1
|
Galbraith CG, English BP, Boehm U, Galbraith JA. Compartmentalized Cytoplasmic Flows Direct Protein Transport to the Cell's Leading Edge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593794. [PMID: 38798549 PMCID: PMC11118383 DOI: 10.1101/2024.05.12.593794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inside the cell, proteins essential for signaling, morphogenesis, and migration navigate complex pathways, typically via vesicular trafficking or microtubule-driven mechanisms 1-3 . However, the process by which soluble cytoskeletal monomers maneuver through the cytoplasm's ever-changing environment to reach their destinations without using these pathways remains unknown. 4-6 Here, we show that actin cytoskeletal treadmilling leads to the formation of a semi-permeable actin-myosin barrier, creating a specialized compartment separated from the rest of the cell body that directs proteins toward the cell edge by advection, diffusion facilitated by fluid flow. Contraction at this barrier generates a molecularly non-specific fluid flow that transports actin, actin-binding proteins, adhesion proteins, and even inert proteins forward. The local curvature of the barrier specifically targets these proteins toward protruding edges of the leading edge, sites of new filament growth, effectively coordinating protein distribution with cellular dynamics. Outside this compartment, diffusion remains the primary mode of protein transport, contrasting sharply with the directed advection within. This discovery reveals a novel protein transport mechanism that redefines the front of the cell as a pseudo-organelle, actively orchestrating protein mobilization for cellular front activities such as protrusion and adhesion. By elucidating a new model of protein dynamics at the cellular front, this work contributes a critical piece to the puzzle of how cells adapt their internal structures for targeted and rapid response to extracellular cues. The findings challenge the current understanding of intracellular transport, suggesting that cells possess highly specialized and previously unrecognized organizational strategies for managing protein distribution efficiently, providing a new framework for understanding the cellular architecture's role in rapid response and adaptation to environmental changes.
Collapse
|
2
|
Duarte-Sanmiguel S, Salazar-Puerta AI, Panic A, Dodd D, Francis C, Alzate-Correa D, Ortega-Pineda L, Lemmerman L, Rincon-Benavides MA, Dathathreya K, Lawrence W, Ott N, Zhang J, Deng B, Wang S, Santander SP, McComb DW, Reategui E, Palmer AF, Carson WE, Higuita-Castro N, Gallego-Perez D. ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer. Biomater Sci 2023; 11:6834-6847. [PMID: 37646133 PMCID: PMC10591940 DOI: 10.1039/d3bm00573a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.
Collapse
Affiliation(s)
| | - Ana I Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Daniel Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Diego Alzate-Correa
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Lilibeth Ortega-Pineda
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Luke Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Maria A Rincon-Benavides
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - William Lawrence
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Neil Ott
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Binbin Deng
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
| | - Shipeng Wang
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Sandra P Santander
- Juan N. Corpas University Foundation, Center of Phytoimmunomodulation Department of Medicine, Bogota, Colombia
| | - David W McComb
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
- The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 43210, USA
| | - Eduardo Reategui
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Andre F Palmer
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
- The Ohio State University, Department of Neurological Surgery, Columbus, OH, 43210, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
4
|
Burton KM, Johnson KM, Krueger EW, Razidlo GL, McNiven MA. Distinct forms of the actin cross-linking protein α-actinin support macropinosome internalization and trafficking. Mol Biol Cell 2021; 32:1393-1407. [PMID: 34010028 PMCID: PMC8694038 DOI: 10.1091/mbc.e20-12-0755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The α-actinin family of actin cross-linking proteins have been implicated in driving tumor cell metastasis through regulation of the actin cytoskeleton; however, there has been little investigation into whether these proteins can influence tumor cell growth. We demonstrate that α-actinin 1 and 4 are essential for nutrient uptake through the process of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC) cells, and inhibition of these proteins decreases tumor cell survival in the presence of extracellular protein. The α-actinin proteins play essential roles throughout the macropinocytic process, where α-actinin 4 stabilizes the actin cytoskeleton on the plasma membrane to drive membrane ruffling and macropinosome internalization and α-actinin 1 localizes to actin tails on macropinosomes to facilitate trafficking to the lysosome for degradation. In addition to tumor cell growth, we also observe that the α-actinin proteins can influence uptake of chemotherapeutics and extracellular matrix proteins through macropinocytosis, suggesting that the α-actinin proteins can regulate multiple tumor cell properties through this endocytic process. In summary, these data demonstrate a critical role for the α-actinin isoforms in tumor cell macropinocytosis, thereby affecting the growth and invasive potential of PDAC tumors.
Collapse
Affiliation(s)
- Kevin M Burton
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | - Eugene W Krueger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Mark A McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
5
|
McGrath J, Tung CY, Liao X, Belyantseva IA, Roy P, Chakraborty O, Li J, Berbari NF, Faaborg-Andersen CC, Barzik M, Bird JE, Zhao B, Balakrishnan L, Friedman TB, Perrin BJ. Actin at stereocilia tips is regulated by mechanotransduction and ADF/cofilin. Curr Biol 2021; 31:1141-1153.e7. [PMID: 33400922 PMCID: PMC8793668 DOI: 10.1016/j.cub.2020.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Stereocilia on auditory sensory cells are actin-based protrusions that mechanotransduce sound into an electrical signal. These stereocilia are arranged into a bundle with three rows of increasing length to form a staircase-like morphology that is required for hearing. Stereocilia in the shorter rows, but not the tallest row, are mechanotransducing because they have force-sensitive channels localized at their tips. The onset of mechanotransduction during mouse postnatal development refines stereocilia length and width. However, it is unclear how actin is differentially regulated between stereocilia in the tallest row of the bundle and the shorter, mechanotransducing rows. Here, we show actin turnover is increased at the tips of mechanotransducing stereocilia during bundle maturation. Correspondingly, from birth to postnatal day 6, these stereocilia had increasing amounts of available actin barbed ends, where monomers can be added or lost readily, as compared with the non-mechanotransducing stereocilia in the tallest row. The increase in available barbed ends depended on both mechanotransduction and MYO15 or EPS8, which are required for the normal specification and elongation of the tallest row of stereocilia. We also found that loss of the F-actin-severing proteins ADF and cofilin-1 decreased barbed end availability at stereocilia tips. These proteins enriched at mechanotransducing stereocilia tips, and their localization was perturbed by the loss of mechanotransduction, MYO15, or EPS8. Finally, stereocilia lengths and widths were dysregulated in Adf and Cfl1 mutants. Together, these data show that actin is remodeled, likely by a severing mechanism, in response to mechanotransduction.
Collapse
Affiliation(s)
- Jamis McGrath
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Chun-Yu Tung
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Xiayi Liao
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Pallabi Roy
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Oisorjo Chakraborty
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Christian C Faaborg-Andersen
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Melanie Barzik
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN 46202, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS, Henty-Ridilla JL, Read TA, Vitriol EA. Arp2/3 and Mena/VASP Require Profilin 1 for Actin Network Assembly at the Leading Edge. Curr Biol 2020; 30:2651-2664.e5. [PMID: 32470361 DOI: 10.1016/j.cub.2020.04.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
Cells have many types of actin structures, which must assemble from a common monomer pool. Yet, it remains poorly understood how monomers are distributed to and shared between different filament networks. Simplified model systems suggest that monomers are limited and heterogeneous, which alters actin network assembly through biased polymerization and internetwork competition. However, less is known about how monomers influence complex actin structures, where different networks competing for monomers overlap and are functionally interdependent. One example is the leading edge of migrating cells, which contains filament networks generated by multiple assembly factors. The leading edge dynamically switches between the formation of different actin structures, such as lamellipodia or filopodia, by altering the balance of these assembly factors' activities. Here, we sought to determine how the monomer-binding protein profilin 1 (PFN1) controls the assembly and organization of actin in mammalian cells. Actin polymerization in PFN1 knockout cells was severely disrupted, particularly at the leading edge, where both Arp2/3 and Mena/VASP-based filament assembly was inhibited. Further studies showed that in the absence of PFN1, Arp2/3 no longer localizes to the leading edge and Mena/VASP is non-functional. Additionally, we discovered that discrete stages of internetwork competition and collaboration between Arp2/3 and Mena/VASP networks exist at different PFN1 concentrations. Low levels of PFN1 caused filopodia to form exclusively at the leading edge, while higher concentrations inhibited filopodia and favored lamellipodia and pre-filopodia bundles. These results demonstrate that dramatic changes to actin architecture can be made simply by modifying PFN1 availability.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Peyton V Warp
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Rachael Shklyarov
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Tracy-Ann Read
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Abstract
Directed cell migration is critical for embryogenesis and organ development, wound healing and the immune response. Microtubules are dynamic polymers that control directional migration through a number of coordinated processes: microtubules are the tracks for long-distance intracellular transport, crucial for delivery of new membrane components and signalling molecules to the leading edge of a migrating cell and the recycling of adhesion receptors. Microtubules act as force generators and compressive elements to support sustained cell protrusions. The assembly and disassembly of microtubules is coupled to Rho GTPase signalling, thereby controlling actin polymerisation, myosin-driven contractility and the turnover of cellular adhesions locally. Cross-talk of actin and microtubule dynamics is mediated through a number of common binding proteins and regulators. Furthermore, cortical microtubule capture sites are physically linked to focal adhesions, facilitating the delivery of secretory vesicles and efficient cross-talk. Here we summarise the diverse functions of microtubules during cell migration, aiming to show how they contribute to the spatially and temporally coordinated sequence of events that permit efficient, directional and persistent migration.
Collapse
|
8
|
Wu X, Du J, Song W, Cao M, Chen S, Xia R. Weak power frequency magnetic fields induce microtubule cytoskeleton reorganization depending on the epidermal growth factor receptor and the calcium related signaling. PLoS One 2018; 13:e0205569. [PMID: 30312357 PMCID: PMC6185734 DOI: 10.1371/journal.pone.0205569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023] Open
Abstract
We have shown previously that a weak 50 Hz magnetic field (MF) invoked the actin-cytoskeleton, and provoked cell migration at the cell level, probably through activating the epidermal growth factor receptor (EGFR) related motility pathways. However, whether the MF also affects the microtubule (MT)-cytoskeleton is still unknown. In this article, we continuously investigate the effects of 0.4 mT, 50 Hz MF on the MT, and try to understand if the MT effects are also associated with the EGFR pathway as the actin-cytoskeleton effects were. Our results strongly suggest that the MF effects are similar to that of EGF stimulation on the MT cytoskeleton, showing that 1) the MF suppressed MT in multiple cell types including PC12 and FL; 2) the MF promoted the clustering of the EGFR at the protein and the cell levels, in a similar way of that EGF did but with higher sensitivity to PD153035 inhibition, and triggered EGFR phosphorylation on sites of Y1173 and S1046/1047; 3) these effects were strongly depending on the Ca2+ signaling through the L-type calcium channel (LTCC) phosphorylation and elevation of the intracellular Ca2+ level. Strong associations were observed between EGFR and the Ca2+ signaling to regulate the MF-induced-reorganization of the cytoskeleton network, via phosphorylating the signaling proteins in the two pathways, including a significant MT protein, tau. These results strongly suggest that the MF activates the overall cytoskeleton in the absence of EGF, through a mechanism related to both the EGFR and the LTCC/Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Xia Wu
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Juan Du
- Physics Department, East China Normal University, Shanghai, China
| | - Weitao Song
- Physics Department, East China Normal University, Shanghai, China
| | - Meiping Cao
- Physics Department, East China Normal University, Shanghai, China
| | - Shude Chen
- Physics Department, East China Normal University, Shanghai, China
| | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
A new temperature-dependent strategy to modulate the epidermal growth factor receptor. Biomaterials 2018; 183:319-330. [PMID: 30196151 DOI: 10.1016/j.biomaterials.2018.07.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/24/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
The dynamic manipulation of kinases remains a major obstacle to unraveling cell-signaling networks responsible for the activation of biological systems. For example, epidermal growth factor (EGF) stimulates the epidermal growth factor receptor (EGFR/ErbB1); however, EGF also recruits other kinases (HER2/ErbB2) involved with various signaling pathways. To better study EGFR we report a new strategy to selectively activate receptor tyrosine kinases fused to elastin-like polypeptides (ELPs), which can be visualized inside mammalian cells using fixed and live-cell fluorescence microscopy. ELPs are high molecular weight polypeptides that phase separate abruptly upon heating. When an EGFR-ELP fusion is heated, it clusters, initiates receptor internalization, phosphorylates, initiates downstream kinase signaling, and undergoes retrograde transport towards the cell body. Unlike other strategies to block EGFR (small molecule inhibitors, RNAi, or transcriptional regulators), EGFR-ELP clustering can be specifically switched on or off within minutes. Live-cell imaging suggests that EGFR-ELPs assemble in most cells with only a 3 °C increase in temperature. This strategy was found reversible and able to dynamically control the downstream phosphorylation/activation of the ERK1/2 pathway. For the first time, this strategy enables the rational engineering of specific temperature-sensitive receptors that may have broad applications in the study and manipulation of biological processes.
Collapse
|
10
|
Stallaert W, Brüggemann Y, Sabet O, Baak L, Gattiglio M, Bastiaens PIH. Contact inhibitory Eph signaling suppresses EGF-promoted cell migration by decoupling EGFR activity from vesicular recycling. Sci Signal 2018; 11:11/541/eaat0114. [DOI: 10.1126/scisignal.aat0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Campion CG, Zaoui K, Verissimo T, Cossette S, Matsuda H, Solban N, Hamet P, Tremblay J. COMMD5/HCaRG Hooks Endosomes on Cytoskeleton and Coordinates EGFR Trafficking. Cell Rep 2018; 24:670-684.e7. [DOI: 10.1016/j.celrep.2018.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
|
12
|
Meirson T, Genna A, Lukic N, Makhnii T, Alter J, Sharma VP, Wang Y, Samson AO, Condeelis JS, Gil-Henn H. Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget 2018; 9:22158-22183. [PMID: 29774130 PMCID: PMC5955141 DOI: 10.18632/oncotarget.25243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/08/2018] [Indexed: 12/14/2022] Open
Abstract
Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.,Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Alessandro Genna
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Nikola Lukic
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tetiana Makhnii
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Joel Alter
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| |
Collapse
|
13
|
Extracellular matrix: The driving force of mammalian diseases. Matrix Biol 2018; 71-72:1-9. [PMID: 29625183 DOI: 10.1016/j.matbio.2018.03.023] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/31/2022]
Abstract
Like the major theme of a Mozart concerto, the immense and pervasive extracellular matrix drives each movement and ultimately closes the symphony, embracing a unique role as the fundamental mediator for most, if not all, ensuing intracellular events. As such, it comes as no surprise that the mechanism of just about every known disease can be traced back to some part of the matrix, typically in the form of an abnormal amount or activity level of a particular matrix component. These defects considerably affect downstream signaling axes leading to overt cellular dysfunction, organ failure, and death. From skin to bone, from vessels to brain, from eyes to all the internal organs, the matrix plays an incredible role as both a cause and potential means to reverse diseases. Human malaises including connective tissue disorders, muscular dystrophy, fibrosis, and cancer are all extracellular matrix-driven diseases. The ability to understand and modulate these matrix-related mechanisms may lead to the future discovery of novel therapeutic options for these patients.
Collapse
|
14
|
Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, Condeelis JS, Gil-Henn H. Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol 2017; 217:375-395. [PMID: 29133485 PMCID: PMC5748976 DOI: 10.1083/jcb.201702184] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but how it potentiates tumor cell invasiveness is unclear. Genna et al. find that Pyk2 and the closely related kinase FAK modulate breast cancer cell invasiveness by distinct mechanisms and coordinate the balance between focal adhesion–mediated migration and invadopodia-dependent extracellular matrix invasion. The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but the mechanism by which it potentiates tumor cell invasiveness is unclear at present. Using high-throughput protein array screening and bioinformatic analysis, we identified cortactin as a novel substrate and interactor of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 colocalizes with cortactin to invadopodia of invasive breast cancer cells, where it mediates epidermal growth factor–induced cortactin tyrosine phosphorylation both directly and indirectly via Src-mediated Abl-related gene (Arg) activation, leading to actin polymerization in invadopodia, extracellular matrix degradation, and tumor cell invasion. Both Pyk2 and the closely related focal adhesion kinase (FAK) regulate tumor cell invasion, albeit via distinct mechanisms. Although Pyk2 regulates tumor cell invasion by controlling invadopodium-mediated functions, FAK controls invasiveness of tumor cells by regulating focal adhesion–mediated motility. Collectively, our findings identify Pyk2 as a unique mediator of invadopodium formation and function and also provide a novel insight into the mechanisms by which Pyk2 mediates tumor cell invasion.
Collapse
Affiliation(s)
- Alessandro Genna
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Nikola Lukic
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shams Twafra
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
15
|
Yao L, Li Y. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration. Stem Cell Rev Rep 2017; 12:365-75. [PMID: 27108005 DOI: 10.1007/s12015-016-9654-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA.
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA
| |
Collapse
|
16
|
Mak M, Anderson S, McDonough MC, Spill F, Kim JE, Boussommier-Calleja A, Zaman MH, Kamm RD. Integrated Analysis of Intracellular Dynamics of MenaINV Cancer Cells in a 3D Matrix. Biophys J 2017; 112:1874-1884. [PMID: 28494958 DOI: 10.1016/j.bpj.2017.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment is composed of a filamentous network that exhibits dynamic turnover of cytoskeletal components and internal force generation from molecular motors. Particle tracking microrheology enables a means to probe the internal mechanics and dynamics. Here, we develop an analytical model to capture the basic features of the active intracellular mechanical environment, including both thermal and motor-driven effects, and show consistency with a diverse range of experimental microrheology data. We further perform microrheology experiments, integrated with Brownian dynamics simulations of the active cytoskeleton, on metastatic breast cancer cells embedded in a three-dimensional collagen matrix with and without the presence of epidermal growth factor to probe the intracellular mechanical response in a physiologically mimicking scenario. Our results demonstrate that EGF stimulation can alter intracellular stiffness and power output from molecular motor-driven fluctuations in cells overexpressing an invasive isoform of the actin-associated protein Mena.
Collapse
Affiliation(s)
- Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
| | | | - Meghan C McDonough
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fabian Spill
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jessica E Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Howard Hughes Medical Institute, Boston University, Boston, Massachusetts.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
17
|
NKCC1 Regulates Migration Ability of Glioblastoma Cells by Modulation of Actin Dynamics and Interacting with Cofilin. EBioMedicine 2017; 21:94-103. [PMID: 28679472 PMCID: PMC5514434 DOI: 10.1016/j.ebiom.2017.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/22/2017] [Accepted: 06/19/2017] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na+-K+-2Cl- co-transporter 1 (NKCC1) is an important cell volume regulator that participates in cell migration. We have shown that inhibition of NKCC1 in GBM cells leads to decreased cell migration, in vitro and in vivo. We now report on the role of NKCC1 on cytoskeletal dynamics. We show that GBM cells display a significant decrease in F-actin content upon NKCC1 knockdown (NKCC1-KD). To determine the potential actin-regulatory mechanisms affected by NKCC1 inhibition, we studied NKCC1 protein interactions. We found that NKCC1 interacts with the actin-regulating protein Cofilin-1 and can regulate its membrane localization. Finally, we analyzed whether NKCC1 could regulate the activity of the small Rho-GTPases RhoA and Rac1. We observed that the active forms of RhoA and Rac1 were decreased in NKCC1-KD cells. In summary, we report that NKCC1 regulates GBM cell migration by modulating the cytoskeleton through multiple targets including F-actin regulation through Cofilin-1 and RhoGTPase activity. Due to its essential role in cell migration NKCC1 may serve as a specific therapeutic target to decrease cell invasion in patients with primary brain cancer.
Collapse
|
18
|
Balsamo M, Mondal C, Carmona G, McClain LM, Riquelme DN, Tadros J, Ma D, Vasile E, Condeelis JS, Lauffenburger DA, Gertler FB. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 2016; 6:35298. [PMID: 27748415 PMCID: PMC5066228 DOI: 10.1038/srep35298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.
Collapse
Affiliation(s)
- Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chandrani Mondal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Carmona
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leslie M McClain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daisy N Riquelme
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Gagat M, Grzanka D, Izdebska M, Sroka WD, Hałas-Wiśniewska M, Grzanka A. Tropomyosin-1 protects transformed alveolar epithelial cells against cigaret smoke extract through the stabilization of F-actin-dependent cell-cell junctions. Acta Histochem 2016; 118:225-35. [PMID: 26805581 DOI: 10.1016/j.acthis.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 01/07/2023]
Abstract
The aim of the study was to estimate the effect of tropomyosin-1-based structural stabilization of F-actin in transformed human alveolar epithelial line H1299 cells subjected to high oxidative stress induced by cigaret smoke extract. We demonstrated here that cigaret smoke extract induces cell shrinking and detachment as a consequence of F-actin cytoskeleton degradation in H1299 cells not overexpressing tropomyosin-1. Furthermore, the treatment of these cells with cigaret smoke extract resulted in the loss of peripheral localization of ZO-1 and initiated apoptosis. In contrast, structural stabilization of F-actin, by overexpression of tropomyosin-1, preserved cell to cell interactions through the attenuation of cortical actin organization into thin fibers and thus protected these cells against oxidative stress-induced degradation of actin cytoskeleton and cell death. In conclusion, we suggest that structural stabilization of thin cortical F-actin fibers increases link between tight junctions proteins and actin cytoskeleton and thus protects H1299 cells against cigaret smoke extract.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Bydgoszcz, Poland
| | - Wiktor Dariusz Sroka
- Department of Medicinal Chemistry, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Bydgoszcz, Poland.
| |
Collapse
|
20
|
Sengelaub CA, Navrazhina K, Ross JB, Halberg N, Tavazoie SF. PTPRN2 and PLCβ1 promote metastatic breast cancer cell migration through PI(4,5)P2-dependent actin remodeling. EMBO J 2015; 35:62-76. [PMID: 26620550 PMCID: PMC4717998 DOI: 10.15252/embj.201591973] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Altered abundance of phosphatidyl inositides (PIs) is a feature of cancer. Various PIs mark the identity of diverse membranes in normal and malignant cells. Phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2) resides predominantly in the plasma membrane, where it regulates cellular processes by recruiting, activating, or inhibiting proteins at the plasma membrane. We find that PTPRN2 and PLCβ1 enzymatically reduce plasma membrane PI(4,5)P2 levels in metastatic breast cancer cells through two independent mechanisms. These genes are upregulated in highly metastatic breast cancer cells, and their increased expression associates with human metastatic relapse. Reduction in plasma membrane PI(4,5)P2 abundance by these enzymes releases the PI(4,5)P2‐binding protein cofilin from its inactive membrane‐associated state into the cytoplasm where it mediates actin turnover dynamics, thereby enhancing cellular migration and metastatic capacity. Our findings reveal an enzymatic network that regulates metastatic cell migration through lipid‐dependent sequestration of an actin‐remodeling factor.
Collapse
Affiliation(s)
- Caitlin A Sengelaub
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Kristina Navrazhina
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Jason B Ross
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Nils Halberg
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Eberwein P, Laird D, Schulz S, Reinhard T, Steinberg T, Tomakidi P. Modulation of focal adhesion constituents and their down-stream events by EGF: On the cross-talk of integrins and growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2183-98. [DOI: 10.1016/j.bbamcr.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
22
|
Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels. Proc Natl Acad Sci U S A 2015; 112:E5150-9. [PMID: 26324884 DOI: 10.1073/pnas.1510945112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase-, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion.
Collapse
|
23
|
Zhao H, Steiger A, Nohner M, Ye H. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons. PLoS One 2015; 10:e0129625. [PMID: 26068466 PMCID: PMC4466259 DOI: 10.1371/journal.pone.0129625] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/11/2015] [Indexed: 01/21/2023] Open
Abstract
Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure.
Collapse
Affiliation(s)
- Huiping Zhao
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Amanda Steiger
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Mitch Nohner
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Hui Ye
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Pires F, Ferreira Q, Rodrigues CA, Morgado J, Ferreira FC. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta Gen Subj 2015; 1850:1158-68. [DOI: 10.1016/j.bbagen.2015.01.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/24/2015] [Accepted: 01/30/2015] [Indexed: 12/23/2022]
|
25
|
Bhopale VM, Yang M, Yu K, Thom SR. Factors Associated with Nitric Oxide-mediated β2 Integrin Inhibition of Neutrophils. J Biol Chem 2015; 290:17474-84. [PMID: 26032418 DOI: 10.1074/jbc.m115.651620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 11/06/2022] Open
Abstract
This investigation explored the mechanism for inhibition of β2 integrin adhesion molecules when neutrophils are exposed to nitric oxide ((•)NO). Roles for specific proteins were elucidated using chemical inhibitors, depletion with small inhibitory RNA, and cells from knock-out mice. Optimal inhibition occurs with exposures to a (•)NO flux of ∼ 28 nmol/min for 2 min or more, which sets up an autocatalytic cascade triggered by activating type 2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). Integrin inhibition does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds), a NOS-2 inhibitor (1400 W), or with cells from mice lacking NOS-2 or the gp91(phox) component of NOX. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and actin filament formation assays indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, and protein-disulfide isomerase in proximity to actin filaments. These effects were inhibited in cells exposed to ultraviolet light which photo-reverses S-nitrosylated cysteine residues and by co-incubations with cytochalasin D. The autocatalytic cycle can be arrested by protein kinase G activated with 8-bromo-cyclic GMP and by a high (•)NO flux (∼ 112 nmol/min) that inactivates NOX.
Collapse
Affiliation(s)
- Veena M Bhopale
- From the Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ming Yang
- From the Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kevin Yu
- From the Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Stephen R Thom
- From the Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
26
|
Huang X, Sun D, Pan Q, Wen W, Chen Y, Xin X, Huang M, Ding J, Geng M. JG6, a novel marine-derived oligosaccharide, suppresses breast cancer metastasis via binding to cofilin. Oncotarget 2015; 5:3568-78. [PMID: 25003327 PMCID: PMC4116503 DOI: 10.18632/oncotarget.1959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cofilin, an actin-binding protein which disassembles actin filaments, plays an important role in invasion and metastasis. Here, we discover that JG6, an oligomannurarate sulfate, binds to cofilin, suppresses the migration of human breast cancer cells and cancer metastasis in breast cancer xenograft model. Mechanistically, JG6 occupies actin-binding sites of cofilin, thereby disrupting cofilin modulated actin turnover. Our results highlight the significance of cofilin in cancer and suggest JG6, a cofilin inhibitor, to treat metastatic cancer.
Collapse
Affiliation(s)
- Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R.China
| | | | | | | | | | | | | | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R.China
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R.China
| |
Collapse
|
27
|
ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor. PLoS One 2015; 10:e0121747. [PMID: 25799492 PMCID: PMC4370635 DOI: 10.1371/journal.pone.0121747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/19/2022] Open
Abstract
Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.
Collapse
|
28
|
Valenzuela-Iglesias A, Sharma VP, Beaty BT, Ding Z, Gutierrez-Millan LE, Roy P, Condeelis JS, Bravo-Cordero JJ. Profilin1 regulates invadopodium maturation in human breast cancer cells. Eur J Cell Biol 2015; 94:78-89. [PMID: 25613364 PMCID: PMC4322761 DOI: 10.1016/j.ejcb.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023] Open
Abstract
Invadopodia are actin-driven membrane protrusions that show oscillatory assembly and disassembly causing matrix degradation to support invasion and dissemination of cancer cells in vitro and in vivo. Profilin1, an actin and phosphoinositide binding protein, is downregulated in several adenocarcinomas and it is been shown that its depletion enhances invasiveness and motility of breast cancer cells by increasing PI(3,4)P2 levels at the leading edge. In this study, we show for the first time that depletion of profilin1 leads to an increase in the number of mature invadopodia and these assemble and disassemble more rapidly than in control cells. Previous work by Sharma et al. (2013a), has shown that the binding of the protein Tks5 with PI(3,4)P2 confers stability to the invadopodium precursor causing it to mature into a degradation-competent structure. We found that loss of profilin1 expression increases the levels of PI(3,4)P2 at the invadopodium and as a result, enhances recruitment of the interacting adaptor Tks5. The increased PI(3,4)P2-Tks5 interaction accelerates the rate of invadopodium anchorage, maturation, and turnover. Our results indicate that profilin1 acts as a molecular regulator of the levels of PI(3,4)P2 and Tks5 recruitment in invadopodia to control the invasion efficiency of invadopodia.
Collapse
Affiliation(s)
- A Valenzuela-Iglesias
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico.
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - B T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - Z Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - L E Gutierrez-Millan
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico
| | - P Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - J S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| | - J J Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| |
Collapse
|
29
|
LeClaire LL, Rana M, Baumgartner M, Barber DL. The Nck-interacting kinase NIK increases Arp2/3 complex activity by phosphorylating the Arp2 subunit. J Cell Biol 2015; 208:161-70. [PMID: 25601402 PMCID: PMC4298681 DOI: 10.1083/jcb.201404095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022] Open
Abstract
The nucleating activity of the Arp2/3 complex promotes the assembly of branched actin filaments that drive plasma membrane protrusion in migrating cells. Arp2/3 complex binding to nucleation-promoting factors of the WASP and WAVE families was previously thought to be sufficient to increase nucleating activity. However, phosphorylation of the Arp2 subunit was recently shown to be necessary for Arp2/3 complex activity. We show in mammary carcinoma cells that mutant Arp2 lacking phosphorylation assembled with endogenous subunits and dominantly suppressed actin filament assembly and membrane protrusion. We also report that Nck-interacting kinase (NIK), a MAP4K4, binds and directly phosphorylates the Arp2 subunit, which increases the nucleating activity of the Arp2/3 complex. In cells, NIK kinase activity was necessary for increased Arp2 phosphorylation and plasma membrane protrusion in response to epidermal growth factor. NIK is the first kinase shown to phosphorylate and increase the activity of the Arp2/3 complex, and our findings suggest that it integrates growth factor regulation of actin filament dynamics.
Collapse
Affiliation(s)
- Lawrence L LeClaire
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688
| | - Manish Rana
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Martin Baumgartner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Neuro-Oncology Laboratory, Infectious Diseases and Cancer Research, University of Children's Hospital Zürich, Zürich, Switzerland CH-8008
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
30
|
Liao G, Mingle L, Van De Water L, Liu G. Control of cell migration through mRNA localization and local translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:1-15. [PMID: 25264217 DOI: 10.1002/wrna.1265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/13/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense, and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins, which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and messenger RNA (mRNA) localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been understudied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function, and many other cellular processes. There are excellent reviews on mRNA localization, transport, and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
31
|
Beaty BT, Wang Y, Bravo-Cordero JJ, Sharma VP, Miskolci V, Hodgson L, Condeelis J. Talin regulates moesin-NHE-1 recruitment to invadopodia and promotes mammary tumor metastasis. J Cell Biol 2014; 205:737-51. [PMID: 24891603 PMCID: PMC4050723 DOI: 10.1083/jcb.201312046] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/28/2014] [Indexed: 02/08/2023] Open
Abstract
Invadopodia are actin-rich protrusions that degrade the extracellular matrix and are required for stromal invasion, intravasation, and metastasis. The role of the focal adhesion protein talin in regulating these structures is not known. Here, we demonstrate that talin is required for invadopodial matrix degradation and three-dimensional extracellular matrix invasion in metastatic breast cancer cells. The sodium/hydrogen exchanger 1 (NHE-1) is linked to the cytoskeleton by ezrin/radixin/moesin family proteins and is known to regulate invadopodium-mediated matrix degradation. We show that the talin C terminus binds directly to the moesin band 4.1 ERM (FERM) domain to recruit a moesin-NHE-1 complex to invadopodia. Silencing talin resulted in a decrease in cytosolic pH at invadopodia and blocked cofilin-dependent actin polymerization, leading to impaired invadopodium stability and matrix degradation. Furthermore, talin is required for mammary tumor cell motility, intravasation, and spontaneous lung metastasis in vivo. Thus, our findings provide a novel understanding of how intracellular pH is regulated and a molecular mechanism by which talin enhances tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Brian T Beaty
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Yarong Wang
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Ved P Sharma
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Veronika Miskolci
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - John Condeelis
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| |
Collapse
|
32
|
A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One 2013; 8:e74924. [PMID: 24040362 PMCID: PMC3770583 DOI: 10.1371/journal.pone.0074924] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/07/2013] [Indexed: 01/05/2023] Open
Abstract
Deregulated Rho GTPases Rac1 and Cdc42 have been discovered in various tumors, including prostate and Rac protein expression significantly increases in prostate cancer. The Rac and Cdc42 pathways promote the uncontrolled proliferation, invasion and metastatic properties of human cancer cells. We synthesized the novel compound AZA1 based on structural information of the known Rac1 inhibitor NSC23766. In the current study we investigated the effects of inhibition of these pathways by AZA1 on prostate tumorigenicity by performing preclinical studies using a xenograft mouse model of prostate cancer. In androgen-independent prostate cancer cells, AZA1 inhibited both Rac1 and Cdc42 but not RhoA GTPase activity in a dose-dependent manner and blocked cellular migration and proliferation. Cyclin D1 expression significantly decreased following Rac1/Cdc42 inhibition in prostate cancer cells. AZA1 treatment also down-regulated PAK and AKT activity in prostate cancer cells, associated with induction of the pro-apoptotic function of BAD by suppression of serine-112 phosphorylation. Daily systemic administration of AZA1 for 2 weeks reduced growth of human 22Rv1 prostate tumor xenografts in mice and improved the survival of tumor-bearing animals significantly. These data suggest a role of AZA1 in blocking Rac1/Cdc42-dependent cell cycle progression, cancer cell migration and increase of cancer cell apoptosis involving down-regulation of the AKT and PAK signaling pathway in prostate cancer cells. We therefore propose that a small-molecule inhibitor therapy targeting Rac1/Cdc42 Rho GTPase signaling pathways may be used as a novel treatment for patients with advanced prostate cancer.
Collapse
|
33
|
Yang Q, Zhang XF, Van Goor D, Dunn AP, Hyland C, Medeiros N, Forscher P. Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Mol Biol Cell 2013; 24:3097-114. [PMID: 23966465 PMCID: PMC3784383 DOI: 10.1091/mbc.e13-05-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PKC activation enhances myosin II contractility in the central growth cone domain while decreasing actin density and increasing actin network flow rates in the peripheral domain. This dual mode of action has mechanistic implications for interpreting reported effects of PKC on growth cone guidance and neuronal regeneration. Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | |
Collapse
|
34
|
Raimondi C, Falasca M. Phosphoinositides signalling in cancer: focus on PI3K and PLC. Adv Biol Regul 2013; 52:166-82. [PMID: 22019900 DOI: 10.1016/j.advenzreg.2011.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Claudio Raimondi
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Diabetes, Inositide Signalling Group, London E1 2AT, UK
| | | |
Collapse
|
35
|
Bravo-Cordero JJ, Sharma VP, Roh-Johnson M, Chen X, Eddy R, Condeelis J, Hodgson L. Spatial regulation of RhoC activity defines protrusion formation in migrating cells. J Cell Sci 2013; 126:3356-69. [PMID: 23704350 DOI: 10.1242/jcs.123547] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protrusion formation is the first step that precedes cell movement of motile cells. Spatial control of actin polymerization is necessary to achieve directional protrusion during cell migration. Here we show that the spatial coordinators p190RhoGEF and p190RhoGAP regulate actin polymerization during leading edge protrusions by regulating the actin barbed end distribution and amplitude. The distribution of RhoC activity and proper balance of cofilin activation achieved by p190RhoGEF and p190RhoGAP determines the direction of final protrusive activity. These findings provide a new insight into the dynamic plasticity in the amplitude and distribution of barbed ends, which can be modulated by fine-tuning RhoC activity by upstream GEFs and GAPs for directed cell motility.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Beaty BT, Sharma VP, Bravo-Cordero JJ, Simpson MA, Eddy RJ, Koleske AJ, Condeelis J. β1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell 2013; 24:1661-75, S1-11. [PMID: 23552693 PMCID: PMC3667720 DOI: 10.1091/mbc.e12-12-0908] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β1 integrin is a major regulator of invadopodium maturation. Studies reveal that β1 integrin–mediated adhesion is a key upstream switch that induces Arg-dependent cortactin phosphorylation, actin polymerization, and MMP recruitment to invadopodia for extracellular matrix degradation. β1 integrin has been shown to promote metastasis in a number of tumor models, including breast, ovarian, pancreatic, and skin cancer; however, the mechanism by which it does so is poorly understood. Invasive membrane protrusions called invadopodia are believed to facilitate extracellular matrix degradation and intravasation during metastasis. Previous work showed that β1 integrin localizes to invadopodia, but its role in regulating invadopodial function has not been well characterized. We find that β1 integrin is required for the formation of mature, degradation-competent invadopodia in both two- and three-dimensional matrices but is dispensable for invadopodium precursor formation in metastatic human breast cancer cells. β1 integrin is activated during invadopodium precursor maturation, and forced β1 integrin activation enhances the rate of invadopodial matrix proteolysis. Furthermore, β1 integrin interacts with the tyrosine kinase Arg and stimulates Arg-dependent phosphorylation of cortactin on tyrosine 421. Silencing β1 integrin with small interfering RNA completely abrogates Arg-dependent cortactin phosphorylation and cofilin-dependent barbed-end formation at invadopodia, leading to a significant decrease in the number and stability of mature invadopodia. These results describe a fundamental role for β1 integrin in controlling actin polymerization–dependent invadopodial maturation and matrix degradation in metastatic tumor cells.
Collapse
Affiliation(s)
- Brian T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Briones-Orta MA, Levy L, Madsen CD, Das D, Erker Y, Sahai E, Hill CS. Arkadia regulates tumor metastasis by modulation of the TGF-β pathway. Cancer Res 2013; 73:1800-10. [PMID: 23467611 PMCID: PMC3672972 DOI: 10.1158/0008-5472.can-12-1916] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TGF-β can act as a tumor suppressor at early stages of cancer progression and as a tumor promoter at later stages. The E3 ubiquitin ligase Arkadia (RNF111) is a critical component of the TGF-β signaling pathway, being required for a subset of responses, those mediated by Smad3-Smad4 complexes. It acts by mediating ligand-induced degradation of Ski and SnoN (SKIL), which are 2 potent transcriptional repressors. Here, we investigate the role of Arkadia in cancer using model systems to address both potential tumor-suppressive and tumor-promoting roles. Stable reexpression of Arkadia in lung carcinoma NCI-H460 cells, which we show contain a hemizygous nonsense mutation in the Arkadia/RNF111 gene, efficiently restored TGF-β-induced Smad3-dependent transcription, and substantially decreased the ability of these cells to grow in soft agar in vitro. However, it had no effect on tumor growth in vivo in mouse models. Moreover, loss of Arkadia in cancer cell lines and human tumors is rare, arguing against a prominent tumor-suppressive role. In contrast, we have uncovered a potent tumor-promoting function for Arkadia. Using 3 different cancer cell lines whose tumorigenic properties are driven by TGF-β signaling, we show that loss of Arkadia function, either by overexpression of dominant negative Arkadia or by siRNA-induced knockdown, substantially inhibited lung colonization in tail vein injection experiments in immunodeficient mice. Our findings indicate that Arkadia is not critical for regulating tumor growth per se, but is required for the early stages of cancer cell colonization at the sites of metastasis.
Collapse
Affiliation(s)
- Marco A. Briones-Orta
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Laurence Levy
- INSERM UMR S 938, Hôpital St-Antoine, 184 rue du Faubourg St-Antoine, 75012 Paris, France
| | - Chris D. Madsen
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Debipriya Das
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Yigit Erker
- INSERM UMR S 938, Hôpital St-Antoine, 184 rue du Faubourg St-Antoine, 75012 Paris, France
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| |
Collapse
|
38
|
Hirahara Y, Matsuda KI, Liu YF, Yamada H, Kawata M, Boggs JM. 17β-Estradiol and 17α-estradiol induce rapid changes in cytoskeletal organization in cultured oligodendrocytes. Neuroscience 2013; 235:187-99. [PMID: 23337538 DOI: 10.1016/j.neuroscience.2012.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 12/15/2012] [Indexed: 12/12/2022]
Abstract
Dramatic changes in the cytoskeleton and the morphology of oligodendrocytes (OLs) occur during various stages of the myelination process. OLs in culture produce large membrane sheets containing cytoskeletal veins of microtubules and actin filaments. We recently showed that estrogen receptors (ER) related to ERα/β were expressed in the membrane sheets of mature OLs in culture. Ligation of these or other membrane ERs in OLs with both 17β- and 17α-estradiol mediated rapid non-genomic signaling. Here, we show that estrogens also mediate rapid non-genomic remodeling of the cytoskeleton in mature OLs in culture. 17β-Estradiol caused a rapid loss of microtubules and the actin cytoskeleton in the OL membrane sheets. It also increased phosphorylation of the actin filament-severing protein cofilin, thus inactivating it. Staining for actin barbed ends with rhodamine-actin showed that it decreased the amount of actin barbed ends. 17α-Estradiol, on the other hand, increased the percentage of cells with abundant staining of actin filaments and actin barbed ends, suggesting that it stabilized and/or increased the dynamics of the actin cytoskeleton. The specific ERα and ERβ agonists, 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) and diarylpropionitrile 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN), respectively, also caused the rapid phosphorylation of cofilin. Estrogen-induced phosphorylation of cofilin was inhibited by Y-27632, a specific inhibitor of the Rho-associated protein serine/threonine kinase (ROCK). The Rho/ROCK/cofilin pathway is therefore implicated in actin rearrangement via estrogen ligation of membrane ERs, which may include forms of ERα and ERβ. These results indicate a role for estrogens in modulation of the cytoskeleton in mature OLs, and thus in various processes required for myelinogenesis.
Collapse
Affiliation(s)
- Y Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi-City, 570-8506 Osaka, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys J 2013; 104:247-57. [PMID: 23332077 DOI: 10.1016/j.bpj.2012.11.3819] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/01/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022] Open
Abstract
Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.
Collapse
|
40
|
Katz ZB, Wells AL, Park HY, Wu B, Shenoy SM, Singer RH. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 2012; 26:1885-90. [PMID: 22948660 DOI: 10.1101/gad.190413.112] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Directed cell motility is at the basis of biological phenomena such as development, wound healing, and metastasis. It has been shown that substrate attachments mediate motility by coupling the cell's cytoskeleton with force generation. However, it has been unclear how the persistence of cell directionality is facilitated. We show that mRNA localization plays an important role in this process, but the mechanism of action is still unknown. In this study, we show that the zipcode-binding protein 1 transports β-actin mRNA to the focal adhesion compartment, where it dwells for minutes, suggesting a means for associating its localization with motility through the formation of stable connections between adhesions and newly synthesized actin filaments. In order to demonstrate this, we developed an approach for assessing the functional consequences of β-actin mRNA and protein localization by tethering the mRNA to a specific location-in this case, the focal adhesion complex. This approach will have a significant impact on cell biology because it is now possible to forcibly direct any mRNA and its cognate protein to specific locations in the cell. This will reveal the importance of localized protein translation on various cellular processes.
Collapse
Affiliation(s)
- Zachary B Katz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
41
|
Fan Y, Eswarappa SM, Hitomi M, Fox PL. Myo1c facilitates G-actin transport to the leading edge of migrating endothelial cells. ACTA ACUST UNITED AC 2012; 198:47-55. [PMID: 22778278 PMCID: PMC3392929 DOI: 10.1083/jcb.201111088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Addition of actin monomer (G-actin) to growing actin filaments (F-actin) at the leading edge generates force for cell locomotion. The polymerization reaction and its regulation have been studied in depth. However, the mechanism responsible for transport of G-actin substrate to the cell front is largely unknown; random diffusion, facilitated transport via myosin II contraction, local synthesis as a result of messenger ribonucleic acid localization, or F-actin turnover all might contribute. By tracking a photoactivatable, nonpolymerizable actin mutant, we show vectorial transport of G-actin in live migrating endothelial cells (ECs). Mass spectrometric analysis identified Myo1c, an unconventional F-actin-binding motor protein, as a major G-actin-interacting protein. The cargo-binding tail domain of Myo1c interacted with G-actin, and the motor domain was required for the transport. Local microinjection of Myo1c promoted G-actin accumulation and plasma membrane ruffling, and Myo1c knockdown confirmed its contribution to G-actin delivery to the leading edge and for cell motility. In addition, there is no obvious requirement for myosin II contractile-based transport of G-actin in ECs. Thus, Myo1c-facilitated G-actin transport might be a critical node for control of cell polarity and motility.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
42
|
Liu C, Miller H, Sharma S, Beaven A, Upadhyaya A, Song W. Analyzing actin dynamics during the activation of the B cell receptor in live B cells. Biochem Biophys Res Commun 2012; 427:202-6. [PMID: 22995298 DOI: 10.1016/j.bbrc.2012.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Actin reorganization has been shown to be important for lymphocyte activation in response to antigenic stimulation. However, methods for quantitative analysis of actin dynamics in live lymphocytes are still underdeveloped. In this study, we describe new methods to examine the actin dynamics in B cells induced by antigenic stimulation. Using the A20 B cell line expressing GFP-actin, we analyzed in real time the redistribution of F-actin and the lateral mobility of actin flow in the surface of B cells in response to soluble and/or membrane associated antigens. Using fluorescently labeled G-actin, we identified the subcellular location and quantified the level of de novo actin polymerization sites in primary B cells. Using A20 B cells expressing G-actin fused with the photoconvertible protein mEos, we examined the kinetics of actin polymerization and depolymerization at the same time. Our studies present a set of methods that are capable of quantitatively analyzing the role of actin dynamics in lymphocyte activation.
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Boguslavsky S, Chiu T, Foley KP, Osorio-Fuentealba C, Antonescu CN, Bayer KU, Bilan PJ, Klip A. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Mol Biol Cell 2012; 23:4065-78. [PMID: 22918957 PMCID: PMC3469521 DOI: 10.1091/mbc.e12-04-0263] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Roberti MP, Arriaga JM, Bianchini M, Quintá HR, Bravo AI, Levy EM, Mordoh J, Barrio MM. Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice. Cancer Biol Ther 2012; 13:1123-40. [PMID: 22825326 PMCID: PMC3461818 DOI: 10.4161/cbt.21187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancers (TNBC) lacking hormone receptors and HER-2 amplification are very aggressive tumors. Since relevant differences between primary tumors and metastases could arise during tumor progression as evidenced by phenotypic discordances reported for hormonal receptors or HER-2 expression, in this analysis we studied changes that occurred in our TNBC model IIB-BR-G throughout the development of IIB-BR-G-MTS6 metastasis to the lymph nodes (LN) in nude mice, using an antibody-based protein array to characterize their expression profile. We also analyzed their growth kinetics, migration, invasiveness and cytoskeleton structure in vitro and in vivo.
In vitro IIB-BR-G-MTS6 cells grew slower but showed higher anchorage independent growth. In vivo IIB-BR-G-MTS6 tumors grew significantly faster and showed a 100% incidence of LN metastasis after s.c. inoculation, although no metastasis was observed for IIB-BR-G. CCL3, IL1β, CXCL1, CSF2, CSF3, IGFBP1, IL1α, IL6, IL8, CCL20, PLAUR, PlGF and VEGF were strongly upregulated in IIB-BR-G-MTS6 while CCL4, ICAM3, CXCL12, TNFRSF18, FIGF were the most downregulated proteins in the metastatic cell line. IIB-BR-G-MTS6 protein expression profile could reflect a higher NFκB activation in these cells. In vitro, IIB-BR-G displayed higher migration but IIB-BR-G-MTS6 had more elevated matrigel invasion ability. In agreement with that observation, IIB-BR-G-MTS6 had an upregulated expression of MMP1, MMP9, MMP13, PLAUR and HGF. IIB-BR-G-MTS6 tumors presented also higher local lymphatic invasion than IIB-BR-G but similar lymphatic vessel densities. VEGFC and VEGFA/B expression were higher both in vitro and in vivo for IIB-BR-G-MTS6. IIB-BR-G-MTS6 expressed more vimentin than IB-BR-G cells, which was mainly localized in the cellular extremities and both cell lines are E-cadherin negative.
Our results suggest that IIB-BR-G-MTS6 cells have acquired a pronounced epithelial-to-mesenchymal transition phenotype. Protein expression changes observed between primary tumor-derived IIB-BR-G and metastatic IIB-BR-G-MTS6 TNBC cells suggest potential targets involved in the control of metastasis.
Collapse
Affiliation(s)
- María Paula Roberti
- Centro de Investigaciones Oncológicas, Fundación Cáncer and Instituto Alexander Fleming, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang Q, Zhang XF, Pollard TD, Forscher P. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow. ACTA ACUST UNITED AC 2012; 197:939-56. [PMID: 22711700 PMCID: PMC3384413 DOI: 10.1083/jcb.201111052] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II-dependent contractility with consequent effects on growth cone motility.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
46
|
Hou Y, Hedberg S, Schneider IC. Differences in adhesion and protrusion properties correlate with differences in migration speed under EGF stimulation. BMC BIOPHYSICS 2012; 5:8. [PMID: 22577847 PMCID: PMC3414788 DOI: 10.1186/2046-1682-5-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/11/2012] [Indexed: 01/09/2023]
Abstract
Background Cell migration plays an essential role in many biological processes, such as cancer metastasis, wound healing and immune response. Cell migration is mediated through protrusion and focal adhesion (FA) assembly, maturation and disassembly. Epidermal growth factor (EGF) is known to enhance migration rate in many cell types; however it is not known how FA maturation, FA dynamics and protrusion dynamics are regulated during EGF-induced migration. Here we use total internal reflection fluorescence (TIRF) microscopy and image analysis to quantify FA properties and protrusion dynamics under different doses of EGF stimulation. Results EGF was found to broaden the distribution of cell migration rates, generating more fast and slow cells. Furthermore, groups based on EGF stimulation condition or cell migration speed were marked by characteristic signatures. When data was binned based on EGF stimulation conditions, FA intensity and FA number per cell showed the largest difference among stimulation groups. FA intensity decreased with increasing EGF concentration and FA number per cell was highest under intermediate stimulation conditions. No difference in protrusion behavior was observed. However, when data was binned based on cell migration speed, FA intensity and not FA number per cell showed the largest difference among groups. FA intensity was lower for fast migrating cells. Additionally, waves of protrusion tended to correlate with fast migrating cells. Conclusions Only a portion of the FA properties and protrusion dynamics that correlate with migration speed, correlate with EGF stimulation condition. Those that do not correlate with EGF stimulation condition constitute the most sensitive output for identifying why cells respond differently to EGF. The idea that EGF can both increase and decrease the migration speed of individual cells in a population has particular relevance to cancer metastasis where the microenvironment can select subpopulations based on some adhesion and protrusion characteristics, leading to a more invasive phenotype as would be seen if all cells responded like an “average” cell.
Collapse
Affiliation(s)
- Yue Hou
- Department of Chemical and Biological Engineering, Iowa State University, Iowa, USA.
| | | | | |
Collapse
|
47
|
Liu J, Zhang D, Luo W, Yu J, Li J, Yu Y, Zhang X, Chen J, Wu XR, Huang C. E3 ligase activity of XIAP RING domain is required for XIAP-mediated cancer cell migration, but not for its RhoGDI binding activity. PLoS One 2012; 7:e35682. [PMID: 22532870 PMCID: PMC3330820 DOI: 10.1371/journal.pone.0035682] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/20/2012] [Indexed: 12/16/2022] Open
Abstract
Although an increased expression level of XIAP is associated with cancer cell metastasis, the underlying molecular mechanisms remain largely unexplored. To verify the specific structural basis of XIAP for regulation of cancer cell migration, we introduced different XIAP domains into XIAP−/− HCT116 cells, and found that reconstitutive expression of full length HA-XIAP and HA-XIAP ΔBIR, both of which have intact RING domain, restored β-Actin expression, actin polymerization and cancer cell motility. Whereas introduction of HA-XIAP ΔRING or H467A mutant, which abolished its E3 ligase function, did not show obvious restoration, demonstrating that E3 ligase activity of XIAP RING domain played a crucial role of XIAP in regulation of cancer cell motility. Moreover, RING domain rather than BIR domain was required for interaction with RhoGDI independent on its E3 ligase activity. To sum up, our present studies found that role of XIAP in regulating cellular motility was uncoupled from its caspase-inhibitory properties, but related to physical interaction between RhoGDI and its RING domain. Although E3 ligase activity of RING domain contributed to cell migration, it was not involved in RhoGDI binding nor its ubiquitinational modification.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu C, Miller H, Orlowski G, Hang H, Upadhyaya A, Song W. Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:3237-46. [PMID: 22387556 PMCID: PMC3312033 DOI: 10.4049/jimmunol.1103065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells encounter both soluble Ag (sAg) and membrane-associated Ag (mAg) in the secondary lymphoid tissue, yet how the physical form of Ag modulates B cell activation remains unclear. This study compares actin reorganization and its role in BCR signalosome formation in mAg- and sAg-stimulated B cells. Both mAg and sAg induce F-actin accumulation and actin polymerization at BCR microclusters and at the outer rim of BCR central clusters, but the kinetics and magnitude of F-actin accumulation in mAg-stimulated B cells are greater than those in sAg-stimulated B cells. Accordingly, the actin regulatory factors, cofilin and gelsolin, are recruited to BCR clusters in both mAg- and sAg-stimulated B cells but with different kinetics and patterns of cellular redistribution. Inhibition of actin reorganization by stabilizing F-actin inhibits BCR clustering and tyrosine phosphorylation induced by both forms of Ag. Depolymerization of F-actin leads to unpolarized microclustering of BCRs and tyrosine phosphorylation in BCR microclusters without mAg and sAg, but with much slower kinetics than those induced by Ag. Therefore, actin reorganization, mediated via both polymerization and depolymerization, is required for the formation of BCR signalosomes in response to both mAg and sAg.
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Heather Miller
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Gregory Orlowski
- Department of Medicine, University of Massachusetts Medical School, Worchester, MA 01655
| | - Haiyin Hang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
49
|
Actin reorganization as the molecular basis for the regulation of apoptosis in gastrointestinal epithelial cells. Cell Death Differ 2012; 19:1514-24. [PMID: 22421965 DOI: 10.1038/cdd.2012.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal (GI) epithelium is a rapidly renewing tissue in which apoptosis represents part of the overall homeostatic process. Regulation of apoptosis in the GI epithelium is complex with a precise relationship between cell position and apoptosis. Apoptosis occurs spontaneously and in response to radiation and cytotoxic drugs at the base of the crypts. By contrast, the villus epithelial cells are extremely resistant to apoptosis. The molecular mechanism underlying this loss of function of villus epithelial cells to undergo apoptosis shortly after their exit from the crypt is unknown. In this study we demonstrate for the first time, that deletion of two homologous actin-binding proteins, villin and gelsolin renders villus epithelial cells extremely sensitive to apoptosis. Ultrastructural analysis of the villin-gelsolin(-/-) double-knockout mice shows an abnormal accumulation of damaged mitochondria demonstrating that villin and gelsolin function on an early step in the apoptotic signaling at the level of the mitochondria. A characterization of functional and ligand-binding mutants demonstrate that regulated changes in actin dynamics determined by the actin severing activities of villin and gelsolin are required to maintain cellular homeostasis. Our study provides a molecular basis for the regulation of apoptosis in the GI epithelium and identifies cell biological mechanisms that couple changes in actin dynamics to apoptotic cell death.
Collapse
|
50
|
Marsick BM, Roche FK, Letourneau PC. Repulsive axon guidance cues ephrin-A2 and slit3 stop protrusion of the growth cone leading margin concurrently with inhibition of ADF/cofilin and ERM proteins. Cytoskeleton (Hoboken) 2012; 69:496-505. [PMID: 22328420 DOI: 10.1002/cm.21016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/01/2012] [Indexed: 11/08/2022]
Abstract
Axonal growth cones turn away from repulsive guidance cues. This may start with reduced protrusive motility in the region the growth cone leading margin that is closer to the source of repulsive cue. Using explants of E7 chick temporal retina, we examine the effects of two repulsive guidance cues, ephrin-A2 and slit3, on retinal ganglion cell growth cone protrusive activity, total F-actin, free F-actin barbed ends, and the activities (phosphorylation states) of actin regulatory proteins, ADF/cofilin and ezrin, radixin, moesin (ERM) proteins. Ephrin-A2 rapidly stops protrusive activity simultaneously with reducing F-actin, free barbed ends and the activities of ADF/cofilin and ERM proteins. Slit3 also stops protrusion and reduces the activities of ADF/cofilin and ERM proteins. We interpret these results as indicating that repulsive guidance cues inhibit actin polymerization and actin-membrane linkage to stop protrusive activity. Retrograde F-actin flow withdraws actin to the C-domain, where F-actin bundles interact with myosin II to generate contractile forces that can collapse and retract the growth cone. Our results suggest that common mechanisms are used by repulsive guidance cue to disable growth cone motility and remodel growing axon terminals.
Collapse
Affiliation(s)
- Bonnie M Marsick
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|