1
|
Danziger M, Xu F, Noble H, Yang P, Roque DM. Tubulin Complexity in Cancer and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:21-35. [PMID: 38805123 DOI: 10.1007/978-3-031-58311-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Anwar MM. The orchestrating role of deteriorating neurons and TREM-1 in crosstalk with SYK in Alzheimer's disease progression and neuroinflammation. Inflammopharmacology 2023; 31:2303-2310. [PMID: 37405587 DOI: 10.1007/s10787-023-01270-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive type of neurodegenerative disease characterized by successive loss of the conventional structure and functions of neurons. In addition to dead neurons type detected within AD brain tissues, there are a predominantly varying number of deteriorating neurons (DTNs). As the number of deteriorating neurons increases, they exaggerate the release of inflammatory factors and oxidative stress that trigger the cascade of neuroinflammation. Triggering receptor expressed on myeloid cells 1 (TREM-1) which is a transmembrane immune receptor type regularly expressed by phagocytic cells, may act as a stimulating factor for neuroinflammation. Once TREM-1 is activated, it directly activates spleen tyrosine kinase (SYK) downstream signaling cascades, which can be considered an initiating phase for AD pathology and AD progression. Sequentially, SYK activates the pro-inflammatory microglia M1 phenotype which executes several inflammatory actions, leading to neurotoxicity. These released neurotoxins promote neuronal cell death, synaptic dysfunctions, and memory impairments. Thus, the current review outlines the direct etiological and pathologic features of Alzheimer's disease linked with deteriorating neurons, TREM-1, and SYK.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Cairo, Egypt.
| |
Collapse
|
3
|
Tang L, Liu C, Rosenberger P. Platelet formation and activation are influenced by neuronal guidance proteins. Front Immunol 2023; 14:1206906. [PMID: 37398659 PMCID: PMC10310924 DOI: 10.3389/fimmu.2023.1206906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Platelets are anucleate blood cells derived from megakaryocytes. They link the fundamental functions of hemostasis, inflammation and host defense. They undergo intracellular calcium flux, negatively charged phospholipid translocation, granule release and shape change to adhere to collagen, fibrin and each other, forming aggregates, which are key to several of their functions. In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal axon navigation and thus refine neuronal circuits. By binding to their target receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In recent decades, evidence has indicated that NGPs perform important immunomodulatory functions and influence platelet function. In this review, we highlight the roles of NGPs in platelet formation and activation.
Collapse
|
4
|
Shahi A, Kahle J, Hopkins C, Diakonova M. The SH2 domain and kinase activity of JAK2 target JAK2 to centrosome and regulate cell growth and centrosome amplification. PLoS One 2022; 17:e0261098. [PMID: 35089929 PMCID: PMC8797172 DOI: 10.1371/journal.pone.0261098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
JAK2 is cytokine-activated non-receptor tyrosine kinase. Although JAK2 is mainly localized at the plasma membrane, it is also present on the centrosome. In this study, we demonstrated that JAK2 localization to the centrosome depends on the SH2 domain and intact kinase activity. We created JAK2 mutants deficient in centrosomal localization ΔSH2, K882E and (ΔSH2, K882E). We showed that JAK2 WT clone strongly enhances cell proliferation as compared to control cells while JAK2 clones ΔSH2, K882E and (ΔSH2, K882E) proliferate slower than JAK2 WT cells. These mutant clones also progress much slower through the cell cycle as compared to JAK2 WT clone and the enhanced proliferation of JAK2 WT cells is accompanied by increased S -> G2 progression. Both the SH2 domain and the kinase activity of JAK2 play a role in prolactin-dependent activation of JAK2 substrate STAT5. We showed that JAK2 is an important regulator of centrosome function as the SH2 domain of JAK2 regulates centrosome amplification. The cells overexpressing ΔSH2 and (ΔSH2, K-E) JAK2 have almost three-fold the amplified centrosomes of WT cells. In contrast, the kinase activity of JAK2 is dispensable for centrosome amplification. Our observations provide novel insight into the role of SH2 domain and kinase activity of JAK2 in centrosome localization of JAK2 and in the regulation of cell growth and centrosome biogenesis.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Jacob Kahle
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Chandler Hopkins
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
5
|
Fazil MHUT, Chirumamilla CS, Perez-Novo C, Wong BHS, Kumar S, Sze SK, Vanden Berghe W, Verma NK. The steroidal lactone withaferin A impedes T-cell motility by inhibiting the kinase ZAP70 and subsequent kinome signaling. J Biol Chem 2021; 297:101377. [PMID: 34742736 PMCID: PMC8637146 DOI: 10.1016/j.jbc.2021.101377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The steroidal lactone withaferin A (WFA) is a dietary phytochemical, derived from Withania somnifera. It exhibits a wide range of biological properties, including immunomodulatory, anti-inflammatory, antistress, and anticancer activities. Here we investigated the effect of WFA on T-cell motility, which is crucial for adaptive immune responses as well as autoimmune reactions. We found that WFA dose-dependently (within the concentration range of 0.3–1.25 μM) inhibited the ability of human T-cells to migrate via cross-linking of the lymphocyte function-associated antigen-1 (LFA-1) integrin with its ligand, intercellular adhesion molecule 1 (ICAM-1). Coimmunoprecipitation of WFA interacting proteins and subsequent tandem mass spectrometry identified a WFA-interactome consisting of 273 proteins in motile T-cells. In particular, our data revealed significant enrichment of the zeta-chain-associated protein kinase 70 (ZAP70) and cytoskeletal actin protein interaction networks upon stimulation. Phospho-peptide mapping and kinome analysis substantiated kinase signaling downstream of ZAP70 as a key WFA target, which was further confirmed by bait-pulldown and Western immunoblotting assays. The WFA-ZAP70 interaction was disrupted by a disulfide reducing agent dithiothreitol, suggesting an involvement of cysteine covalent binding interface. In silico docking predicted WFA binding to ZAP70 at cystine 560 and 564 residues. These findings provide a mechanistic insight whereby WFA binds to and inhibits the ZAP70 kinase and impedes T-cell motility. We therefore conclude that WFA may be exploited to pharmacologically control host immune responses and potentially prevent autoimmune-mediated pathologies.
Collapse
Affiliation(s)
| | - Chandra Sekhar Chirumamilla
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Claudina Perez-Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore; NTU Institute for Health Technologies (HealthTech NTU), Interdisciplinary Graduate Programme, Nanyang Technological University Singapore, Singapore
| | - Sunil Kumar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, India
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore.
| |
Collapse
|
6
|
Schweig JE, Yao H, Coppola K, Jin C, Crawford F, Mullan M, Paris D. Spleen tyrosine kinase (SYK) blocks autophagic Tau degradation in vitro and in vivo. J Biol Chem 2019; 294:13378-13395. [PMID: 31324720 DOI: 10.1074/jbc.ra119.008033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spleen tyrosine kinase (SYK) plays a major role in inflammation and in adaptive immune responses and could therefore contribute to the neuroinflammation observed in various neurodegenerative diseases. Indeed, previously we have reported that SYK also regulates β-amyloid (Aβ) production and hyperphosphorylation of Tau protein involved in these diseases. Moreover, SYK hyperactivation occurs in a subset of activated microglia, in dystrophic neurites surrounding Aβ deposits, and in neurons affected by Tau pathology both in individuals with Alzheimer's disease (AD) and in AD mouse models. SYK activation increases Tau phosphorylation and accumulation, suggesting that SYK could be an attractive target for treating AD. However, the mechanism by which SYK affects Tau pathology is not clear. In this study, using cell biology and biochemical approaches, along with immunoprecipitation and immunoblotting, quantitative RT-PCR, and ELISAs, we found that SYK inhibition increases autophagic Tau degradation without impacting Tau production. Using neuron-like SH-SY5Y cells, we demonstrate that SYK acts upstream of the mammalian target of rapamycin (mTOR) pathway and that pharmacological inhibition or knockdown of SYK decreases mTOR pathway activation and increases autophagic Tau degradation. Interestingly, chronic SYK inhibition in a tauopathy mouse model profoundly reduced Tau accumulation, neuroinflammation, neuronal and synaptic loss, and also reversed defective autophagy. Our results further suggest that the SYK up-regulation observed in the brains of individuals with AD contributes to defective autophagic clearance leading to the accumulation of pathogenic Tau species. These findings further highlight SYK as a therapeutic target for the treatment of tauopathies and other neurodegenerative proteinopathies associated with defective autophagic clearance.
Collapse
Affiliation(s)
- Jonas Elias Schweig
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612.
| | - Hailan Yao
- Roskamp Institute, Sarasota, Florida 34243; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Kyle Coppola
- Roskamp Institute, Sarasota, Florida 34243; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Chao Jin
- Roskamp Institute, Sarasota, Florida 34243
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Daniel Paris
- Roskamp Institute, Sarasota, Florida 34243; The Open University, Milton Keynes MK7 6AA, United Kingdom; James A. Haley Veterans Hospital, Tampa, Florida 33612
| |
Collapse
|
7
|
Duran GE, Sikic BI. The Syk inhibitor R406 is a modulator of P-glycoprotein (ABCB1)-mediated multidrug resistance. PLoS One 2019; 14:e0210879. [PMID: 30668583 PMCID: PMC6342444 DOI: 10.1371/journal.pone.0210879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
In a previously published study, higher levels of spleen tyrosine kinase (Syk) were observed in recurrent post-chemotherapy ovarian cancers compared to primary tumors. Syk inhibition was found to stabilize microtubules and potentiate paclitaxel activity in cellular models of taxane-resistant ovarian cancers. We further studied the effects of Syk inhibition on paclitaxel activity in Syk(+) ovarian cancer cell models and in variants selected for taxane resistance. Syk inhibition was accomplished using RNAi and by exposure to the small molecule competitive inhibitor R406, the active metabolite of fostamatinib. Exposure to R406 or to a SYK-specific pool of siRNAs did not alter taxane activity in the OVCAR-3 cell line, which has the most Syk content in our panel of nine human ovarian cancer cell lines. However, treatment with R406 sensitised the multidrug resistant (MDR) variants MES-SA/Dx5 and SK-OV-3/TR to paclitaxel in a dose-dependent manner resulting from the inhibition of the ABCB1/P-glycoprotein (P-gp) drug transporter. These observations are Syk-independent since both MDR cell models are Syk negative. R406 modulated resistance to other known P-gp substrates, and we observed orthovanadate-sensitive ATPase stimulation resulting from treatment with R406. These data indicate that the chemo-sensitizing effect of R406 in taxane-resistant cells previously reported was not associated with Syk but resulted from the modulation of P-gp-mediated MDR.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adenosine Triphosphatases/metabolism
- Antineoplastic Agents/pharmacology
- Bridged-Ring Compounds/pharmacology
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Multiple/physiology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Female
- Gene Expression/drug effects
- Humans
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Oxazines/pharmacology
- Paclitaxel/pharmacology
- Pyridines/pharmacology
- RNA, Small Interfering/genetics
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/genetics
- Taxoids/pharmacology
Collapse
Affiliation(s)
- George E. Duran
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Branimir I. Sikic
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
8
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
9
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
10
|
Wloga D, Joachimiak E, Fabczak H. Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Mol Sci 2017; 18:ijms18102207. [PMID: 29065455 PMCID: PMC5666887 DOI: 10.3390/ijms18102207] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Microtubules are hollow tube-like polymeric structures composed of α,β-tubulin heterodimers. They play an important role in numerous cellular processes, including intracellular transport, cell motility and segregation of the chromosomes during cell division. Moreover, microtubule doublets or triplets form a scaffold of a cilium, centriole and basal body, respectively. To perform such diverse functions microtubules have to differ in their properties. Post-translational modifications are one of the factors that affect the properties of the tubulin polymer. Here we focus on the direct and indirect effects of post-translational modifications of tubulin on microtubule dynamics.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
11
|
Ding H, Liu F, Zhu L, Wu F, Liu Q, He S, Shao W, Du Y, Ren C, Shen J, Liu M. Tyrosine kinase 4 is involved in the reproduction of the platyhelminth parasite Schistosoma japonicum. Parasit Vectors 2017; 10:498. [PMID: 29047397 PMCID: PMC5648501 DOI: 10.1186/s13071-017-2453-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schistosomiasis is one of the most common parasitic diseases affecting millions of humans and animals worldwide. Understanding the signal transduction pathways and the molecular basis of reproductive regulation in schistosomes is critically important for developing new strategies for preventing and treating these infections. Syk kinases regulate the proliferation, differentiation, morphogenesis, and survival of various types of cells and have been identified in invertebrates. Tyrosine kinase 4 (TK4), a member of the Syk kinase family, plays a pivotal role in gametogenesis in S. mansoni, affecting the development of the testis and ovaries in this parasite. The role of TK4, however, in the reproduction of S. japonicum is poorly understood. METHODS Here, the complete coding sequence of TK4 gene in S. japonicum (SjTK4) was cloned and characterized. The expression of SjTK4 was analyzed at different life-cycle stages and in various tissues of S. japonicum by qPCR. Piceatannol, a Syk kinase inhibitor, was applied to S. japonicum in vitro. The piceatannol-induced morphological changes of the parasites were observed using confocal laser scanning microscopy and the alterations in important egg-shell synthesis-related genes were examined using qPCR analyses. RESULTS SjTK4 mRNA was differentially expressed throughout the life-cycle of S. japonicum. SjTK4 mRNA was highly expressed in the ovary and testis of S. japonicum, with the level of gene expression significantly higher in males than in females. The expression levels of some important egg-shell synthesis related genes were higher in the piceatannol-treated groups than in the vehicle-treated control group and the number of eggs and germ cells also decreased in a concentration-dependent manner. Importantly, large pore-like structures can be found in the testis and ovaries of males and females after treating with piceatannol. CONCLUSION The results suggest that SjTK4 may play an important role in regulating gametogenesis of S. japonicum. The findings may help better understand the fundamental biology of S. japonicum. Moreover, the effect of S. japonicum treatment by piceatannol provides us with a new idea that inhibition of SjTK4 signaling pathway can effectively retard the development of the testis and ovaries.
Collapse
Affiliation(s)
- Han Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Fengchun Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Lulu Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Fei Wu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Quan Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Siyu He
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Yinan Du
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China. .,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, School of Basic Medical Sciences, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China. .,Anhui Key Laboratory of Zoonoses, Anhui Medical University, 81#Meishan Road, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
12
|
Schweig JE, Yao H, Beaulieu-Abdelahad D, Ait-Ghezala G, Mouzon B, Crawford F, Mullan M, Paris D. Alzheimer's disease pathological lesions activate the spleen tyrosine kinase. Acta Neuropathol Commun 2017; 5:69. [PMID: 28877763 PMCID: PMC5588676 DOI: 10.1186/s40478-017-0472-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/17/2023] Open
Abstract
The pathology of Alzheimer’s disease (AD) is characterized by dystrophic neurites (DNs) surrounding extracellular Aβ-plaques, microgliosis, astrogliosis, intraneuronal tau hyperphosphorylation and aggregation. We have previously shown that inhibition of the spleen tyrosine kinase (Syk) lowers Aβ production and tau hyperphosphorylation in vitro and in vivo. Here, we demonstrate that Aβ-overexpressing Tg PS1/APPsw, Tg APPsw mice, and tau overexpressing Tg Tau P301S mice exhibit a pathological activation of Syk compared to wild-type littermates. Syk activation is occurring in a subset of microglia and is age-dependently increased in Aβ-plaque-associated dystrophic neurites of Tg PS1/APPsw and Tg APPsw mice. In Tg Tau P301S mice, a pure model of tauopathy, activated Syk occurs in neurons that show an accumulation of misfolded and hyperphosphorylated tau in the cortex and hippocampus. Interestingly, the tau pathology is exacerbated in neurons that display high levels of Syk activation supporting a role of Syk in the formation of tau pathological species in vivo. Importantly, human AD brain sections show both pathological Syk activation in DNs around Aβ deposits and in neurons immunopositive for pathological tau species recapitulating the data obtained in transgenic mouse models of AD. Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. Given that we have previously shown that Syk activation also promotes Aβ formation and tau hyperphosphorylation, our data suggest that AD pathological lesions may be self-propagating via a Syk dependent mechanism highlighting Syk as an attractive therapeutic target for the treatment of AD.
Collapse
|
13
|
Benon A, Ya C, Martin L, Watrin C, Chounlamountri N, Jaaoini I, Honnorat J, Pellier-Monnin V, Noraz N. The Syk kinases orchestrate cerebellar granule cell tangential migration. Neuroscience 2017; 360:230-239. [DOI: 10.1016/j.neuroscience.2017.07.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/03/2023]
|
14
|
Sobierajska K, Wieczorek K, Ciszewski WM, Sacewicz-Hofman I, Wawro ME, Wiktorska M, Boncela J, Papiewska-Pajak I, Kwasniak P, Wyroba E, Cierniewski CS, Niewiarowska J. β-III tubulin modulates the behavior of Snail overexpressed during the epithelial-to-mesenchymal transition in colon cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2221-33. [PMID: 27188792 DOI: 10.1016/j.bbamcr.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/17/2022]
Abstract
Class III β-tubulin (TUBB3) is a marker of drug resistance expressed in a variety of solid tumors. Originally, it was described as an important element of chemoresistance to taxanes. Recent studies have revealed that TUBB3 is also involved in an adaptive response to a microenvironmental stressor, e.g. low oxygen levels and poor nutrient supply in some solid tumors, independently of the microtubule targeting agent. Furthermore, it has been demonstrated that TUBB3 is a marker of biological aggressiveness associated with modulation of metastatic abilities in colon cancer. The epithelial-to-mesenchymal transition (EMT) is a basic cellular process by which epithelial cells lose their epithelial behavior and become invasive cells involved in cancer metastasis. Snail is a zinc-finger transcription factor which is able to induce EMT through the repression of E-cadherin expression. In the presented studies we focused on the analysis of the TUBB3 role in EMT-induced colon adenocarcinoma cell lines HT-29 and LS180. We observed a positive correlation between Snail presence and TUBB3 upregulation in tested adenocarcinoma cell lines. The cellular and behavioral analysis revealed for the first time that elevated TUBB3 level is functionally linked to increased cell migration and invasive capability of EMT induced cells. Additionally, the post-transcriptional modifications (phosphorylation, glycosylation) appear to regulate the cellular localization of TUBB3 and its phosphorylation, observed in cytoskeleton, is probably involved in cell motility modulation.
Collapse
Affiliation(s)
- Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Katarzyna Wieczorek
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland,; Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Izabela Sacewicz-Hofman
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marta E Wawro
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Joanna Boncela
- Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland
| | | | - Pawel Kwasniak
- Nencki Institute of Experimental Biology, PAS, Pasteura 3, 02-093, Warsaw, Poland, Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland
| | - Elzbieta Wyroba
- Nencki Institute of Experimental Biology, PAS, Pasteura 3, 02-093, Warsaw, Poland, Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland
| | - Czeslaw S Cierniewski
- Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland; Department of Molecular and Medical Biophysics, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland,.
| |
Collapse
|
15
|
Chakraborti S, Natarajan K, Curiel J, Janke C, Liu J. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton (Hoboken) 2016; 73:521-550. [PMID: 26934450 DOI: 10.1002/cm.21290] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 11/11/2022]
Abstract
Across different cell types and tissues, microtubules are assembled from highly conserved dimers of α- and β-tubulin. Despite their highly similar structures, microtubules have functional heterogeneity, generated either by the expression of different tubulin genes, encoding distinct isotypes, or by posttranslational modifications of tubulin. This genetically encoded and posttranslational generated heterogeneity of tubulin-the "tubulin code"-has the potential to modulate microtubule structure, dynamics, and interactions with associated proteins. The tubulin code is therefore believed to regulate microtubule functions on a cellular and sub-cellular level. This review highlights the importance of the tubulin code for tubulin structure, as well as on microtubule dynamics and functions in neurons. It further summarizes recent developments in the understanding of mutations in tubulin genes, and how they are linked to neurodegenerative and neurodevelopmental disorders. The current advances in the knowledge of the tubulin code on the molecular and the functional level will certainly lead to a better understanding of how complex signaling events control microtubule functions, especially in cells of the nervous system. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3348, Orsay, F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3348, Orsay, F-91405, France
| | - Kathiresan Natarajan
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3348, Orsay, F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3348, Orsay, F-91405, France
| | - Julian Curiel
- Children's National Health System, Center for Neuroscience Research, Washington, District of Columbia
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3348, Orsay, F-91405, France. .,Université Paris Sud, Université Paris-Saclay, CNRS, UMR 3348, Orsay, F-91405, France.
| | - Judy Liu
- Children's National Health System, Center for Neuroscience Research, Washington, District of Columbia.
| |
Collapse
|
16
|
Sharman J, Di Paolo J. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib. Ther Adv Hematol 2016; 7:157-70. [PMID: 27247756 PMCID: PMC4872176 DOI: 10.1177/2040620716636542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The B-cell receptor signaling pathway has emerged as an important therapeutic target in chronic lymphocytic leukemia and other B-cell malignancies. Novel agents have been developed targeting the signaling enzymes spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase, and phosphoinositide 3-kinase delta. This review discusses the rationale for targeting these enzymes, as well as the preclinical and clinical evidence supporting their role as therapeutic targets, with a particular focus on SYK inhibition with entospletinib.
Collapse
Affiliation(s)
- Jeff Sharman
- Willamette Valley Cancer Institute and Research Center, US Oncology Research, 3377 Riverbend Drive, Suite 500, Springfield, OR 97477, USA
| | - Julie Di Paolo
- Department of Biology, Gilead Sciences, Inc., Foster City, CA, USA
| |
Collapse
|
17
|
Yu Y, Gaillard S, Phillip JM, Huang TC, Pinto SM, Tessarollo NG, Zhang Z, Pandey A, Wirtz D, Ayhan A, Davidson B, Wang TL, Shih IM. Inhibition of Spleen Tyrosine Kinase Potentiates Paclitaxel-Induced Cytotoxicity in Ovarian Cancer Cells by Stabilizing Microtubules. Cancer Cell 2015; 28:82-96. [PMID: 26096845 PMCID: PMC5257279 DOI: 10.1016/j.ccell.2015.05.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/11/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Resistance to chemotherapy represents a major obstacle for long-term remission, and effective strategies to overcome drug resistance would have significant clinical impact. We report that recurrent ovarian carcinomas after paclitaxel/carboplatin treatment have higher levels of spleen tyrosine kinase (SYK) and phospho-SYK. In vitro, paclitaxel-resistant cells expressed higher SYK, and the ratio of phospho-SYK/SYK positively associated with paclitaxel resistance in ovarian cancer cells. Inactivation of SYK by inhibitors or gene knockdown sensitized paclitaxel cytotoxicity in vitro and in vivo. Analysis of the phosphotyrosine proteome in paclitaxel-resistant tumor cells revealed that SYK phosphorylates tubulins and microtubule-associated proteins. Inhibition of SYK enhanced microtubule stability in paclitaxel-resistant tumor cells that were otherwise insensitive. Thus, targeting SYK pathway is a promising strategy to enhance paclitaxel response.
Collapse
Affiliation(s)
- Yu Yu
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Stephanie Gaillard
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tai-Chung Huang
- Department of Biological Chemistry and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Sneha M Pinto
- Department of Biological Chemistry and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Nayara G Tessarollo
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Biotechnology Program/Renorbio, Health Science Center, Federal University of Espirito Santo, Vitória 29075-910, Brazil
| | - Zhen Zhang
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Biological Chemistry and Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ayse Ayhan
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Pathology, Seirei Mikatahara Hospital and Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Tian-Li Wang
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | - Ie-Ming Shih
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Kremlitzka M, Mácsik-Valent B, Erdei A. Syk is indispensable for CpG-induced activation and differentiation of human B cells. Cell Mol Life Sci 2015; 72:2223-36. [PMID: 25543269 PMCID: PMC11113211 DOI: 10.1007/s00018-014-1806-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/21/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
B cells are efficiently activated by CpG oligodeoxynucleotides (ODNs) to produce pro-inflammatory cytokines and antibody (Ab). Here, we describe a so far unidentified, spleen tyrosine kinase (Syk)-dependent pathway, which is indispensable for CpG-induced human B cell activation. We show that triggering of B cells by CpG results in Syk and src kinase phosphorylation, proliferation, as well as cytokine and Ab production independent of the BCR. Notably, all these functions are abrogated when Syk is inhibited. We demonstrate that CpG-induced Syk activation originates from the cell surface in a TLR9-dependent manner. While inhibition of Syk does not influence the uptake of CpG ODNs, activation of the kinase is a prerequisite for the delivery of CpG into TLR9-containing endolysosomes and for the CpG-induced up-regulation of TLR9 expression. Our results reveal an alternative, Syk-dependent pathway of CpG-induced B cell stimulation, which is initiated at the plasma membrane and seems to be an upstream requirement for endosomal TLR9-driven B cell proliferation and differentiation.
Collapse
Affiliation(s)
| | - Bernadett Mácsik-Valent
- Department of Immunology, Eötvös Loránd University, 1117 Budapest Pázmány s. 1/c, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest Pázmány s. 1/c, Budapest, Hungary
- MTA-ELTE Immunology Research Group, Budapest, Hungary
| |
Collapse
|
19
|
Abstract
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, 91405 Orsay, France Centre National de la Recherche Scientifique Unité Mixte de Recherche 3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France
| |
Collapse
|
20
|
JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein Ninein. Mol Cell Biol 2014; 35:111-31. [PMID: 25332239 DOI: 10.1128/mcb.01138-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
JAK2 is a cytoplasmic tyrosine kinase critical for cytokine signaling. In this study, we have identified a novel centrosome-associated complex containing ninein and JAK2. We have found that active JAK2 localizes around the mother centrioles, where it partly colocalizes with ninein, a protein involved in microtubule (MT) nucleation and anchoring. We demonstrated that JAK2 is an important regulator of centrosome function. Depletion of JAK2 or use of JAK2-null cells causes defects in MT anchoring and increased numbers of cells with mitotic defects; however, MT nucleation is unaffected. We showed that JAK2 directly phosphorylates the N terminus of ninein while the C terminus of ninein inhibits JAK2 kinase activity in vitro. Overexpressed wild-type (WT) or C-terminal (amino acids 1179 to 1931) ninein inhibits JAK2. This ninein-dependent inhibition of JAK2 significantly decreases prolactin- and interferon gamma (IFN-γ)-induced tyrosyl phosphorylation of STAT1 and STAT5. Downregulation of ninein enhances JAK2 activation. These results indicate that JAK2 is a novel member of centrosome-associated complex and that this localization regulates both centrosomal function and JAK2 kinase activity, thus controlling cytokine-activated molecular pathways.
Collapse
|
21
|
Frezzato F, Trimarco V, Martini V, Gattazzo C, Ave E, Visentin A, Cabrelle A, Olivieri V, Zambello R, Facco M, Zonta F, Cristiani A, Brunati AM, Moro S, Semenzato G, Trentin L. Leukaemic cells from chronic lymphocytic leukaemia patients undergo apoptosis following microtubule depolymerization and Lyn inhibition by nocodazole. Br J Haematol 2014; 165:659-72. [PMID: 24606526 DOI: 10.1111/bjh.12815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
Functional abnormalities of chronic lymphocytic leukaemia (CLL) cells may be related to the microtubular network of cell cytoskeleton; specifically tubulin involvement in cells after B-cell receptor engagement. As microtubule inhibitors could represent a therapeutic strategy for CLL, this study investigated the capability of nocodazole, a synthetic depolymerizing agent, to kill CLL leukaemic cells. We demonstrated that nocodazole was highly specific for the in vitro induction of apoptosis in leukaemic cells from 90 CLL patients, without affecting the viability of T-cells and/or mesenchymal stromal cells (MSCs) recovered from the same patients. Nocodazole was observed to overcome the pro-survival signals provided by MSCs. Competing with ATP for the nucleotide-binding site, nocodazole has been observed to turn off the high basal tyrosine phosphorylation of leukaemic cells mediated by the Src-kinase Lyn. Considering that most anti-microtubule drugs have limited clinical use because of their strong toxic effects, the high selectivity of nocodazole for leukaemic cells in CLL and its capability to bypass microenvironmental pro-survival stimuli, suggests the use of this inhibitor for designing new therapeutic strategies in CLL treatment.
Collapse
Affiliation(s)
- Federica Frezzato
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padova, Italy; Department of Medicine, Haematology and Clinical Immunology Branch, Padova University School of Medicine, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Uckun FM, Qazi S. Spleen tyrosine kinase as a molecular target for treatment of leukemias and lymphomas. Expert Rev Anticancer Ther 2014; 10:1407-18. [DOI: 10.1586/era.10.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
An ITAM in a nonenveloped virus regulates activation of NF-κB, induction of beta interferon, and viral spread. J Virol 2013; 88:2572-83. [PMID: 24352448 DOI: 10.1128/jvi.02573-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunoreceptor tyrosine-based activation motifs (ITAMs) are signaling domains located within the cytoplasmic tails of many transmembrane receptors and associated adaptor proteins that mediate immune cell activation. ITAMs also have been identified in the cytoplasmic tails of some enveloped virus glycoproteins. Here, we identified ITAM sequences in three mammalian reovirus proteins: μ2, σ2, and λ2. We demonstrate for the first time that μ2 is phosphorylated, contains a functional ITAM, and activates NF-κB. Specifically, μ2 and μNS recruit the ITAM-signaling intermediate Syk to cytoplasmic viral factories and this recruitment requires the μ2 ITAM. Moreover, both the μ2 ITAM and Syk are required for maximal μ2 activation of NF-κB. A mutant virus lacking the μ2 ITAM activates NF-κB less efficiently and induces lower levels of the downstream antiviral cytokine beta interferon (IFN-β) than does wild-type virus despite similar replication. Notably, the consequences of these μ2 ITAM effects are cell type specific. In fibroblasts where NF-κB is required for reovirus-induced apoptosis, the μ2 ITAM is advantageous for viral spread and enhances viral fitness. Conversely, in cardiac myocytes where the IFN response is critical for antiviral protection and NF-κB is not required for apoptosis, the μ2 ITAM stimulates cellular defense mechanisms and diminishes viral fitness. Together, these results suggest that the cell type-specific effect of the μ2 ITAM on viral spread reflects the cell type-specific effects of NF-κB and IFN-β. This first demonstration of a functional ITAM in a nonenveloped virus presents a new mechanism for viral ITAM-mediated signaling with likely organ-specific consequences in the host.
Collapse
|
24
|
Xue L, Geahlen RL, Tao WA. Identification of direct tyrosine kinase substrates based on protein kinase assay-linked phosphoproteomics. Mol Cell Proteomics 2013; 12:2969-80. [PMID: 23793017 DOI: 10.1074/mcp.o113.027722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein kinases are implicated in multiple diseases such as cancer, diabetes, cardiovascular diseases, and central nervous system disorders. Identification of kinase substrates is critical to dissecting signaling pathways and to understanding disease pathologies. However, methods and techniques used to identify bona fide kinase substrates have remained elusive. Here we describe a proteomic strategy suitable for identifying kinase specificity and direct substrates in high throughput. This approach includes an in vitro kinase assay-based substrate screening and an endogenous kinase dependent phosphorylation profiling. In the in vitro kinase reaction route, a pool of formerly phosphorylated proteins is directly extracted from whole cell extracts, dephosphorylated by phosphatase treatment, after which the kinase of interest is added. Quantitative proteomics identifies the rephosphorylated proteins as direct substrates in vitro. In parallel, the in vivo quantitative phosphoproteomics is performed in which cells are treated with or without the kinase inhibitor. Together, proteins phosphorylated in vitro overlapping with the kinase-dependent phosphoproteome in vivo represents the physiological direct substrates in high confidence. The protein kinase assay-linked phosphoproteomics was applied to identify 25 candidate substrates of the protein-tyrosine kinase SYK, including a number of known substrates and many novel substrates in human B cells. These shed light on possible new roles for SYK in multiple important signaling pathways. The results demonstrate that this integrated proteomic approach can provide an efficient strategy to screen direct substrates for protein tyrosine kinases.
Collapse
|
25
|
Kaur M, Kumari A, Bahia MS, Silakari O. Designing of new multi-targeted inhibitors of spleen tyrosine kinase (Syk) and zeta-associated protein of 70kDa (ZAP-70) using hierarchical virtual screening protocol. J Mol Graph Model 2012; 39:165-75. [PMID: 23280414 DOI: 10.1016/j.jmgm.2012.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/09/2012] [Accepted: 11/17/2012] [Indexed: 12/19/2022]
Abstract
In the present study, diverse inhibitor molecules of two protein tyrosine kinases i.e. Syk and ZAP-70 were considered for the pharmacophore and docking analyses to design new multi-targeted agents for these enzymes. These enzymes are non-receptor protein tyrosine kinases and both are expressed mainly in B and T-lymphocytes where they play a crucial role in immune signaling. The role of these two enzymes in inflammatory and autoimmune diseases makes them potential therapeutic targets for the designing of new multi-targeted agents to combat disease conditions associated with them. The pharmacophore models were developed for Syk and ZAP-70 inhibitors using PHASE module of Schrödinger software. The generated pharmacophore models for both enzymes were clustered and top five models for each target were selected on the basis of survival minus inactive score that were subsequently used for the 3D-QSAR analysis. The best model for Syk (ADHR.45-5) and ZAP-70 (AADRR.265-3) were selected corresponding to highest value of Q(2). Both models were employed for the screening of a PHASE database of approximately 1.5 million compounds, subsequently the retrieved hits were screened employing docking simulations with Syk and ZAP-70 proteins. Finally, the screened compounds having structural features of both pharmacophore models and displaying essential interactions with both proteins were investigated for ADME properties. Thus, the new leads obtained in this way would show inhibitory activity against Syk and ZAP-70, and may serve as novel therapeutic agents for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Maninder Kaur
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | | | | | | |
Collapse
|
26
|
Fargier G, Favard C, Parmeggiani A, Sahuquet A, Mérezègue F, Morel A, Denis M, Molinari N, Mangeat PH, Coopman PJ, Montcourrier P. Centrosomal targeting of Syk kinase is controlled by its catalytic activity and depends on microtubules and the dynein motor. FASEB J 2012; 27:109-22. [DOI: 10.1096/fj.11-202465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Fargier
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Cyril Favard
- Centre d'Etudes d'Agents Pathogénes et Biotechnologies pour la Santé (CPBS), CNRS UMR 5236Universités Montpellier 1 and Montpellier 2MontpellierFrance
| | - Andrea Parmeggiani
- CNRS, UMR 5235, Biological Physics and System BiologyUniversité Montpellier 2MontpellierFrance
| | - Alain Sahuquet
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Fabrice Mérezègue
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Anne Morel
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Marie Denis
- Laboratoire de Biostatistique, d'Epidémiologie et de Santé Publique, Unité Pédagogique MédicaleInstitut Universitaire de Recherche Clinique, Université Montpellier 1MontpellierFrance
| | - Nicolas Molinari
- Laboratoire de Biostatistique, d'Epidémiologie et de Santé Publique, Unité Pédagogique MédicaleInstitut Universitaire de Recherche Clinique, Université Montpellier 1MontpellierFrance
| | - Paul H. Mangeat
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
| | - Peter J. Coopman
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896Centre Régional de Lutte contre le Cancer (CRLC) Val d'AurelleUniversité Montpellier 1MontpellierFrance
| | - Philippe Montcourrier
- Centre de Recherche de Biochimie Macromoléculaire (CRBM), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5237Universités Montpellier 1 and Montpellier 2MontpellierFrance
- Equipe Labellisée 2007 Ligue Nationale contre le CancerParisFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896Centre Régional de Lutte contre le Cancer (CRLC) Val d'AurelleUniversité Montpellier 1MontpellierFrance
| |
Collapse
|
27
|
Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci U S A 2012; 109:5615-20. [PMID: 22451900 DOI: 10.1073/pnas.1119418109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity.
Collapse
|
28
|
Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 750:60-82. [DOI: 10.1016/j.mrrev.2011.11.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 01/27/2023]
|
29
|
Jackson VC, Dewilde S, Albo AG, Lis K, Corpillo D, Canepa B. The activity of aminoacyl-tRNA synthetase-interacting multi-functional protein 1 (AIMP1) on endothelial cells is mediated by the assembly of a cytoskeletal protein complex. J Cell Biochem 2011; 112:1857-68. [DOI: 10.1002/jcb.23104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol 2011; 18:673-9. [PMID: 21552259 DOI: 10.1038/nsmb.2040] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/17/2011] [Indexed: 12/15/2022]
Abstract
Most human genes produce multiple mRNA isoforms through alternative splicing. However, the biological relevance of most splice variants remains unclear. In this study, we evaluated the functional impact of alternative splicing in cancer cells. We modulated the splicing pattern of 41 cancer-associated splicing events and scored the effects on cell growth, viability and apoptosis, identifying three isoforms essential for cell survival. Specifically, changing the splicing pattern of the spleen tyrosine kinase gene (SYK) impaired cell-cycle progression and anchorage-independent growth. Notably, exposure of cancer cells to epithelial growth factor modulated the SYK splicing pattern to promote the pro-survival isoform that is associated with cancer tissues in vivo. The data suggest that splicing of selected genes is specifically modified during tumor development to allow the expression of isoforms that promote cancer cell survival.
Collapse
|
31
|
Wloga D, Gaertig J. Post-translational modifications of microtubules. J Cell Sci 2011; 123:3447-55. [PMID: 20930140 DOI: 10.1242/jcs.063727] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microtubules--polymers of tubulin--perform essential functions, including regulation of cell shape, intracellular transport and cell motility. How microtubules are adapted to perform multiple diverse functions is not well understood. Post-translational modifications of tubulin subunits diversify the outer and luminal surfaces of microtubules and provide a potential mechanism for their functional specialization. Recent identification of a number of tubulin-modifying and -demodifying enzymes has revealed key roles of tubulin modifications in the regulation of motors and factors that affect the organization and dynamics of microtubules.
Collapse
Affiliation(s)
- Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | | |
Collapse
|
32
|
Kroczek C, Lang C, Brachs S, Grohmann M, Dütting S, Schweizer A, Nitschke L, Feller SM, Jäck HM, Mielenz D. Swiprosin-1/EFhd2 controls B cell receptor signaling through the assembly of the B cell receptor, Syk, and phospholipase C gamma2 in membrane rafts. THE JOURNAL OF IMMUNOLOGY 2010; 184:3665-76. [PMID: 20194721 DOI: 10.4049/jimmunol.0903642] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Compartmentalization of the BCR in membrane rafts is important for its signaling capacity. Swiprosin-1/EFhd2 (Swip-1) is an EF-hand and coiled-coil-containing adaptor protein with predicted Src homology 3 (SH3) binding sites that we identified in membrane rafts. We showed previously that Swip-1 amplifies BCR-induced apoptosis; however, the mechanism of this amplification was unknown. To address this question, we overexpressed Swip-1 and found that Swip-1 amplified the BCR-induced calcium flux in WEHI231, B62.1, and Bal17 cells. Conversely, the BCR-elicited calcium flux was strongly attenuated in Swip-1-silenced WEHI231 cells, and this was due to a decreased calcium mobilization from intracellular stores. Complementation of Swip-1 expression in Swip-1-silenced WEHI231 cells restored the BCR-induced calcium flux and enhanced spleen tyrosine kinase (Syk) tyrosine phosphorylation and activity as well as SLP65/BLNK/BASH and phospholipase C gamma2 (PLCgamma2) tyrosine phosphorylation. Furthermore, Swip-1 induced the constitutive association of the BCR itself, Syk, and PLCgamma2 with membrane rafts. Concomitantly, Swip-1 stabilized the association of BCR with tyrosine-phosphorylated proteins, specifically Syk and PLCgamma2, and enhanced the constitutive interaction of Syk and PLCgamma2 with Lyn. Interestingly, Swip-1 bound to the rSH3 domains of the Src kinases Lyn and Fgr, as well as to that of PLCgamma. Deletion of the predicted SH3-binding region in Swip-1 diminished its association and that of Syk and PLCgamma2 with membrane rafts, reduced its interaction with the SH3 domain of PLCgamma, and diminished the BCR-induced calcium flux. Hence, Swip-1 provides a membrane scaffold that is required for the Syk-, SLP-65-, and PLCgamma2-dependent BCR-induced calcium flux.
Collapse
Affiliation(s)
- Carmen Kroczek
- Division of Molecular Immunology, Department of Medicine III, Nikolaus Fiebiger Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Blume Y, Yemets A, Sheremet Y, Nyporko A, Sulimenko V, Sulimenko T, Dráber P. Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells. BMC PLANT BIOLOGY 2010; 10:29. [PMID: 20167106 PMCID: PMC2844066 DOI: 10.1186/1471-2229-10-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/18/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND The function of the cortical microtubules, composed of alphabeta-tubulin heterodimers, is linked to their organizational state which is subject to spatial and temporal modulation by environmental cues. The role of tubulin posttranslational modifications in these processes is largely unknown. Although antibodies against small tubulin regions represent useful tool for studying molecular configuration of microtubules, data on the exposure of tubulin epitopes on plant microtubules are still limited. RESULTS Using homology modeling we have generated an Arabidopsis thaliana microtubule protofilament model that served for the prediction of surface exposure of five beta-tubulin epitopes as well as tyrosine residues. Peptide scans newly disclosed the position of epitopes detected by antibodies 18D6 (beta1-10), TUB2.1 (beta426-435) and TU-14 (beta436-445). Experimental verification of the results by immunofluorescence microscopy revealed that the exposure of epitopes depended on the mode of fixation. Moreover, homology modeling showed that only tyrosines in the C-terminal region of beta-tubulins (behind beta425) were exposed on the microtubule external side. Immunofluorescence microscopy revealed tyrosine phosphorylation of microtubules in plant cells, implying that beta-tubulins could be one of the targets for tyrosine kinases. CONCLUSIONS We predicted surface exposure of five beta-tubulin epitopes, as well as tyrosine residues, on the surface of A. thaliana microtubule protofilament model, and validated the obtained results by immunofluorescence microscopy on cortical microtubules in cells.The results suggest that prediction of epitope exposure on microtubules by means of homology modeling combined with site-directed antibodies can contribute to a better understanding of the interactions of plant microtubules with associated proteins.
Collapse
Affiliation(s)
- Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev 04123, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev 04123, Ukraine
| | - Yarina Sheremet
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev 04123, Ukraine
| | - Alexey Nyporko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev 04123, Ukraine
| | - Vadym Sulimenko
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Tetyana Sulimenko
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Dráber
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| |
Collapse
|
34
|
Beckmann S, Buro C, Dissous C, Hirzmann J, Grevelding CG. The Syk kinase SmTK4 of Schistosoma mansoni is involved in the regulation of spermatogenesis and oogenesis. PLoS Pathog 2010; 6:e1000769. [PMID: 20169182 PMCID: PMC2820527 DOI: 10.1371/journal.ppat.1000769] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/13/2010] [Indexed: 01/09/2023] Open
Abstract
The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6) acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes.
Collapse
Affiliation(s)
- Svenja Beckmann
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Christin Buro
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Colette Dissous
- Inserm, U547, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Jörg Hirzmann
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | | |
Collapse
|
35
|
Ennaciri J, Girard D. IL-4Rα, a New Member that Associates with Syk Kinase: Implication in IL-4-Induced Human Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2009; 183:5261-9. [DOI: 10.4049/jimmunol.0900109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Hirabayashi A, Mukaiyama H, Kobayashi H, Shiohara H, Nakayama S, Ozawa M, Miyazawa K, Misawa K, Ohnota H, Isaji M. Structure-activity relationship studies of 5-benzylaminoimidazo[1,2-c]pyrimidine-8-carboxamide derivatives as potent, highly selective ZAP-70 kinase inhibitors. Bioorg Med Chem 2008; 17:284-94. [PMID: 19010686 DOI: 10.1016/j.bmc.2008.10.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022]
Abstract
Zeta-associated protein, 70 kDa (ZAP-70), a spleen tyrosine kinase (Syk) family kinase, is normally expressed on T cells and natural killer cells and plays a crucial role in activation of the T cell immunoresponse. Thus, selective ZAP-70 inhibitors might be useful not only for treating autoimmune diseases, but also for suppressing organ transplant rejection. In our recent study on the synthesis of Syk family kinase inhibitors, we discovered that novel imidazo[1,2-c]pyrimidine-8-carboxamide derivatives possessed potent ZAP-70 inhibitory activity with good selectivity for ZAP-70 over other kinases. In particular, compound 26 showed excellent ZAP-70 kinase inhibition and high selectivity for ZAP-70 over structurally related Syk. The discovery of a potent, highly selective ZAP-70 inhibitor would contribute a new therapeutic tool for autoimmune diseases and organ transplant medication.
Collapse
Affiliation(s)
- Akihito Hirabayashi
- Central Research Laboratory, Kissei Pharmaceutical Company, 4365-1 Kashiwabara, Hotaka, Azumino, Nagano Prefecture 399-8304, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Structure–activity relationship studies of imidazo[1,2-c]pyrimidine derivatives as potent and orally effective Syk family kinases inhibitors. Bioorg Med Chem 2008; 16:9247-60. [DOI: 10.1016/j.bmc.2008.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/01/2008] [Accepted: 09/05/2008] [Indexed: 11/23/2022]
|
38
|
Hirabayashi A, Mukaiyama H, Kobayashi H, Shiohara H, Nakayama S, Ozawa M, Miyazawa K, Misawa K, Ohnota H, Isaji M. A novel Syk family kinase inhibitor: Design, synthesis, and structure–activity relationship of 1,2,4-triazolo[4,3-c]pyrimidine and 1,2,4-triazolo[1,5-c]pyrimidine derivatives. Bioorg Med Chem 2008; 16:7347-57. [DOI: 10.1016/j.bmc.2008.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
39
|
Jakus Z, Fodor S, Abram CL, Lowell CA, Mócsai A. Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Trends Cell Biol 2007; 17:493-501. [PMID: 17913496 DOI: 10.1016/j.tcb.2007.09.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 08/08/2007] [Accepted: 09/11/2007] [Indexed: 11/23/2022]
Abstract
Although adhesion to extracellular structures is one of the most fundamental cell biological processes, the intracellular signals triggered by integrins, the most important receptors involved, are incompletely understood. Several recent reports indicate that signaling by beta(2) and beta(3) integrins in various cell types (neutrophils, macrophages, osteoclasts and platelets) use components of the signal transduction machinery of lymphocyte antigen receptors. Central to this immunoreceptor-like signaling is the phosphorylation of immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters (such as DAP12 and the Fc receptor gamma-chain) by Src-family kinases and the concomitant recruitment of the Syk tyrosine kinase through its dual SH2 domains. These and other reports reveal an unexpected similarity between the signal-transduction mechanisms used by integrins and immune recognition receptors.
Collapse
Affiliation(s)
- Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1088 Budapest, Hungary
| | | | | | | | | |
Collapse
|
40
|
Sulimenko V, Dráberová E, Sulimenko T, Macurek L, Richterová V, Dráber P, Dráber P. Regulation of microtubule formation in activated mast cells by complexes of gamma-tubulin with Fyn and Syk kinases. THE JOURNAL OF IMMUNOLOGY 2006; 176:7243-53. [PMID: 16751367 DOI: 10.4049/jimmunol.176.12.7243] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of the high-affinity IgE receptors (FcepsilonRIs) on the surface of granulated mast cells initiates a chain of signaling events culminating in the release of allergy mediators. Although microtubules are involved in mast cell degranulation, the molecular mechanism that controls microtubule rearrangement after FcepsilonRI triggering is poorly understood. In this study, we show that the activation of bone marrow-derived mast cells (BMMCs) induced by FcepsilonRI aggregation or treatment with pervanadate leads to a rapid polymerization of microtubules. This polymerization was not dependent on the presence of Lyn kinase as determined by experiments with BMMCs isolated from Lyn-negative mice. One of the key regulators of microtubule polymerization is gamma-tubulin. Immunoprecipitation experiments revealed that gamma-tubulin from activated cells formed complexes with Fyn and Syk protein tyrosine kinases and several tyrosine phosphorylated proteins from both wild-type and Lyn(-/-) BMMCs. Pretreatment of the cells with Src-family or Syk-family selective tyrosine kinase inhibitors, PP2 or piceatannol, respectively, inhibited the formation of microtubules and reduced the amount of tyrosine phosphorylated proteins in gamma-tubulin complexes, suggesting that Src and Syk family kinases are involved in the initial stages of microtubule formation. This notion was corroborated by pull-down experiments in which gamma-tubulin complex bounds to the recombinant Src homology 2 and Src homology 3 domains of Fyn kinase. We propose that Fyn and Syk kinases are involved in the regulation of binding properties of gamma-tubulin and/or its associated proteins, and thus modulate the microtubule nucleation in activated mast cells.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | | | | | |
Collapse
|
41
|
Beswick RW, Ambrose HE, Wagner SD. Nocodazole, a microtubule depolymerising agent, induces apoptosis of chronic lymphocytic leukaemia cells associated with changes in Bcl-2 phosphorylation and expression. Leuk Res 2006; 30:427-36. [PMID: 16162358 DOI: 10.1016/j.leukres.2005.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/08/2005] [Indexed: 02/07/2023]
Abstract
Microtubule active drugs are used in the treatment of malignancies and their mechanism of action in cycling cells is to produce mitotic arrest followed by apoptosis. In this study, we investigate in detail the specificity and mechanism by which a microtubule de-polymerising agent, nocodazole, induces apoptosis in non-cyclingm, i.e. G(0)/G(1), chronic lymphocytic leukaemia (CLL) B-cells. The majority of cases of CLL are sensitive (IC(50)<or=16 microM) but normal peripheral blood B-cells, which are also in G(0)/G(1), are resistant to the maximum in vitro concentration of this agent. Taxol, a microtubule stabilising drug does not kill CLL cells suggesting a specific effect of nocodazole. The mechanism of apoptosis involves mitochondrial membrane depolarisation, activation of caspases and cleavage of PARP. Nocodazole causes two patterns of change to Bcl-2 expression. In one there is increase in expression of the serine-70 phosphorylated form of Bcl-2 and in the other total Bcl-2 expression is reduced. Collectively the data shows that sensitivity to nocodazole-induced apoptosis is a feature of chronic lymphocytic leukaemia and suggests that newer microtubule active agents be systematically investigated for their effectiveness in this condition.
Collapse
Affiliation(s)
- Richard W Beswick
- Division of Investigative Sciences, Department of Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
42
|
Coopman PJ, Mueller SC. The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett 2006; 241:159-73. [PMID: 16442709 DOI: 10.1016/j.canlet.2005.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 11/28/2022]
Abstract
The spleen tyrosine kinase Syk was long thought to be a hematopoietic cell-specific signaling molecule. Recent evidence demonstrated that it is also expressed by many non-hematopoietic cell types and that it plays a negative role in cancer. A significant drop in its expression was first observed during breast cancer progression, but an anomalous Syk expression has now also been evidenced in many other tumor types. Mechanistic studies using Syk re-expression demonstrated its suppressive function in tumorigenesis and metastasis formation, which is surprising for a tyrosine kinase. Loss of Syk expression is regulated, albeit not exclusively, by its promoter hypermethylation. The molecular mechanism of its tumor-suppressive function remains largely unknown; the identification of its activators and effectors in non-hematopoietic cells will be a challenge for the years to come. An increasing number of clinical studies reveal a correlation between reduced Syk expression and an increased risk for metastasis formation, and assign Syk as a potential new prognostic marker in different tumor types.
Collapse
Affiliation(s)
- Peter J Coopman
- CNRS UMR 5539, Université Montpellier 2, 34095 Montpellier, France.
| | | |
Collapse
|
43
|
Zyss D, Montcourrier P, Vidal B, Anguille C, Mérezègue F, Sahuquet A, Mangeat PH, Coopman PJ. The Syk tyrosine kinase localizes to the centrosomes and negatively affects mitotic progression. Cancer Res 2006; 65:10872-80. [PMID: 16322234 DOI: 10.1158/0008-5472.can-05-1270] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed previously that the spleen tyrosine kinase Syk is expressed by mammary epithelial cells and that it suppresses malignant growth of breast cancer cells. The exact molecular mechanism of its tumor-suppressive activity remains, however, to be identified. Here, we show that Syk colocalizes and copurifies with the centrosomal component gamma-tubulin and exhibits a catalytic activity within the centrosomes. Moreover, its centrosomal localization depends on its intact kinase activity. Centrosomal Syk expression is persistent in interphase but promptly drops during mitosis, obviously resulting from its ubiquitinylation and proteasomal degradation. Conversely, unrestrained exogenous expression of a fluorescently tagged Discosoma sp. red fluorescent protein (DsRed)-Syk chimera engenders abnormal cell division and cell death. Transient DsRed-Syk overexpression triggers an abrupt cell death lacking hallmarks of classic apoptosis but reminiscent of mitotic catastrophe. Surviving stable DsRed-Syk-transfected cells exhibit multipolar mitotic spindles and contain multiple abnormally sized nuclei and supernumerary centrosomes, revealing anomalous cell division. Taken together, these results show that Syk is a novel centrosomal kinase that negatively affects cell division. Its expression is strictly controlled in a spatiotemporal manner, and centrosomal Syk levels need to decline to allow customary progression of mitosis.
Collapse
Affiliation(s)
- Déborah Zyss
- Centre National de la Recherche Scientifique UMR5539, Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Some myeloproliferative disorders (MPD) result from a reciprocal translocation that involves the FGFR1 gene and a partner gene. The event creates a chimeric gene that encodes a fusion protein with constitutive FGFR1 tyrosine kinase activity. FGFR1-MPD is a rare disease, but its study may provide interesting clues on different processes such as cell signalling, oncogenesis and stem cell renewal. Some partners of FGFR1 are centrosomal proteins. The corresponding oncogenic fusion kinases are targeted to the centrosome. Constitutive phosphorylation at this site may perturbate centrosome function and the cell cycle. Direct attack at this small organelle may be an efficient way for oncogenes to alter regulation of signalling for proliferation and survival and get rid of checkpoints in cell cycle progression. The same effect might be triggered by other fusion kinases in other MPD and non-MPD malignancies.
Collapse
Affiliation(s)
- B Delaval
- Laboratory of Molecular Oncology, UMR599 Inserm, Marseille Cancer Institute, Institut Paoli-Calmettes, Marseille, France
| | | | | |
Collapse
|
45
|
He J, Tohyama Y, Yamamoto KI, Kobayashi M, Shi Y, Takano T, Noda C, Tohyama K, Yamamura H. Lysosome is a primary organelle in B cell receptor-mediated apoptosis: an indispensable role of Syk in lysosomal function. Genes Cells 2004; 10:23-35. [PMID: 15670211 DOI: 10.1111/j.1365-2443.2004.00811.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the mechanism of B cell receptor (BCR)-mediated apoptosis, we utilized immature B cell lines, DT40 and WEHI-231. In both cell lines, BCR-crosslinking caused the increase in lysosomal pH with early apoptotic changes characterized by chromatin condensation and phosphatidylserine exposure. This increase was detected in c-Abl-deficient DT40 cells but not in Syk-deficient cells, which corresponded to the fact that the former cells but not the latter revealed BCR-induced apoptosis. In contrast, BCR-crosslinking caused no apparent change in mitochondrial transmembrane potential. Therefore, the lysosomal change might be a primary event in BCR-induced apoptosis in DT40 cells. The increased activity of cathepsin B and apoptosis-preventing effect of a cathepsin inhibitor suggested a significant role of lysosomal enzymes in this apoptosis. By microscopic studies, lysosomes of wild-type DT40 cells fused to BCR-carrying endosomes became enlarged and accumulated one another. In contrast, these changes of lysosomal dynamics did not occur in Syk-deficient cells but transfer of wild-type Syk restored the lysosomal changes and apoptosis. These results demonstrated that the lysosomal change accompanied with the activation of lysosomal enzymes is a primary step in BCR-crosslinking-mediated apoptosis and Syk is responsible for this step through the fusion of BCR-carrying endosomes to lysosomes.
Collapse
Affiliation(s)
- Jinsong He
- Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Mitsopoulos C, Zihni C, Garg R, Ridley AJ, Morris JDH. The prostate-derived sterile 20-like kinase (PSK) regulates microtubule organization and stability. J Biol Chem 2003; 278:18085-91. [PMID: 12639963 DOI: 10.1074/jbc.m213064200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterile 20 (STE20) protein kinases, which include germinal center kinases and p21-activated protein kinases, are known to activate mitogen-activated protein kinase pathways (c-Jun NH(2)-terminal kinase, p38, or extracellular signal-regulated kinase), leading to changes in gene transcription. Some STE20s can also regulate the cytoskeleton, and we have shown that the germinal center kinase-like kinase prostate-derived STE20-like kinase (PSK) affects actin cytoskeletal organization. Here, we demonstrate that PSK colocalizes with microtubules; and that this localization is disrupted by the microtubule depolymerizing agent nocodazole. The association of PSK with microtubules results in the production of stabilized perinuclear microtubule cables that are nocodazole-resistant and contain increased levels of acetylated alpha-tubulin. Kinase-defective PSK (K57A) or the C terminus of PSK (amino acids 745-1235) lacking the kinase domain are sufficient for microtubule binding and stabilization, demonstrating that the catalytic activity of the protein is not required. The localization of PSK to microtubules occurs via its C terminus, and PSK binds and phosphorylates alpha- and beta-tubulin in vitro. The N terminus of PSK (1-940) is unable to bind or stabilize microtubules, demonstrating that PSK must associate with microtubules for their reorganization to occur. These results demonstrate that PSK interacts with microtubules and affects their organization and stability independently of PSK kinase activity.
Collapse
Affiliation(s)
- Costas Mitsopoulos
- Department of Academic Surgery, GKT School of Medicine and Dentistry, Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Obergfell A, Eto K, Mocsai A, Buensuceso C, Moores SL, Brugge JS, Lowell CA, Shattil SJ. Coordinate interactions of Csk, Src, and Syk kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton. J Cell Biol 2002; 157:265-75. [PMID: 11940607 PMCID: PMC2199242 DOI: 10.1083/jcb.200112113] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin alphaIIbbeta3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in alphaIIbbeta3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with alphaIIbbeta3. However, fibrinogen binding caused Csk to dissociate from alphaIIbbeta3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with alphaIIbbeta3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to alphaIIbbeta3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- Achim Obergfell
- Division of Vascular Biology, Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Feng Y, Walsh CA. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat Rev Neurosci 2001; 2:408-16. [PMID: 11389474 DOI: 10.1038/35077559] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal migration, like the migration of many cell types, requires an extensive rearrangement of cell shape, mediated by changes in the cytoskeleton. The genetic analysis of human brain malformations has identified several biochemical players in this process, including doublecortin (DCX) and LIS1, mutations of which cause a profound migratory disturbance known as lissencephaly ('smooth brain') in humans. Studies in mice have identified additional molecules such as Cdk5, P35, Reelin, Disabled and members of the LDL superfamily of receptors. Understanding the cell biology of these molecules has been a challenge, and it is not known whether they function in related biochemical pathways or in very distinct processes. The last year has seen rapid advances in the biochemical analysis of several such molecules. This analysis has revealed roles for some of these molecules in cytoskeletal regulation and has shown an unexpected conservation of the genetic pathways that regulate neuronal migration in humans and nuclear movement in simple eukaryotic organisms.
Collapse
Affiliation(s)
- Y Feng
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Centre, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
50
|
Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW, Johnson GL. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J Biol Chem 2001; 276:5093-100. [PMID: 11073940 DOI: 10.1074/jbc.m003719200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.
Collapse
Affiliation(s)
- W Sun
- Department of Pharmacology, University of Colorado Health Sciences Center and University of Colorado Cancer Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|