1
|
Ashkavand Z, Ryan KC, Laboy JT, Patel R, Geller B, Norman KR. Identification of presenilin mutations that have sufficient gamma-secretase proteolytic activity to mediate Notch signaling but disrupt organelle and neuronal health. Neurobiol Dis 2025; 212:106961. [PMID: 40404063 DOI: 10.1016/j.nbd.2025.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
Mutations that cause familial Alzheimer's disease (AD) are predominantly found in the presenilin (PSEN) encoding genes PSEN1 and PSEN2. While the association of PSEN mutations with familial AD have been known for over 20 years, the mechanism underlying the impact these mutations have on disease is not fully understood. PSENs are phylogenetically conserved proteins that are found in diverse multicellular organisms ranging from plants to humans. PSENs form the proteolytic core of gamma-secretase that is required for cleaving type I transmembrane proteins, such as Notch receptors and the amyloid precursor protein. Importantly, familial AD-associated PSEN mutations are broadly distributed and do not clearly define a specific PSEN function essential for neuronal fitness. Here, using C. elegans as a model organism to study the in vivo functions of PSENs, we confirm that C. elegans PSEN plays a pivotal role in gamma-secretase proteolytic activity as well as maintaining neuronal and organelle health. Notably, we demonstrate that these two functions can be genetically uncoupled. Our research identifies several conserved familial AD-like missense mutations in the endogenous sel-12 gene, which encodes C. elegans PSEN. These mutations preserve sufficient gamma-secretase proteolytic activity to mediate Notch signaling but abolish PSEN's role in supporting neuronal and organelle health. Furthermore, we provide evidence that these familial AD-like missense mutations disrupt mitochondrial calcium regulation, ultimately leading to neuronal dysfunction. These results indicate that C. elegans PSEN plays at least two independent roles: one that mediates gamma-secretase proteolytic activity and another that mediates organelle and neuronal health.
Collapse
Affiliation(s)
- Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Kerry C Ryan
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Jocelyn T Laboy
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Ritika Patel
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Brian Geller
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA.
| |
Collapse
|
2
|
Sasaki T, Kushida Y, Norizuki T, Kosako H, Sato K, Sato M. ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy. Nat Commun 2024; 15:1460. [PMID: 38368448 PMCID: PMC10874384 DOI: 10.1038/s41467-024-45863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Allophagy is responsible for the selective removal of paternally inherited organelles, including mitochondria, in Caenorhabditis elegans embryos, thereby facilitating the maternal inheritance of mitochondrial DNA. We previously identified two key factors in allophagy: an autophagy adaptor allophagy-1 (ALLO-1) and TBK1/IKKε family kinase IKKE-1. However, the precise mechanisms by which ALLO-1 and IKKE-1 regulate local autophagosome formation remain unclear. In this study, we identify two ALLO-1 isoforms with different substrate preferences during allophagy. Live imaging reveals a stepwise mechanism of ALLO-1 localization with rapid cargo recognition, followed by ALLO-1 accumulation around the cargo. In the ikke-1 mutant, the accumulation of ALLO-1, and not the recognition of cargo, is impaired, resulting in the failure of isolation membrane formation. Our results also suggest a feedback mechanism for ALLO-1 accumulation via EPG-7/ATG-11, a worm homolog of FIP200, which is a candidate for IKKE-1-dependent phosphorylation. This feedback mechanism may underlie the ALLO-1-dependent initiation and progression of autophagosome formation around paternal organelles.
Collapse
Affiliation(s)
- Taeko Sasaki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Yasuharu Kushida
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Takuya Norizuki
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
3
|
Krauchunas AR, Marcello MR, Looper A, Mei X, Putiri E, Singaravelu G, Ahmed II, Singson A. The EGF-motif-containing protein SPE-36 is a secreted sperm protein required for fertilization in C. elegans. Curr Biol 2023; 33:3056-3064.e5. [PMID: 37453426 PMCID: PMC10529607 DOI: 10.1016/j.cub.2023.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Identified through forward genetics, spe-9 was the first gene to be identified in C. elegans as necessary for fertilization.1 Since then, genetic screens in C. elegans have led to the identification of nine additional sperm genes necessary for fertilization (including spe-51 reported by Mei et al.2 and the spe-36 gene reported here).3,4,5,6,7,8,9 This includes spe-45, which encodes an immunoglobulin-containing protein similar to the mammalian protein IZUMO1, and spe-42 and spe-49, which are homologous to vertebrate DCST2 and DCST1, respectively.4,7,8,10,11,12,13 Mutations in any one of these genes result in healthy adult animals that are sterile. Sperm from these mutants have normal morphology, migrate to and maintain their position at the site of fertilization in the reproductive tract, and make contact with eggs but fail to fertilize the eggs. This same phenotype is observed in mammals lacking Izumo1, Spaca6, Tmem95, Sof1, FIMP, or Dcst1 and Dcst2.10,14,15,16,17,18,19 Here we report the discovery of SPE-36 as a sperm-derived secreted protein that is necessary for fertilization. Mutations in the Caenorhabditis elegans spe-36 gene result in a sperm-specific fertilization defect. Sperm from spe-36 mutants look phenotypically normal, are motile, and can migrate to the site of fertilization. However, sperm that do not produce SPE-36 protein cannot fertilize. Surprisingly, spe-36 encodes a secreted EGF-motif-containing protein that functions cell autonomously. The genetic requirement for secreted sperm-derived proteins for fertilization sheds new light on the complex nature of fertilization and represents a paradigm-shifting discovery in the molecular understanding of fertilization.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | - A'Maya Looper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Xue Mei
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Emily Putiri
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Iqra I Ahmed
- Department of Biology, Pace University, New York, NY 11231, USA
| | - Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Shimada Y, Kanazawa-Takino N, Nishimura H. Spermiogenesis in Caenorhabditis elegans: An Excellent Model to Explore the Molecular Basis for Sperm Activation. Biomolecules 2023; 13:biom13040657. [PMID: 37189404 DOI: 10.3390/biom13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
C. elegans spermiogenesis converts non-motile spermatids into motile, fertilization-competent spermatozoa. Two major events include the building of a pseudopod required for motility and fusion of membranous organelles (MOs)-intracellular secretory vesicles-with the spermatid plasma membrane required for the proper distribution of sperm molecules in mature spermatozoa. The mouse sperm acrosome reaction-a sperm activation event occurring during capacitation-is similar to MO fusion in terms of cytological features and biological significance. Moreover, C. elegans fer-1 and mouse Fer1l5, both encoding members of the ferlin family, are indispensable for MO fusion and acrosome reaction, respectively. Genetics-based studies have identified many C. elegans genes involved in spermiogenesis pathways; however, it is unclear whether mouse orthologs of these genes are involved in the acrosome reaction. One significant advantage of using C. elegans for studying sperm activation is the availability of in vitro spermiogenesis, which enables combining pharmacology and genetics for the assay. If certain drugs can activate both C. elegans and mouse spermatozoa, these drugs would be useful probes to explore the mechanism underlying sperm activation in these two species. By analyzing C. elegans mutants whose spermatids are insensitive to the drugs, genes functionally relevant to the drugs' effects can be identified.
Collapse
Affiliation(s)
- Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka 572-8508, Japan
| | - Nana Kanazawa-Takino
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka 572-8508, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Osaka 572-8508, Japan
| |
Collapse
|
5
|
Peterson JJ, Tocheny CE, Prajapati G, LaMunyon CW, Shakes DC. Subcellular patterns of SPE-6 localization reveal unexpected complexities in Caenorhabditis elegans sperm activation and sperm function. G3 (BETHESDA, MD.) 2021; 11:jkab288. [PMID: 34849789 PMCID: PMC8527485 DOI: 10.1093/g3journal/jkab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022]
Abstract
To acquire and maintain directed cell motility, Caenorhabditis elegans sperm must undergo extensive, regulated cellular remodeling, in the absence of new transcription or translation. To regulate sperm function, nematode sperm employ large numbers of protein kinases and phosphatases, including SPE-6, a member of C. elegans' highly expanded casein kinase 1 superfamily. SPE-6 functions during multiple steps of spermatogenesis, including functioning as a "brake" to prevent premature sperm activation in the absence of normal extracellular signals. Here, we describe the subcellular localization patterns of SPE-6 during wild-type C. elegans sperm development and in various sperm activation mutants. While other members of the sperm activation pathway associate with the plasma membrane or localize to the sperm's membranous organelles, SPE-6 surrounds the chromatin mass of unactivated sperm. During sperm activation by either of two semiautonomous signaling pathways, SPE-6 redistributes to the front, central region of the sperm's pseudopod. When disrupted by reduction-of-function alleles, SPE-6 protein is either diminished in a temperature-sensitive manner (hc187) or is mislocalized in a stage-specific manner (hc163). During the multistep process of sperm activation, SPE-6 is released from its perinuclear location after the spike stage in a process that does not require the fusion of membranous organelles with the plasma membrane. After activation, spermatozoa exhibit variable proportions of perinuclear and pseudopod-localized SPE-6, depending on their location within the female reproductive tract. These findings provide new insights regarding SPE-6's role in sperm activation and suggest that extracellular signals during sperm migration may further modulate SPE-6 localization and function.
Collapse
Affiliation(s)
| | - Claire E Tocheny
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
6
|
Marcello MR, Druzhinina M, Singson A. Caenorhabditis elegans sperm membrane protein interactome. Biol Reprod 2019; 98:776-783. [PMID: 29546388 PMCID: PMC6037120 DOI: 10.1093/biolre/ioy055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/06/2018] [Indexed: 01/27/2023] Open
Abstract
The interaction and organization of proteins in the sperm membrane are important for all aspects of sperm function. We have determined the interactions between 12 known mutationally defined and cloned sperm membrane proteins in a model system for reproduction, the nematode Caenorhabditis elegans. Identification of the interactions between sperm membrane proteins will improve our understanding of and ability to characterize defects in sperm function. To identify interacting proteins, we conducted a split-ubiquitin membrane yeast two-hybrid analysis of gene products identified through genetic screens that are necessary for sperm function and predicted to encode transmembrane proteins. Our analysis revealed novel interactions between sperm membrane proteins known to have roles in spermatogenesis, spermiogenesis, and fertilization. For example, we found that a protein known to play a role in sperm function during fertilization, SPE-38 (a predicted four pass transmembrane protein), interacts with proteins necessary for spermiogenesis and spermatogenesis and could serve as a central organizing protein in the plasma membrane. These novel interaction pairings will provide the foundation for investigating previously unrealized membrane protein interactions during spermatogenesis, spermiogenesis, and sperm function during fertilization.
Collapse
Affiliation(s)
| | - Marina Druzhinina
- Waksman Institute, Piscataway, NJ, USA.,Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Andrew Singson
- Waksman Institute, Piscataway, NJ, USA.,Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Kadekar P, Roy R. AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway. PLoS Biol 2019; 17:e3000309. [PMID: 31166944 PMCID: PMC6576793 DOI: 10.1371/journal.pbio.3000309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/17/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023] Open
Abstract
During suboptimal growth conditions, Caenorhabditis elegans larvae undergo a global developmental arrest called "dauer." During this stage, the germline stem cells (GSCs) become quiescent in an AMP-activated Protein Kinase (AMPK)-dependent manner, and in the absence of AMPK, the GSCs overproliferate and lose their reproductive capacity, leading to sterility when mutant animals resume normal growth. These defects correlate with the altered abundance and distribution of a number of chromatin modifications, all of which can be corrected by disabling components of the endogenous small RNA pathway, suggesting that AMPK regulates germ cell integrity by targeting an RNA interference (RNAi)-like pathway during dauer. The expression of AMPK in somatic cells restores all the germline defects, potentially through the transmission of small RNAs. Our findings place AMPK at a pivotal position linking energy stress detected in the soma to a consequent endogenous small RNA-mediated adaptation in germline gene expression, thereby challenging the "permeability" of the Weismann barrier.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Tajima T, Ogawa F, Nakamura S, Hashimoto M, Omote M, Nishimura H. Proteinase K is an activator for the male-dependent spermiogenesis pathway in Caenorhabditis elegans: Its application to pharmacological dissection of spermiogenesis. Genes Cells 2019; 24:244-258. [PMID: 30656805 DOI: 10.1111/gtc.12670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Caenorhabditis elegans spermiogenesis involves spermatid activation into spermatozoa. Activation occurs through either SPE-8 class-dependent or class-independent pathways. Pronase (Pron) activates the SPE-8 class-dependent pathway, whereas no in vitro tools are available to stimulate the SPE-8 class-independent pathway. Thus, whether there is a functional relationship between these two pathways is currently unclear. In this study, we found that proteinase K (ProK) can activate the SPE-8 class-independent pathway. In vitro spermiogenesis assays using Pron and ProK suggested that SPE-8 class proteins act in the hermaphrodite- and male-dependent spermiogenesis pathways and that some spermatid proteins presumably working downstream of spermiogenesis pathways, including MAP kinases, are preferentially involved in the SPE-8 class-dependent pathway. We screened a library of chemicals, and a compound that we named DDI-1 inhibited both Pron- and ProK-induced spermiogenesis. To our surprise, several DDI-1 analogues that are structurally similar to DDI-1 blocked Pron, but not ProK, induced spermiogenesis. Although the mechanism by which DDI-1 blocks spermiogenesis is yet unknown, we have begun to address this issue by selecting two DDI-1-resistant mutants. Collectively, our data support a model in which C. elegans male and hermaphrodite spermiogenesis each has its own distinct, parallel pathway.
Collapse
Affiliation(s)
- Tatsuya Tajima
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| | - Futa Ogawa
- Department of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Shogo Nakamura
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| | - Masaharu Hashimoto
- Department of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Masaaki Omote
- Department of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Setsunan University, Neyagawa, Osaka, Japan
| |
Collapse
|
9
|
Ebbing A, Vértesy Á, Betist MC, Spanjaard B, Junker JP, Berezikov E, van Oudenaarden A, Korswagen HC. Spatial Transcriptomics of C. elegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns. Dev Cell 2018; 47:801-813.e6. [DOI: 10.1016/j.devcel.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
|
10
|
Sarasija S, Norman KR. Role of Presenilin in Mitochondrial Oxidative Stress and Neurodegeneration in Caenorhabditis elegans. Antioxidants (Basel) 2018; 7:antiox7090111. [PMID: 30149498 PMCID: PMC6162450 DOI: 10.3390/antiox7090111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer’s disease (AD) are poised to become a global health crisis, and therefore understanding the mechanisms underlying the pathogenesis is critical for the development of therapeutic strategies. Mutations in genes encoding presenilin (PSEN) occur in most familial Alzheimer’s disease but the role of PSEN in AD is not fully understood. In this review, the potential modes of pathogenesis of AD are discussed, focusing on calcium homeostasis and mitochondrial function. Moreover, research using Caenorhabditis elegans to explore the effects of calcium dysregulation due to presenilin mutations on mitochondrial function, oxidative stress and neurodegeneration is explored.
Collapse
Affiliation(s)
- Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
11
|
Kadekar P, Chaouni R, Clark E, Kazanets A, Roy R. Genome-wide surveys reveal polarity and cytoskeletal regulators mediate LKB1-associated germline stem cell quiescence. BMC Genomics 2018; 19:462. [PMID: 29907081 PMCID: PMC6003023 DOI: 10.1186/s12864-018-4847-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Background Caenorhabditis elegans can endure long periods of environmental stress by altering their development to execute a quiescent state called “dauer”. Previous work has implicated LKB1 - the causative gene in the autosomal dominant, cancer pre-disposing disease called Peutz-Jeghers Syndrome (PJS), and its downstream target AMPK, in the establishment of germline stem cell (GSC) quiescence during the dauer stage. Loss of function mutations in both LKB1/par-4 and AMPK/aak(0) result in untimely GSC proliferation during the onset of the dauer stage, although the molecular mechanism through which these factors regulate quiescence remains unclear. Curiously, the hyperplasia observed in par-4 mutants is more severe than AMPK-compromised dauer larvae, suggesting that par-4 has alternative downstream targets in addition to AMPK to regulate germline quiescence. Results We conducted three genome-wide RNAi screens to identify potential downstream targets of the protein kinases PAR-4 and AMPK that mediate dauer-dependent GSC quiescence. First, we screened to identify genes that phenocopy the par-4-dependent hyperplasia when compromised by RNAi. Two additional RNAi screens were performed to identify genes that suppressed the germline hyperplasia in par-4 and aak(0) dauer larvae, respectively. Interestingly, a subset of the candidates we identified are involved in the regulation of cell polarity and cytoskeletal function downstream of par-4, in an AMPK-independent manner. Moreover, we show that par-4 temporally regulates actin cytoskeletal organization within the dauer germ line at the rachis-adjacent membrane, in an AMPK-independent manner. Conclusion Our data suggest that the regulation of the cytoskeleton and cell polarity may contribute significantly to the tumour suppressor function of LKB1/par-4. Electronic supplementary material The online version of this article (10.1186/s12864-018-4847-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Rita Chaouni
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Emily Clark
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Anna Kazanets
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
12
|
Zhao Y, Tan CH, Krauchunas A, Scharf A, Dietrich N, Warnhoff K, Yuan Z, Druzhinina M, Gu SG, Miao L, Singson A, Ellis RE, Kornfeld K. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes. PLoS Biol 2018; 16:e2005069. [PMID: 29879108 PMCID: PMC5991658 DOI: 10.1371/journal.pbio.2005069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process. Sperm are specialized cells with transcriptionally silent DNA that has been packaged for delivery into the egg. In their final step of development, immature sperm undergo a rapid transition from nonmotile cells to mature, motile sperm capable of fertilization. The signals that trigger this change are not clearly understood. By identifying mutants in the roundworm Caenorhabditis elegans that are defective in sperm activation, we discovered a conserved transmembrane protein, ZIPT-7.1, that transports zinc and promotes sperm activation in both sexes. ZIPT-7.1 is expressed in the germ line and functions there to control sperm activation. When expressed ectopically in mammalian cells, the protein specifically transports zinc across membranes and localizes primarily to membranes within the cell. Previous genetic studies had identified two pathways that mediate sperm activation in C. elegans, and our results suggest that zipt-7.1 acts at the end of one of these two, the spe-8 pathway. We propose that when this pathway triggers sperm activation, it acts through ZIPT-7.1, which mediates the release of zinc from internal stores in the immature sperm. This released zinc functions as a second messenger to promote the differentiation of mature, motile sperm.
Collapse
Affiliation(s)
- Yanmei Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amber Krauchunas
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Marina Druzhinina
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Long Miao
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ronald E. Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America
- * E-mail: (REE); (KK)
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (REE); (KK)
| |
Collapse
|
13
|
Abstract
Zinc is an essential mineral, but our understanding of its uses in the body is limited. Capitalizing on approaches available in the model system Caenorhabditis elegans, Zhao and colleagues show that zinc transduces a signal that induces sperm to become motile. This is an enigmatic process because sperm in all sexually-reproducing animals are transcriptionally inactive. Zinc levels inside sperm are regulated by an evolutionarily conserved zinc transporter called Zrt- and Irt-like Protein Transporter 7.1 (ZIPT-7.1). This zinc transporter localizes to intracellular organelles, suggesting that it primarily controls zinc levels by releasing zinc into the cytoplasm from internal stores rather than importing it from the external environment. The zinc released within cells acts as a messenger in a signaling pathway to promote mobility acquisition. These studies reveal an important role for zinc as an intracellular second messenger that generates physiological changes vital for sperm motility and fertility.
Collapse
Affiliation(s)
- Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
14
|
Ratliff M, Hill-Harfe KL, Gleason EJ, Ling H, Kroft TL, L'Hernault SW. MIB-1 Is Required for Spermatogenesis and Facilitates LIN-12 and GLP-1 Activity in Caenorhabditis elegans. Genetics 2018; 209:173-193. [PMID: 29531012 PMCID: PMC5935030 DOI: 10.1534/genetics.118.300807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Covalent attachment of ubiquitin to substrate proteins changes their function or marks them for proteolysis, and the specificity of ubiquitin attachment is mediated by the numerous E3 ligases encoded by animals. Mind Bomb is an essential E3 ligase during Notch pathway signaling in insects and vertebrates. While Caenorhabditis elegans encodes a Mind Bomb homolog (mib-1), it has never been recovered in the extensive Notch suppressor/enhancer screens that have identified numerous pathway components. Here, we show that C. elegans mib-1 null mutants have a spermatogenesis-defective phenotype that results in a heterogeneous mixture of arrested spermatocytes, defective spermatids, and motility-impaired spermatozoa. mib-1 mutants also have chromosome segregation defects during meiosis, molecular null mutants are intrinsically temperature-sensitive, and many mib-1 spermatids contain large amounts of tubulin. These phenotypic features are similar to the endogenous RNA intereference (RNAi) mutants, but mib-1 mutants do not affect RNAi. MIB-1 protein is expressed throughout the germ line with peak expression in spermatocytes followed by segregation into the residual body during spermatid formation. C. elegans mib-1 expression, while upregulated during spermatogenesis, also occurs somatically, including in vulva precursor cells. Here, we show that mib-1 mutants suppress both lin-12 and glp-1 (C. elegans Notch) gain-of-function mutants, restoring anchor cell formation and a functional vulva to the former and partly restoring oocyte production to the latter. However, suppressed hermaphrodites are only observed when grown at 25°, and they are self-sterile. This probably explains why mib-1 was not previously recovered as a Notch pathway component in suppressor/enhancer selection experiments.
Collapse
Affiliation(s)
- Miriam Ratliff
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Katherine L Hill-Harfe
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322
| | | | - Huiping Ling
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Tim L Kroft
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Steven W L'Hernault
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
15
|
Krauchunas AR, Mendez E, Ni JZ, Druzhinina M, Mulia A, Parry J, Gu SG, Stanfield GM, Singson A. spe-43 is required for sperm activation in C. elegans. Dev Biol 2018; 436:75-83. [PMID: 29477340 DOI: 10.1016/j.ydbio.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
Successful fertilization requires that sperm are activated prior to contacting an oocyte. In C. elegans, this activation process, called spermiogenesis, transforms round immobile spermatids into motile, fertilization-competent spermatozoa. We describe the phenotypic and genetic characterization of spe-43, a new component of the spe-8 pathway, which is required for spermiogenesis in hermaphrodites; spe-43 hermaphrodites are self-sterile, while spe-43 males show wild-type fertility. When exposed to Pronase to activate sperm in vitro, spe-43 spermatids form long rigid spikes radiating outward from the cell periphery instead of forming a motile pseudopod, indicating that spermiogenesis initiates but is not completed. Using a combination of recombinant and deletion mapping and whole genome sequencing, we identified F09E8.1 as spe-43. SPE-43 is predicted to exist in two isoforms; one isoform appears to be a single-pass transmembrane protein while the other is predicted to be a secreted protein. SPE-43 can bind to other known sperm proteins, including SPE-4 and SPE-29, which are known to impact spermiogenesis. In summary, we have identified a membrane protein that is present in C. elegans sperm and is required for sperm activation via the hermaphrodite activation signal.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA.
| | - Ernesto Mendez
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Marina Druzhinina
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| | - Amanda Mulia
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jean Parry
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | | | - Andrew Singson
- Waksman Institute of Microbiology and Department of Genetics, 190 Frelinghuysen Road, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
16
|
Grigorenko AP, Moliaka YK, Plotnikova OV, Smirnov A, Nikishina VA, Goltsov AY, Gusev F, Andreeva TV, Nelson O, Bezprozvanny I, Rogaev EI. Mutational re-modeling of di-aspartyl intramembrane proteases: uncoupling physiologically-relevant activities from those associated with Alzheimer's disease. Oncotarget 2017; 8:82006-82026. [PMID: 29137240 PMCID: PMC5669866 DOI: 10.18632/oncotarget.18299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
The intramembrane proteolytic activities of presenilins (PSEN1/PS1 and PSEN2/PS2) underlie production of β-amyloid, the key process in Alzheimer’s disease (AD). Dysregulation of presenilin-mediated signaling is linked to cancers. Inhibition of the γ-cleavage activities of PSENs that produce Aβ, but not the ε-like cleavage activity that release physiologically essential transcription activators, is a potential approach for the development of rational therapies for AD. In order to identify whether different activities of PSEN1 can be dissociated, we designed multiple mutations in the evolutionary conserved sites of PSEN1. We tested them in vitro and in vivo assays and compared their activities with mutant isoforms of presenilin-related intramembrane di-aspartyl protease (IMPAS1 (IMP1)/signal peptide peptidase (SPP)). PSEN1 auto-cleavage was more resistant to the mutation remodeling than the ε-like proteolysis. PSEN1 with a G382A or a P433A mutation in evolutionary invariant sites retains functionally important APP ε- and Notch S3- cleavage activities, but G382A inhibits APP γ-cleavage and Aβ production and a P433A elevates Aβ. The G382A variant cannot restore the normal cellular ER Ca2+ leak in PSEN1/PSEN2 double knockout cells, but efficiently rescues the loss-of-function (Egl) phenotype of presenilin in C. elegans. We found that, unlike in PSEN1 knockout cells, endoplasmic reticulum (ER) Ca2+ leak is not changed in the absence of IMP1/SPP. IMP1/SPP with the analogous mutations retained efficiency in cleavage of transmembrane substrates and rescued the lethality of Ce-imp-2 knockouts. In summary, our data show that mutations near the active catalytic sites of intramembrane di-aspartyl proteases have different consequences on proteolytic and signaling functions.
Collapse
Affiliation(s)
- Anastasia P Grigorenko
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA.,Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991 Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Youri K Moliaka
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Olga V Plotnikova
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Alexander Smirnov
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Vera A Nikishina
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Andrey Y Goltsov
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991 Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991 Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana V Andreeva
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991 Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Omar Nelson
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA
| | - Evgeny I Rogaev
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA.,Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991 Russia.,Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
17
|
Wang L, Liu Z, Shi H, Liu J. Two Paralogous Tetraspanins TSP-12 and TSP-14 Function with the ADAM10 Metalloprotease SUP-17 to Promote BMP Signaling in Caenorhabditis elegans. PLoS Genet 2017; 13:e1006568. [PMID: 28068334 PMCID: PMC5261805 DOI: 10.1371/journal.pgen.1006568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
The highly conserved bone morphogenetic protein (BMP) signaling pathway regulates many developmental and homeostatic processes. While the core components of the BMP pathway have been well studied, much research is needed for understanding the mechanisms involved in the precise spatiotemporal control of BMP signaling in vivo. Here, we provide evidence that two paralogous and evolutionarily conserved tetraspanins, TSP-12 and TSP-14, function redundantly to promote BMP signaling in C. elegans. We further show that the ADAM10 (adisintegrin and metalloprotease 10) ortholog SUP-17 also functions to promote BMP signaling, and that TSP-12 can bind to and promote the cell surface localization of SUP-17. SUP-17/ADAM10 is known to be involved in the ligand-induced proteolytic processing of the Notch receptor. We have evidence that the function of SUP-17, and of TSP-12/TSP-14 in BMP signaling is independent of their roles in Notch signaling. Furthermore, presenilins, core components of the γ-secretase complex involved in processing Notch, do not appear to play a role in BMP signaling. These studies established a new role of the TSP-12/TSP-14/SUP-17 axis in regulating BMP signaling, in addition to their known function in the Notch signaling pathway. We also provide genetic evidence showing that a known BMP signaling modulator, UNC-40/neogenin/DCC, is one of the substrates of SUP-17/ADAM10 in the BMP signaling pathway. Bone morphogenetic protein (BMP) signaling regulates multiple developmental and homeostatic processes. Misregulation of this pathway can cause various diseases, including cancers. Thus, it is essential to understand how BMP signaling is tightly regulated spatiotemporally in vivo. We have identified a highly conserved ADAM (a disintegrin and metalloprotease) protein, SUP-17/ADAM10, as an important factor in modulating BMP signaling in C. elegans. We showed that the proper localization and function of this ADAM protease require two conserved tetraspanin proteins, TSP-12 and TSP-14. We provided genetic evidence showing that one of the substrates of SUP-17/ADAM10 in the BMP signaling pathway is a known BMP signaling modulator, UNC-40/neogenin/DCC. Our studies established a new role of the TSP-12-TSP-14-SUP-17 axis in regulating BMP signaling, in addition to and independent of their known function in the Notch signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Zhiyu Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Luck AN, Anderson KG, McClung CM, VerBerkmoes NC, Foster JM, Michalski ML, Slatko BE. Tissue-specific transcriptomics and proteomics of a filarial nematode and its Wolbachia endosymbiont. BMC Genomics 2015; 16:920. [PMID: 26559510 PMCID: PMC4642636 DOI: 10.1186/s12864-015-2083-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022] Open
Abstract
Background Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. Methods Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. Results Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. Conclusions The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2083-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley N Luck
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Kathryn G Anderson
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Colleen M McClung
- Chemical Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Nathan C VerBerkmoes
- Chemical Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Jeremy M Foster
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Barton E Slatko
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
19
|
LaMunyon CW, Nasri U, Sullivan NG, Shaw MA, Prajapati G, Christensen M, Elmatari D, Clark JN. A New Player in the Spermiogenesis Pathway of Caenorhabditis elegans. Genetics 2015; 201:1103-16. [PMID: 26333688 PMCID: PMC4649638 DOI: 10.1534/genetics.115.181172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022] Open
Abstract
Precise timing of sperm activation ensures the greatest likelihood of fertilization. Precision in Caenorhabditis elegans sperm activation is ensured by external signaling, which induces the spherical spermatid to reorganize and extend a pseudopod for motility. Spermatid activation, also called spermiogenesis, is prevented from occurring prematurely by the activity of SPE-6 and perhaps other proteins, termed "the brake model." Here, we identify the spe-47 gene from the hc198 mutation that causes premature spermiogenesis. The mutation was isolated in a suppressor screen of spe-27(it132ts), which normally renders worms sterile, due to defective transduction of the activation signal. In a spe-27(+) background, spe-47(hc198) causes a temperature-sensitive reduction of fertility, and in addition to premature spermiogenesis, many mutant sperm fail to activate altogether. The hc198 mutation is semidominant, inducing a more severe loss of fertility than do null alleles generated by CRISPR-associated protein 9 (Cas9) technology. The hc198 mutation affects an major sperm protein (MSP) domain, altering a conserved amino acid residue in a β-strand that mediates MSP-MSP dimerization. Both N- and C-terminal SPE-47 reporters associate with the forming fibrous body (FB)-membranous organelle, a specialized sperm organelle that packages MSP and other components during spermatogenesis. Once the FB is fully formed, the SPE-47 reporters dissociate and disappear. SPE-47 reporter localization is not altered by either the hc198 mutation or a C-terminal truncation deleting the MSP domain. The disappearance of SPE-47 reporters prior to the formation of spermatids requires a reevaluation of the brake model for prevention of premature spermatid activation.
Collapse
Affiliation(s)
- Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Ubaydah Nasri
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Nicholas G Sullivan
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Misa A Shaw
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Matthew Christensen
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Daniel Elmatari
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| | - Jessica N Clark
- Department of Biological Science, California State Polytechnic University, Pomona, California 91768
| |
Collapse
|
20
|
A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 2015; 201:1453-66. [PMID: 26500256 DOI: 10.1534/genetics.115.182808] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria.
Collapse
|
21
|
Chen X, Shen Y, Ellis RE. Dependence of the sperm/oocyte decision on the nucleosome remodeling factor complex was acquired during recent Caenorhabditis briggsae evolution. Mol Biol Evol 2014; 31:2573-85. [PMID: 24987105 PMCID: PMC4166919 DOI: 10.1093/molbev/msu198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT-polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Molecular Biology, Rowan University-SOM Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey
| | - Yongquan Shen
- Department of Molecular Biology, Rowan University-SOM
| | | |
Collapse
|
22
|
Fenker KE, Hansen AA, Chong CA, Jud MC, Duffy BA, Norton JP, Hansen JM, Stanfield GM. SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans. Dev Biol 2014; 393:171-82. [PMID: 24929237 DOI: 10.1016/j.ydbio.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022]
Abstract
Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the ameboid sperm of Caenorhabditis elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals.
Collapse
Affiliation(s)
- Kristin E Fenker
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Angela A Hansen
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Conrad A Chong
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Molly C Jud
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Brittany A Duffy
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - J Paul Norton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Jody M Hansen
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 6110B, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
24
|
Role of posttranslational modifications in C. elegans and ascaris spermatogenesis and sperm function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:215-39. [PMID: 25030766 DOI: 10.1007/978-1-4939-0817-2_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, spermatogenesis and sperm function involve widespread posttranslational modification of regulatory proteins in many different species. Nematode spermatogenesis has been studied in detail, mostly by genetic/molecular genetic techniques in the free-living Caenorhabditis elegans and by biochemistry/cell biology in the pig parasite Ascaris suum. Like other nematodes, both of these species produce sperm that use a form of amoeboid motility termed crawling, and many aspects of spermatogenesis are likely to be similar in both species. Consequently, work in these two nematode species has been largely complementary. Work in C. elegans has identified a number of spermatogenesis-defective genes and, so far, 12 encode enzymes that are implicated as catalysts of posttranslational protein modification. Crawling motility involves extension of a single pseudopod and this process is powered by a unique cytoskeleton composed of Major Sperm Protein (MSP) and accessory proteins, instead of the more widely observed actin. In Ascaris, pseudopod extension and crawling motility can be reconstituted in vitro, and biochemical studies have begun to reveal how posttranslational protein modifications, including phosphorylation, dephosphorylation and proteolysis, participate in these processes.
Collapse
|
25
|
Miersch C, Döring F. Sex differences in body composition, fat storage, and gene expression profile in Caenorhabditis elegans in response to dietary restriction. Physiol Genomics 2013; 45:539-51. [PMID: 23715261 DOI: 10.1152/physiolgenomics.00007.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The metabolic and health-promoting effects of dietary restriction (DR) have been extensively studied in several species. The response to DR with respect to sex is essentially unknown. To address this question, we used the model organism Caenorhabditis elegans to analyze body composition and gene expression in males and hermaphrodites in response to DR. Unexpectedly, DR increased the fat-to-fat-free mass ratio and enlarged lipid droplets in both sexes to a similar extent. These effects were linked to a downregulation of the lipase-like 5 (lipl-5) gene in both sexes at two developmental stages. By contrast, the reductions in body size, protein content, and total RNA content in response to DR were more pronounced in hermaphrodites than in males. Functional enrichment analysis of gene expression data showed a DR-induced downregulation of several embryogenesis-associated genes concomitant with an ongoing expression of sperm-associated genes in hermaphrodites. In conclusion, DR increases fat stores in both sexes of C. elegans in the form of large and possibly lipolysis-resistant lipid droplets and markedly alters the reproductive program in hermaphrodites but not in males.
Collapse
Affiliation(s)
- Claudia Miersch
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Germany
| | | |
Collapse
|
26
|
Liau WS, Nasri U, Elmatari D, Rothman J, LaMunyon CW. Premature sperm activation and defective spermatogenesis caused by loss of spe-46 function in Caenorhabditis elegans. PLoS One 2013; 8:e57266. [PMID: 23483899 PMCID: PMC3590197 DOI: 10.1371/journal.pone.0057266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/21/2013] [Indexed: 12/05/2022] Open
Abstract
Given limited resources for motility, sperm cell activation must be precisely timed to ensure the greatest likelihood of fertilization. Like those of most species, the sperm of C. elegans become active only after encountering an external signaling molecule. Activation coincides with spermiogenesis, the final step in spermatogenesis, when the spherical spermatid undergoes wholesale reorganization to produce a pseudopod. Here, we describe a gene involved in sperm activation, spe-46. This gene was identified in a suppressor screen of spe-27(it132ts), a sperm-expressed gene whose product functions in the transduction of the spermatid activation signal. While spe-27(it132ts) worms are sterile at 25°C, the spe-46(hc197)I; spe-27(it132ts)IV double mutants regain partial fertility. Single nucleotide polymorphism mapping, whole genome sequencing, and transformation rescue were employed to identify the spe-46 coding sequence. It encodes a protein with seven predicted transmembrane domains but with no other predicted functional domains or homology outside of nematodes. Expression is limited to spermatogenic tissue, and a transcriptional GFP fusion shows expression corresponds with the onset of the pachytene stage of meiosis. The spe-46(hc197) mutation bypasses the need for the activation signal; mutant sperm activate prematurely without an activation signal in males, and mutant males are sterile. In an otherwise wild-type genome, the spe-46(hc197) mutation induces a sperm defective phenotype. In addition to premature activation, spe-46(hc197) sperm exhibit numerous defects including aneuploidy, vacuolization, protruding spikes, and precocious fusion of membranous organelles. Hemizygous worms [spe-46(hc197)/mnDf111] are effectively sterile. Thus, spe-46 appears to be involved in the regulation of spermatid activation during spermiogenesis, with the null phenotype being an absence of functional sperm and hypomorphic phenotypes being premature spermatid activation and numerous sperm cell defects.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Ubaydah Nasri
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Daniel Elmatari
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Jason Rothman
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
| | - Craig W. LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Ma X, Zhao Y, Sun W, Shimabukuro K, Miao L. Transformation: how do nematode sperm become activated and crawl? Protein Cell 2012; 3:755-61. [PMID: 22903434 PMCID: PMC4875351 DOI: 10.1007/s13238-012-2936-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/09/2012] [Indexed: 01/16/2023] Open
Abstract
Nematode sperm undergo a drastic physiological change during spermiogenesis (sperm activation). Unlike mammalian flagellated sperm, nematode sperm are amoeboid cells and their motility is driven by the dynamics of a cytoskeleton composed of major sperm protein (MSP) rather than actin found in other crawling cells. This review focuses on sperm from Caenorhabditis elegans and Ascaris suum to address the roles of external and internal factors that trigger sperm activation and power sperm motility. Nematode sperm can be activated in vitro by several factors, including Pronase and ionophores, and in vivo through the TRY-5 and SPE-8 pathways. Moreover, protease and protease inhibitors are crucial regulators of sperm maturation. MSP-based sperm motility involves a coupled process of protrusion and retraction, both of which have been reconstituted in vitro. Sperm motility is mediated by phosphorylation signals, as illustrated by identification of several key components (MPOP, MFPs and MPAK) in Ascaris and the characterization of GSP-3/4 in C. elegans.
Collapse
Affiliation(s)
- Xuan Ma
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Sun
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, Ube National College of Technology, Ube, Yamaguchi, 755-8555 Japan
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
29
|
Developmental genetics of secretory vesicle acidification during Caenorhabditis elegans spermatogenesis. Genetics 2012; 191:477-91. [PMID: 22446317 DOI: 10.1534/genetics.112.139618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Secretory vesicles are used during spermatogenesis to deliver proteins to the cell surface. In Caenorhabditis elegans, secretory membranous organelles (MO) fuse with the plasma membrane to transform spermatids into fertilization-competent spermatozoa. We show that, like the acrosomal vesicle of mammalian sperm, MOs undergo acidification during development. Treatment of spermatids with the V-ATPase inhibitor bafilomycin blocks both MO acidification and formation of functional spermatozoa. There are several spermatogenesis-defective mutants that cause defects in MO morphogenesis, including spe-5. We determined that spe-5, which is on chromosome I, encodes one of two V-ATPase B paralogous subunits. The spe-5 null mutant is viable but sterile because it forms arrested, multi-nucleate spermatocytes. Immunofluorescence with a SPE-5-specific monoclonal antibody shows that SPE-5 expression begins in spermatocytes and is found in all subsequent stages of spermatogenesis. Most SPE-5 is discarded into the residual body during spermatid budding, but a small amount remains in budded spermatids where it localizes to MOs as a discrete dot. The other V-ATPase B subunit is encoded by vha-12, which is located on the X chromosome. Usually, spe-5 mutants are self-sterile in a wild-type vha-12 background. However, an extrachromosomal transgene containing wild-type vha-12 driven by its own promoter allows spe-5 mutant hermaphrodites to produce progeny, indicating that VHA-12 can at least partially substitute for SPE-5. Others have shown that the X chromosome is transcriptionally silent in the male germline, so expression of the autosomally located spe-5 gene ensures that a V-ATPase B subunit is present during spermatogenesis.
Collapse
|
30
|
Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin). Proc Natl Acad Sci U S A 2012; 109:1542-7. [PMID: 22307610 DOI: 10.1073/pnas.1109912109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activation) and we showed that As_SRP-1 has two major functions. First, As_SRP-1 functions in cis to support major sperm protein (MSP)-based cytoskeletal assembly in the spermatid that releases it, thereby facilitating sperm motility acquisition. Second, As_SRP-1 released from an activated sperm inhibits, in trans, the activation of surrounding spermatids by inhibiting vas deferens-derived As_TRY-5, a trypsin-like serine protease necessary for sperm activation. Because vesicular exocytosis is necessary to create fertilization-competent sperm in many animal species, components released during this process might be more important modulators of the physiology and behavior of surrounding sperm than was previously appreciated.
Collapse
|
31
|
Morsci NS, Haas LA, Barr MM. Sperm status regulates sexual attraction in Caenorhabditis elegans. Genetics 2011; 189:1341-6. [PMID: 21968192 PMCID: PMC3241412 DOI: 10.1534/genetics.111.133603] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022] Open
Abstract
Mating behavior of animals is regulated by the sensory stimuli provided by the other sex. Sexually receptive females emit mating signals that can be inhibited by male ejaculate. The genetic mechanisms controlling the release of mating signals and encoding behavioral responses remain enigmatic. Here we present evidence of a Caenorhabditis elegans hermaphrodite-derived cue that stimulates male mating-response behavior and is dynamically regulated by her reproductive status. Wild-type males preferentially mated with older hermaphrodites. Increased sex appeal of older hermaphrodites was potent enough to stimulate robust response from mating-deficient pkd-2 and lov-1 polycystin mutant males. This enhanced response of pkd-2 males toward older hermaphrodites was independent of short-chain ascaroside pheromones, but was contingent on the absence of active sperm in the hermaphrodites. The improved pkd-2 male response toward spermless hermaphrodites was blocked by prior insemination or by genetic ablation of the ceh-18-dependent sperm-sensing pathway of the hermaphrodite somatic gonad. Our work suggests an interaction between sperm and the soma that has a negative but reversible effect on a hermaphrodite-derived mating cue that regulates male mating response, a phenomenon to date attributed to gonochoristic species only.
Collapse
Affiliation(s)
- Natalia S Morsci
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
32
|
Shakes DC, Neva BJ, Huynh H, Chaudhuri J, Pires-daSilva A. Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat Commun 2011; 2:157. [PMID: 21245838 PMCID: PMC5885250 DOI: 10.1038/ncomms1160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/08/2010] [Indexed: 11/08/2022] Open
Abstract
Although Mendel's first law predicts that crosses between XY (or XO) males and XX females should yield equal numbers of males and females, individuals in a wide variety of metazoans transmit their sex chromosomes unequally and produce broods with highly skewed sex ratios. Here, we report two modifications to the cellular programme of spermatogenesis, which, in combination, help to explain why males of the free-living nematode species Rhabditis sp. SB347 sire <5% male progeny. First, the spermatogenesis programme involves a modified meiosis in which chromatids of the unpaired X chromosome separate prematurely, in meiosis I. Second, during anaphase II, cellular components essential for sperm motility are partitioned almost exclusively to the X-bearing sperm. Our studies reveal a novel cellular mechanism for the differential transmission of X-bearing sperm and suggest Rhabditis sp. SB347 as a useful model for studying sex chromosome drive and the evolution of new mating systems.
Collapse
Affiliation(s)
- Diane C. Shakes
- Department of Biology, College of William and Mary, Williamsburg, VA, 23187
| | - Bryan J. Neva
- Department of Biology, College of William and Mary, Williamsburg, VA, 23187
| | - Henry Huynh
- University of Texas at Arlington, Arlington, TX, 76019
| | | | | |
Collapse
|
33
|
Heilig EA, Xia W, Shen J, Kelleher RJ. A presenilin-1 mutation identified in familial Alzheimer disease with cotton wool plaques causes a nearly complete loss of gamma-secretase activity. J Biol Chem 2010; 285:22350-9. [PMID: 20460383 DOI: 10.1074/jbc.m110.116962] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit gamma-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by gamma-secretase produces beta-amyloid peptides (Abeta40 and Abeta42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on gamma-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of gamma-secretase activity, including >90% reductions in the generation of Abeta40, Abeta42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of gamma-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Abeta40, Abeta42, and the APP and Notch intracellular domains. These results argue against overproduction of Abeta42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function.
Collapse
Affiliation(s)
- Elizabeth A Heilig
- Center for Human Genetic Research and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
34
|
Nishimura H, L'Hernault SW. Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev Dyn 2010; 239:1502-14. [PMID: 20419782 PMCID: PMC3270325 DOI: 10.1002/dvdy.22271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In most species, each sex produces gametes, usually either sperm or oocytes, from its germline during gametogenesis. The sperm and oocyte subsequently fuse together during fertilization to create the next generation. This review focuses on spermatogenesis and the roles of sperm during fertilization in the nematode Caenorhabditis elegans, where suitable mutants are readily obtained. So far, 186 mutants defective in the C. elegans male germline functions have been isolated, and many of these mutations are alleles for one of the approximately 60 spermatogenesis-defective (spe) genes. Many cloned spe genes are expressed specifically in the male germline, where they play roles during spermatogenesis (spermatid production), spermiogenesis (spermatid activation into spermatozoa), and/or fertilization. Moreover, several spe genes are orthologs of mammalian genes, suggesting that the reproductive processes of the C. elegans and the mammalian male germlines might share common pathways at the molecular level.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
35
|
Ewald CY, Li C. Understanding the molecular basis of Alzheimer's disease using a Caenorhabditis elegans model system. Brain Struct Funct 2010; 214:263-83. [PMID: 20012092 PMCID: PMC3902020 DOI: 10.1007/s00429-009-0235-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/17/2009] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the United States. At the cellular level, the brains of AD patients are characterized by extracellular dense plaques and intracellular neurofibrillary tangles whose major components are the beta-amyloid peptide and tau, respectively. The beta-amyloid peptide is a cleavage product of the amyloid precursor protein (APP); mutations in APP have been correlated with a small number of cases of familial Alzheimer's disease. APP is the canonical member of the APP family, whose functions remain unclear. The nematode Caenorhabditis elegans, one of the premier genetic workhorses, is being used in a variety of ways to address the functions of APP and determine how the beta-amyloid peptide and tau can induce toxicity. First, the function of the C. elegans APP-related gene, apl-1, is being examined. Although different organisms may use APP and related proteins, such as APL-1, in different functional contexts, the pathways in which they function and the molecules with which they interact are usually conserved. Second, components of the gamma-secretase complex and their respective functions are being revealed through genetic analyses in C. elegans. Third, to address questions of toxicity, onset of degeneration, and protective mechanisms, different human beta-amyloid peptide and tau variants are being introduced into C. elegans and the resultant transgenic lines examined. Here, we summarize how a simple system such as C. elegans can be used as a model to understand APP function and suppression of beta-amyloid peptide and tau toxicity in higher organisms.
Collapse
Affiliation(s)
- Collin Y. Ewald
- Graduate Center and Department of Biology, City College of the City University of New York, MR526, 160 Convent Avenue, New York, NY 10031, USA
| | - Chris Li
- Graduate Center and Department of Biology, City College of the City University of New York, MR526, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
36
|
Gosney R, Liau WS, LaMunyon CW. A novel function for the presenilin family member spe-4: inhibition of spermatid activation in Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2008; 8:44. [PMID: 18430247 PMCID: PMC2383881 DOI: 10.1186/1471-213x-8-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/22/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sperm cells must regulate the timing and location of activation to maximize the likelihood of fertilization. Sperm from most species, including the nematode Caenorhabditis elegans, activate upon encountering an external signal. Activation for C. elegans sperm occurs as spermatids undergo spermiogenesis, a profound cellular reorganization that produces a pseudopod. Spermiogenesis is initiated by an activation signal that is transduced through a series of gene products. It is now clear that an inhibitory pathway also operates in spermatids, preventing their premature progression to spermatozoa and resulting in fine-scale control over the timing of activation. Here, we describe the involvement of a newly assigned member of the inhibitory pathway: spe-4, a homolog of the human presenilin gene PS1. The spe-4(hc196) allele investigated here was isolated as a suppressor of sterility of mutations in the spermiogenesis signal transduction gene spe-27. RESULTS Through mapping, complementation tests, DNA sequencing, and transformation rescue, we determined that allele hc196 is a mutation in the spe-4 gene. Our data show that spe-4(hc196) is a bypass suppressor that eliminates the need for the spermiogenesis signal transduction. On its own, spe-4(hc196) has a recessive, temperature sensitive spermatogenesis-defective phenotype, with mutants exhibiting (i) defective spermatocytes, (ii) defective spermatids, (iii) premature spermatid activation, and (iv) spermatozoa defective in fertilization, in addition to a small number of functional sperm which appear normal microscopically. CONCLUSION A fraction of the sperm from spe-4(hc196) mutant males progress directly to functional spermatozoa without the need for an activation signal, suggesting that spe-4 plays a role in preventing spermatid activation. Another fraction of spermatozoa from spe-4(hc196) mutants are defective in fertilization. Therefore, prematurely activated spermatozoa may have several defects: we show that they may be defective in fertilization, and earlier work showed that they obstruct sperm transfer from males at mating. hc196 is a hypomorphic allele of spe-4, and its newly-discovered role inhibiting spermiogenesis may involve known proteolytic and/or calcium regulatory aspects of presenilin function, or it may involve yet-to-be discovered functions.
Collapse
Affiliation(s)
- Ryoko Gosney
- Department of Biological Science, California State Polytechnic University, Pomona, CA, USA
| | - Wei-Siang Liau
- Department of Biological Science, California State Polytechnic University, Pomona, CA, USA
| | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
37
|
Ford DL, Monteiro MJ. Studies of the role of ubiquitination in the interaction of ubiquilin with the loop and carboxyl terminal regions of presenilin-2. Biochemistry 2007; 46:8827-37. [PMID: 17614368 PMCID: PMC2547082 DOI: 10.1021/bi700604q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquilin was originally identified as a presenilin-interacting protein. We previously reported that ubiquilin interacts with both the loop and carboxyl terminus of presenilin proteins and that the ubiquitin-associated (UBA) domain of ubiquilin, which binds poly ubiquitin chains, is important for mediating this interaction. In the present study, we examined whether ubiquitination of presenilin-2 (PS2) is required for interaction with ubiquilin-1 by mutating lysine residues that may be targets for ubiquitination in the presenilin loop and carboxyl terminus regions. Mutation of two lysine residues in the PS2-loop region suggested that ubiquitination is not required for interaction with ubiquilin-1 and may, in fact, even negatively regulate the interaction. Similarly, we found that ubiquitination of the PS2 carboxyl terminus (PS2-C-terminus) is not required for interaction with ubiquilin-1, although our results suggest that it could play some role. Instead, we found that the mutation of either one of the two lysine residues in the carboxyl terminus of PS2 or the proline residues in the highly conserved PALP motif in this region results in destabilization of the mutant PS2 polypeptides because of increased degradation by the proteasome. Furthermore, by GST-pull-down assays we found that the mutant polypeptides were unable to bind ubiquilin, suggesting that loss of ubiquilin interaction leads to destabilization of presenilin polypeptides. Paradoxically, however, knockdown of ubiquilin expression by RNA interference did not alter the rate of turnover of PS2 proteins in cells. Instead, we found that PS2 synthesis was reduced, and PS2 fragment production was increased, suggesting that ubiquilin expression modulates biogenesis and endoproteolysis of presenilin proteins.
Collapse
Affiliation(s)
- Diana L. Ford
- Medical Biotechnology Center, Program in Neurodegenerative Diseases, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
- Biochemistry and Molecular Biology Graduate Program, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
| | - Mervyn J. Monteiro
- Medical Biotechnology Center, Program in Neurodegenerative Diseases, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
- Biochemistry and Molecular Biology Graduate Program, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201
| |
Collapse
|
38
|
Newman M, Musgrave IF, Musgrave FI, Lardelli M. Alzheimer disease: amyloidogenesis, the presenilins and animal models. Biochim Biophys Acta Mol Basis Dis 2006; 1772:285-97. [PMID: 17208417 DOI: 10.1016/j.bbadis.2006.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/06/2006] [Accepted: 12/05/2006] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease is the most prevalent form of dementia. Neuropathogenesis is proposed to be a result of the accumulation of amyloid beta peptides in the brain together with oxidative stress mechanisms and neuroinflammation. The presenilin proteins are central to the gamma-secretase cleavage of the amyloid prescursor protein (APP), releasing the amyloid beta peptide. Point mutations in the presenilin genes lead to cases of familial Alzheimer's disease by increasing APP cleavage resulting in excess amyloid beta formation. This review discusses the molecular mechanism of Alzheimer's disease with a focus on the presenilin genes. Alternative splicing of transcripts from these genes and how these may function in several disease states is discussed. There is an emphasis on the importance of animal models in elucidating the molecular mechanisms behind the development of Alzheimer's disease and how the zebrafish, Danio rerio, can be used as a model organism for analysis of presenilin function and Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- M Newman
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
39
|
Washington NL, Ward S. FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 2006; 119:2552-62. [PMID: 16735442 DOI: 10.1242/jcs.02980] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FER-1 is required for fusion of specialized vesicles, called membranous organelles, with the sperm plasma membrane during Caenorhabditis elegans spermiogenesis. To investigate its role in membranous organelle fusion, we examined ten fer-1 mutations and found that they all cause the same defect in membrane fusion. FER-1 and the ferlin protein family are membrane proteins with four to seven C2 domains. These domains commonly mediate Ca2+ -dependent lipid-processing events. Most of the fer-1 mutations fall within these C2 domains, showing that they have distinct, non-redundant functions. We found that membranous organelle fusion requires intracellular Ca2+ and that C2 domain mutations alter Ca2+ sensitivity. This suggests that the C2 domains are involved in Ca2+ sensing and further supports their independent function. Using two immunological approaches we found three FER-1 isoforms, two of which might arise from FER-1 by proteolysis. By both light and electron microscopy, these FER-1 proteins were found to be localized to membranous organelle membranes. Dysferlin, a human homologue of FER-1 involved in muscular dystrophy, is required for vesicle fusion during Ca2+ -induced muscle membrane repair. Our results suggest that the ferlin family members share a conserved mechanism to regulate cell-type-specific membrane fusion.
Collapse
Affiliation(s)
- Nicole L Washington
- Department of Molecular and Cellular Biology, The University of Arizona, 1007 E. Lowell Street, Life Sciences South 452, Tucson, AZ, 85721, USA
| | | |
Collapse
|
40
|
Geldziler B, Chatterjee I, Kadandale P, Putiri E, Patel R, Singson A. A comparative study of sperm morphology, cytology and activation in Caenorhabditis elegans, Caenorhabditis remanei and Caenorhabditis briggsae. Dev Genes Evol 2006; 216:198-208. [PMID: 16389557 DOI: 10.1007/s00427-005-0045-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Studies of sterile mutants in Caenorhabditis elegans have uncovered new insights into fundamental aspects of gamete cell biology, development, and function at fertilization. The genome sequences of C. elegans, Caenorhabditis briggsae and Caenorhabditis remanei allow for informative comparative studies among these three species. Towards that end, we have examined wild-type sperm morphology and activation (spermiogenesis) in each. Light and electron microscopy studies reveal that general sperm morphology, organization, and ultrastructure are similar in all three species, and activation techniques developed for C. elegans were found to work well in both C. briggsae and C. remanei. Despite important differences in the reproductive mode between C. remanei and the other two species, most genes required for spermiogenesis are conserved in all three. Finally, we have also examined the subcellular distribution of sperm epitopes in C. briggsae and C. remanei that cross-react with anti-sera directed against C. elegans sperm proteins. The baseline data in this study will prove useful for the future analysis and interpretation of sperm gene function across nematode species.
Collapse
Affiliation(s)
- Brian Geldziler
- Department of Genetics, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
41
|
Mahoney MB, Parks AL, Ruddy DA, Tiong SYK, Esengil H, Phan AC, Philandrinos P, Winter CG, Chatterjee R, Huppert K, Fisher WW, L'Archeveque L, Mapa FA, Woo W, Ellis MC, Curtis D. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers. Genetics 2006; 172:2309-24. [PMID: 16415372 PMCID: PMC1456381 DOI: 10.1534/genetics.104.035170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.
Collapse
|
42
|
Narbonne P, Roy R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 2006; 133:611-9. [PMID: 16407400 DOI: 10.1242/dev.02232] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In C. elegans, reduced insulin-like signalling induces developmental quiescence, reproductive delay and lifespan extension. We show here that the C. elegans orthologues of LKB1 and AMPK cooperate during conditions of reduced insulin-like signalling to establish cell cycle quiescence in the germline stem cell population, in addition to prolonging lifespan. The inactivation of either protein causes aberrant germline proliferation during diapause-like ;dauer' development, whereas the loss of AMPK uncouples developmental arrest from lifespan extension. Reduced TGF-beta activity also triggers developmental quiescence independent of the insulin-like pathway. Our data suggest that these two signalling pathways converge on the C. elegans PTEN orthologue to coordinate germline proliferation with somatic development during dauer formation, via the regulation of AMPK and its upstream activator LKB1, rather than through the canonical insulin-like signalling cascade. In humans, germline mutations in TGF-beta family members, PTEN or LKB1 result in related tumour-predisposing syndromes. Our findings establish a developmental relationship that may underscore their shared, characteristic aetiology.
Collapse
Affiliation(s)
- Patrick Narbonne
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montréal, Québec H3A 1B1, Canada
| | | |
Collapse
|
43
|
Gleason EJ, Lindsey WC, Kroft TL, Singson AW, L'hernault SW. spe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/Golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis. Genetics 2006; 172:145-58. [PMID: 16143610 PMCID: PMC1456142 DOI: 10.1534/genetics.105.047340] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/17/2005] [Indexed: 11/18/2022] Open
Abstract
C. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB-MO derivatives. In this article, we show that spe-10 encodes a four-pass integral membrane protein that has a DHHC-CRD zinc-finger motif. The DHHC-CRD motif is found in a large, diverse family of proteins that have been implicated in palmitoyl transfer during protein lipidation. Seven spe-10 mutants were analyzed, including missense, nonsense, and deletion mutants. An antiserum to SPE-10 showed significant colocalization with a known marker for the FB-MOs during wild-type spermatogenesis. In contrast, the spe-10(ok1149) deletion mutant lacked detectable SPE-10 staining; this mutant lacks a spe-10 promoter and most coding sequence. The spe-10(eb64) missense mutation, which changes a conserved residue within the DHHC-CRD domain in all homologues, behaves as a null mutant. These results suggest that wild-type SPE-10 is required for the MO to properly deliver the FB to the C. elegans spermatid and the DHHC-CRD domain is essential for this function.
Collapse
|
44
|
Kroft TL, Gleason EJ, L'Hernault SW. The spe-42 gene is required for sperm–egg interactions during C. elegans fertilization and encodes a sperm-specific transmembrane protein. Dev Biol 2005; 286:169-81. [PMID: 16120437 DOI: 10.1016/j.ydbio.2005.07.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 11/15/2022]
Abstract
Fertilization, the union of sperm and egg to form a new organism, is a critical process that bridges generations. Although the cytological and physiological aspects of fertilization are relatively well understood, little is known about the molecular interactions that occur between gametes. C. elegans has emerged as a powerful system for the identification of genes that are necessary for fertilization. C. elegans spe-42 mutants are sterile, producing cytologically normal spermatozoa that fail to fertilize oocytes. Indeed, male mating behavior, sperm transfer to hermaphrodites, sperm migration to the spermatheca, which is the site of fertilization and sperm competition are normal in spe-42 mutants. spe-42 mutant sperm make direct contact with oocytes in the spermatheca, suggesting that SPE-42 plays a role during sperm-egg interactions just prior to fertilization. No other obvious defects were observed in spe-42 mutant worms. Cloning and sequence analysis revealed that SPE-42 is a novel predicted 7-pass integral membrane protein with homologs in many metazoan species, suggesting that its mechanism of action could be conserved.
Collapse
Affiliation(s)
- Tim L Kroft
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
45
|
Abstract
The intensely studied model organisms Caenorhabditis elegans and Drosophila melanogaster have been employed to study a number of neurodegenerative diseases, including Alzheimer's disease (AD). Although worms and flies are phylogenetically distant from humans, results of both classic genetic analyses and transgenic manipulation of these invertebrates suggest they are valid models for at least some aspects of AD. This review describes the rationale for AD-relevant studies in worms and flies and discusses both what has been learned from these studies and what may be discovered in the future.
Collapse
Affiliation(s)
- C D Link
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
46
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized pathologically by the accumulation of beta-amyloid (Abeta) plaques and neurofibrillary tangles in the brain. Genetic studies of AD first highlighted the importance of the presenilins (PS). Subsequent functional studies have demonstrated that PS form the catalytic subunit of the gamma-secretase complex that produces the Abeta peptide, confirming the central role of PS in AD biology. Here, we review the studies that have characterized PS function in the gamma-secretase complex in Caenorhabditis elegans, mice and in in vitro cell culture systems, including studies of PS structure, PS interactions with substrates and other gamma-secretase complex members, and the evidence supporting the hypothesis that PS are aspartyl proteases that are active in intramembranous proteolysis. A thorough knowledge of the mechanism of PS cleavage in the context of the gamma-secretase complex will further our understanding of the molecular mechanisms that cause AD, and may allow the development of therapeutics that can alter Abeta production and modify the risk for AD.
Collapse
Affiliation(s)
- A L Brunkan
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63100, USA
| | | |
Collapse
|
47
|
La Bella V, Liguori M, Cittadella R, Settipani N, Piccoli T, Manna I, Quattrone A, Piccoli F. A novel mutation (Thr116Ile) in the presenilin 1 gene in a patient with early-onset Alzheimer's disease. Eur J Neurol 2004; 11:521-4. [PMID: 15272895 DOI: 10.1111/j.1468-1331.2004.00828.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a novel presenilin 1 (PSN1) mutation (Thr116Ile) in a woman with early onset Alzheimer's disease (AD). This mutation was not found in 100 healthy controls, indicating that this is not a common polymorphism. The patient presented with forgetfulness at age 45, followed over the next 3 years by a worsening of the memory loss and frequent episodes of confusion and spatial disorientation. Neuroimaging studies were consistent with AD. The analysis of the family's pedigree showed that the proband was apparently the only member affected. Because the early death of several close relatives (i.e. the mother and the grandmother) and the demonstration that the father is not a mutation carrier, it is suggested that either a de novo mutation or a censor effect might have occurred. Our finding supports the indication that PSN1 mutations should be searched for in early-onset AD, particularly when a censor effect precludes a precise genetic analysis.
Collapse
Affiliation(s)
- V La Bella
- Institute of Neuropsychiatry, University of Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Putiri E, Zannoni S, Kadandale P, Singson A. Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Caenorhabditis elegans. Dev Biol 2004; 272:448-59. [PMID: 15282160 DOI: 10.1016/j.ydbio.2004.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/12/2004] [Accepted: 05/14/2004] [Indexed: 01/23/2023]
Abstract
The spe-9 gene is required for fertility in Caenorhabditis elegans and encodes a sperm transmembrane protein with an extracellular domain (ECD) that contains 10 epidermal growth factor (EGF) repeats. Deletion analysis reveals that the EGF repeats and the transmembrane domain are required for fertilization. In contrast, the cytoplasmic region of SPE-9 is not essential for fertilization. Individual point mutations in all 10 EGF motifs uncover a differential sensitivity of these sequences to alteration. Some EGF repeats cannot tolerate mutation leading to a complete lack of fertility. Other EGF repeats can be mutated to create animals with temperature-sensitive (ts) fertility phenotypes. All ts mutations were generated by changing either conserved cysteine or glycine residues in the EGF motifs. For two endogenous ts alleles of spe-9, loss of function at nonpermissive temperatures is not due to protein mislocalization or degradation. Additionally, the proper localization of SPE-9 in sperm is not altered in a genetically interacting fertility mutant (spe-13) or a mutant that affects sperm vesicle-plasma membrane fusion (fer-1). Like the EGF repeats in the Notch/LIN-12/GLP-1 receptors and their ligands, the EGF repeats in SPE-9 may carry out different functions. Because EGF motifs are found in many proteins in different species, similar experimental strategies could be used to generate useful temperature-sensitive mutations in other EGF motif-containing molecules.
Collapse
Affiliation(s)
- Emily Putiri
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
49
|
Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Caenorhabditis elegans. Dev Biol 2004. [DOI: 10.1016/j.ydbio.2004.05.014 s0012160604003586[pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Wang J, Brunkan AL, Hecimovic S, Walker E, Goate A. Conserved “PAL” sequence in presenilins is essential for γ-secretase activity, but not required for formation or stabilization of γ-secretase complexes. Neurobiol Dis 2004; 15:654-66. [PMID: 15056474 DOI: 10.1016/j.nbd.2003.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 11/13/2003] [Accepted: 12/09/2003] [Indexed: 11/21/2022] Open
Abstract
Generation of A beta from the beta-amyloid precursor protein (APP) requires a series of proteolytic processes, including an intramembranous cleavage catalyzed by an aspartyl protease, gamma-secretase. Two aspartates in presenilins (PS) are required for gamma-secretase activity (D257 and D385 of PS1), suggesting that PS may be part of this protease. Little is known concerning the importance of other sequences in PS for activity. We introduced point mutations (P433L, A434D, L435R) into a completely conserved region C-terminal to transmembrane domain eight of PS1. The P433L mutation abolished PS1 endoproteolysis as well as gamma-secretase cleavage of APP and Notch in PS1/2 K/O cells. In HEK cells, expression of PS1/P433L reduced A beta production and caused accumulation of APP C-terminal stubs. When the P433L mutation was introduced into the non-cleavable Delta exon 9 (Delta E9) variant of PS1, it abolished gamma-secretase cleavage of APP and Notch. The P433L holoprotein is stable and incorporated into the high molecular weight gamma-secretase complex, arguing that P433 is not necessary for formation or stabilization of the gamma-secretase complex. Other non-conservative mutations in the invariant P(433)A(434)L(435) sequence also result in a phenotype that is indistinguishable from the aspartate mutants, suggesting a direct involvement of this sequence in gamma-secretase activity.
Collapse
Affiliation(s)
- Jun Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|