1
|
Purshouse K, Pollard SM, Bickmore WA. Imaging extrachromosomal DNA (ecDNA) in cancer. Histochem Cell Biol 2024; 162:53-64. [PMID: 38625562 PMCID: PMC7616135 DOI: 10.1007/s00418-024-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Extrachromosomal DNA (ecDNA) are circular regions of DNA that are found in many cancers. They are an important means of oncogene amplification, and correlate with treatment resistance and poor prognosis. Consequently, there is great interest in exploring and targeting ecDNA vulnerabilities as potential new therapeutic targets for cancer treatment. However, the biological significance of ecDNA and their associated regulatory control remains unclear. Light microscopy has been a central tool in the identification and characterisation of ecDNA. In this review we describe the different cellular models available to study ecDNA, and the imaging tools used to characterise ecDNA and their regulation. The insights gained from quantitative imaging are discussed in comparison with genome sequencing and computational approaches. We suggest that there is a crucial need for ongoing innovation using imaging if we are to achieve a full understanding of the dynamic regulation and organisation of ecDNA and their role in tumourigenesis.
Collapse
Affiliation(s)
- Karin Purshouse
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Huang Q, Zhang S, Wang G, Han J. Insight on ecDNA-mediated tumorigenesis and drug resistance. Heliyon 2024; 10:e27733. [PMID: 38545177 PMCID: PMC10966608 DOI: 10.1016/j.heliyon.2024.e27733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Extrachromosomal DNAs (ecDNAs) are a pervasive feature found in cancer and contain oncogenes and their corresponding regulatory elements. Their unique structural properties allow a rapid amplification of oncogenes and alter chromatin accessibility, leading to tumorigenesis and malignant development. The uneven segregation of ecDNA during cell division enhances intercellular genetic heterogeneity, which contributes to tumor evolution that might trigger drug resistance and chemotherapy tolerance. In addition, ecDNA has the ability to integrate into or detach from chromosomal DNA, such progress results into structural alterations and genomic rearrangements within cancer cells. Recent advances in multi-omics analysis revealing the genomic and epigenetic characteristics of ecDNA are anticipated to make valuable contributions to the development of precision cancer therapy. Herein, we conclud the mechanisms of ecDNA generation and the homeostasis of its dynamic structure. In addition to the latest techniques in ecDNA research including multi-omics analysis and biochemical validation methods, we also discuss the role of ecDNA in tumor development and treatment, especially in drug resistance, and future challenges of ecDNA in cancer therapy.
Collapse
Affiliation(s)
| | | | - Guosong Wang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Chen Y, Qiu Q, She J, Yu J. Extrachromosomal circular DNA in colorectal cancer: biogenesis, function and potential as therapeutic target. Oncogene 2023; 42:941-951. [PMID: 36859558 PMCID: PMC10038807 DOI: 10.1038/s41388-023-02640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Extrachromosomal circular DNA (ecDNA) has gained renewed interest since its discovery more than half a century ago, emerging as critical driver of tumor evolution. ecDNA is highly prevalent in many types of cancers, including colorectal cancer (CRC), which is one of the most deadly cancers worldwide. ecDNAs play an essential role in regulating oncogene expression, intratumor heterogeneity, and resistance to therapy independently of canonical chromosomal alterations in CRC. Furthermore, the existence of ecDNAs is attributed to the patient's prognosis, since ecDNA-based oncogene amplification adversely affects clinical outcomes. Recent understanding of ecDNA put an extra layer of complexity in the pathogenesis of CRC. In this review, we will discuss the current understanding on mechanisms of biogenesis, and distinctive features of ecDNA in CRC. In addition, we will examine how ecDNAs mediate oncogene overexpression, gene regulation, and topological interactions with active chromatin, which facilitates genetic heterogeneity, accelerates CRC malignancy, and enhances rapid adaptation to therapy resistance. Finally, we will discuss the potential diagnostic and therapeutic implications of ecDNAs in CRC.
Collapse
Affiliation(s)
- Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jun Yu
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet 2022; 23:760-771. [PMID: 35953594 PMCID: PMC9671848 DOI: 10.1038/s41576-022-00521-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification is an important driver alteration in cancer. It has been observed in most cancer types and is associated with worse patient outcome. The functional impact of ecDNA has been linked to its unique properties, such as its circular structure that is associated with altered chromatinization and epigenetic regulatory landscape, as well as its ability to randomly segregate during cell division, which fuels intercellular copy number heterogeneity. Recent investigations suggest that ecDNA is structurally more complex than previously anticipated and that it localizes to specialized nuclear bodies (hubs) and can act in trans as an enhancer for genes on other ecDNAs or chromosomes. In this Review, we synthesize what is currently known about how ecDNA is generated and how its genetic and epigenetic architecture affects proto-oncogene deregulation in cancer. We discuss how recently identified ecDNA functions may impact oncogenesis but also serve as new therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rocío Chamorro González
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Anton G Henssen
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Arrey G, Keating ST, Regenberg B. A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Semin Cell Dev Biol 2022; 128:40-50. [PMID: 35292190 DOI: 10.1016/j.semcdb.2022.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.
Collapse
Affiliation(s)
- Gerard Arrey
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Samuel T Keating
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Hung KL, Mischel PS, Chang HY. Gene regulation on extrachromosomal DNA. Nat Struct Mol Biol 2022; 29:736-744. [PMID: 35948767 PMCID: PMC10246724 DOI: 10.1038/s41594-022-00806-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is prevalent in human cancer and is associated with poor outcomes. Clonal, megabase-sized circular ecDNAs in cancer are distinct from nonclonal, small sub-kilobase-sized DNAs that may arise during normal tissue homeostasis. ecDNAs enable profound changes in gene regulation beyond copy-number gains. An emerging principle of ecDNA regulation is the formation of ecDNA hubs: micrometer-sized nuclear structures of numerous copies of ecDNAs tethered by proteins in spatial proximity. ecDNA hubs enable cooperative and intermolecular sharing of DNA regulatory elements for potent and combinatorial gene activation. The 3D context of ecDNA shapes its gene expression potential, selection for clonal heterogeneity among ecDNAs, distribution through cell division, and reintegration into chromosomes. Technologies for studying gene regulation and structure of ecDNA are starting to answer long-held questions on the distinct rules that govern cancer genes beyond chromosomes.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and ChEM-H, Stanford University, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Ashique S, Upadhyay A, Garg A, Mishra N, Hussain A, Negi P, Hing GB, Bhatt S, Ali MK, Gowthamarajan K, Singh SK, Gupta G, Chellappan DK, Dua K. Impact of ecDNA: A mechanism that directs tumorigenesis in cancer drug Resistance-A review. Chem Biol Interact 2022; 363:110000. [DOI: 10.1016/j.cbi.2022.110000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/16/2022]
|
10
|
van Leen E, Brückner L, Henssen AG. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy. Nat Genet 2022; 54:107-114. [PMID: 35145302 DOI: 10.1038/s41588-021-01000-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification has been observed in at least 30 different cancer types and is associated with worse patient outcomes. This has been linked to increased oncogene dosage because both oncogenes and associated enhancers can occupy ecDNA. New data challenge the view that only oncogene dosage is affected by ecDNA, and raises the possibility that ecDNA could disrupt genome-wide gene expression. Recent investigations suggest that ecDNA localizes to specialized nuclear bodies (hubs) in which they can act in trans as ectopic enhancers for genes on other ecDNA or chromosomes. Moreover, ecDNA can reintegrate into the genome, possibly further disrupting the gene regulatory landscape in tumor cells. In this Perspective, we discuss the emerging properties of ecDNA and highlight promising avenues to exploit this new knowledge for the development of ecDNA-directed therapies for cancer.
Collapse
Affiliation(s)
- Eric van Leen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Lotte Brückner
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany. .,Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany. .,Berlin Institute of Health, Berlin, Germany. .,German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
11
|
Hung KL, Yost KE, Xie L, Shi Q, Helmsauer K, Luebeck J, Schöpflin R, Lange JT, Chamorro González R, Weiser NE, Chen C, Valieva ME, Wong ITL, Wu S, Dehkordi SR, Duffy CV, Kraft K, Tang J, Belk JA, Rose JC, Corces MR, Granja JM, Li R, Rajkumar U, Friedlein J, Bagchi A, Satpathy AT, Tjian R, Mundlos S, Bafna V, Henssen AG, Mischel PS, Liu Z, Chang HY. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 2021; 600:731-736. [PMID: 34819668 PMCID: PMC9126690 DOI: 10.1038/s41586-021-04116-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Liangqi Xie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Berkeley, CA, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Konstantin Helmsauer
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Robert Schöpflin
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joshua T Lange
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rocío Chamorro González
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Natasha E Weiser
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Celine Chen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria E Valieva
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivy Tsz-Lo Wong
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Connor V Duffy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Tang
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - John C Rose
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey M Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jordan Friedlein
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Berkeley, CA, USA
| | - Stefan Mundlos
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center DKFZ, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul S Mischel
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Wang T, Zhang H, Zhou Y, Shi J. Extrachromosomal circular DNA: a new potential role in cancer progression. J Transl Med 2021; 19:257. [PMID: 34112178 PMCID: PMC8194206 DOI: 10.1186/s12967-021-02927-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is considered a circular DNA molecule that exists widely in nature and is independent of conventional chromosomes. eccDNA can be divided into small polydispersed circular DNA (spcDNA), telomeric circles (t-circles), microDNA, and extrachromosomal DNA (ecDNA) according to its size and sequence. Multiple studies have shown that eccDNA is the product of genomic instability, has rich and important biological functions, and is involved in the occurrence of many diseases, including cancer. In this review, we focus on the discovery history, formation process, characteristics, and physiological functions of eccDNAs; the potential functions of various eccDNAs in human cancer; and the research methods employed to study eccDNA.
Collapse
Affiliation(s)
- Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
13
|
Liao Z, Jiang W, Ye L, Li T, Yu X, Liu L. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188392. [PMID: 32735964 DOI: 10.1016/j.bbcan.2020.188392] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Although the eukaryotic genome is mainly comprised of linear chromosomal DNA, genes can also be found outside of chromosomes. The unconventional presence of extrachromosomal genes is usually found to be circular, and these structures are named extrachromosomal circular DNA (eccDNA), which are often observed in cancer cells. Various types of eccDNA including small polydispersed DNA (spcDNA), telomeric cirlces, microDNA, etc. have been discovered. Among these eccDNA, extrachromosomal DNA (ecDNA), which encompasses the full spectrum of large, gene-containing extrachromosomal particles, has regained great research interest due to recent technological advances such as next-generation sequencing and super-resolution microscopy. In this review, we summarize the different types of eccDNA and discuss the role of eccDNA, especially ecDNA in tumor heterogeneity and progression. Additionally, we discuss some possible future investigative directions related to ecDNA biogenesis and its clinical application.
Collapse
Affiliation(s)
- Zhenyu Liao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wang Jiang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Oobatake Y, Shimizu N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 2020; 59:133-143. [PMID: 31569279 DOI: 10.1002/gcc.22810] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation. Amplified genes often reside on extrachromosomal double minutes (DMs). Low-dose hydroxyurea induces DM aggregation in the nucleus which, in turn, generates micronuclei composed of DMs. Low-dose hydroxyurea also induces random double-strand breakage throughout the nucleus. In the present study, we found that double-strand breakage in DMs is sufficient for induction of DM aggregation. Here, we used CRISPR/Cas9 to introduce specific breakages in both natural and artificially tagged DMs of human colorectal carcinoma COLO 320DM cells. Aggregation occurred in the S phase but not in the G1 phase within 4 hours after breakage, which suggested the possible involvement of homologous recombination in the aggregation of numerous DMs. Simultaneous detection of DMs and the phosphorylated histone H2AX revealed that the aggregation persisted after breakage repair. Thus, the aggregate generated cytoplasmic micronuclei at the next interphase. Our data also suggested that micronuclear entrapment eliminated the DMs or morphologically transformed them into giant DMs or homogeneously staining regions (HSRs). In this study, we obtained a model explaining the consequences of DMs after double-strand breakage in cancer cells. Because double-strand breakage is frequently involved in cancer therapy, the model suggests how it affects gene amplification.
Collapse
Affiliation(s)
- Yoshihiro Oobatake
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
16
|
Mitsuda SH, Shimizu N. Epigenetic Repeat-Induced Gene Silencing in the Chromosomal and Extrachromosomal Contexts in Human Cells. PLoS One 2016; 11:e0161288. [PMID: 27525955 PMCID: PMC4985131 DOI: 10.1371/journal.pone.0161288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
A plasmid bearing both a replication initiation region and a matrix attachment region is spontaneously amplified in transfected mammalian cells and generates plasmid repeats in the extrachromosomal double minutes (DMs) or the chromosomal homogeneously staining region (HSR). Generally, the repeat sequences are subject to repeat-induced gene silencing, the mechanism of which remains to be elucidated. Previous research showed that gene expression from the same plasmid repeat was higher from repeats located at DMs than at the HSR, which may reflect the extrachromosomal environment of the DMs. In the current study, plasmid repeats in both DMs and HSR were associated with repressive histone modifications (H3K9me3, H3K9me2), and the levels of repressive chromatin markers were higher in HSR than in DMs. Inactive chromatin is known to spread to neighboring regions in chromosome arm. Here, we found that such spreading also occurs in extrachromosomal DMs. Higher levels of active histone modifications (H3K9Ac, H3K4me3, and H3K79me2) were detected at plasmid repeats in DMs than in HSR. The level of DNA CpG methylation was generally low in both DMs and HSR; however, there were some hypermethylated copies within the population of repeated sequences, and the frequency of such copies was higher in DMs than in HSR. Together, these data suggest a “DNA methylation-core and chromatin-spread” model for repeat-induced gene silencing. The unique histone modifications at the extrachromosomal context are discussed with regard to the model.
Collapse
Affiliation(s)
- Sho-Hei Mitsuda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| |
Collapse
|
17
|
Fucic A, Gamulin M, Katic J, Milic M, Druzhinin V, Grgić M. Genome damage in testicular seminoma patients seven years after radiotherapy. Int J Radiat Biol 2013; 89:928-33. [DOI: 10.3109/09553002.2013.825057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Shimizu N. Molecular mechanisms of the origin of micronuclei from extrachromosomal elements. Mutagenesis 2011; 26:119-23. [PMID: 21164192 DOI: 10.1093/mutage/geq053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to micronuclei that are formed from chromosomal material (the chromosome-type micronuclei), there are also micronuclei formed from extrachromosomal elements [the double minute (DM)-type micronuclei]. These two types of micronuclei are distinct entities, which exist and arise independently in a cell. A DM is a large extrachromosomal element that consists of amplified genes that are commonly seen in cancer cells; the aggregates of DMs can eventually be expressed as DM-type micronuclei. The question of how the DM-type micronuclei arise was answered by uncovering the quite unique intracellular behaviour of DMs during the cell cycle progression. This behaviour of DMs appeared to be common among the broad spectrum of extrachromosomal elements of endogenous, exogenous or artificial origin. Therefore, studying the biology of DM-type micronuclei will enable us to understand how these extrachromosomal structures may be retained within a cell or expelled from the nucleus and eliminated from the cell. This knowledge could also be used for the treatment of cancers and the development of a new mammalian host-vector system.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521 Japan.
| |
Collapse
|
19
|
Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification. PLoS One 2008; 3:e3099. [PMID: 18769732 PMCID: PMC2518122 DOI: 10.1371/journal.pone.0003099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/08/2008] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Amplification of the oncogene MYCN in double minutes (DMs) is a common finding in neuroblastoma (NB). Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development. PRINCIPAL FINDINGS We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN) copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers. CONCLUSION Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.
Collapse
|
20
|
Utani KI, Kawamoto JK, Shimizu N. Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype. Mol Cancer Res 2007; 5:695-704. [PMID: 17606478 DOI: 10.1158/1541-7786.mcr-07-0031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extrachromosomal double minutes (DM) bear amplified genes that contribute to the malignancy of human cancer cells. A novel intracellular behavior of DMs resulted in their selective entrapment within micronuclei; opening the vista, this could perturb the cancer cell phenotype if genes located on DMs were expressed in micronuclei. Here, using fluorescence in situ hybridization, we detected transcripts in DM-enriched micronuclei. Visualization of DMs and their transcripts in live cells showed that DMs are as actively transcribed in the micronuclei and nuclei. Moreover, pulse-incorporated bromouridine was detected in the micronuclei, and the transcripts eventually exited from the micronuclei, similar to the behavior of nuclear transcripts. This apparently normal pattern of gene expression in DM-enriched micronuclei was restricted to micronuclei associated with lamin B, and lamin B association was more frequent for micronuclei that incorporated DMs than for those that incorporated a chromosome arm. The frequency of lamin B-associated micronuclei increased after entry into S phase, and accordingly, there was a concomitant increase in transcription in micronuclei. Taken together, these results indicate that the expression of genes on DMs can be temporally altered by their incorporation into micronuclei. This may be relevant for a broad spectrum of other extrachromosomal elements.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima 739-8521, Japan
| | | | | |
Collapse
|
21
|
Abstract
There are almost 1,300 entries for higher eukaryotes in the Nuclear Protein Database. The proteins' subcellular distribution patterns within interphase nuclei can be complex, ranging from diffuse to punctate or microspeckled, yet they all work together in a coordinated and controlled manner within the three-dimensional confines of the nuclear volume. In this review we describe recent advances in the use of quantitative methods to understand nuclear spatial organisation and discuss some of the practical applications resulting from this work.
Collapse
|
22
|
Shimizu N, Misaka N, Utani KI. Nonselective DNA damage induced by a replication inhibitor results in the selective elimination of extrachromosomal double minutes from human cancer cells. Genes Chromosomes Cancer 2007; 46:865-74. [PMID: 17616968 DOI: 10.1002/gcc.20473] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene amplification plays a pivotal role in human malignancy. Highly amplified genes frequently localize to extrachromosomal double minutes (dmin), which usually segregate to daughter cells in association with mitotic chromosomes. We and others had shown that treatment with low-dose hydroxyurea (HU) results in the elimination of dmin and reversion of the cancer cell phenotype. HU treatment in early S-phase, when dmin are replicated, results in their detachment from chromosomes at the next M-phase, leading to the appearance of micronuclei enriched in dmin, followed by their elimination. In this article, we examined the effect of low-dose HU on the behavior of dmin in relation to DNA damage induction by simultaneously monitoring LacO-tagged dmin and phosphorylated histone H2AX (gammaH2AX). As expected, treatment with low-dose HU induced numerous gammaH2AX foci throughout the nucleus in early S-phase, and these rarely coincided with dmin. Most chromosomal gammaH2AX foci disappeared by metaphase, whereas, unexpectedly, those that persisted frequently associated with dmin. We found that these dmin aggregated, detached from anaphase chromosomes, and apparently formed micronuclei. Because gammaH2AX foci likely represent DNA double strand breaks (DSBs), the response to DSBs sustained by extrachromosomal dmin appears to be different from that sustained by chromosomal loci, which may explain why DSB-inducing agents cause the selective elimination of dmin.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Japan.
| | | | | |
Collapse
|
23
|
Kuttler F, Mai S. Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Semin Cancer Biol 2006; 17:56-64. [PMID: 17116402 DOI: 10.1016/j.semcancer.2006.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
Extrachromosomal elements (EEs) were first discovered as minute chromatin bodies [Cox et al. Minute chromatin bodies in malignant tumors of childhood. Lancet 1965;62:55-8], and subsequently characterized as small circular DNA molecules physically separated from chromosomes. They include episomes, minichromosomes, small polydispersed DNAs or double minutes. This review focuses on eukaryotic EEs generated by genome rearrangements under physiological or pathological conditions. Some of those rearrangements occur randomly, but others are strictly non-random, highly regulated, and involve specific chromosomal locations (V(D)J-recombination, telomere maintenance mechanisms, c-myc deregulation). The multiple mechanisms of EEs formation are strongly interconnected and frequently linked to gene amplification. Identification of genes located on EEs will undoubtedly allow a better understanding of genome dynamics and oncogenic pathways.
Collapse
Affiliation(s)
- Fabien Kuttler
- Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, 675 McDermot Avenue, Winnipeg, Man. R3E 0V9, Canada.
| | | |
Collapse
|
24
|
Harnicarová A, Kozubek S, Pacherník J, Krejci J, Bártová E. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells. Exp Cell Res 2006; 312:4019-35. [PMID: 17046748 DOI: 10.1016/j.yexcr.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/05/2023]
Abstract
Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.
Collapse
Affiliation(s)
- Andrea Harnicarová
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Bártová E, Harnicarová A, Pacherník J, Kozubek S. Nuclear topography and expression of the BCR/ABL fusion gene and its protein level influenced by cell differentiation and RNA interference. Leuk Res 2005; 29:901-13. [PMID: 15978941 DOI: 10.1016/j.leukres.2005.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Indexed: 11/15/2022]
Abstract
Nuclear topography, expression of the BCR/ABL fusion gene and its protein level/cellular pattern were studied in CML cell line K562 stimulated to differentiation, apoptosis and influenced by ABL-RNA interference (ABL-RNAi). Phorbol ester-induced maturation of K562 cells was accompanied by repositioning of down-regulated BCR/ABL genes closer to the nuclear membrane. This nuclear rearrangement could be connected with differentiation-related heterochromatinization of the amplified BCR-ABL locus, as demonstrated by increased histone H3(K9) dimethylation and decreased H3(K9) acetylation of B3A2 breakpoint. Topography of BCR/ABL in differentiated K562 cells was compared with other leukemic cell types: PMA-maturation of HL60 cells did not influence the nuclear positioning of individual BCR and ABL genes. Moreover, BCR and ABL genes in non-stimulated HL60 as well as in the bone marrow cells of CML patients, i.e. also BCR/ABL fusion genes, were positioned more interiorly in comparison with BCR/ABL multiple loci of K562 cells. Decreased expression of BCR/ABL gene was also found after cell stimulation by selectively pro-apoptotic agent etoposide and by ABL-RNAi leading to apoptosis. In order to compare the efficiency of selected experimental strategies, levels of Bcr/Abl and c-Abl proteins were determined and in all cases tested were reduced. In K562 cells the Bcr/Abl and c-Abl proteins were distributed homogeneously in both the cell nucleus and cytoplasm, while differentiation of K562 cells was characterized by a distinct pattern of Bcr/Abl and c-Abl proteins that were focally distributed rather in the cytoplasm while apoptotic population was completely absent of Bcr/Abl and c-Abl signals.
Collapse
MESH Headings
- Antigens, Surface/drug effects
- Antigens, Surface/genetics
- Apoptosis/drug effects
- Apoptosis/physiology
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Down-Regulation
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Sequence Data
- RNA Interference/physiology
- Tetradecanoylphorbol Acetate/analogs & derivatives
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
26
|
Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res 2005; 302:233-43. [PMID: 15561104 DOI: 10.1016/j.yexcr.2004.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/28/2004] [Indexed: 11/26/2022]
Abstract
Amplified genes are frequently localized on extrachromosomal double minutes (DMs) or in chromosomal homogeneously staining regions (HSRs). We previously showed that a plasmid bearing a mammalian replication initiation region could efficiently generate DMs and HSRs after transfection into human tumor cell lines. The Breakage-Fusion-Bridge (BFB) cycle model, a classical model that explains how HSRs form, could also be used to explain how the transfected plasmids generate HSRs. The BFB cycle model involves anaphase bridge formation due to the presence of dicentric chromosomes, followed by the breakage of the bridge. In this study, we used our plasmid-based model system to analyze how anaphase bridges break during mitosis. Dual-color fluorescence in situ hybridization analyses revealed that anaphase bridges were most frequently severed in their middle irrespective of their lengths, which suggests that a structurally fragile site exists in the middle of the anaphase bridge. Breakage of the chromosomal bridges occurred prior to nuclear membrane reformation and the completion of cytokinesis, which indicates that mechanical tension rather than cytokinesis is primarily responsible for severing anaphase bridges. Time-lapse observation of living cells revealed that the bridges rapidly shrink after being severed. If HSR length was extended too far, the bridge could no longer be resolved and became tangled depending on the tension. The unbroken bridge appeared to inhibit the completion of cytokinesis. These observations strongly suggest that anaphase bridges are highly elastic and that the length of the spindle axis determines the maximal HSR length.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| | | | | | | | | |
Collapse
|
27
|
Debatisse M, Malfoy B. Gene amplification mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:343-361. [PMID: 18727507 DOI: 10.1007/1-4020-3764-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Michelle Debatisse
- UMR 7147, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
28
|
Smith G, Taylor-Kashton C, Dushnicky L, Symons S, Wright J, Mai S. c-Myc-induced extrachromosomal elements carry active chromatin. Neoplasia 2003; 5:110-20. [PMID: 12659683 PMCID: PMC1502397 DOI: 10.1016/s1476-5586(03)80002-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Murine Pre-B lymphocytes with experimentally activated MycER show both chromosomal and extrachromosomal gene amplification. In this report, we have elucidated the size, structure, and functional components of c-Myc-induced extrachromosomal elements (EEs). Scanning electron microscopy revealed that EEs isolated from MycER-activated Pre-B+ cells are an average of 10 times larger than EEs isolated from non-MycER-activated control Pre-B- cells. We demonstrate that these large c-Myc-induced EEs are associated with histone proteins, whereas EEs of non-MycER-activated Pre B- cells are not. Immunohistochemistry and Western blot analyses using pan-histone-specific, histone H3 phosphorylation-specific, and histone H4 acetylation-specific antibodies indicate that a significant proportion of EEs analyzed from MycER-activated cells harbors transcriptionally competent and/or active chromatin. Moreover, these large, c-Myc-induced EEs carry genes. Whereas the total genetic make-up of these c-Myc-induced EEs is unknown, we found that 30.2% of them contain the dihydrofolate reductase (DHFR) gene, whereas cyclin C (CCNC) was absent. In addition, 50% of these c-Myc-activated Pre-B+ EEs incorporated bromodeoxyuridine (BrdU), identifying them as genetic structures that self-propagate. In contrast, EEs isolated from non-Myc-activated cells neither carry the DHFR gene nor incorporate BrdU, suggesting that c-Myc deregulation generates a new class of EEs.
Collapse
Affiliation(s)
- Greg Smith
- Manitoba Institute of Cell Biology, CancerCare Manitoba, the Genomic Center for Cancer Research and Diagnosis Winnipeg, Manitoba, Canada
- University of Manitoba Winnipeg, Manitoba, Canada
| | - Cheryl Taylor-Kashton
- Manitoba Institute of Cell Biology, CancerCare Manitoba, the Genomic Center for Cancer Research and Diagnosis Winnipeg, Manitoba, Canada
- University of Manitoba Winnipeg, Manitoba, Canada
| | - Len Dushnicky
- Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | | | - Jim Wright
- Manitoba Institute of Cell Biology, CancerCare Manitoba, the Genomic Center for Cancer Research and Diagnosis Winnipeg, Manitoba, Canada
- University of Manitoba Winnipeg, Manitoba, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology, CancerCare Manitoba, the Genomic Center for Cancer Research and Diagnosis Winnipeg, Manitoba, Canada
- University of Manitoba Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Shimizu N, Ochi T, Itonaga K. Replication timing of amplified genetic regions relates to intranuclear localization but not to genetic activity or G/R band. Exp Cell Res 2001; 268:201-10. [PMID: 11478846 DOI: 10.1006/excr.2001.5286] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amplified genes in many human cancer cells usually localize at the extrachromosomal double minutes (DMs). In the present study, we show that multiple DMs in the human colorectal tumor COLO 320DM line replicated semisynchronously during the early S phase. On the other hand, during longer passage of the cells with DMs, cells with the amplified genes at the chromosomal homogeneously staining region (HSR) generally dominate the population. We currently report that HSR was composed of a tandem array of DM-derived sequences, which was shown using a unique DM-painting probe. Nevertheless, we found that HSR was replicated much later during the S phase, unless the amplified c-myc genes were expressed almost equally from DMs and HSR. Therefore, this provided a novel instance in which the cytogenetic localization affected replication timing without alteration of expression. Furthermore, we unexpectedly found that HSR had a distinctive band structure with respect to replication timing. The replication band structure was usually associated with the chromosomal G/R bands; however, HSR was homogeneous in the G/R band and in the distribution of highly repetitive sequences. We discuss the mechanism by which the replication band may arise, in relation to the folding of chromatin inside the nucleus.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| | | | | |
Collapse
|
30
|
Kanda T, Wahl GM. The dynamics of acentric chromosomes in cancer cells revealed by GFP-based chromosome labeling strategies. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 35:107-14. [PMID: 11389539 DOI: 10.1002/1097-4644(2000)79:35+<107::aid-jcb1133>3.0.co;2-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autonomous replicons, such as viral episomes and oncogene containing double minute chromosomes (DMs), lack centromeres and consequently should be lost rapidly when the nuclear membrane breaks down at mitosis. Surprisingly, they are not. This raises the important question of the mechanisms that enable their efficient transmission to daughter cells. We review recent developments in GFP-based chromosome labeling strategies that enable real time analyses using high resolution light microscopy to provide insights into this issue. The results reveal that episomes and DMs both adhere to host chromosomes, a process referred to as "chromosome tethering". Such association enables acentric molecules to use the chromosomal centromere in trans, thereby achieving efficient transmission to daughter cells. This unique mechanism of mitotic segregation also raises the possibility of developing a new class of anti-cancer drugs that work by selectively eliminating growth enhancing genes from cancer cells. J. Cell. Biochem. Suppl. 35:107-114, 2000.
Collapse
Affiliation(s)
- T Kanda
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
31
|
Li F, Chen J, Izumi M, Butler MC, Keezer SM, Gilbert DM. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J Cell Biol 2001; 154:283-92. [PMID: 11470818 PMCID: PMC1255917 DOI: 10.1083/jcb.200104043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the dynamics of nuclear repositioning and the establishment of a replication timing program for the actively transcribed dihydrofolate reductase (DHFR) locus and the silent beta-globin gene locus in Chinese hamster ovary cells. The DHFR locus was internally localized and replicated early, whereas the beta-globin locus was localized adjacent to the nuclear periphery and replicated during the middle of S phase, coincident with replication of peripheral heterochromatin. Nuclei were prepared from cells synchronized at various times during early G1 phase and stimulated to enter S phase by introduction into Xenopus egg extracts, and the timing of DHFR and beta-globin replication was evaluated in vitro. With nuclei isolated 1 h after mitosis, neither locus was preferentially replicated before the other. However, with nuclei isolated 2 or 3 h after mitosis, there was a strong preference for replication of DHFR before beta-globin. Measurements of the distance of DHFR and beta-globin to the nuclear periphery revealed that the repositioning of the beta-globin locus adjacent to peripheral heterochromatin also took place between 1 and 2 h after mitosis. These results suggest that the CHO beta-globin locus acquires the replication timing program of peripheral heterochromatin upon association with the peripheral subnuclear compartment during early G1 phase.
Collapse
Affiliation(s)
- F Li
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
32
|
Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 2001; 3:134-9. [PMID: 11175745 DOI: 10.1038/35055033] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined changes in intranuclear chromosome positioning induced by a transcriptional activator in a simple experimental system. Targeting the VP16 acidic activation domain (AAD) to an engineered chromosome site resulted in its transcriptional activation and redistribution from a predominantly peripheral to a more interior nuclear localization. Direct visualization in vivo revealed that the chromosome site normally moves into the nuclear interior transiently in early G1 and again in early S phase. In contrast, VP16 AAD targeting induced this site's permanent interior localization in early G1. A single transcriptional activator therefore can modify the cell-cycle-dependent programme of intranuclear positioning of chromosome loci.
Collapse
Affiliation(s)
- T Tumbar
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Room B107 C&LSL, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
33
|
Shimizu N, Shimura T, Tanaka T. Selective elimination of acentric double minutes from cancer cells through the extrusion of micronuclei. Mutat Res 2000; 448:81-90. [PMID: 10751625 DOI: 10.1016/s0027-5107(00)00003-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several lines of evidences from us or other authors had shown that tumor cells revert their phenotypes and differentiate by the elimination of oncogenes amplified on the acentric double minutes (DMs). The selective incorporation of DMs into the cytoplasmic micronuclei was thought to be involved in this elimination, however, the mechanism by which the content of micronuclei was eliminated from the cells remains to be discovered. In this report, we show the finding and the characterization of the extruded micronuclei in the culture fluid of human COLO 320DM tumor line, and suggest that the extrusion of micronuclei mediates the selective elimination of DMs. The extracellular micronuclei enriched with DMs had an apparently normal cytoplasmic membrane, decondensed chromatin and nuclear lamin protein, and their DNA did not suffer any extensive degradation. These characteristics were closely related to their cytoplasmic counterpart and clearly differentiated from the apoptotic bodies. We also developed a method for purifying the extracellular micronuclei. In this paper, the implications of the micronuclear extrusion are discussed.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima, Japan.
| | | | | |
Collapse
|
34
|
Tanaka T, Shimizu N. Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase. J Cell Sci 2000; 113 ( Pt 4):697-707. [PMID: 10652262 DOI: 10.1242/jcs.113.4.697] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acentric and atelomeric double minute chromatin found in human cancer cells are eliminated from cells by selective incorporation into the micronuclei. We showed previously that most of the micronuclei were formed at S phase and mediated by the nuclear bud-shaped structures that selectively entrap double minutes. In this paper, we have examined the behavior of double minutes in relation to the nuclear lamin protein in cell cycle-synchronized human COLO 320DM tumor cells. At the G(1) phase, we observed that a portion of double minutes was localized at the cytoplasm and showed no association with lamin. The frequency of this localization was increased by hydroxyurea, an inducer of micronuclei, if treated at the preceding S phase. The acentric double minutes were normally segregated to daughter cells by attaching to the mitotic chromosomes, and the hydroxyurea-treatment induced their detachment, possibly through the introduction of the double strand break. When the cells entered S phase, our data suggested that the lamin protein accumulated around the cytoplasmic double minutes at the proximity of the nucleus leading to the formation of the nuclear bud-shaped structure and the initiation of DNA replication. This association of cytoplasmic double minutes with lamin coincided with the large-scale rearrangement of the intranuclear lamin protein. The implication of these findings as well as their application to a broad spectrum of other acentric, atelomeric and autonomously replicating molecules are discussed.
Collapse
Affiliation(s)
- T Tanaka
- Faculty of Integrated Arts, Hiroshima University, Higashi-hiroshima, Japan
| | | |
Collapse
|