1
|
Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). Int J Mol Sci 2017; 18:ijms18071379. [PMID: 28665301 PMCID: PMC5535872 DOI: 10.3390/ijms18071379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets.
Collapse
|
2
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
3
|
Abstract
The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Richard E Cheney
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
4
|
Sanborn KB, Mace EM, Rak GD, Difeo A, Martignetti JA, Pecci A, Bussel JB, Favier R, Orange JS. Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity. Blood 2011; 118:5862-71. [PMID: 22123909 PMCID: PMC3228501 DOI: 10.1182/blood-2011-03-344846] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/29/2011] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that provide critical defense against virally infected and transformed cells. NK-cell cytotoxicity requires the formation of an F-actin rich immunologic synapse (IS), as well as the polarization of perforin-containing lytic granules to the IS and secretion of their contents at the IS. It was reported previously that NK-cell cytotoxicity requires nonmuscle myosin IIA function and that granule-associated myosin IIA mediates the interaction of granules with F-actin at the IS. In the present study, we evaluate the nature of the association of myosin IIA with lytic granules. Using NK cells from patients with mutations in myosin IIA, we found that the nonhelical tailpiece is required for NK-cell cytotoxicity and for the phosphorylation of granule-associated myosin IIA. Ultra-resolution imaging techniques demonstrated that single myosin IIA molecules associate with NK-cell lytic granules via the nonhelical tailpiece. Phosphorylation of myosin IIA at residue serine 1943 (S1943) in the tailpiece is needed for this linkage. This defines a novel mechanism for myosin II function, in which myosin IIA can act as a single-molecule actin motor, claiming granules as cargo through tail-dependent phosphorylation for the execution of a pre-final step in human NK-cell cytotoxicity.
Collapse
MESH Headings
- Cell Line
- Cytoplasmic Granules/metabolism
- Cytotoxicity, Immunologic/physiology
- Hearing Loss/genetics
- Hearing Loss/immunology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/immunology
- Humans
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/physiology
- Lymphocyte Activation/physiology
- Molecular Motor Proteins/chemistry
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Mutation, Missense/physiology
- Myosin Heavy Chains/chemistry
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosin-Light-Chain Kinase/metabolism
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/immunology
- Nonmuscle Myosin Type IIA/chemistry
- Nonmuscle Myosin Type IIA/genetics
- Nonmuscle Myosin Type IIA/metabolism
- Phosphorylation/physiology
- Protein Binding
- Protein Structure, Tertiary
- Thrombocytopenia/genetics
- Thrombocytopenia/immunology
Collapse
Affiliation(s)
- Keri B Sanborn
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Proteomics approach to study the functions of Drosophila myosin VI through identification of multiple cargo-binding proteins. Proc Natl Acad Sci U S A 2011; 108:5566-71. [PMID: 21368190 DOI: 10.1073/pnas.1101415108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin VI is a molecular motor implicated in many processes, and it likely associates with a variety of cargoes that specify its functions. Although it is critical to Drosophila development, little is known about its cellular roles. To reveal its involvement in specific pathways, we sought to identify the binding partners of Drosophila myosin VI. We used affinity chromatography and mass spectrometry to discover interacting proteins, which we tested for direct binding. Using this approach, we found that the microtubule-associated protein Cornetto bound myosin VI, and we demonstrated a role for both in secretion of the lipidated morphogen Hedgehog. We also identified a number of other binding proteins, and further characterization of their interactions with myosin VI will advance our understanding of the roles of these complexes in cellular and developmental processes. Thus, our method has provided us the means to gain valuable insight into the multifaceted roles of a motor protein in vivo.
Collapse
|
6
|
Characterization and localization of dynein and myosins V and VI in the ovaries of queen bees. Cell Biol Int 2011; 34:1041-7. [PMID: 20486900 DOI: 10.1042/cbi20090370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved.
Collapse
|
7
|
Abstract
There is now increasing evidence that myosin motor proteins, together with the dynamic actin filament machinery and associated adhesion proteins, play crucial roles in the events leading to motility at the leading edge of migrating cells. Myosins exist as a large superfamily of diverse ATP-dependent motors, and in the present review, we focus on the unique minus-end-directed myosin VI, briefly discussing its potential functions in cell motility.
Collapse
Affiliation(s)
- Margarita V Chibalina
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, UK
| | | | | | | |
Collapse
|
8
|
Sanborn KB, Rak GD, Maru SY, Demers K, Difeo A, Martignetti JA, Betts MR, Favier R, Banerjee PP, Orange JS. Myosin IIA associates with NK cell lytic granules to enable their interaction with F-actin and function at the immunological synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6969-84. [PMID: 19454694 PMCID: PMC2835774 DOI: 10.4049/jimmunol.0804337] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell cytotoxicity requires the formation of an actin-rich immunological synapse (IS) with a target cell and the polarization of perforin-containing lytic granules toward the IS. Following the polarization of lytic granules, they traverse through the actin-rich IS to join the NK cell membrane in order for directed secretion of their contents to occur. We examined the role of myosin IIA as a candidate for facilitating this prefinal step in lytic NK cell IS function. Lytic granules in and derived from a human NK cell line, or ex vivo human NK cells, were constitutively associated with myosin IIA. When isolated using density gradients, myosin IIA-associated NK cell lytic granules directly bound to F-actin and the interaction was sensitive to the presence of ATP under conditions of flow. In NK cells from patients with a truncation mutation in myosin IIA, NK cell cytotoxicity, lytic granule penetration into F-actin at the IS, and interaction of isolated granules with F-actin were all decreased. Similarly, inhibition of myosin function also diminished the penetration of lytic granules into F-actin at the IS, as well as the final approach of lytic granules to and their dynamics at the IS. Thus, NK cell lytic granule-associated myosin IIA enables their interaction with actin and final transit through the actin-rich IS to the synaptic membrane, and can be defective in the context of naturally occurring human myosin IIA mutation.
Collapse
Affiliation(s)
- Keri B. Sanborn
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA, USA 19104
| | - Gregory D. Rak
- Cell Biology and Physiology Graduate Program, University of Pennsylvania School of Medicine, Philadelphia, PA, USA 19104
| | - Saumya Y. Maru
- Joseph Stokes Jr. Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, USA 19104
| | - Korey Demers
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Analisa Difeo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA 10029
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA 10029
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Rémi Favier
- Assistance Publique-Hôpitaux de Paris, CRPP, Armand Trousseau Children’s Hospital, 75012; Inserm U790, 94100, Villejuif, France
| | - Pinaki P. Banerjee
- Joseph Stokes Jr. Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, USA 19104
| | - Jordan S. Orange
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA, USA 19104
- Cell Biology and Physiology Graduate Program, University of Pennsylvania School of Medicine, Philadelphia, PA, USA 19104
| |
Collapse
|
9
|
Genetic characterization of the Drosophila jaguar322 mutant reveals that complete myosin VI loss of function is not lethal. Genetics 2008; 179:711-6. [PMID: 18493084 DOI: 10.1534/genetics.107.085969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin VI is an actin-based motor that has been implicated in many cellular processes. Studies in vertebrates have demonstrated that animals lacking this ubiquitously expressed myosin are viable. However in Drosophila, myosin VI loss of function has been thought to be lethal. We show here that complete loss of myosin VI is not lethal in flies and that the previously reported lethality of the null mutation (jar322) is most likely due to deletion of a neighboring gene. Maternally provided myosin VI does not account for the survival of myosin VI null animals. Mutant animals are recovered at a lower than expected Mendelian frequency, suggesting that myosin VI participates in processes which contribute to normal development, but its participation is not essential.
Collapse
|
10
|
McGurk L, Pathirana S, Rothwell K, Trimbuch T, Colombini P, Yu F, Chia W, Bownes M. The RGS gene loco is essential for male reproductive system differentiation in Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2008; 8:37. [PMID: 18387173 PMCID: PMC2324087 DOI: 10.1186/1471-213x-8-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/03/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The loco gene encodes several different isoforms of a regulator of G-protein signalling. These different isoforms of LOCO are part of a pathway enabling cells to respond to external signals. LOCO is known to be required at various developmental stages including neuroblast division, glial cell formation and oogenesis. Less is known about LOCO and its involvement in male development therefore to gain further insight into the role of LOCO in development we carried out a genetic screen and analysed males with reduced fertility. RESULTS We identified a number of lethal loco mutants and four semi-lethal lines, which generate males with reduced fertility. We have identified a fifth loco transcript and show that it is differentially expressed in developing pupae. We have characterised the expression pattern of all loco transcripts during pupal development in the adult testes, both in wild type and loco mutant strains. In addition we also show that there are various G-protein alpha subunits expressed in the testis all of which may be potential binding partners of LOCO. CONCLUSION We propose that the male sterility in the new loco mutants result from a failure of accurate morphogenesis of the adult reproductive system during metamorphosis, we propose that this is due to a loss of expression of loco c3. Thus, we conclude that specific isoforms of loco are required for the differentiation of the male gonad and genital disc.
Collapse
Affiliation(s)
- Leeanne McGurk
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Robida MD, Rahn A, Singh R. Genome-wide identification of alternatively spliced mRNA targets of specific RNA-binding proteins. PLoS One 2007; 2:e520. [PMID: 17565373 PMCID: PMC1885218 DOI: 10.1371/journal.pone.0000520] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
Background Alternative splicing plays an important role in generating molecular and functional diversity in multi-cellular organisms. RNA binding proteins play crucial roles in modulating splice site choice. The majority of known binding sites for regulatory proteins are short, degenerate consensus sequences that occur frequently throughout the genome. This poses an important challenge to distinguish between functionally relevant sequences and a vast array of those occurring by chance. Methodology/Principal Findings Here we have used a computational approach that combines a series of biological constraints to identify uridine-rich sequence motifs that are present within relevant biological contexts and thus are potential targets of the Drosophila master sex-switch protein Sex-lethal (SXL). This strategy led to the identification of one novel target. Moreover, our systematic analysis provides a starting point for the molecular and functional characterization of an additional target, which is dependent on SXL activity, either directly or indirectly, for regulation in a germline-specific manner. Conclusions/Significance This approach has successfully identified previously known, new, and potential SXL targets. Our analysis suggests that only a subset of potential SXL sites are regulated by SXL. Finally, this approach should be directly relevant to the large majority of splicing regulatory proteins for which bonafide targets are unknown.
Collapse
Affiliation(s)
- Mark D. Robida
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Andrew Rahn
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Millo H, Bownes M. The expression pattern and cellular localisation of Myosin VI during the Drosophila melanogaster life cycle. Gene Expr Patterns 2006; 7:501-10. [PMID: 17185045 DOI: 10.1016/j.modgep.2006.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/19/2006] [Indexed: 11/25/2022]
Abstract
Myosin VI is a motor protein which is necessary for the morphogenesis of epithelial tissues during Drosophila development. The spatial and temporal expression of Myosin VI was examined by expressing a GFP (Green Fluorescent Protein) tagged Myosin VI molecule (PGM), under the control of a Myosin VI-Gal4 line. PGM was present in tissues that were shown previously to express Myosin VI, such as the ovarian follicle epithelium, and the individualization complex; and in other tissues, including the trachea, the midgut, the salivary glands and the imaginal discs. The GFP-tagged Myosin V1 rescued the male sterile phenotype of Jaguar showing it is functional in vivo. Within individual cells, the role of the head and neck domain and the tail domain in targeting of the Myosin V1 molecule was examined by investigating the localisation of the separate domains tagged to GFP. In salivary glands and follicle cells the head and neck domains were concentrated in the cell nucleus, where the minus end of each actin filament is located. We found that the tail domain anchors the whole molecule outside of the nucleus. Similarly, in the individualization complex in the testes, the tail anchors the whole molecule to the base of the complex while the separated head with neck domain becomes scattered along the entire actin molecule suggesting the cellular location may be determined by cargo proteins that bind to the tail domain rather than by the movement of Myosin VI along the actin filaments.
Collapse
Affiliation(s)
- Hadas Millo
- Department of Anatomy and Developmental Biology, Anatomy Building, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
13
|
McGurk L, Tzolovsky G, Spears N, Bownes M. The temporal and spatial expression pattern of Myosin Va, Vb and VI in the mouse ovary. Gene Expr Patterns 2006; 6:900-7. [PMID: 16713372 DOI: 10.1016/j.modgep.2006.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/23/2006] [Accepted: 03/02/2006] [Indexed: 11/23/2022]
Abstract
There are 16 classes of unconventional myosins. Class V myosins have been shown to be involved in transporting cargo to and from the cell periphery. Class VI myosins have also been shown to transport cargo from the cell periphery, although it seems that these proteins have many roles which include the mediation of cell migration and stereocillia stabilisation. With the requirement of myosin VI for Drosophila oogenesis, the localised expression of Myosin V in the developing egg chamber and recent mounting evidence which links myosin VI to the migration of human ovarian cancer cell lines, we wanted to investigate the expression pattern of these two myosin classes in the normal mouse ovary. Here we show that these myosins are expressed, localised and regulated within the oocyte and granulosa cells of the developing mouse follicle.
Collapse
Affiliation(s)
- Leeanne McGurk
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom.
| | | | | | | |
Collapse
|
14
|
Slack C, Somers WG, Sousa-Nunes R, Chia W, Overton PM. A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions. BMC Genet 2006; 7:33. [PMID: 16749923 PMCID: PMC1523195 DOI: 10.1186/1471-2156-7-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 06/02/2006] [Indexed: 12/29/2022] Open
Abstract
Background The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter protein Miranda are asymmetrically localized to the basal cortex of the dividing neuroblast and segregated into the GMC upon cytokinesis. Previous screens to identify components of the asymmetric division machinery have concentrated on embryonic phenotypes. However, such screens are reaching saturation and are limited in that the maternal contribution of many genes can mask the effects of zygotic loss of function, and other approaches will be necessary to identify further genes involved in neuroblast asymmetric division. Results We have performed a genetic screen in the third instar larval brain using the basal localization of Miranda as a marker for neuroblast asymmetry. In addition to the examination of pupal lethal mutations, we have employed the MARCM (Mosaic Analysis with a Repressible Cell Marker) system to generate postembryonic clones of mutations with an early lethal phase. We have screened a total of 2,300 mutagenized chromosomes and isolated alleles affecting cell fate, the localization of basal determinants or the orientation of the mitotic spindle. We have also identified a number of complementation groups exhibiting defects in cell cycle progression and cytokinesis, including both novel genes and new alleles of known components of these processes. Conclusion We have identified four mutations which affect the process of neuroblast asymmetric division. One of these, mapping to the imaginal discs arrested locus, suggests a novel role for the anaphase promoting complex/cyclosome (APC/C) in the targeting of determinants to the basal cortex. The identification and analysis of the remaining mutations will further advance our understanding of the process of asymmetric cell division. We have also isolated a number of mutations affecting cell division which will complement the functional genomics approaches to this process being employed by other laboratories. Taken together, these results demonstrate the value of mosaic screens in the identification of genes involved in neuroblast division.
Collapse
Affiliation(s)
- Cathy Slack
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK (current address)
- MRC Centre for Developmental Neurobiology, King's College London, UK
| | - W Gregory Somers
- Temasek Lifesciences Laboratory, The National University of Singapore, 117604, Singapore
- MRC Centre for Developmental Neurobiology, King's College London, UK
| | - Rita Sousa-Nunes
- Temasek Lifesciences Laboratory, The National University of Singapore, 117604, Singapore
- MRC Centre for Developmental Neurobiology, King's College London, UK
| | - William Chia
- Temasek Lifesciences Laboratory, The National University of Singapore, 117604, Singapore
- MRC Centre for Developmental Neurobiology, King's College London, UK
| | - Paul M Overton
- MRC Centre for Developmental Neurobiology, King's College London, UK
| |
Collapse
|
15
|
Wang X, Bo J, Bridges T, Dugan KD, Pan TC, Chodosh LA, Montell DJ. Analysis of Cell Migration Using Whole-Genome Expression Profiling of Migratory Cells in the Drosophila Ovary. Dev Cell 2006; 10:483-95. [PMID: 16580993 DOI: 10.1016/j.devcel.2006.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/11/2005] [Accepted: 02/07/2006] [Indexed: 01/14/2023]
Abstract
Cell migration contributes to normal development and homeostasis as well as to pathological processes such as inflammation and tumor metastasis. Previous genetic screens have revealed signaling pathways that govern follicle cell migrations in the Drosophila ovary, but few downstream targets of the critical transcriptional regulators have been identified. To characterize the gene expression profile of two migratory cell populations and identify Slbo targets, we purified border cells and centripetal cells expressing the mouse CD8 antigen and carried out whole-genome microarray analysis. Genes predicted to control actin dynamics and the endocytic and secretory pathways were overrepresented in the migratory cell transcriptome. Mutations in five genes, including ttk, failed to complement previously isolated mutations that cause cell migration defects in mosaic clones. Functional analysis revealed a role for the Notch-activating protease Kuzbanian in border cell migration and identified Tie as a guidance receptor for the border cells.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Papadia S, Tzolovsky G, Zhao D, Leaper K, Clyde D, Taylor P, Asscher E, Kirk G, Bownes M. emc has a role in dorsal appendage fate formation in Drosophila oogenesis. Mech Dev 2005; 122:961-74. [PMID: 16026970 DOI: 10.1016/j.mod.2005.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/26/2005] [Accepted: 05/05/2005] [Indexed: 11/22/2022]
Abstract
extramacrochaetae (emc) functions during many developmental processes in Drosophila, such as sensory organ formation, sex determination, wing vein differentiation, regulation of eye photoreceptor differentiation, cell proliferation and development of the Malpighian tubules, trachea and muscles in the embryo. It encodes a Helix-Loop-Helix transcription factor that negatively regulates bHLH proteins. We show here that emc mRNA and protein are present throughout oogenesis in a dynamic expression pattern and that emc is involved in the regulation of chorionic appendage formation during late oogenesis. Expression of sense and antisense emc constructs as well as emc follicle cell clones leads to eggs with shorter, thicker dorsal appendages that are closer together at base than in the wild type. We demonstrate that emc lies downstream of fs(1)K10, gurken and EGFR in the Grk/EGFR signalling pathway and that it participates in controlling Broad-Complex expression at late stages of oogenesis.
Collapse
Affiliation(s)
- Sofia Papadia
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Myosin motor proteins use the energy derived from ATP hydrolysis to move cargo along actin tracks. Myosin VI, unlike almost all other myosins, moves toward the minus end of actin filaments and functions in a variety of intracellular processes such as vesicular membrane traffic, cell migration, and mitosis. These diverse roles of myosin VI are mediated by interaction with a number of different binding partners present in multi-protein complexes. Myosin VI can work in vitro as a processive dimeric motor and as a nonprocessive monomeric motor, each with a large working stroke. The possibility that both monomeric and dimeric forms of myosin VI operate in the cell may represent an important regulatory mechanism for controlling the multiple steps in transport pathways where nonprocessive and processive motors are required.
Collapse
Affiliation(s)
- Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom.
| | | | | |
Collapse
|
18
|
Stewart MJ, Nordquist EK. Drosophila Bys is nuclear and shows dynamic tissue-specific expression during development. Dev Genes Evol 2005; 215:97-102. [PMID: 15580530 DOI: 10.1007/s00427-004-0447-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 10/24/2004] [Indexed: 10/26/2022]
Abstract
Although the bys-like family of genes has been conserved from yeast to humans, it is not apparent to what extent the function of Bys-like proteins has been conserved across phylogenetic groups. Human Bystin is thought to function in a novel cell adhesion complex involved in embryo implantation. The product of the yeast bys-like gene, Enp1, is nuclear and has a role in pre-ribosomal RNA (pre-rRNA) splicing and ribosome biogenesis. To gain insight into the function of the Drosophila melanogaster bys-like family member, termed bys, we examined bys mRNA expression and the localization of Bys protein. In embryos, bys mRNA is expressed in a tissue-specific pattern during gastrulation. In the larval wing imaginal disc, bys mRNA is expressed in the ventral and dorsal regions of the wing pouch, regions that give rise to epithelia that adhere to one another after the wing disc everts. The bys mRNA expression patterns could be interpreted as being consistent with a role for Bys in events requiring cell-cell interactions. However, embryonic bys mRNA expression patterns mirror those of genes that are potential targets of the growth regulator Myc and encode nucleolar proteins implicated in cell growth. Additionally, in Schneider line 2 (S2) cells, an epitope-tagged Bys protein is localized to the nucleus, suggesting that Drosophila Bys function may be conserved with that of yeast Enp1.
Collapse
Affiliation(s)
- Mary J Stewart
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA.
| | | |
Collapse
|
19
|
Millo H, Leaper K, Lazou V, Bownes M. Myosin VI plays a role in cell–cell adhesion during epithelial morphogenesis. Mech Dev 2004; 121:1335-51. [PMID: 15454264 DOI: 10.1016/j.mod.2004.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/08/2004] [Accepted: 06/09/2004] [Indexed: 11/21/2022]
Abstract
Myosin VI is an unconventional Myosin that has been implicated in vesicle transport and membrane trafficking. We isolated lethal mutants of Myosin VI, which lack protein once maternal supplies have been utilised during embryogenesis. Dorsal closure, where there is a ring of Myosin VI at the edge of the migrating epithelial sheet, is often abnormal. The sheet of migrating cells is irregular, rather than a smooth epithelium and cells begin to detach. Some embryos hatch into larvae, containing detached cells loose in the haemolymph. Myosin VI is crucial for correct cell morphology and maintenance of adhesive cellular contacts within epithelial cell layers.
Collapse
Affiliation(s)
- Hadas Millo
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
20
|
Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, Avraham KB, Nicolson T. Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol 2004; 272:328-38. [PMID: 15282151 DOI: 10.1016/j.ydbio.2004.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/30/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.
Collapse
Affiliation(s)
- Christoph Seiler
- Max-Planck-Institut fur Entwicklungsbiologie, 72076 Tubingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee SJ, Montell C. Light-dependent translocation of visual arrestin regulated by the NINAC myosin III. Neuron 2004; 43:95-103. [PMID: 15233920 DOI: 10.1016/j.neuron.2004.06.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/03/2004] [Accepted: 06/02/2004] [Indexed: 11/16/2022]
Abstract
The rhodopsin regulatory protein, visual arrestin, undergoes light-dependent trafficking in mammalian and Drosophila photoreceptor cells, though the mechanisms underlying these movements are poorly understood. In Drosophila, the movement of the visual arrestin, Arr2, functions in long-term adaptation and is dependent on interaction with phosphoinositides (PIs). However, the basis for the requirement for PIs for light-dependent shuttling was unclear. Here, we demonstrated that the dynamic trafficking of Arr2 into the phototransducing compartment, the rhabdomere, required the eye-enriched myosin III, NINAC. We showed that defects in ninaC resulted in a long-term adaptation phenotype similar to that which occurred in arr2 mutants. The interaction between Arr2 and NINAC was PI dependent and NINAC bound directly to PIs. These data demonstrate that the light-dependent translocation of Arr2 into the rhabdomeres requires PI-mediated interactions between Arr2 and the NINAC myosin III.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Hudson AM, Cooley L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu Rev Genet 2003; 36:455-88. [PMID: 12429700 DOI: 10.1146/annurev.genet.36.052802.114101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of our knowledge of the actin cytoskeleton has been derived from biochemical and cell biological approaches, through which actin-binding proteins have been identified and their in vitro interactions with actin have been characterized. The study of actin-binding proteins (ABPs) in genetic model systems has become increasingly important for validating and extending our understanding of how these proteins function. New ABPs have been identified through genetic screens, and genetic results have informed the interpretation of in vitro experiments. In this review, we describe the molecular and ultrastructural characteristics of the actin cytoskeleton in the Drosophila ovary, and discuss recent genetic analyses of actin-binding proteins that are required for oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Departments of Genetics Yale University School of Medicine, P.O. Box 208005, New Haven, Connecticut 06520-8005, USA.
| | | |
Collapse
|
23
|
Petritsch C, Tavosanis G, Turck CW, Jan LY, Jan YN. The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 2003; 4:273-81. [PMID: 12586070 DOI: 10.1016/s1534-5807(03)00020-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asymmetric cell divisions generate cellular diversity. In Drosophila, embryonic neuroblasts target cell fate determinants basally, rotate their spindles by 90 degrees to align with the apical-basal axis, and divide asymmetrically in a stem cell-like fashion. In this process, apically localized Bazooka recruits Inscuteable and other proteins to form an apical complex, which then specifies spindle orientation and basal localization of the cell fate determinants and their adapter proteins such as Miranda. Here we report that Miranda localization requires the unconventional myosin VI Jaguar (Jar). In jar null mutant embryos, Miranda is delocalized and the spindle is misoriented, but the Inscuteable crescent remains apical. Miranda directly binds to Jar, raising the possibility that Miranda and its associated proteins are translocated basally by this actin-based motor. Our studies demonstrate that a class VI myosin is necessary for basal protein targeting and spindle orientation in neuroblasts.
Collapse
Affiliation(s)
- Claudia Petritsch
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The actin cytoskeleton and associated myosin motor proteins are essential for the transport and steady-state localization of vesicles and organelles and for the dynamic remodeling of the plasma membrane as well as for the maintenance of differentiated cell-surface structures. Myosin VI may be expected to have unique cellular functions, because it moves, unlike almost all other myosins, towards the minus end of actin filaments. Localization and functional studies indicate that myosin VI plays a role in a variety of different intracellular processes, such as endocytosis and secretion as well as cell migration. These diverse functions of myosin VI are mediated by interaction with a range of different binding partners.
Collapse
Affiliation(s)
- Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
25
|
Geisbrecht ER, Montell DJ. Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 2002; 4:616-20. [PMID: 12134162 DOI: 10.1038/ncb830] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myosin VI (MyoVI) is a pointed-end-directed, actin-based motor protein, and mutations in the gene result in disorganization of hair cell stereocilia and cause deafness in mice. MyoVI also localizes to the leading edges of growth-factor-stimulated fibroblast cells and has been suggested to be involved in cell motility. There has been no direct test of this hypothesis, however. Drosophila melanogaster MyoVI is expressed in a small group of migratory follicle cells, known as border cells. Here we show that depletion of MyoVI specifically from border cells severely inhibited their migration. Similar to MyoVI, E-cadherin is required for border cell migration. We found that E-cadherin and Armadillo (Arm, Drosophila beta-catenin) protein levels were specifically reduced in cells lacking MyoVI, whereas other proteins were not. In addition, MyoVI protein levels were reduced in cells lacking DE-cadherin or Arm. MyoVI and Arm co-immunoprecipitated from ovarian protein extracts. These data suggest that MyoVI is required for border cell migration where it stabilizes E-cadherin and Arm. Mutations in MyoVIIA, another unconventional myosin protein, also lead to deafness, and MyoVIIA interacts with E-cadherin through a membrane protein called vezatin. Multiple biochemical mechanisms may exist, therefore, for cadherins to associate with diverse unconventional myosins that are required for normal stereocilium formation or maintenance.
Collapse
Affiliation(s)
- Erika R Geisbrecht
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
26
|
Tzolovsky G, Millo H, Pathirana S, Wood T, Bownes M. Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol Biol Evol 2002; 19:1041-52. [PMID: 12082124 DOI: 10.1093/oxfordjournals.molbev.a004163] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.
Collapse
Affiliation(s)
- George Tzolovsky
- Institute of Cell and Molecular Biology, University of Edinburgh
| | | | | | | | | |
Collapse
|
27
|
Biemesderfer D, Mentone SA, Mooseker M, Hasson T. Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules. Am J Physiol Renal Physiol 2002; 282:F785-94. [PMID: 11934687 DOI: 10.1152/ajprenal.00287.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin VI is a reverse-direction molecular motor implicated in membrane transport events. Because myosin VI is most highly expressed in the kidney, we investigated its renal localization by using high-resolution immunocytochemical and biochemical methods. Indirect immunofluorescence microscopy revealed myosin VI at the base of the brush border in proximal tubule cells. Horseradish peroxidase uptake studies, which labeled endosomes, and double staining for clathrin adapter protein-2 showed that myosin VI was closely associated with the intermicrovillar (IMV) coated-pit region of the brush border. Localization of myosin VI to the IMV region was confirmed at the electron microscopic level by colloidal gold labeling of ultrathin cryosections. In addition, antigen retrieval demonstrated a small but significant pool of myosin VI on the microvilli. To confirm the association of myosin VI with the IMV compartment, these membranes were separated from other membrane compartments by using 15-25% OptiPrep density gradients. Immunoblotting of the gradient fractions confirmed that myosin VI was enriched with markers for the IMV microdomain of the brush border, suggesting that myosin VI associates with proteins in this compartment. Finally, we examined the expression of myosin VI during nephron development. We found myosin VI present in a diffuse cytoplasmic pattern at stage II (S-shaped body phase) and that it was only redistributed fully to the brush border in the stage IV nephron. These studies support a model for myosin VI function in the endocytic process of the proximal tubule.
Collapse
Affiliation(s)
- Daniel Biemesderfer
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut 06520-8029, USA.
| | | | | | | |
Collapse
|
28
|
Pathirana S, Zhao D, Bownes M. The Drosophila RGS protein Loco is required for dorsal/ventral axis formation of the egg and embryo, and nurse cell dumping. Mech Dev 2001; 109:137-50. [PMID: 11731228 DOI: 10.1016/s0925-4773(01)00557-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The loco gene encodes members of a family of RGS proteins responsible for the negative regulation of G-protein signalling. At least two transcripts of loco are expressed in oogenesis, loco-c2 is observed in the anterior-dorsal follicle cells and is downstream of the epidermal growth factor receptor signalling pathway, initiated in the oocyte. loco-c3 is a new transcript of loco, which is expressed in the nurse cells from stage 6 onwards. Analysis of newly generated mutants and antisense technology enabled us to establish that disrupting loco in follicle cells results in ventralized eggs, while disrupting loco in nurse cells results in short eggs, due to defective dumping of the nurse cell cytoplasm into the oocyte.
Collapse
Affiliation(s)
- S Pathirana
- Institute of Cell and Molecular Biology, University of Edinburgh, EH9 3JR, Edinburgh, UK
| | | | | |
Collapse
|
29
|
Abstract
The integrity of the actin cytoskeleton and associated motor proteins are essential for the efficient functioning of clathrin mediated endocytosis at least in polarised cells. Myosin VI, the only motor protein so far identified that moves towards the minus end of actin filaments, is the first motor protein to be shown to associate with clathrin coated pits/vesicles at the plasma membrane and to modulate clathrin mediated endocytosis. Recent kinetic studies suggest that myosin VI may move processively along actin filaments providing clues about its functions in the cell. The possible role(s) of myosin VI in the sequential steps involved in receptor mediated endocytosis are discussed.
Collapse
Affiliation(s)
- F Buss
- Department of Clinical Biochemistry, University of Cambridge, UK.
| | | | | |
Collapse
|
30
|
Zhao D, Clyde D, Bownes M. Expression of fringe is down regulated by Gurken/Epidermal Growth Factor Receptor signalling and is required for the morphogenesis of ovarian follicle cells. J Cell Sci 2000; 113 Pt 21:3781-94. [PMID: 11034906 DOI: 10.1242/jcs.113.21.3781] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signalling by the Gurken/Epidermal Growth Factor Receptor (Grk/EGFR) pathway is involved in epithelial cell fate decision, morphogenesis and axis establishment in Drosophila oogenesis. In the search for genes downstream of the Grk/EGFR signal transduction pathway (STP), we isolated a number of genes that are components of other STPs. One of them is a known gene, called fringe (fng). Drosophila fng encodes a putative secreted protein that is required at other development stages for mediating interactions between dorsal and ventral cells via Notch signalling. Here we show that fng has a dynamic expression pattern in oogenesis and that its expression in specific groups of follicle cells along the anterior-posterior and dorsal-ventral axes is defined by the repression of fng by Grk. Interfering with fng expression using antisense RNA experiments resulted in a typical fng mutant phenotype in the wing, and malformed egg chambers and abnormal organisation of the follicle cells in the ovaries, revealing that fng is essential in oogenesis for the proper formation of the egg chamber and for epithelial morphogenesis. This has been confirmed by re-examination of fng mutants and analysis of fng mutant clones in oogenesis.
Collapse
Affiliation(s)
- D Zhao
- The University of Edinburgh, Institute of Cell and Molecular Biology, Darwin Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
31
|
Cramer LP. Myosin VI: roles for a minus end-directed actin motor in cells. J Cell Biol 2000; 150:F121-6. [PMID: 10995456 PMCID: PMC2150707 DOI: 10.1083/jcb.150.6.f121] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 08/16/2000] [Indexed: 11/22/2022] Open
Affiliation(s)
- L P Cramer
- MRC-Laboratory Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
32
|
Abstract
Members of the myosin superfamily of actin-based motor proteins were previously thought to move only towards the barbed end of the actin filament. In an extraordinary reversal of this dogma, an abundant and widespread unconventional myosin known as myosin VI has recently been shown to move towards the pointed end of the actin filament - the opposite direction of all other characterized myosins. This discovery raises novel and intriguing questions about the molecular mechanisms of reversal and the biological roles of this 'backwards' myosin.
Collapse
Affiliation(s)
- O C Rodriguez
- Dept of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
33
|
Hicks JL, Deng WM, Rogat AD, Miller KG, Bownes M. Class VI unconventional myosin is required for spermatogenesis in Drosophila. Mol Biol Cell 1999; 10:4341-53. [PMID: 10588662 PMCID: PMC25762 DOI: 10.1091/mbc.10.12.4341] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified partial loss of function mutations in class VI unconventional myosin, 95F myosin, which results in male sterility. During spermatogenesis the germ line precursor cells undergo mitosis and meiosis to form a bundle of 64 spermatids. The spermatids remain interconnected by cytoplasmic bridges until individualization. The process of individualization involves the formation of a complex of cytoskeletal proteins and membrane, the individualization complex (IC), around the spermatid nuclei. This complex traverses the length of each spermatid resolving the shared membrane into a single membrane enclosing each spermatid. We have determined that 95F myosin is a component of the IC whose function is essential for individualization. In wild-type testes, 95F myosin localizes to the leading edge of the IC. Two independent mutations in 95F myosin reduce the amount of 95F myosin in only a subset of tissues, including the testes. This reduction of 95F myosin causes male sterility as a result of defects in spermatid individualization. Germ line transformation with the 95F myosin heavy chain cDNA rescues the male sterility phenotype. IC movement is aberrant in these 95F myosin mutants, indicating a critical role for 95F myosin in IC movement. This report is the first identification of a component of the IC other than actin. We propose that 95F myosin is a motor that participates in membrane reorganization during individualization.
Collapse
Affiliation(s)
- J L Hicks
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|