intracellular transport of steroid receptors and receptor-related proteins.
Collapse
Affiliation(s)
- Lakshmi Bhaskar
- Department of Industrial Microbiology, Govt. College for Women, Vazhuthacaud, Trivandrum 695014, Kerala, India
| | | | | |
Collapse
|
29
|
Desnos C, Huet S, Darchen F. 'Should I stay or should I go?': myosin V function in organelle trafficking. Biol Cell 2007; 99:411-23. [PMID: 17635110 DOI: 10.1042/bc20070021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Actin- and microtubule-based motors can propel different cargos along filaments. Within cells, they control the distribution of membrane-bound compartments by performing complementary tasks. Organelles make long journeys along microtubules, with class V myosins ensuring their capture and their dispersal in actin-rich regions. Myosin Va is recruited on to diverse organelles, such as melanosomes and secretory vesicles, by a mechanism involving Rab GTPases. The role of myosin Va in the recruitment of secretory vesicles at the plasma membrane reveals that the cortical actin network cannot merely be seen as a physical barrier hindering vesicle access to release sites. In neurons, myosin Va controls the targeting of IP(3) (inositol 1,4,5-trisphosphate)-sensitive Ca(2+) stores to dendritic spines and the transport of mRNAs. These defects probably account for the severe neurological symptoms observed in Griscelli syndrome due to mutations in the MYO5A gene.
Collapse
Affiliation(s)
- Claire Desnos
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR 1929, Université Paris 7 Denis Diderot, Paris, France.
| | | | | |
Collapse
|
30
|
Takagishi Y, Hashimoto K, Kayahara T, Watanabe M, Otsuka H, Mizoguchi A, Kano M, Murata Y. Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Dev Neurobiol 2007; 67:909-23. [PMID: 17506494 DOI: 10.1002/dneu.20375] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myosin Va is an actin-based molecular motor that is involved in organelle transport and membrane trafficking. Here, we explored the role of myosin Va in the formation of synaptic circuitry by examining climbing fiber (CF) innervation of Purkinje cells (PCs) in the cerebella of dilute-neurological (d-n) mice and dilute-opisthotonus (dop) rats that have mutations in dilute-encoded myosin Va. Anterograde labeling of CFs with biotinylated dextran amine (BDA) revealed that they arborized poorly and that their tips extended only half way through the thickness of the molecular layer (ML) in adult d-n mice. Using immunohistochemistry specific for vesicular glutamate transporter 2 (VGluT2) to visualize CF synaptic terminals, we found that during development and in adulthood, these terminals did not ascend as far along the proximal shaft dendrites of PCs in d-n mice and dop rats as they did in normal animals. An irregular distribution of BDA-labeled bulbous varicosities and VGluT2 spots along CF branches were also noted in these animals. Finally, VGluT2-positive CF terminals were occasionally localized on the PC somata of adult d-n cerebella. These phenotypes are consistent with our electrophysiological findings that CF-mediated excitatory postsynaptic currents (EPSCs) were significantly smaller in amplitude and faster in decay in adult d-n mice, and that the regression of multiple CFs was slightly delayed in developing d-n mice. Taken together, our results suggest that myosin Va is essential for terminal CF extension and for the establishment of CF synapses within the proper dendritic territories of PCs.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rancura KGO, Montaño MR, Carvalho RF, Martins C, Wasko AP, Casaletti L, Azevedo A. Brain distribution of myosin Va in rainbow trout Oncorhynchus mykiss. ACTA ZOOL-STOCKHOLM 2007. [DOI: 10.1111/j.1463-6395.2007.00289.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M. Microtubule- and Actin Filament-Dependent Motors are Distributed on Pollen Tube Mitochondria and Contribute Differently to Their Movement. ACTA ACUST UNITED AC 2007; 48:345-61. [PMID: 17204488 DOI: 10.1093/pcp/pcm001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.
Collapse
Affiliation(s)
- Silvia Romagnoli
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Kwaśnicka-Crawford DA, Carson AR, Scherer SW. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein. Biochem Biophys Res Commun 2006; 350:890-9. [PMID: 17045569 DOI: 10.1016/j.bbrc.2006.09.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.
Collapse
|
34
|
Allison DP, Doktycz MJ. Cellular secretion studied by force microscopy. J Cell Mol Med 2006; 10:847-56. [PMID: 17125589 PMCID: PMC3933080 DOI: 10.1111/j.1582-4934.2006.tb00529.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/23/2006] [Indexed: 11/29/2022] Open
Abstract
Using the optical microscope, real adventures in cellular research began in earnest in the latter half of the nineteenth century. With the development of the electron microscope, ultramicroscopy, and improved cell staining techniques, significant advances were made in defining intracellular structures at the nanometer level. The invention of force microscopy, the atomic force microscope (AFM) in the mid 1980s, and the photonic force microscope (PFM) in the mid 1990s, finally provided the opportunity to study live cellular structure-function at the nanometer level. Working with the AFM, dynamic cellular and subcellular events at the molecular level were captured in the mid 1990s, and a new cellular structure 'the porosome' in the plasma membrane of all secretory cells has been defined, where specific docking and fusion of secretory vesicles occur. The molecular mechanism of fusion of the secretory vesicle membrane at the base of the porosome membrane in cells, and the regulated release of intravesicular contents through the porosome opening to the extracellular space, has been determined. These seminal discoveries provide for the first time a molecular mechanism of cell secretion, and the possibility to ameliorate secretory defects in disease states.
Collapse
Affiliation(s)
- D P Allison
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | | |
Collapse
|
35
|
Koide H, Kinoshita T, Tanaka Y, Tanaka S, Nagura N, Meyer zu Hörste G, Miyagi A, Ando T. Identification of the Single Specific IQ Motif of Myosin V from Which Calmodulin Dissociates in the Presence of Ca2+. Biochemistry 2006; 45:11598-604. [PMID: 16981719 DOI: 10.1021/bi0613877] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Each heavy chain of dimeric chick brain myosin V (BMV) has a neck domain consisting of six IQ motifs with different amino acid sequences. The six IQ motifs form binding sites for five calmodulin (CaM) molecules and one essential light chain (either 17 or 23 kDa). When the calcium concentration is high, a small fraction of the 10 total CaM molecules dissociates from one molecule of BMV, resulting in loss of actin-based motor activity. At low Ca2+ concentrations, two molecules of exogenous CaM associate with one molecule of CaM-released BMV. This suggests that there is a single specific IQ motif responsible for the calcium-induced dissociation of CaM. In this study, we identify the specific IQ motif to be IQ2, the second IQ motif when counted from the N-terminal end of the neck domain. In addition, we showed that the essential light chains do not reside on IQ1 and IQ2. These findings were derived from proteolysis of BMV at high Ca2+ concentrations specifically at the neck region and SDS-PAGE analyses of the digests.
Collapse
Affiliation(s)
- Hiroshi Koide
- Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fujisawa S, Shirao T, Aoki C. In vivo, competitive blockade of N-methyl-D-aspartate receptors induces rapid changes in filamentous actin and drebrin A distributions within dendritic spines of adult rat cortex. Neuroscience 2006; 140:1177-87. [PMID: 16650941 PMCID: PMC2844451 DOI: 10.1016/j.neuroscience.2006.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
In vitro studies have demonstrated that prolonged N-methyl-D-aspartate receptor (NMDAR) blockade triggers a homeostatic up-regulation of NMDARs at synapses. Such upregulation can also be seen within 30 min in vivo in adult rats, implicating trafficking of reserve pools of NMDARs. Here, we evaluated the involvement of filamentous actin (F-actin), the major cytoskeletal component in spines, in this rapid in vivo homeostatic response, using biotinylated phalloidin as its probe. We also immuno-labeled spines for drebrin A, an F-actin-binding protein found at excitatory synapses and with a proposed role of modulating F-actin's cross-linking with one another and interactions with NMDARs. Quantitative 2-D analysis of ultrastructural images revealed that NMDAR blockade increased filamentous actin labeling per spine by 62.5% (P<0.005). The proportion of dendritic spines immuno-labeled for drebrin A also increased significantly, from 67.5% to 85% following NMDAR blockade (P<0.001), especially among larger spines. The frequency distributions of spine widths and postsynaptic density lengths were not affected by the D-(+)-2-amino-5-phosphonopentanoic acid (D-APV) treatment. However, the average postsynaptic density length was reduced by 25 nm among the fewer, drebrin A immuno-negative spines, indicating that drebrin A confers stability to synapse size. We propose that, in a homeostatic in vivo response, increases of drebrin A and F-actin within spines can enhance NMDAR trafficking by reducing cytoskeletal rigidity within the spine cytoplasm without changing the overt morphology of axo-spinous synapses. Alternatively or in addition, the cytoskeletal redistribution within spine cytoplasm may be triggered by the D-APV-induced, homeostatic up-regulation of NMDAR.
Collapse
Affiliation(s)
- S Fujisawa
- Center for Neural Science, New York University, 4 Washington Place #809, New York, NY 10003, USA.
| | | | | |
Collapse
|
37
|
Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 2006; 9:1009-18. [PMID: 16819522 DOI: 10.1038/nn1730] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/30/2006] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in higher-order cognitive functions and in psychiatric disorders such as depression and schizophrenia. BDNF modulates synaptic transmission and plasticity primarily through the TrkB receptor, but the molecules involved in BDNF-mediated synaptic modulation are largely unknown. Myosin VI (Myo6) is a minus end-directed actin-based motor found in neurons that express Trk receptors. Here we report that Myo6 and a Myo6-binding protein, GIPC1, form a complex that can engage TrkB. Myo6 and GIPC1 were necessary for BDNF-TrkB-mediated facilitation of long-term potentiation in postnatal day 12-13 (P12-13) hippocampus. Moreover, BDNF-mediated enhancement of glutamate release from presynaptic terminals depended not only upon TrkB but also upon Myo6 and GIPC1. Similar defects in basal synaptic transmission as well as presynaptic properties were observed in Myo6 and GIPC1 mutant mice. Together, these results define an important role for the Myo6-GIPC1 motor complex in presynaptic function and in BDNF-TrkB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Hiroko Yano
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
38
|
Shen W, Wu B, Zhang Z, Dou Y, Rao ZR, Chen YR, Duan S. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 2006; 50:401-14. [PMID: 16675395 DOI: 10.1016/j.neuron.2006.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 02/14/2006] [Accepted: 03/13/2006] [Indexed: 11/28/2022]
Abstract
Maturation of presynaptic transmitter secretion machinery is a critical step in synaptogenesis. Here we report that a brief train of presynaptic action potentials rapidly converts early nonfunctional contacts between cultured hippocampal neurons into functional synapses by enhancing presynaptic glutamate release. The enhanced release was confirmed by a marked increase in the number of depolarization-induced FM4-64 puncta in the presynaptic axon. This rapid presynaptic maturation can be abolished by treatments that interfered with presynaptic BDNF and Cdc42 signaling or actin polymerization. Activation of Cdc42 by applying BDNF or bradykinin mimicked the effect of electrical activity in promoting synaptic maturation. Furthermore, activity-induced increase in presynaptic actin polymerization, as revealed by increased concentration of actin-YFP at axon boutons, was abolished by inhibiting BDNF and Cdc42 signaling. Thus, rapid presynaptic maturation induced by neuronal activity is mediated by presynaptic activation of the Cdc42 signaling pathway.
Collapse
Affiliation(s)
- Wanhua Shen
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Abu-Hamdah R, Cho WJ, Hörber JKH, Jena BP. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: a study using photonic force microscopy. Ultramicroscopy 2006; 106:670-3. [PMID: 16713090 DOI: 10.1016/j.ultramic.2006.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/12/2006] [Indexed: 11/29/2022]
Abstract
It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 microm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles.
Collapse
Affiliation(s)
- Rania Abu-Hamdah
- Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Organelle inheritance is one of several processes that occur during cell division. Recent studies on yeast vacuole inheritance have indicated rules that probably apply to most organelle-inheritance pathways. They have uncovered a molecular mechanism for membrane-cargo transport that is partially conserved from yeast to humans. They have also shown that the transport complex, which is composed of a molecular motor and its receptor, regulates the destination and timing of vacuole movement and might coordinate organelle movement with several other organelle functions.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
41
|
Schilstra MJ, Martin SR. An elastically tethered viscous load imposes a regular gait on the motion of myosin-V. Simulation of the effect of transient force relaxation on a stochastic process. J R Soc Interface 2006; 3:153-65. [PMID: 16849227 PMCID: PMC1618493 DOI: 10.1098/rsif.2005.0098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 10/03/2005] [Indexed: 11/12/2022] Open
Abstract
Myosin-V is a processive molecular motor that moves membrane vesicles along actin tracks. In the simple model for motor and cargo motion investigated here, an elastic connection between motor and cargo transiently absorbs the abrupt mechanical transitions of the motor, and allows smooth relaxation of the cargo to a new position. We use a stochastic description to model motor stepping, with kinetics that depends on the instantaneous force exerted on the motor through the elastic connection. Tether relaxation is modelled as a continuous process, in which the rate is determined by the viscous drag of the cargo and the stiffness profile of the connection. Quantitative combined stochastic-continuous simulation of the dynamics of this system shows that bulky loads can impose a highly regular gait on the motor. If the characteristics of the elastic connection are similar to those of the myosin-II coiled-coil domain, the myosin-V motor, tether and cargo form a true escapement, in which the motor only escapes from its current position after one or more force thresholds have been crossed. Multiple thresholds limit the variation in tether length to values below that of the total step size.
Collapse
Affiliation(s)
- Maria J Schilstra
- University of Hertfordshire Biocomputation Research Group, STRI College Lane, Hatfield AL10 9AB, UK.
| | | |
Collapse
|
42
|
Mermall V, Bonafé N, Jones L, Sellers JR, Cooley L, Mooseker MS. Drosophila myosin V is required for larval development and spermatid individualization. Dev Biol 2005; 286:238-55. [PMID: 16126191 DOI: 10.1016/j.ydbio.2005.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
Class V myosins are multifunctional molecular motors implicated in vesicular traffic, RNA transport, and mechanochemical coupling of the actin and microtubule-based cytoskeletons. To assess the function of the single myosin V gene in Drosophila (MyoV), we have characterized both deletion and truncation alleles. Mutant animals exhibit no detectable defects during embryogenesis but are delayed in larval development; most die prior to 3rd instar. MyoV protein is widely distributed; however, there are no obvious cytological defects in mutant larval tissues where MyoV was normally highly expressed. Of the few adult MyoV mutant escapers, females were fertile but males were not. We examined the expression of MyoV during spermatogenesis. MyoV was associated with membranes, microtubule, and actin structures required for spermatid maturation; MyoV was strongly associated with the sperm nuclei during the maturation of the actin-rich investment cones that package spermatids in individual membranes. In MyoV mutant escaper males, the early stages of spermatogenesis were normal; however, in the later stages, the investment cones stained weakly for actin and their registration was disrupted; no mature sperm were produced. Our results suggest that MyoV contributes to the formation of the actin-based investment cones and acts to coordinate and/or anchor these structures and other components of the individualization complex.
Collapse
Affiliation(s)
- Valerie Mermall
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
44
|
Takagishi Y, Futaki S, Itoh K, Espreafico EM, Murakami N, Murata Y, Mochida S. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J Physiol 2005; 569:195-208. [PMID: 16166155 PMCID: PMC1464199 DOI: 10.1113/jphysiol.2005.095943] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2005] [Accepted: 09/13/2005] [Indexed: 11/08/2022] Open
Abstract
While vesicle transport is one of the principal functions of myosin motors in neurones, the role played by specific myosin subtypes in discrete vesicle trafficking is poorly understood. We conducted electrophysiological and morphological experiments to determine whether myosin isoforms II and V might be involved in the transport of small synaptic vesicles in presynaptic nerve terminals of a model cholinergic synapse. Electron microscopy revealed the presence of normal synaptic architecture and synaptic vesicle density in presynaptic terminals of cultured superior cervical ganglion neurones (SCGNs) from myosin Va null rats (dilute-opisthotonus, dop). Similarly, electrophysiological analyses of synaptic transmission and synaptic vesicle cycling at paired SCGN synapses failed to uncover any significant differences in synaptic development and function between normal and dop rats. Immunocytochemistry and in situ localization of green fluorescent protein (GFP)-fusion proteins in wild-type synapses revealed that myosins IIB and Va were distributed throughout the cell soma and processes of SCGNs, while myosins IIA and Vb were not detected in SCGNs. Myosin Va was conspicuously absent in presynaptic nerve terminals, but myosin IIB alone was found to be expressed. Furthermore, synaptic transmission was inhibited by introduction of myosin IIB heavy chain fragments into presynaptic terminals of SCGNs. Together these results suggest that only myosin IIB isoform participates in vesicle trafficking in presynaptic nerve terminals of cultured SCGNs.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Synapses are highly specialized intercellular junctions that mediate the transmission of information between axons and target cells. A fundamental property of synapses is their ability to modify the efficacy of synaptic communication through various forms of synaptic plasticity. Recent developments in imaging techniques have revealed that synapses exhibit a high degree of morphological plasticity under basal conditions and also in response to neuronal activity that induces alterations in synaptic strength. The underlying molecular basis for this morphological plasticity has attracted much attention, yet its functional significance to the mechanisms of synaptic transmission and synaptic plasticity remains elusive. These morphological changes ultimately require the dynamic actin cytoskeleton, which is the major structural component of synapses. Delineating the physiological roles of the actin cytoskeleton in supporting synaptic transmission and synaptic plasticity, therefore, paves the way for gaining molecular insights into when and how synaptic machineries couple synapse form and function.
Collapse
Affiliation(s)
- Christian Dillon
- MRC Cell Biology Unit and Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
46
|
Pashkova N, Catlett NL, Novak JL, Weisman LS. A point mutation in the cargo-binding domain of myosin V affects its interaction with multiple cargoes. EUKARYOTIC CELL 2005; 4:787-98. [PMID: 15821138 PMCID: PMC1087822 DOI: 10.1128/ec.4.4.787-798.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Class V myosins move diverse intracellular cargoes, which attach via interaction of cargo-specific proteins to the myosin V globular tail. The globular tail of the yeast myosin V, Myo2p, contains two structural and functional subdomains. Subdomain I binds to the vacuole-specific protein, Vac17p, while subdomain II likely binds to an as yet unidentified secretory vesicle-specific protein. All functions of Myo2p require the tight association of subdomains I and II, which suggests that binding of a cargo to one subdomain may inhibit cargo-binding to a second subdomain. Thus, two types of mutations are predicted to specifically affect a subset of Myo2p cargoes: first are mutations within a cargo-specific binding region; second are mutations that mimic the inhibited conformation of one of the subdomains. Here we analyze a point mutation in subdomain I, myo2-2(G1248D), which is likely to be this latter type of mutation. myo2-2 has no effect on secretory vesicle movement. The secretory vesicle binding site is in subdomain II. However, myo2-2 is impaired in several Myo2p-related functions. While subdomains I and II of myo2-2p tightly associate, there are measurable differences in the conformation of its globular tail. Based solely on the ability to restore vacuole inheritance, a set of intragenic suppressors of myo2-2 were identified. All suppressor mutations reside in subdomain I. Moreover, subdomain I and II interactions occurred in all suppressors, demonstrating the importance of subdomain I and II association for Myo2p function. Furthermore, 3 of the 10 suppressors globally restored all tested defects in myo2-2. This large proportion of global suppressors strongly suggests that myo2-2(G1248) causes a conformational change in subdomain I that simultaneously affects multiple cargoes.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
47
|
Shtrahman M, Yeung C, Nauen DW, Bi GQ, Wu XL. Probing vesicle dynamics in single hippocampal synapses. Biophys J 2005; 89:3615-27. [PMID: 16113110 PMCID: PMC1366854 DOI: 10.1529/biophysj.105.059295] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We use fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study vesicle dynamics inside the synapses of cultured hippocampal neurons labeled with the fluorescent vesicle marker FM 1-43. These studies show that when the cell is electrically at rest, only a small population of vesicles is mobile, taking seconds to traverse the synapse. Applying the phosphatase inhibitor okadaic acid causes vesicles to diffuse freely, moving 30 times faster than vesicles in control synapses. These results suggest that vesicles move sluggishly due to binding to elements of the synaptic cytomatrix and that this binding is altered by phosphorylation. Motivated by these results, a model is constructed consisting of diffusing vesicles that bind reversibly to the cytomatrix. This stick-and-diffuse model accounts for the fluorescence correlation spectroscopy and fluorescence recovery after photobleaching data, and also predicts the well-known exponential refilling of the readily releasable pool. Our measurements suggest that the movement of vesicles to the active zone is the rate-limiting step in this process.
Collapse
Affiliation(s)
- Matthew Shtrahman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
48
|
Polo-Parada L, Plattner F, Bose C, Landmesser LT. NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron 2005; 46:917-31. [PMID: 15953420 DOI: 10.1016/j.neuron.2005.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/01/2005] [Accepted: 05/06/2005] [Indexed: 12/31/2022]
Abstract
NCAM 180 isoform null neuromuscular junctions are unable to effectively mobilize and exocytose synaptic vesicles and thus exhibit periods of total transmission failure during high-frequency repetitive stimulation. We have identified a highly conserved C-terminal (KENESKA) domain on NCAM that is required to maintain effective transmission and demonstrate that it acts via a pathway involving MLCK and probably myosin light chain (MLC) and myosin II. By perfecting a method of introducing peptides into adult NMJs, we tested the hypothesized role of proteins in this pathway by competitive disruption of protein-protein interactions. The effects of KENESKA and other peptides on MLCK and MLC activation and on failures in both wild-type and NCAM 180 null junctions supported this pathway, and serine phosphorylation of KENESKA was critical. We propose that this pathway is required to replenish synaptic vesicles utilized during high levels of exocytosis by facilitating myosin-driven delivery of synaptic vesicles to active zones or their subsequent exocytosis.
Collapse
Affiliation(s)
- Luis Polo-Parada
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
49
|
Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K, Ushiki T, Sato O, Ikebe M, Igarashi M. Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 2005; 16:4519-30. [PMID: 16030255 PMCID: PMC1237061 DOI: 10.1091/mbc.e05-03-0252] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin-Va is an actin-based processive motor that conveys intracellular cargoes. Synaptic vesicles are one of the most important cargoes for myosin-Va, but the role of mammalian myosin-Va in secretion is less clear than for its yeast homologue, Myo2p. In the current studies, we show that myosin-Va on synaptic vesicles interacts with syntaxin-1A, a t-SNARE involved in exocytosis, at or above 0.3 microM Ca2+. Interference with formation of the syntaxin-1A-myosin-Va complex reduces the exocytotic frequency in chromaffin cells. Surprisingly, the syntaxin-1A-binding site was not in the tail of myosin-Va but rather in the neck, a region that contains calmodulin-binding IQ-motifs. Furthermore, we found that syntaxin-1A binding by myosin-Va in the presence of Ca2+ depends on the release of calmodulin from the myosin-Va neck, allowing syntaxin-1A to occupy the vacant IQ-motif. Using an anti-myosin-Va neck antibody, which blocks this binding, we demonstrated that the step most important for the antibody's inhibitory activity is the late sustained phase, which is involved in supplying readily releasable vesicles. Our results demonstrate that the interaction between myosin-Va and syntaxin-1A is involved in exocytosis and suggest that the myosin-Va neck contributes not only to the large step size but also to the regulation of exocytosis by Ca2+.
Collapse
Affiliation(s)
- Michitoshi Watanabe
- Division of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Myosin X is expressed in a variety of cell types and plays a role in cargo movement and filopodia extension, but its mechanoenzymatic characteristics are not fully understood. Here we analyzed the kinetic mechanism of the ATP hydrolysis cycle of acto-myosin X using a single-headed construct (M10IQ1). Myosin X was unique for the weak "strong actin binding state" (AMD) with a K(d) of 1.6 microm attributed to the large dissociation rate constant (2.1 s(-1)). V(max) and K(ATPase) of the actin-activated ATPase activity of M10IQ1 were 13.5 s(-1) and 17.4 mum, respectively. The ATP hydrolysis rate (>100 s(-1)) and the phosphate release rate from acto-myosin X (>100 s(-1)) were much faster than the entire ATPase cycle rate and, thus, not rate-limiting. The ADP off-rate from acto-myosin X was 23 s(-1), which was two times larger than the V(max). The P(i)-burst size was low (0.46 mol/mol), indicating that the equilibrium is significantly shifted toward the prehydrolysis intermediate. The steady-state ATPase rate can be explained by a combination of the unfavorable equilibrium constant of the hydrolysis step and the relatively slow ADP off-rate. The duty ratio calculated from our kinetic model, 0.6, was consistent with the duty ratio, 0.7, obtained from comparison of K(m ATPase) and K(m motility). Our results suggest that myosin X is a high duty ratio motor.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|