1
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Bahn MS, Ko YG. PROM1-mediated cell signal transduction in cancer stem cells and hepatocytes. BMB Rep 2023; 56:65-70. [PMID: 36617467 PMCID: PMC9978360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Prominin-1 (PROM1), also called CD133, is a penta-span transmembrane protein that is localized in membrane protrusions, such as microvilli and filopodia. It is known to be expressed in cancer stem cells and various progenitor cells of bone marrow, liver, kidney, and intestine. Accumulating evidence has revealed that PROM1 has multiple functions in various organs, such as eye, tooth, peripheral nerve, and liver, associating with various molecular protein partners. PROM1 regulates PKA-induced gluconeogenesis, TGFβ-induced fibrosis, and IL-6-induced regeneration in the liver, associating with Radixin, SMAD7, and GP130, respectively. In addition, PROM1 is necessary to maintain cancer stem cell properties by activating PI3K and β-Catenin. PROM1-deficienct mice also show distinct phenotypes in eyes, brain, peripheral nerves, and tooth. Here, we discuss recent findings of PROM1-mediated signal transduction. [BMB Reports 2023; 56(2): 65-70].
Collapse
Affiliation(s)
- Myeong-Suk Bahn
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Central role of Prominin-1 in lipid rafts during liver regeneration. Nat Commun 2022; 13:6219. [PMID: 36266314 PMCID: PMC9585078 DOI: 10.1038/s41467-022-33969-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Prominin-1, a lipid raft protein, is required for maintaining cancer stem cell properties in hepatocarcinoma cell lines, but its physiological roles in the liver have not been well studied. Here, we investigate the role of Prominin-1 in lipid rafts during liver regeneration and show that expression of Prominin-1 increases after 2/3 partial hepatectomy or CCl4 injection. Hepatocyte proliferation and liver regeneration are attenuated in liver-specific Prominin-1 knockout mice compared to wild-type mice. Detailed mechanistic studies reveal that Prominin-1 interacts with the interleukin-6 signal transducer glycoprotein 130, confining it to lipid rafts so that STAT3 signaling by IL-6 is effectively activated. The overexpression of the glycosylphosphatidylinsositol-anchored first extracellular domain of Prominin-1, which is the domain that binds to GP130, rescued the proliferation of hepatocytes and liver regeneration in liver-specific Prominin-1 knockout mice. In summary, Prominin-1 is upregulated in hepatocytes during liver regeneration where it recruits GP130 into lipid rafts and activates the IL6-GP130-STAT3 axis, suggesting that Prominin-1 might be a promising target for therapeutic applications in liver transplantation.
Collapse
|
4
|
Matalkah F, Rhodes S, Ramamurthy V, Stoilov P. The mAB 13A4 monoclonal antibody to the mouse PROM1 protein recognizes a structural epitope. PLoS One 2022; 17:e0274958. [PMID: 36215230 PMCID: PMC9550058 DOI: 10.1371/journal.pone.0274958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
PROM1 (CD133, AC133) is a protein that is required for the maintenance of primary cilia. Mutation in the Prom1 gene in humans and animal models are associated with several forms of retinal degeneration. mAB 13A4 is the main reagent used to detect the mouse PROM1 protein. We endeavored to map the epitope of the rat monoclonal antibody mAB 13A4 to the mouse PROM1 protein. Deletion mutagenesis demonstrated that mAB 13A4 recognizes a structural epitope that is stabilized by two of the extracellular domains of PROM1. Furthermore, the affinity of mAB 13A4 to the major PROM1 isoform in photoreceptor cells is significantly reduced due to the inclusion of a photoreceptor-specific alternative exon in the third extracellular domain. Interestingly, a deletion in the photoreceptor specific isoform of six amino acids adjacent to the alternative exon restored the affinity of mAB 13A4 to PROM1. The results of the mutagenesis are consistent with the computationally predicted helical bundle structure of PROM1 and point to the utility of mAB 13A4 for evaluating the effect of mutations on the PROM1 structure. Our results show that the PROM1 isoform composition needs to be considered when interpreting tissue and developmental expression data produced by mAB 13A4.
Collapse
Affiliation(s)
- Fatimah Matalkah
- Department of Biochemistry and Molecular Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Scott Rhodes
- Department of Biochemistry and Molecular Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Peter Stoilov
- Department of Biochemistry and Molecular Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
5
|
Ryu TH, Subramanian M, Yeom E, Yu K. The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila. Mol Cells 2022; 45:640-648. [PMID: 35993164 PMCID: PMC9448647 DOI: 10.14348/molcells.2022.0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022] Open
Abstract
CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.
Collapse
Affiliation(s)
- Tae Hoon Ryu
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Manivannan Subramanian
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
6
|
Serra CF, Liu H, Qian J, Mori M, Lu J, Cardoso WV. Prominin 1 and Notch regulate ciliary length and dynamics in multiciliated cells of the airway epithelium. iScience 2022; 25:104751. [PMID: 35942101 PMCID: PMC9356082 DOI: 10.1016/j.isci.2022.104751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Differences in ciliary morphology and dynamics among multiciliated cells of the respiratory tract contribute to efficient mucociliary clearance. Nevertheless, little is known about how these phenotypic differences are established. We show that Prominin 1 (Prom1), a transmembrane protein widely used as stem cell marker, is crucial to this process. During airway differentiation, Prom1 becomes restricted to multiciliated cells, where it is expressed at distinct levels along the proximal-distal axis of the airways. Prom1 is induced by Notch in multiciliated cells, and Notch inactivation abolishes this gradient of expression. Prom1 was not required for multicilia formation, but when inactivated resulted in longer cilia that beat at a lower frequency. Disruption of Notch resulted in opposite effects and suggested that Notch fine-tunes Prom1 levels to regulate the multiciliated cell phenotype and generate diversity among these cells. This mechanism could contribute to the innate defense of the lung and help prevent pulmonary disease.
Collapse
Affiliation(s)
- Carlos F.H. Serra
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helu Liu
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jining Lu
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
7
|
Sommi P, Vitali A, Coniglio S, Callegari D, Barbieri S, Casu A, Falqui A, Vigano’ L, Vigani B, Ferrari F, Anselmi-Tamburini U. Microvilli Adhesion: An Alternative Route for Nanoparticle Cell Internalization. ACS NANO 2021; 15:15803-15814. [PMID: 34585565 PMCID: PMC8552441 DOI: 10.1021/acsnano.1c03151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/24/2021] [Indexed: 05/31/2023]
Abstract
The cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated. This microvillus-mediated adhesion (MMA) has been observed using ceria and magnetite NPs with a dimension of <40 nm functionalized with polyacrylic acid but not using NPs with a neutral or positive functionalization. Such an adhesion was not cell specific, as it was demonstrated in three different cell lines. MMA was also reduced by modifications of the microvillus lipid rafts, obtained by depleting cholesterol and altering synthesis of sphingolipids. We found a direct relationship between MAA, cell cycle, and density of microvilli. The evidence suggests that MMA differs from the commonly described uptake mechanisms and might represent an interesting alternative approach for selective NP delivery.
Collapse
Affiliation(s)
- Patrizia Sommi
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Agostina Vitali
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Stefania Coniglio
- Human
Physiology Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Sofia Barbieri
- Department
of Physics, University of Pavia, 27100 Pavia, Italy
| | - Alberto Casu
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Andrea Falqui
- Biological
and Environmental Sciences and Engineering Division, NABLA Lab, King Abdullah University of Science and Technology
(KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Lorenzo Vigano’
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department
of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
8
|
Lee J, Shin JE, Lee B, Kim H, Jeon Y, Ahn SH, Chi SW, Cho Y. The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proc Natl Acad Sci U S A 2020; 117:15955-15966. [PMID: 32554499 PMCID: PMC7355016 DOI: 10.1073/pnas.1920829117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Axon regeneration is regulated by a neuron-intrinsic transcriptional program that is suppressed during development but that can be reactivated following peripheral nerve injury. Here we identify Prom1, which encodes the stem cell marker prominin-1, as a regulator of the axon regeneration program. Prom1 expression is developmentally down-regulated, and the genetic deletion of Prom1 in mice inhibits axon regeneration in dorsal root ganglion (DRG) cultures and in the sciatic nerve, revealing the neuronal role of Prom1 in injury-induced regeneration. Elevating prominin-1 levels in cultured DRG neurons or in mice via adeno-associated virus-mediated gene delivery enhances axon regeneration in vitro and in vivo, allowing outgrowth on an inhibitory substrate. Prom1 overexpression induces the consistent down-regulation of cholesterol metabolism-associated genes and a reduction in cellular cholesterol levels in a Smad pathway-dependent manner, which promotes axonal regrowth. We find that prominin-1 interacts with the type I TGF-β receptor ALK4, and that they synergistically induce phosphorylation of Smad2. These results suggest that Prom1 and cholesterol metabolism pathways are possible therapeutic targets for the promotion of neural recovery after injury.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Jung Eun Shin
- Department of Molecular Neuroscience, Dong-A University College of Medicine, 49201 Busan, Republic of Korea
| | - Bohm Lee
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Yewon Jeon
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea
| | - Yongcheol Cho
- Department of Life Sciences, Korea University, 02841 Seoul, Republic of Korea;
| |
Collapse
|
9
|
Jászai J, Thamm K, Karbanová J, Janich P, Fargeas CA, Huttner WB, Corbeil D. Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3. J Biol Chem 2020; 295:6007-6022. [PMID: 32201384 DOI: 10.1074/jbc.ra119.011253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/18/2020] [Indexed: 01/18/2023] Open
Abstract
Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin-Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor-like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies.
Collapse
Affiliation(s)
- József Jászai
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; Institute of Anatomy, Medizinische Fakultät der Technischen Universität Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany.
| | - Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Peggy Janich
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Santos MF, Rappa G, Karbanová J, Vanier C, Morimoto C, Corbeil D, Lorico A. Anti-human CD9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. J Cell Mol Med 2019; 23:4408-4421. [PMID: 30982221 PMCID: PMC6533511 DOI: 10.1111/jcmm.14334] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
The intercellular communication mediated by extracellular vesicles (EVs) has gained international interest during the last decade. Interfering with the mechanisms regulating this cellular process might find application particularly in oncology where cancer cell‐derived EVs play a role in tumour microenvironment transformation. Although several mechanisms were ascribed to explain the internalization of EVs, little is our knowledge about the fate of their cargos, which are crucial to mediate their function. We recently demonstrated a new intracellular pathway in which a fraction of endocytosed EV‐associated proteins is transported into the nucleoplasm of the host cell via a subpopulation of late endosomes penetrating into the nucleoplasmic reticulum. Silencing tetraspanin CD9 both in EVs and recipient cells strongly decreased the endocytosis of EVs and abolished the nuclear transfer of their cargos. Here, we investigated whether monovalent Fab fragments derived from 5H9 anti‐CD9 monoclonal antibody (referred hereafter as CD9 Fab) interfered with these cellular processes. To monitor the intracellular transport of proteins, we used fluorescent EVs containing CD9‐green fluorescent protein fusion protein and various melanoma cell lines and bone marrow‐derived mesenchymal stromal cells as recipient cells. Interestingly, CD9 Fab considerably reduced EV uptake and the nuclear transfer of their proteins in all examined cells. In contrast, the divalent CD9 antibody stimulated both events. By impeding intercellular communication in the tumour microenvironment, CD9 Fab‐mediated inhibition of EV uptake, combined with direct targeting of cancerous cells could lead to the development of novel anti‐melanoma therapeutic strategies.
Collapse
Affiliation(s)
- Mark F Santos
- College of Medicine, Touro University Nevada, Henderson, Nevada
| | - Germana Rappa
- College of Medicine, Touro University Nevada, Henderson, Nevada
| | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Cheryl Vanier
- College of Medicine, Touro University Nevada, Henderson, Nevada
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- College of Medicine, Touro University Nevada, Henderson, Nevada.,Mediterranean Institute of Oncology, Viagrande, Italy
| |
Collapse
|
11
|
Singer D, Thamm K, Zhuang H, Karbanová J, Gao Y, Walker JV, Jin H, Wu X, Coveney CR, Marangoni P, Lu D, Grayson PRC, Gulsen T, Liu KJ, Ardu S, Wann AK, Luo S, Zambon AC, Jetten AM, Tredwin C, Klein OD, Attanasio M, Carmeliet P, Huttner WB, Corbeil D, Hu B. Prominin-1 controls stem cell activation by orchestrating ciliary dynamics. EMBO J 2018; 38:embj.201899845. [PMID: 30523147 PMCID: PMC6331727 DOI: 10.15252/embj.201899845] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023] Open
Abstract
Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.
Collapse
Affiliation(s)
- Donald Singer
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| | - Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Heng Zhuang
- Peninsula Dental School, University of Plymouth, Plymouth, UK.,Department of Cariology, Endodontology and Operative Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yan Gao
- Peninsula Dental School, University of Plymouth, Plymouth, UK.,Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | | | - Heng Jin
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangnan Wu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Clarissa R Coveney
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tulay Gulsen
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Stefano Ardu
- Division of Cariology & Endodontology, Dental School, University of Geneva, Geneva, Switzerland
| | - Angus Kt Wann
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | | | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Massimo Attanasio
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Bing Hu
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| |
Collapse
|
12
|
Thamm K, Šimaitė D, Karbanová J, Bermúdez V, Reichert D, Morgenstern A, Bornhäuser M, Huttner WB, Wilsch‐Bräuninger M, Corbeil D. Prominin‐1 (CD133) modulates the architecture and dynamics of microvilli. Traffic 2018; 20:39-60. [DOI: 10.1111/tra.12618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kristina Thamm
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Deimantė Šimaitė
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Jana Karbanová
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Vicente Bermúdez
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Doreen Reichert
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Anne Morgenstern
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic IUniversity Hospital Carl Gustav Carus Dresden Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
| | | | - Denis Corbeil
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| |
Collapse
|
13
|
Dowland SN, Madawala RJ, Poon CE, Lindsay LA, Murphy CR. Prominin-1 glycosylation changes throughout early pregnancy in uterine epithelial cells under the influence of maternal ovarian hormones. Reprod Fertil Dev 2018; 29:1194-1208. [PMID: 27166505 DOI: 10.1071/rd15432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/17/2016] [Indexed: 12/29/2022] Open
Abstract
In preparation for uterine receptivity, the uterine epithelial cells (UECs) exhibit a loss of microvilli and glycocalyx and a restructuring of the actin cytoskeleton. The prominin-1 protein contains large, heavily glycosylated extracellular loops and is usually restricted to apical plasma membrane (APM) protrusions. The present study examined rat UECs during early pregnancy using immunofluorescence, western blotting and deglycosylation analyses. Ovariectomised rats were injected with oestrogen and progesterone to examine how these hormones affect prominin-1. At the time of fertilisation, prominin-1 was located diffusely in the apical domain of UECs and 147- and 120-kDa glycoforms of prominin-1 were identified, along with the 97-kDa core protein. At the time of implantation, prominin-1 concentrates towards the APM and densitometry revealed that the 120-kDa glycoform decreased (P<0.05), but there was an increase in the 97-kDa core protein (P<0.05). Progesterone treatment of ovariectomised rats resulted in prominin-1 becoming concentrated towards the APM. The 120-kDa glycoform was increased after oestrogen treatment (P<0.0001), whereas the 97-kDa core protein was increased after progesterone treatment (P<0.05). Endoglycosidase H analysis demonstrated that the 120-kDa glycoform is in the endoplasmic reticulum, undergoing protein synthesis. These results indicate that oestrogen stimulates prominin-1 production, whereas progesterone stimulates the deglycosylation and concentration of prominin-1 to the apical region of the UECs. This likely presents the deglycosylated extracellular loops of prominin-1 to the extracellular space, where they may interact with the implanting blastocyst.
Collapse
Affiliation(s)
- Samson N Dowland
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, Room N364, F13 Anderson Stuart Building, The University of Sydney, NSW 2006, Australia
| | - Romanthi J Madawala
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, Room N364, F13 Anderson Stuart Building, The University of Sydney, NSW 2006, Australia
| | - Connie E Poon
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, Room N364, F13 Anderson Stuart Building, The University of Sydney, NSW 2006, Australia
| | - Laura A Lindsay
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, Room N364, F13 Anderson Stuart Building, The University of Sydney, NSW 2006, Australia
| | - Christopher R Murphy
- Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, Room N364, F13 Anderson Stuart Building, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Karbanová J, Lorico A, Bornhäuser M, Corbeil D, Fargeas CA. Prominin-1/CD133: Lipid Raft Association, Detergent Resistance, and Immunodetection. Stem Cells Transl Med 2017; 7:155-160. [PMID: 29271118 PMCID: PMC5788878 DOI: 10.1002/sctm.17-0223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/17/2017] [Indexed: 01/17/2023] Open
Abstract
The cell surface antigen prominin‐1 (alias CD133) has gained enormous interest in the past 2 decades and given rise to debates as to its utility as a biological stem and cancer stem cell marker. Important and yet often overlooked knowledge that is pertinent to its physiological function has been generated in other systems given its more general expression beyond primitive cells. This article briefly discusses the importance of particular biochemical features of CD133 with relation to its association with membrane microdomains (lipid rafts) and proper immunodetection. It also draws attention toward the adequate use of detergents and caveats that may apply to the interpretation of the results generated. Stem Cells Translational Medicine2018;7:155–160
Collapse
Affiliation(s)
- Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany.,DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- Department of Pathology, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
| | - Martin Bornhäuser
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany.,DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Dresden, Germany
| |
Collapse
|
15
|
Potential mechanisms of CD133 in cancer stem cells. Life Sci 2017; 184:25-29. [PMID: 28697984 DOI: 10.1016/j.lfs.2017.07.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) have emerged as an underlying cause of cancer relapse and resistance to treatment. Initially, biomarkers were used to identify and isolate distinct cell populations. Several CSC markers have been identified from many types of tumors, and these markers are also being used for isolation and enrichment of CSCs. Cluster of differentiation CD133 is a well-characterized CSC marker, and it is involved in tumor cell proliferation, metastasis, tumorigenesis, and recurrence, as well as chemo- and radio-resistance. However, the mechanisms involved in CD133-mediated induction of CSC properties have not yet been elucidated. Here, we introduce and summarize the functions of CD133 in CSCs and suggest new mechanisms that may be of note in our approach to developing novel cancer therapies.
Collapse
|
16
|
Thamm K, Graupner S, Werner C, Huttner WB, Corbeil D. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133). PLoS One 2016; 11:e0164079. [PMID: 27701459 PMCID: PMC5049760 DOI: 10.1371/journal.pone.0164079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
Collapse
Affiliation(s)
- Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Sylvi Graupner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carsten Werner
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
17
|
Kallas-Kivi A, Trei A, Maimets T. Lovastatin Decreases the Expression of CD133 and Influences the Differentiation Potential of Human Embryonic Stem Cells. Stem Cells Int 2016; 2016:1580701. [PMID: 27247576 PMCID: PMC4877483 DOI: 10.1155/2016/1580701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The lipophilic statin lovastatin decreases cholesterol synthesis and is a safe and effective treatment for the prevention of cardiovascular diseases. Growing evidence points at antitumor potential of lovastatin. Therefore, understanding the molecular mechanism of lovastatin function in different cell types is critical to effective therapy design. In this study, we investigated the effects of lovastatin on the differentiation potential of human embryonic stem (hES) cells (H9 cell line). Multiparameter flow cytometric assay was used to detect changes in the expression of transcription factors characteristic of hES cells. We found that lovastatin treatment delayed NANOG downregulation during ectodermal and endodermal differentiation. Likewise, expression of ectodermal (SOX1 and OTX2) and endodermal (GATA4 and FOXA2) markers was higher in treated cells. Exposure of hES cells to lovastatin led to a minor decrease in the expression of SSEA-3 and a significant reduction in CD133 expression. Treated cells also formed fewer embryoid bodies than control cells. By analyzing hES with and without CD133, we discovered that CD133 expression is required for proper formation of embryoid bodies. In conclusion, lovastatin reduced the heterogeneity of hES cells and impaired their differentiation potential.
Collapse
Affiliation(s)
- Ade Kallas-Kivi
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Annika Trei
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
18
|
Pereira MFN, Fernandes SAF, Nascimento AR, Siu ER, Hess RA, Oliveira CA, Porto CS, Lazari MFM. Effects of the oestrogen receptor antagonist Fulvestrant on expression of genes that affect organization of the epididymal epithelium. Andrology 2014; 2:559-71. [PMID: 24782439 DOI: 10.1111/j.2047-2927.2014.00219.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
Abstract
The role of oestrogens in epididymal function is still unclear. Knockout of the oestrogen receptor ESR1 (Esr1(-/-) ) or treatment with the anti-oestrogen Fulvestrant affect epididymal milieu and sperm motility. We investigated the effect of in vivo treatment of rats with Fulvestrant on: (i) expression of genes that may be important for the architecture and function of the epididymal epithelium: prominins 1 and 2, metalloproteinase 7, claudin 7, beta-catenin and cadherin 13, and (ii) levels of oestradiol and testosterone, and expression of oestrogen and androgen receptors, in the initial segment (IS), caput, corpus and cauda epididymis. Fulvestrant (i) reduced gene expression of prominin 1 (variant 1) in the caput, reduced prominin 1 protein content in the caput epididymis and in the efferent ductules, and increased the localization of prominin 1 in microvilli of the caput and corpus; (ii) reduced gene expression of prominin 2 in the corpus and cauda epididymis; (iii) increased the metalloproteinase 7 content in the apical region of principal cells from IS/caput; (iv) reduced in the corpus epididymis, but increased in the efferent ductules, the cadherin 13 mRNA level; (v) reduced testosterone but increased oestradiol levels in the corpus and cauda; (vi) increased the androgen receptor protein content in all regions of the epididymis, and the oestrogen receptor GPER in the corpus and cauda epididymis. In conclusion, treatment with Fulvestrant induced regional-specific changes in hormonal and steroid receptor content, and affected expression of proteins important for epithelial organization and absorption/secretion. The mechanisms of oestrogen action may differ among epididymal regions, which may contribute to determine region-specific sperm functions.
Collapse
Affiliation(s)
- M F N Pereira
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Akita M, Tanaka K, Murai N, Matsumoto S, Fujita K, Takaki T, Nishiyama H. Detection of CD133 (prominin-1) in a human hepatoblastoma cell line (HuH-6 clone 5). Microsc Res Tech 2013; 76:844-52. [PMID: 23712466 PMCID: PMC3842112 DOI: 10.1002/jemt.22237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/05/2013] [Indexed: 12/24/2022]
Abstract
We examined CD133 distribution in a human hepatoblastoma cell line (HuH-6 clone 5). We directly observed the cultured cells on a pressure-resistant thin film (silicon nitride thin film) in a buffer solution by using the newly developed atmospheric scanning electron microscope (ASEM), which features an open sample dish with a silicon nitride thin film window at its base, through which the scanning electron microscope beam scans samples in solution, from below. The ASEM enabled observation of the ventral cell surface, which could not be observed using standard SEM. However, observation of the dorsal cell surface was difficult with the ASEM. Therefore, we developed a new method to observe the dorsal side of cells by using Aclar® plastic film. In this method, cells are cultured on Aclar plastic film and the dorsal side of cells is in contact with the thin silicon nitride film of the ASEM dish. A preliminary study using the ASEM showed that CD133 was mainly localized in membrane ruffles in the peripheral regions of the cell. Standard transmission electron microscopy and scanning electron microscopy revealed that CD133 was preferentially concentrated in a complex structure comprising filopodia and the leading edge of lamellipodia. We also observed co-localization of CD133 with F-actin. An antibody against CD133 decreased cell migration. Methyl-β-cyclodextrin treatment decreased cell adhesion as well as lamellipodium and filopodium formation. A decrease in the cholesterol level may perturb CD133 membrane localization. The results suggest that CD133 membrane localization plays a role in tumor cell adhesion and migration.
Collapse
Affiliation(s)
- Masumi Akita
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Iruma-gun, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ding BS, James D, Iyer R, Falciatori I, Hambardzumyan D, Wang S, Butler JM, Rabbany SY, Hormigo A. Prominin 1/CD133 endothelium sustains growth of proneural glioma. PLoS One 2013; 8:e62150. [PMID: 23637986 PMCID: PMC3636202 DOI: 10.1371/journal.pone.0062150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/18/2013] [Indexed: 11/28/2022] Open
Abstract
In glioblastoma high expression of the CD133 gene, also called Prominin1, is associated with poor prognosis. The PDGF-driven proneural group represents a subset of glioblastoma in which CD133 is not overexpressed. Interestingly, this particular subset shows a relatively good prognosis. As with many other tumors, gliobastoma is believed to arise and be maintained by a restricted population of stem-like cancer cells that express the CD133 transmembrane protein. The significance of CD133+ cells for gliomagenesis is controversial because of conflicting supporting evidence. Contributing to this inconsistency is the fact that the isolation of CD133+ cells has largely relied on the use of antibodies against ill-defined glycosylated epitopes of CD133. To overcome this problem, we used a knock-in lacZ reporter mouse, Prom1lacZ/+, to track Prom1+ cells in the brain. We found that Prom1 (prominin1, murine CD133 homologue) is expressed by cells that express markers characteristic of the neuronal, glial or vascular lineages. In proneural tumors derived from injection of RCAS-PDGF into the brains of tv-a;Ink4a-Arf−/− Prom1lacZ/+ mice, Prom1+ cells expressed markers for astrocytes or endothelial cells. Mice co-transplanted with proneural tumor sphere cells and Prom1+ endothelium had a significantly increased tumor burden and more vascular proliferation (angiogenesis) than those co-transplanted with Prom1− endothelium. We also identified specific genes in Prom1+ endothelium that code for endothelial signaling modulators that were not overexpressed in Prom1− endothelium. These factors may support proneural tumor progression and could be potential targets for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Daylon James
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Rajiv Iyer
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ilaria Falciatori
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Dolores Hambardzumyan
- Department of Neurosurgery and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Su Wang
- Department of Neurology, Center for Translational Neuromedicine, Oncology and Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jason M. Butler
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Sina Y. Rabbany
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Bioengineering Program, Hofstra University, Hempstead, New York, United States of America
| | - Adília Hormigo
- Ansary Stem Cell Institute, and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Neurology, Center for Translational Neuromedicine, Oncology and Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 2013; 110:6829-34. [PMID: 23569237 DOI: 10.1073/pnas.1217002110] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The biological significance of a known normal and cancer stem cell marker CD133 remains elusive. We now demonstrate that the phosphorylation of tyrosine-828 residue in CD133 C-terminal cytoplasmic domain mediates direct interaction between CD133 and phosphoinositide 3-kinase (PI3K) 85 kDa regulatory subunit (p85), resulting in preferential activation of PI3K/protein kinase B (Akt) pathway in glioma stem cell (GSC) relative to matched nonstem cell. CD133 knockdown potently inhibits the activity of PI3K/Akt pathway with an accompanying reduction in the self-renewal and tumorigenicity of GSC. The inhibitory effects of CD133 knockdown could be completely rescued by expression of WT CD133, but not its p85-binding deficient Y828F mutant. Analysis of glioma samples reveals that CD133 Y828 phosphorylation level is correlated with histopathological grade and overlaps with Akt activation. Our results identify the CD133/PI3K/Akt signaling axis, exploring the fundamental role of CD133 in glioma stem cell behavior.
Collapse
|
22
|
Fargeas CA. Prominin-2 and Other Relatives of CD133. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:25-40. [PMID: 23161073 DOI: 10.1007/978-1-4614-5894-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several molecules related to prominin-1/CD133, which was first characterized as a marker of mouse neuroepithelial stem cells and human hematopoietic stem cells, have been identified in various species. In mammals, a second prominin gene, prominin-2, has been identified and characterized, whereas in nonmammalian species, up to three prominin genes are potentially expressed. The structural similarities between prominin-1 and prominin-2 are, to some extent, reflected by their biochemical properties; both proteins are selectively concentrated in specific plasma membrane subdomains that protrude into the extracellular space and are released in small extracellular membrane vesicles. In contrast to the apically confined prominin-1, prominin-2 is distributed in a nonpolarized apico-basolateral fashion in polarized epithelial cells and appears to be expressed in separate epithelial cells. Their distinctive localization in plasma membrane protrusions is a hallmark of prominins, validating the naming of the family after its first identified member. Insights into the distinctive and/or complementary roles of the two prominins may be obtained by analyzing the evolutionary history of these proteins and the characteristics of orthologs and paralogs in more distantly related species. In addition, the characterization of prominins may shed light on the still elusive function of CD133.
Collapse
Affiliation(s)
- Christine A Fargeas
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Tatzberg 47-51, D-01307, Dresden, Germany,
| |
Collapse
|
23
|
Sykes AM, Huttner WB. Prominin-1 (CD133) and the Cell Biology of Neural Progenitors and Their Progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:89-98. [PMID: 23161077 DOI: 10.1007/978-1-4614-5894-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our group discovered prominin-1 in search for markers to study the cell polarity of neural stem and progenitor cells in the developing brain. Over the past 15 years, prominin-1, also called CD133, has not only become a frequently used marker of neural stem cells and neural cancer stem cells, as is in fact the case of somatic (cancer) stem cells in general, but has also been used to understand the symmetric versus asymmetric division of the neural stem cells in the context of their apical-basal polarity. Moreover, studying prominin-1 on neural stem cells has revealed a novel fate of the midbody, that is, midbody release, and key differences in this release between normal stem cells and cancer-derived cells. Other subcellular aspects of neural stem cells, the understanding of which has been promoted by studying prominin-1, pertain to the organization of plasma membrane protrusions and the membrane microdomains they contain. Of particular relevance in this context is the primary cilium of neuroepithelial cells and its transformation into the outer segment of retinal photoreceptor cells, a process in which prominin-1 exerts a vital role.
Collapse
Affiliation(s)
- Alex M Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | | |
Collapse
|
24
|
Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev Biol 2012; 371:312-20. [DOI: 10.1016/j.ydbio.2012.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/13/2012] [Accepted: 08/23/2012] [Indexed: 12/25/2022]
|
25
|
Tan X, Shi SH. Neocortical neurogenesis and neuronal migration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:443-59. [PMID: 24014417 DOI: 10.1002/wdev.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neocortex, the evolutionarily newest part of the cerebral cortex, controls nearly all aspects of behavior, including perception, language, and decision making. It contains an immense number of neurons that can be broadly divided into two groups, excitatory neurons and inhibitory interneurons. These neurons are predominantly produced through extensive progenitor cell divisions during the embryonic stages. Moreover, they are not randomly dispersed, but spatially organized into horizontal layers that are essential for neocortex function. The formation of this laminar structure requires exquisite control of neuronal migration from their birthplace to their final destination. Extensive research over the past decade has greatly advanced our understanding of the production and migration of both excitatory neurons and inhibitory interneurons in the developing neocortex. In this review, we aim to give an overview on the molecular and cellular processes of neocortical neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Xin Tan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; BCMB Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
26
|
Olteanu D, Liu X, Liu W, Roper VC, Sharma N, Yoder BK, Satlin LM, Schwiebert EM, Bevensee MO. Increased Na+/H+ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease. Am J Physiol Cell Physiol 2012; 302:C1436-51. [PMID: 22301060 PMCID: PMC3361997 DOI: 10.1152/ajpcell.00063.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 01/29/2012] [Indexed: 11/22/2022]
Abstract
Pathophysiological anomalies in autosomal dominant and recessive forms of polycystic kidney disease (PKD) may derive from impaired function/formation of the apical central monocilium of ductal epithelia such as that seen in the Oak Ridge polycystic kidney or orpk (Ift88(Tg737Rpw)) mouse and its immortalized cell models for the renal collecting duct. According to a previous study, Na/H exchanger (NHE) activity may contribute to hyperabsorptive Na(+) movement in cilium-deficient ("mutant") cortical collecting duct principal cell monolayers derived from the orpk mice compared with cilium-competent ("rescued") monolayers. To examine NHE activity, we measured intracellular pH (pH(i)) by fluorescence imaging with the pH-sensitive dye BCECF, and used a custom-designed perfusion chamber to control the apical and basolateral solutions independently. Both mutant and rescued monolayers exhibited basolateral Na(+)-dependent acid-base transporter activity in the nominal absence of CO(2)/HCO(3)(-). However, only the mutant cells displayed appreciable apical Na(+)-induced pH(i) recoveries from NH(4)(+) prepulse-induced acid loads. Similar results were obtained with isolated, perfused collecting ducts from orpk vs. wild-type mice. The pH(i) dependence of basolateral cariporide/HOE-694-sensitive NHE activity under our experimental conditions was similar in both mutant and rescued cells, and 3.5- to 4.5-fold greater than apical HOE-sensitive NHE activity in the mutant cells (pH(i) 6.23-6.68). Increased apical NHE activity correlated with increased apical NHE1 expression in the mutant cells, and increased apical localization in collecting ducts of kidney sections from orpk vs. control mice. A kidney-specific conditional cilium-knockout mouse produced a more acidic urine compared with wild-type littermates and became alkalotic by 28 days of age. This study provides the first description of altered NHE activity, and an associated acid-base anomaly in any form of PKD.
Collapse
Affiliation(s)
- Dragos Olteanu
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Katzenback BA, Belosevic M. Characterization of granulocyte colony stimulating factor receptor of the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:199-207. [PMID: 21801744 DOI: 10.1016/j.dci.2011.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Granulocyte colony stimulating factor receptor (GCSFR) is a member of the class I cytokine receptor superfamily and signaling through this receptor is important for the proliferation, differentiation and activation of neutrophils and their precursors. In this study we report on the cloning and molecular characterization of goldfish GCSFR. The identified goldfish GCSFR sequence possesses the conserved Ig-like domain, the cytokine receptor homology domain (CRH), three fibronectin domains as well as several intracellular signaling motifs characteristic of other vertebrate GCSFRs. Goldfish gcsfr mRNA was highly expressed in kidney and spleen, and in primary kidney neutrophils. The neutrophils have significantly higher mRNA levels of the transcription factors pu.1 and cebpα, and down-regulated levels of transcription factors important for macrophage development such as egr1 and cjun, compared to progenitor cells from the kidney. The gcsfr mRNA was present in the kidney progenitor cells, albeit at much lower levels compared to the neutrophils, and the expression of gcsfr in progenitor cells was not affected by duration of cultivation. Furthermore, gcsfr mRNA levels were up-regulated in neutrophils after treatment with heat-killed Aeromonas salmonicida A449 or with mitogens. Our results indicate that GCSFR may be a useful marker for fish neutrophils.
Collapse
|
28
|
Yu X, Lin Y, Yan X, Tian Q, Li L, Lin EH. CD133, Stem Cells, and Cancer Stem Cells: Myth or Reality? CURRENT COLORECTAL CANCER REPORTS 2011; 7:253-259. [PMID: 22131911 PMCID: PMC3207123 DOI: 10.1007/s11888-011-0106-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD133, a member of the prominin family, is found in a variety of tissues with at least three variants. The function of CD133 is not well understood, but its expression is subject to changes in the microenvironment cues including bioenergetic stress. Knockout of CD133 does not affect renewal, but mammary gland branching. A point mutation of CD133 (R733C) leads to retinal disorder. CD133 is found in embryonic stem cells, normal tissue stem cells, stem cell niches, and circulating endothelial progenitors as well as cancer stem cells. Maintenance of stemness in cancer may be attributable to asymmetric cell division in association with a set of embryonic expression signatures in CD133+ tumor cells. CD133 could enrich cancer stem cells, which are associated with chemo- and radiation resistance phenotype. High CD133 is associated with poor survival in a variety of solid tumors, including lung, colon, prostate, etc. Monitoring CD133+ cells in peripheral blood, and targeting CD133 in cancer, may further predict and improve the clinical outcomes.
Collapse
|
29
|
Surgical Therapy of End-Stage Heart Failure: Understanding Cell-Mediated Mechanisms Interacting with Myocardial Damage. Int J Artif Organs 2011; 34:529-45. [DOI: 10.5301/ijao.5000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2011] [Indexed: 01/19/2023]
Abstract
Worldwide, cardiovascular disease results in an estimated 14.3 million deaths per year, giving rise to an increased demand for alternative and advanced treatment. Current approaches include medical management, cardiac transplantation, device therapy, and, most recently, stem cell therapy. Research into cell-based therapies has shown this option to be a promising alternative to the conventional methods. In contrast to early trials, modern approaches now attempt to isolate specific stem cells, as well as increase their numbers by means of amplifying in a culture environment. The method of delivery has also been improved to minimize the risk of micro-infarcts and embolization, which were often observed after the use of coronary catheterization. The latest approach entails direct, surgical, transepicardial injection of the stem cell mixture, as well as the use of tissue-engineered meshes consisting of embedded progenitor cells.
Collapse
|
30
|
Bauer N, Wilsch-Bräuninger M, Karbanová J, Fonseca AV, Strauss D, Freund D, Thiele C, Huttner WB, Bornhäuser M, Corbeil D. Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles--a role of the endocytic-exocytic pathway. EMBO Mol Med 2011; 3:398-409. [PMID: 21591261 PMCID: PMC3210830 DOI: 10.1002/emmm.201100147] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/25/2011] [Accepted: 04/11/2011] [Indexed: 01/12/2023] Open
Abstract
The differentiation of stem cells is a fundamental process in cell biology and understanding its mechanism might open a new avenue for therapeutic strategies. Using an ex vivo co-culture system consisting of human primary haematopoietic stem and progenitor cells growing on multipotent mesenchymal stromal cells as a feeder cell layer, we describe here the exosome-mediated release of small membrane vesicles containing the stem and cancer stem cell marker prominin-1 (CD133) during haematopoietic cell differentiation. Surprisingly, this contrasts with the budding mechanism underlying the release of this cholesterol-binding protein from plasma membrane protrusions of neural progenitors. Nevertheless, in both progenitor cell types, protein–lipid assemblies might be the essential structural determinant in the release process of prominin-1. Collectively, these data support the concept that prominin-1-containing lipid rafts may host key determinants necessary to maintain stem cell properties and their quantitative reduction or loss may result in cellular differentiation.
Collapse
Affiliation(s)
- Nicola Bauer
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Missol-Kolka E, Karbanová J, Janich P, Haase M, Fargeas CA, Huttner WB, Corbeil D. Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate 2011; 71:254-67. [PMID: 20717901 DOI: 10.1002/pros.21239] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 06/23/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rodent and human prominin-1 are expressed in numerous adult epithelia and somatic stem cells. A report has shown that human PROMININ-1 carrying the AC133 epitope can be used to identify rare prostate basal stem cells (Richardson et al., J Cell Sci 2004; 117:3539–3545). Here we re-investigated its general expression in male reproductive tract including mouse and human prostate and in prostate cancer samples using various anti-prominin-1 antibodies. METHODS The expression was monitored by immunohistochemistry and blotting. Murine tissues were stained with 13A4 monoclonal antibody (mAb) whereas human samples were examined either with the AC133 mAb recognizing the AC133 glycosylation-dependent epitope or 80B258 mAb directed against the PROMININ-1 polypeptide. RESULTS Mouse prominin-1 was detected at the apical domain of epithelial cells of ductus deferens, seminal vesicles, ampullary glands, and all prostatic lobes. In human prostate, immunoreactivity for 80B258, but not AC133 was revealed at the apical side of some epithelial (luminal) cells, in addition to the minute population of AC133/80B258-positive cells found in basal compartment. Examination of prostate adenocarcinoma revealed the absence of 80B258 immunoreactivity in the tumor regions. However, it was found to be up-regulated in luminal cells in the vicinity of the cancer areas. CONCLUSIONS Mouse prominin-1 is widely expressed in prostate whereas in human only some luminal cells express it, demonstrating nevertheless that its expression is not solely associated with basal stem cells. In pathological samples, our pilot evaluation shows that PROMININ-1 is down-regulated in the cancer tissues and up-regulated in inflammatory regions.
Collapse
Affiliation(s)
- Ewa Missol-Kolka
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Campos B, Herold-Mende CC. Insight into the complex regulation of CD133 in glioma. Int J Cancer 2011; 128:501-510. [DOI: 10.1002/ijc.25687] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
33
|
Fonseca AV, Freund D, Bornhäuser M, Corbeil D. Polarization and migration of hematopoietic stem and progenitor cells rely on the RhoA/ROCK I pathway and an active reorganization of the microtubule network. J Biol Chem 2010; 285:31661-71. [PMID: 20682776 DOI: 10.1074/jbc.m110.145037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the physiological migration of hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated the role of the Rho kinase pathway in the morphology and migration of hematopoietic progenitors using an ex vivo co-culture consisting of human primary CD34(+) progenitors and mesenchymal stromal cells. The addition of the Rho kinase inhibitor Y-27632 led to the abolishment of the uropod and microvillar-like structures of hematopoietic progenitors, concomitant with a redistribution of proteins found therein (prominin-1 and ezrin). Y-27632-treated cells displayed a deficiency in migration. Time-lapse video microscopy revealed impairment of the rear pole retraction. Interestingly, the knockdown of ROCK I, but not ROCK II, using RNA interference (RNAi) was sufficient to cause the referred morphological and migrational changes. Unexpectedly, the addition of nocodazole to either Y-27632- or ROCK I RNAi-treated cells could restore their polarized morphology and migration suggesting an active role for the microtubule network in tail retraction. Finally, we could demonstrate using RNAi that RhoA, the upstream regulator of ROCK, is involved in these processes. Collectively, our data provide new insights regarding the role of RhoA/ROCK I and the microtubules in the migration of stem cells.
Collapse
|
34
|
Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney. Histochem Cell Biol 2010; 133:527-39. [DOI: 10.1007/s00418-010-0690-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
35
|
Buscher K, Riese SB, Shakibaei M, Reich C, Dernedde J, Tauber R, Ley K. The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem 2010; 285:13490-7. [PMID: 20212041 DOI: 10.1074/jbc.m110.102640] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During inflammation and immune surveillance, initial contacts (tethering) between free-flowing leukocytes and the endothelium are vitally dependent on the presentation of the adhesion receptor L-selectin on leukocyte microvilli. Determinants that regulate receptor targeting to microvilli are, however, largely elusive. Therefore, we systematically swapped the extracellular (EC), transmembrane (TM), and intracellular (IC) domains of L-selectin and CD44, a hyaluronan receptor expressed on the cell body and excluded from microvilli. Electron microscopy of transfected human myeloid K562 cells showed that the highly conserved TM domains are responsible for surface positioning. The TM segment of L-selectin forced chimeric molecules to microvilli, and the CD44 TM domain evoked expression on the cell body, whereas the IC and EC domains hardly influenced surface localization. Transfectants with microvillus-based chimeras showed a significantly higher adhesion rate under flow but not under static conditions compared with cells with cell body-expressed receptors. Substitution of the IC domain of L-selectin caused diminished tethering but no change in surface distribution, indicating that both microvillus positioning and cytoskeletal anchoring contribute to leukocyte tethering. These findings demonstrate that TM domains of L-selectin and CD44 play a crucial role in cell adhesion under flow by targeting receptors to microvilli or the cell body, respectively.
Collapse
Affiliation(s)
- Konrad Buscher
- Central Department of Laboratory Medicine and Pathobiochemistry, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 2010; 584:1659-64. [PMID: 20122930 DOI: 10.1016/j.febslet.2010.01.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022]
Abstract
Prominin-1 (CD133) is a cholesterol-interacting pentaspan membrane protein concentrated in plasma membrane protrusions. In epithelial cells, notably neuroepithelial stem cells, prominin-1 is found in microvilli, the primary cilium and the midbody. These three types of apical membrane protrusions are subject to remodeling during (neuro)epithelial cell differentiation. The protrusion-specific localization of prominin involves its association with a distinct cholesterol-based membrane microdomain. Moreover, the three prominin-1-containing plasma membrane protrusions are the origin of at least two major subpopulations of prominin-1-containing extracellular membrane particles. Intriguingly, the release of these particles has been implicated in (neuro)epithelial cell differentiation.
Collapse
Affiliation(s)
- Denis Corbeil
- Tissue Engineering Laboratories, BIOTEC, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
37
|
Corbeil D, Marzesco AM, Fargeas CA, Huttner WB. Prominin-1: a distinct cholesterol-binding membrane protein and the organisation of the apical plasma membrane of epithelial cells. Subcell Biochem 2010; 51:399-423. [PMID: 20213552 DOI: 10.1007/978-90-481-8622-8_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apical plasma membrane of polarized epithelial cells is composed of distinct subdomains, that is, planar regions and protrusions (microvilli, primary cilium), each of which are constructed from specific membrane microdomains. Assemblies containing the pentaspan glycoprotein prominin-1 and certain membrane lipids, notably cholesterol, are characteristic features of these microdomains in apical membrane protrusions. Here we highlight the recent findings concerning the molecular architecture of the apical plasma membrane of epithelial cells and its dynamics. The latter is illustrated by the budding and fission of prominin-1-containing membrane vesicles from apical plasma membrane protrusions, which is controlled, at least in part, by the level of membrane cholesterol and the cholesterol-dependent organization of membrane microdomains.
Collapse
Affiliation(s)
- Denis Corbeil
- Tissue Engineering Laboratories, BIOTEC, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | | | | | | |
Collapse
|
38
|
Corbeil D, Joester A, Fargeas CA, Jászai J, Garwood J, Hellwig A, Werner HB, Huttner WB. Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 2009; 57:860-74. [DOI: 10.1002/glia.20812] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Snippert HJ, van Es JH, van den Born M, Begthel H, Stange DE, Barker N, Clevers H. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 2009; 136:2187-2194.e1. [PMID: 19324043 DOI: 10.1053/j.gastro.2009.03.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/17/2009] [Accepted: 03/04/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Prominin-1(Prom1)/CD133 is used, alone or in combination with other cell surface markers, to identify and isolate stem cells from various adult tissues. We recently identified leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) as a marker of the intestinal stem cells from which all cellular lineages of the gastrointestinal epithelium are derived. To determine whether there is a relationship between these markers, we investigated the intestinal expression pattern of Prom1/CD133 and created knock-in mice to visualize and trace Prom1(+) cells. METHODS We analyzed Prom1 mRNA and protein expression among stem cells within intestinal crypts. Prom1/CD133 knock-in mice (Prom1(-mCherry-IRES-CreERT2) KI) were generated that express a fusion of red fluorescent protein mCherry with the C-terminus of Prom1. The knock-in allele also contains the tamoxifen-inducible CreERT2 recombinase, allowing for genetic tracing of progeny derived from Prom1-positive cells. RESULTS In the small intestine, Prom1 mRNA was detected throughout the lower half of crypts and was not restricted to the rare stem cells that are sandwiched between Paneth cells. Prom1 protein was detected at the apical membranes of Lgr5(+) intestinal stem cells, but also on the transit-amplifying progenitors located above the Paneth cells. Analyses of the Prom1(-mCherry-IRES-CreERT2) KI mice showed that Prom1 is not exclusively expressed in Lgr5(+) intestinal stem cells but marks a much larger stem cell/transit-amplifying progenitor compartment. CONCLUSIONS Prom-1 marks intestinal stem cells, as well as transit-amplifying progenitors, so it is not a specific marker for Lgr5(+) intestinal stem cells.
Collapse
Affiliation(s)
- Hugo J Snippert
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Boivin D, Labbé D, Fontaine N, Lamy S, Beaulieu É, Gingras D, Béliveau R. The Stem Cell Marker CD133 (Prominin-1) is Phosphorylated on Cytoplasmic Tyrosine-828 and Tyrosine-852 by Src and Fyn Tyrosine Kinases. Biochemistry 2009; 48:3998-4007. [DOI: 10.1021/bi900159d] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dominique Boivin
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - David Labbé
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Nicolas Fontaine
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Sylvie Lamy
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Édith Beaulieu
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Denis Gingras
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
| | - Richard Béliveau
- Laboratoire de Médecine Moléculaire, Chemistry Department, Université du Québec à Montréal, C.P. 8888, succ. centre-ville, Montréal, Québec, Canada H3C 3P8
- Holder of the “Chaire en prévention et traitement du cancer” from Université du Québec à Montréal and of the Claude-Bertrand Chair in Neurosurgery from Université de Montréal
| |
Collapse
|
41
|
Epithelial cell–cell junctions and plasma membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:820-31. [DOI: 10.1016/j.bbamem.2008.07.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/10/2008] [Accepted: 07/21/2008] [Indexed: 12/16/2022]
|
42
|
Ferrari A, Veligodskiy A, Berge U, Lucas MS, Kroschewski R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J Cell Sci 2009; 121:3649-63. [PMID: 18946028 DOI: 10.1242/jcs.018648] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells assemble into three-dimensional aggregates to generate lumen-containing organ substructures. Cells therein contact the extracellular matrix with their basal surface, neighbouring cells with their contact surface and the lumen with their apical surface. We investigated the development of single MDCK cells into aggregates with lumen using quantitative live-cell imaging to identify morphogenetic rules for lumen formation. In two-cell aggregates, membrane insertion into the contact surface established a preapical patch (PAP) characterized by the presence of the apical marker gp135, microvilli and the absence of E-cadherin. This PAP originated from a compartment that had hallmarks of an apical recycling endosome, and matured through Brefeldin-A-sensitive membrane trafficking and the establishment of tight junctions around itself. As a result of the activity of water and ion channels, an optically resolvable lumen formed. Initially, this lumen enlarged without changes in aggregate volume or cell number but with decreasing cell volumes. Additionally, the ROCK1/2-myosin-II pathway counteracted PAP and lumen formation. Thus, lumen formation results from PAP establishment, PAP maturation, lumen initiation and lumen enlargement. These phases correlate with distinct cell surface and volume patterns, which suggests that such morphometric parameters are regulated by trafficking, ROCK-mediated contractility and hydrostatic pressure or vice versa.
Collapse
Affiliation(s)
- Aldo Ferrari
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Karbanová J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, Hollerová H, Jászai J, Ehrmann J, Kolár Z, Liebers C, Arl S, Subrtová D, Freund D, Mokry J, Huttner WB, Corbeil D. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 2008; 56:977-93. [PMID: 18645205 DOI: 10.1369/jhc.2008.951897] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human prominin-1 (CD133) is expressed by various stem and progenitor cells originating from diverse sources. In addition to stem cells, its mouse ortholog is expressed in a broad range of adult epithelial cells, where it is selectively concentrated in their apical domain. The lack of detection of prominin-1 in adult human epithelia might be explained, at least in part, by the specificity of the widely used AC133 antibody, which recognizes an epitope that seems dependent on glycosylation. Here we decided to re-examine its expression in adult human tissues, particularly in glandular epithelia, using a novel monoclonal antibody (80B258) generated against the human prominin-1 polypeptide. In examined tissues, we observed 80B258 immunoreactivity at the apical or apicolateral membranes of polarized cells. For instance, we found expression in secretory serous and mucous cells as well as intercalated ducts of the large salivary and lacrimal glands. In sweat glands including the gland of Moll, 80B258 immunoreactivity was found in the secretory (eccrine and apocrine glands) and duct (eccrine glands) portion. In the liver, 80B258 immunoreactivity was identified in the canals of Hering, bile ductules, and small interlobular bile ducts. In the uterus, we detected 80B258 immunoreactivity in endometrial and cervical glands. Together these data show that the overall expression of human prominin-1 is beyond the rare primitive cells, and it seems to be a general marker of apical or apicolateral membrane of glandular epithelia. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Jana Karbanová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Siebzehnrubl FA, Jeske I, Müller D, Buslei R, Coras R, Hahnen E, Huttner HB, Corbeil D, Kaesbauer J, Appl T, von Hörsten S, Blümcke I. Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells. Brain Pathol 2008; 19:399-408. [PMID: 18637011 DOI: 10.1111/j.1750-3639.2008.00189.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent studies have found that cellular self-renewal capacity in brain cancer is heterogeneous, with only stem-like cells having this property. A link between adult stem cells and cancer stem cells remains, however, to be shown. Here, we describe the emergence of cancer stem-like cells from in vitro cultured brain stem cells. Adult rat subventricular zone (SVZ) stem cells transformed into tumorigenic cell lines after expansion in vitro. These cell lines maintained characteristic features of stem-like cells expressing Nestin, Musashi-1 and CD133, but continued to proliferate upon differentiation induction. Karyotyping detected multiple acquired chromosomal aberrations, and syngeneic transplantation into the brain of adult rats resulted in malignant tumor formation. Tumors revealed streak necrosis and displayed a neural as well as an undifferentiated phenotype. Deficient downregulation of platelet-derived growth factor (PDGF) receptor alpha was identified as candidate mechanism for tumor cell proliferation, and its knockdown by siRNA resulted in a reduction of cell growth. Our data point to adult brain precursor cells to be transformed in malignancies. Furthermore, in vitro expansion of adult neural stem cells, which will be mandatory for therapeutic strategies in neurological disorders, also harbors the risk for amplifying precursor cells with acquired genetic abnormalities and induction of malignant tumors after transplantation.
Collapse
Affiliation(s)
- Florian A Siebzehnrubl
- Department of Neuropathology. Franz-Penzoldt-Center, University of Erlangen-Nuremberg, Nuremberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Robust expression of Prominin-2 all along the adult male reproductive system and urinary bladder. Histochem Cell Biol 2008; 130:749-59. [DOI: 10.1007/s00418-008-0445-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2008] [Indexed: 01/21/2023]
|
46
|
Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008; 8:48. [PMID: 18261235 PMCID: PMC2268945 DOI: 10.1186/1471-2407-8-48] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 02/08/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1). The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer. METHODS Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues. RESULTS CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival. CONCLUSION Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was found on the surface of tumor cells in vessels, this molecule may have a potential as clinical marker in patients suffering from pancreatic cancer.
Collapse
|
47
|
Wauthier E, Schmelzer E, Turner W, Zhang L, LeCluyse E, Ruiz J, Turner R, Furth M, Kubota H, Lozoya O, Barbier C, McClelland R, Yao H, Moss N, Bruce A, Ludlow J, Reid L. Hepatic Stem Cells and Hepatoblasts: Identification, Isolation, and Ex Vivo Maintenance. Methods Cell Biol 2008; 86:137-225. [DOI: 10.1016/s0091-679x(08)00008-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas 2008; 36:e1-6. [PMID: 18192867 DOI: 10.1097/mpa.0b013e318149f2dc] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Many efforts are spent in identifying stem cells in adult pancreas because these could provide a source of beta cells for cell-based therapy of type 1 diabetes. Prominin-1, particularly its specific glycosylation-dependent AC133 epitope, is expressed on stem/progenitor cells of various human tissues and can be used to isolate them. We, therefore, examined its expression in adult human pancreas. METHODS To detect prominin-1 protein, monoclonal antibody CD133/1 (AC133 clone), which recognizes the AC133 epitope, and the alphahE2 antiserum, which is directed against the human prominin-1 polypeptide, were used. Prominin-1 RNA expression was analyzed by real-time polymerase chain reaction. RESULTS We report that all duct-lining cells of the pancreas express prominin-1. Most notably, the cells that react with the alphahE2 antiserum also react with the AC133 antibody. After isolation and culture of human exocrine cells, we found a relative increase in prominin-1 expression both at protein and RNA expression level, which can be explained by an enrichment of cells with ductal phenotype in these cultures. CONCLUSIONS Our data show that pancreatic duct cells express prominin-1 and surprisingly reveal that its particular AC133 epitope is not an exclusive stem and progenitor cell marker.
Collapse
Affiliation(s)
- Jessy Lardon
- Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
49
|
Storey SM, Gallegos AM, Atshaves BP, McIntosh AL, Martin GG, Parr RD, Landrock KK, Kier AB, Ball JM, Schroeder F. Selective cholesterol dynamics between lipoproteins and caveolae/lipid rafts. Biochemistry 2007; 46:13891-906. [PMID: 17990854 DOI: 10.1021/bi700690s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics: (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cells-consistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Pathobiology, Texas A&M University, TVMC College Station, Texas 77843-4467, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Peterziel H, Paech T, Strelau J, Unsicker K, Krieglstein K. Specificity in the crosstalk of TGFbeta/GDNF family members is determined by distinct GFR alpha receptors. J Neurochem 2007; 103:2491-504. [PMID: 17953664 DOI: 10.1111/j.1471-4159.2007.04962.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN) are neurotrophic factors for parasympathetic neurons including ciliary ganglion (CG) neurons. Recently, we have shown that survival and signaling mediated by GDNF in CG neurons essentially requires transforming growth factor beta (TGFbeta). We have provided evidence that TGFbeta regulates the availability of the glycosyl phosphatidylinositol (GPI)-anchored GDNF receptor alpha 1 (GFRalpha1) by promoting the recruitment of the receptor to the plasma membrane. We report now that in addition to GDNF, NRTN, but not persephin (PSPN) or artemin (ARTN), is able to promote survival of CG neurons. Interestingly, in contrast to GDNF, NRTN is not dependent on cooperation with TGFbeta, but efficiently promotes neuronal survival and intracellular signaling in the absence of TGFbeta. Additional treatment with TGFbeta does not further increase the NRTN response. Both NRTN and GDNF exclusively bind to and activate their cognate receptors, GFRalpha2 and GFRalpha1, respectively, as shown by the use of receptor-specific neutralizing antibodies. Immunocytochemical staining for the two receptors on the surface of CG neurons reveals that, in contrast to the effect on GFRalpha1, TGFbeta is not required for recruitment of GFRalpha2 to the plasma membrane. Moreover, binding of radioactively labeled GDNF but not NRTN is increased upon treatment of CG neurons with TGFbeta. Disruption of TGFbeta signaling does interfere with GDNF-, but not NRTN-mediated signaling and survival. We propose a model taking into account data from GFRalpha1 crystallization and ontogenetic development of the CG that may explain the differences in TGFbeta-dependence of GDNF and NRTN.
Collapse
Affiliation(s)
- Heike Peterziel
- Department of Neuroanatomy, IZN, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|