1
|
Fernandes CAH, Perez AM, Barros AC, Dreyer TR, da Silva MS, Morea EGO, Fontes MRM, Cano MIN. Dual cellular localization of the Leishmania amazonensis Rbp38 (LaRbp38) explains its affinity for telomeric and mitochondrial DNA. Biochimie 2019; 162:15-25. [PMID: 30930281 DOI: 10.1016/j.biochi.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Rbp38 is a protein exclusively found in trypanosomatid parasites, including Leishmania amazonensis, the etiologic agent of tegumentar leishmaniasis in the Americas. The protein was first described as a Leishmania tarentolae mitochondrial RNA binding protein. Later, it was shown that the trypanosomes Rbp38 orthologues were exclusively found in the mitochondria and involved in the stabilization and replication of kinetoplast DNA (kDNA). In contrast, L. amazonensis Rbp38 (LaRbp38), co-purifies with telomerase activity and interacts not only with kDNA but also with telomeric DNA, although shares with its counterparts high sequence identity and a putative N-terminal mitochondrial targeting signal (MTS). To understand how LaRbp38 interacts both with nuclear and kDNA, we have first investigated its subcellular localization. Using hydroxy-urea synchronized L. amazonensis promastigotes we could show that LaRbp38 shuttles from mitochondria to the nucleus at late S and G2 phases. Further, we identified a non-classical nuclear localization signal (NLS) at LaRbp38 C-terminal that binds with importin alpha, a protein involved in the nuclear transport of several proteins. Also, we obtained LaRbp38 truncated forms among which, some of them also showed an affinity for both telomeric DNA and kDNA. Analysis of these truncated forms showed that LaRbp38 DNA-binding region is located between amino acid residues 95-235. Together, our findings strongly suggest that LaRbp38 is multifunctional with dual subcellular localization.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arina M Perez
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Andrea C Barros
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Thiago R Dreyer
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- Laboratório Especial de Ciclo Cellular, (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Edna Gicela O Morea
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria Isabel N Cano
- Department of Genetics, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Canela-Pérez I, López-Villaseñor I, Mendoza L, Cevallos AM, Hernández R. Nuclear localization signals in trypanosomal proteins. Mol Biochem Parasitol 2019; 229:15-23. [PMID: 30772422 DOI: 10.1016/j.molbiopara.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 02/09/2019] [Indexed: 01/04/2023]
Abstract
The nuclear import of proteins in eukaryotic cells is a fundamental biological process. While it has been analysed to different extents in model eukaryotic organisms, this event has rarely been studied in the early divergent protozoa of the order Kinetoplastida. The work presented here represents an overview of nuclear import in these important species of human pathogens. Initially, an in silico study of classical nuclear localization signals within the published nuclear proteomes of Trypanosoma brucei and Trypanosoma cruzi was carried out. The basic amino acids that comprise the monopartite and bipartite classical nuclear localization signals (cNLS) in trypanosomal proteins are similar to the consensus sequences observed for the nuclear proteins of yeasts, animals and plants. In addition, a summarized description of published studies that experimentally address the NLS of nuclear proteins in trypanosomatids is presented, and the clear occurrence of non-classical NLS (NLS that lack the consensus motifs of basic amino acids) in the analysed reports indicate a complex scenario for the types of receptors in these species. In general, the information presented here agrees with the hypothetical appearance of mechanisms for the recognition of nuclear proteins in early eukaryotic evolution.
Collapse
Affiliation(s)
- Israel Canela-Pérez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04360, México.
| |
Collapse
|
3
|
Negreiros RS, Lander N, Huang G, Cordeiro CD, Smith SA, Morrissey JH, Docampo R. Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids. Mol Microbiol 2018; 110:973-994. [PMID: 30230089 DOI: 10.1111/mmi.14131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer of three to hundreds of phosphate units bound by high-energy phosphoanhydride bonds and present from bacteria to humans. Most polyP in trypanosomatids is concentrated in acidocalcisomes, acidic calcium stores that possess a number of pumps, exchangers, and channels, and are important for their survival. In this work, using polyP as bait we identified > 25 putative protein targets in cell lysates of both Trypanosoma cruzi and Trypanosoma brucei. Gene ontology analysis of the binding partners found a significant over-representation of nucleolar and glycosomal proteins. Using the polyphosphate-binding domain (PPBD) of Escherichia coli exopolyphosphatase (PPX), we localized long-chain polyP to the nucleoli and glycosomes of trypanosomes. A competitive assay based on the pre-incubation of PPBD with exogenous polyP and subsequent immunofluorescence assay of procyclic forms (PCF) of T. brucei showed polyP concentration-dependent and chain length-dependent decrease in the fluorescence signal. Subcellular fractionation experiments confirmed the presence of polyP in glycosomes of T. brucei PCF. Targeting of yeast PPX to the glycosomes of PCF resulted in polyP hydrolysis, alteration in their glycolytic flux and increase in their susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Raquel S Negreiros
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Ciro D Cordeiro
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Wedel C, Förstner KU, Derr R, Siegel TN. GT-rich promoters can drive RNA pol II transcription and deposition of H2A.Z in African trypanosomes. EMBO J 2017; 36:2581-2594. [PMID: 28701485 PMCID: PMC5579346 DOI: 10.15252/embj.201695323] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/25/2023] Open
Abstract
Genome‐wide transcription studies are revealing an increasing number of “dispersed promoters” that, unlike “focused promoters”, lack well‐conserved sequence motifs and tight regulation. Dispersed promoters are nevertheless marked by well‐defined chromatin structures, suggesting that specific sequence elements must exist in these unregulated promoters. Here, we have analyzed regions of transcription initiation in the eukaryotic parasite Trypanosoma brucei, in which RNA polymerase II transcription initiation occurs over broad regions without distinct promoter motifs and lacks regulation. Using a combination of site‐specific and genome‐wide assays, we identified GT‐rich promoters that can drive transcription and promote the targeted deposition of the histone variant H2A.Z in a genomic context‐dependent manner. In addition, upon mapping nucleosome occupancy at high resolution, we find nucleosome positioning to correlate with RNA pol II enrichment and gene expression, pointing to a role in RNA maturation. Nucleosome positioning may thus represent a previously unrecognized layer of gene regulation in trypanosomes. Our findings show that even highly dispersed, unregulated promoters contain specific DNA elements that are able to induce transcription and changes in chromatin structure.
Collapse
Affiliation(s)
- Carolin Wedel
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany
| | | | - Ramona Derr
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany .,Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, München, Germany.,Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Maishman L, Obado SO, Alsford S, Bart JM, Chen WM, Ratushny AV, Navarro M, Horn D, Aitchison JD, Chait BT, Rout MP, Field MC. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res 2016; 44:10554-10570. [PMID: 27625397 PMCID: PMC5159534 DOI: 10.1093/nar/gkw751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 12/17/2022] Open
Abstract
The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component.
Collapse
Affiliation(s)
- Luke Maishman
- School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Samson O Obado
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, 18100 Grenada, Spain
| | - Wei-Ming Chen
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA
| | - Alexander V Ratushny
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA.,Institute for Systems Biology, Seattle, WA 98109, USA
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, 18100 Grenada, Spain
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - John D Aitchison
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA.,Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brian T Chait
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael P Rout
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| |
Collapse
|
6
|
The nuclear envelope and gene organization in parasitic protozoa: Specializations associated with disease. Mol Biochem Parasitol 2016; 209:104-113. [PMID: 27475118 DOI: 10.1016/j.molbiopara.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
The parasitic protozoa Trypanosoma brucei and Plasmodium falciparum are lethal human parasites that have developed elegant strategies of immune evasion by antigenic variation. Despite the vast evolutionary distance between the two taxa, both parasites employ strict monoallelic expression of their membrane proteins, variant surface glycoproteins in Trypanosomes and the var, rif and stevor genes in Plasmodium, in order to evade their host's immune system. Additionally, both telomeric location and epigenetic controls are prominent features of these membrane proteins. As such, telomeres, chromatin structure and nuclear organization all contribute to control of gene expression and immune evasion. Here, we discuss the importance of epigenetics and sub-nuclear context for the survival of these disease-causing parasites.
Collapse
|
7
|
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, Field MC. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Mol Cell Proteomics 2015; 14:1911-26. [PMID: 25931509 PMCID: PMC4587319 DOI: 10.1074/mcp.m114.047647] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/23/2022] Open
Abstract
Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis.
Collapse
Affiliation(s)
- Catarina Gadelha
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH; §Department of Pathology, University of Cambridge, Cambridge, UK, CB2 1QP;
| | - Wenzhu Zhang
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, 10021
| | - James W Chamberlain
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, 10021
| | - Bill Wickstead
- From the ‡School of Life Sciences, University of Nottingham, Nottingham, UK, NG2 7UH
| | - Mark C Field
- ‖Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK, DD1 5EH
| |
Collapse
|
8
|
Isnard A, Christian JG, Kodiha M, Stochaj U, McMaster WR, Olivier M. Impact of Leishmania infection on host macrophage nuclear physiology and nucleopore complex integrity. PLoS Pathog 2015; 11:e1004776. [PMID: 25826301 PMCID: PMC4380401 DOI: 10.1371/journal.ppat.1004776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/03/2015] [Indexed: 12/23/2022] Open
Abstract
The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites. Unicellular parasites of the genus Leishmania are the causative agent of leishmaniasis, a disease affecting 12 million people worldwide, mainly in tropical and subtropical regions of the developing world. They have evolved strategies to circumvent cellular defense mechanisms favouring their survival. This includes the cleavage and activation of proteins and the subsequent block of signals within the host cells. In this study we discovered that a Leishmania virulence factor, GP63, is able to reach host cell nuclei and affect protein transport from and into the nucleus. Through the analysis of the protein content of nuclei after parasite infection we revealed that Leishmania, predominantly through the protein cleaving enzyme GP63, can alter several processes within the nucleus, amongst others mechanisms associated with gene expression and nucleic acid metabolism. Thus, we here introduce a novel strategy of how Leishmania parasites may overcome host cell defense and ensure their own survival.
Collapse
Affiliation(s)
- Amandine Isnard
- Departments of Medicine and Microbiology & Immunology, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - Jan G. Christian
- Departments of Medicine and Microbiology & Immunology, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - W. Robert McMaster
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Olivier
- Departments of Medicine and Microbiology & Immunology, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
10
|
Batram C, Jones NG, Janzen CJ, Markert SM, Engstler M. Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei. eLife 2014; 3:e02324. [PMID: 24844706 PMCID: PMC4027811 DOI: 10.7554/elife.02324] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness. DOI:http://dx.doi.org/10.7554/eLife.02324.001 African sleeping sickness is a potentially lethal disease that is caused by a parasite called T. brucei and spread by tsetse flies. Like many of the parasites that cause tropical diseases, T. brucei employs genetic trickery to evade the immune systems of humans and other mammals. This involves changing the variant surface glycoprotein (VSG) coat that surrounds the parasite on a regular basis in order to remain one step ahead of the immune system of its host: while the immune system looks for invaders wearing a particular coat, the parasites are spreading through the host in a completely different coat. To infect other hosts, the parasite must undergo changes that allow it to re-infect the tsetse fly. Therefore, besides the ‘antigenic variation’ that allows it to change its surface coat when it is in the blood of its host, T. brucei must undergo a more fundamental metamorphosis before it is capable of colonizing the tsetse fly. However, many details of the changes that allow the parasites to re-infect flies are not understood. T. brucei has several hundred VSG genes clustered in about 15 regions known as expression sites, but only a single expression site is active at any given time. Each expression site also contains a number of other genes known as expression site-associated genes (ESAGs). Antigenic variation can occur as a result of different VSG genes within the same expression site being expressed as proteins, or when the active expression site is silenced and another expression site is activated. This is another process that is not fully understood. Batram et al. now reveal that the expression of VSG genes, antigenic variation and the changes that allow the parasites to re-infect flies are all related to each other. This suggests that the expression site could provide a new point of attack in the fight against African sleeping sickness. DOI:http://dx.doi.org/10.7554/eLife.02324.002
Collapse
Affiliation(s)
- Christopher Batram
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Christian J Janzen
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Sebastian M Markert
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Kumar D, Kumar D, Saha S. A highly basic sequence at the N-terminal region is essential for targeting the DNA replication protein ORC1 to the nucleus in Leishmania donovani. MICROBIOLOGY-SGM 2012; 158:1775-1782. [PMID: 22575896 DOI: 10.1099/mic.0.055640-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conserved eukaryotic DNA replication protein ORC1 is one of the constituents of pre-replication complexes that assemble at or very near origins prior to replication initiation. ORC1 has been shown to be constitutively nuclear in Leishmania major. This study investigates the sequences involved in nuclear localization of ORC1 in Leishmania donovani, the causative agent of visceral leishmaniasis. Nuclear localization signals (NLSs) have been reported in only a few Leishmania proteins. Functional analyses have delineated NLSs to regions of ~60 amino acids in length in the tyrosyl DNA phosphodiesterase I and type II DNA topoisomerase of L. donovani, and in the L. major kinesin KIN13-1. Using a panel of site-directed mutations we have identified a sequence essential for nuclear import of LdORC1. This sequence at the N terminus of the protein comprises residues 2-5 (KRSR), with K2, R3 and R5 being crucial. Independent mutation of the K2 residue causes exclusion of the protein from the nucleus, while mutating the R5 residue leads to diffusion of the protein throughout the cell. This sequence, however, is insufficient for targeting a heterologous protein (β-galactosidase) to the nucleus. Analysis of additional ORC1 mutations and reporter constructs reveals that while the highly basic tetra-amino acid sequence at the N terminus is essential for nuclear localization, the ORC1 NLS in its entirety is more complex, and of a distributive character. Our results suggest that nuclear localization signalling sequences in Leishmania nuclear proteins are more complex than what is typically seen in higher eukaryotes.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Diwakar Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
12
|
Scott MS, Troshin PV, Barton GJ. NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinformatics 2011; 12:317. [PMID: 21812952 PMCID: PMC3166288 DOI: 10.1186/1471-2105-12-317] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/03/2011] [Indexed: 12/15/2022] Open
Abstract
Background Nucleolar localization sequences (NoLSs) are short targeting sequences responsible for the localization of proteins to the nucleolus. Given the large number of proteins experimentally detected in the nucleolus and the central role of this subnuclear compartment in the cell, NoLSs are likely to be important regulatory elements controlling cellular traffic. Although many proteins have been reported to contain NoLSs, the systematic characterization of this group of targeting motifs has only recently been carried out. Results Here, we describe NoD, a web server and a command line program that predicts the presence of NoLSs in proteins. Using the web server, users can submit protein sequences through the NoD input form and are provided with a graphical output of the NoLS score as a function of protein position. While the web server is most convenient for making prediction for just a few proteins, the command line version of NoD can return predictions for complete proteomes. NoD is based on our recently described human-trained artificial neural network predictor. Through stringent independent testing of the predictor using available experimentally validated NoLS-containing eukaryotic and viral proteins, the NoD sensitivity and positive predictive value were estimated to be 71% and 79% respectively. Conclusions NoD is the first tool to provide predictions of nucleolar localization sequences in diverse eukaryotes and viruses. NoD can be run interactively online at http://www.compbio.dundee.ac.uk/nod or downloaded to use locally.
Collapse
Affiliation(s)
- Michelle S Scott
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
13
|
An expanded family of proteins with BPI/LBP/PLUNC-like domains in trypanosome parasites: an association with pathogenicity? Biochem Soc Trans 2011; 39:966-70. [PMID: 21787331 DOI: 10.1042/bst0390966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Trypanosomatids are protozoan parasites that cause human and animal disease. Trypanosoma brucei telomeric ESs (expression sites) contain genes that are critical for parasite survival in the bloodstream, including the VSG (variant surface glycoprotein) genes, used for antigenic variation, and the SRA (serum-resistance-associated) gene, which confers resistance to lysis by human serum. In addition, ESs contain ESAGs (expression-site-associated genes), whose functions, with few exceptions, have remained elusive. A bioinformatic analysis of the ESAG5 gene of T. brucei showed that it encodes a protein with two BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein)/PLUNC (palate, lung and nasal epithelium clone)-like domains and that it belongs to a multigene family termed (GR)ESAG5 (gene related to ESAG5). Members of this family are found with various copy number in different members of the Trypanosomatidae family. T. brucei has an expanded repertoire, with multiple ESAG5 copies and at least five GRESAG5 genes. In contrast, the parasites of the genus Leishmania, which are intracellular parasites, have only a single GRESAG5 gene. Although the amino acid sequence identity between the (GR)ESAG5 gene products between species is as low as 15-25%, the BPI/LBP/PLUNC-like domain organization and the length of the proteins are highly conserved, and the proteins are predicted to be membrane-anchored or secreted. Current work focuses on the elucidation of possible roles for this gene family in infection. This is likely to provide novel insights into the evolution of the BPI/LBP/PLUNC-like domains.
Collapse
|
14
|
Ersfeld K. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 2011; 162:626-36. [PMID: 21392575 DOI: 10.1016/j.resmic.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/29/2011] [Indexed: 11/29/2022]
Abstract
The nucleus of the human pathogen Trypanosoma brucei not only has unusual chromosomal composition, characterised by the presence of megabase, intermediate and minichromosomes, but also chromosome and gene organisation that is unique amongst eukaryotes. Here I provide an overview of current knowledge of nuclear structure, chromatin organisation and chromosome dynamics during interphase and mitosis. New technologies such as chromatin immunoprecipitation, in combination with new generation sequencing and proteomic analysis of subnuclear fractions, have led to novel insights into the organisation of the nucleus and chromatin. In particular, we are beginning to understand how universal mechanisms of chromatin modifications and nuclear position effects are deployed for parasite-specific functions and are centrally involved in genomic organisation and transcriptional regulation. These advances also have a major impact on progress in understanding the molecular basis of antigenic variation.
Collapse
Affiliation(s)
- Klaus Ersfeld
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
15
|
Inverso JA, Uphoff TS, Johnson SC, Paulnock DM, Mansfield JM. Biological variation among african trypanosomes: I. Clonal expression of virulence is not linked to the variant surface glycoprotein or the variant surface glycoprotein gene telomeric expression site. DNA Cell Biol 2010; 29:215-27. [PMID: 20307190 DOI: 10.1089/dna.2009.0991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential association of variant surface glycoprotein (VSG) gene expression with clonal expression of virulence in African trypanosomes was addressed. Two populations of clonally related trypanosomes, which differ dramatically in virulence for the infected host, but display the same apparent VSG surface coat phenotype, were characterized with respect to the VSG genes expressed as well as the chromosome telomeric expression sites (ES) utilized for VSG gene transcription. The VSG gene sequences expressed by clones LouTat 1 and LouTat 1A of Trypanosoma brucei rhodesiense were identical, and gene expression in both clones occurred precisely by the same gene conversion events (duplication and transposition), which generated an expression-linked copy (ELC) of the VSG gene. The ELC was present on the same genomic restriction fragments in both populations and resided in the telomere of a 330-kb chromosome; a single basic copy of the LouTat 1/1A VSG gene, present in all variants of the LouTat 1 serodeme, was located at an internal site of a 1.5-Mb chromosome. Restriction endonuclease mapping of the ES telomere revealed that the VSG ELC of clones LouTat 1 and 1A resides in the same site. Therefore, these findings provide evidence that the VSG gene ES and, potentially, any cotranscribed ES-associated genes do not play a role in the clonal regulation of virulence because trypanosome clones LouTat 1 and 1A, which differ markedly in their virulence properties, both express identical VSG genes from the same chromosome telomeric ES.
Collapse
Affiliation(s)
- Jill A Inverso
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
16
|
Cassola A, Frasch AC. An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein. J Biol Chem 2009; 284:35015-28. [PMID: 19801539 DOI: 10.1074/jbc.m109.031633] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) and RNA metabolism are considered to be important for modulating gene expression in trypanosomes, because these protozoan parasites mainly rely on post-transcriptional mechanisms to regulate protein levels. Previously, we have identified TcUBP1, a single RNA recognition motif (RRM)-type RBP from Trypanosoma cruzi. TcUBP1 is a cytoplasmic protein with roles in stabilization/degradation of mRNAs and in the protection of transcripts through their recruitment into cytoplasmic granules. We now show that TcUBP1, and the closely related protein TcUBP2, can be found in small amounts in the nucleus under normal conditions, and are able to accumulate in the nucleus under arsenite stress. The kinetics of nuclear accumulation, and export to the cytoplasm, are consistent with the shuttling of TcUBP1 between the nucleus and the cytoplasm. The sequence required for TcUBP1 nuclear accumulation was narrowed to the RRM, and point mutations affecting RNA binding abolished nuclear import. This RRM was also shown to be efficiently exported from the nucleus in unstressed parasites, a property that relied on the binding to RNA. TcUBP1 nuclear accumulation was dependent on active transcription, and colocalized with transcripts in the nucleus, suggesting nuclear binding of the mRNA. We propose that TcUBP1 could be linking the mRNA metabolism at both sides of the nuclear pore complex, using the RRM as a nuclear localization signal, and being exported as a cargo on mRNA.
Collapse
Affiliation(s)
- Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, (1650) San Martín, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
17
|
Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I, Heath P, Kartvelishvili M, Mungall K, Harris D, Hauser H, Sanders M, Saunders D, Seeger K, Sharp S, Taylor JE, Walker D, White B, Young R, Cross GAM, Rudenko G, Barry JD, Louis EJ, Berriman M. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 2008; 3:e3527. [PMID: 18953401 PMCID: PMC2567434 DOI: 10.1371/journal.pone.0003527] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/23/2008] [Indexed: 11/27/2022] Open
Abstract
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.
Collapse
|
18
|
Gluenz E, Taylor MC, Kelly JM. The Trypanosoma cruzi metacyclic-specific protein Met-III associates with the nucleolus and contains independent amino and carboxyl terminal targeting elements. Int J Parasitol 2007; 37:617-25. [PMID: 17239886 PMCID: PMC2424140 DOI: 10.1016/j.ijpara.2006.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 11/24/2022]
Abstract
Metacyclogenesis in Trypanosoma cruzi involves the differentiation of replicating non-infective epimastigotes into non-replicating metacyclic trypomastigotes. This pre-adapts parasites for infection of the mammalian host and is characterised by several morphological changes and structural alterations to the nucleus, including nucleolar disaggregation. Experimental investigation of these developmental processes has been hampered by a lack of robust molecular markers. Here, we describe the precise temporal expression of the T. cruzi-specific protein Met-III, in the genome reference strain CL Brener. Expression is restricted to metacyclics in the insect stages of the life-cycle and is rapidly down-regulated following invasion of mammalian cells. Met-III localises to dispersed foci typical of the disassembled nucleolus in metacyclics and to the discrete single nucleolus of cells soon after macrophage invasion. To identify elements that target Met-III, we generated a series of tagged green fluorescent protein fusion proteins and examined their sub-nuclear location in transformed parasites. These experiments demonstrated that amino and carboxyl terminal fragments, characterised by clusters of basic residues, could independently mediate nucleolar sequestration. To investigate the function of Met-III, we used gene deletion. This showed that Met-III is not required for the development of metacyclic trypomastigotes and that null mutants can complete the life-cycle in vitro.
Collapse
Affiliation(s)
| | | | - John M. Kelly
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
19
|
Boucher N, Dacheux D, Giroud C, Baltz T. An essential cell cycle-regulated nucleolar protein relocates to the mitotic spindle where it is involved in mitotic progression in Trypanosoma brucei. J Biol Chem 2007; 282:13780-90. [PMID: 17322293 DOI: 10.1074/jbc.m700780200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TbNOP86 and TbNOP66 are two novel nucleolar proteins isolated in Trypanosoma brucei. They share 92.6% identity, except for an additional C-terminal domain of TbNOP86 of 182 amino acids in length. Both proteins are found in Trypanosomatidae, but similarity to other eukaryotic proteins could not be found. TbNOP86 and TbNOP66 are expressed at similar level in procyclic and bloodstream forms, although the relative level of expression of TbNOP66 is 11 times lower. TbNOP86 undergoes post-translational modifications, as it is found predominantly at 110 kDa compared with the predicted 86 kDa. Immunofluorescence of overexpressed ty-tagged TbNOP86 and TbNOP66 showed that both proteins accumulated in the nucleolus of G(1) cells. This was confirmed by the co-localization of an endogenous TbNOP86-myc with the nucleolar protein Nopp140. TbNOP86-ty localization is cell cycle-regulated, because it colocalizes with the mitotic spindle in mitotic cells. TbNOP86 is required for mitotic progression in both life stages as depleted cells are enriched in the G(2)/M phase. In procyclic cells, a reduced growth rate is accompanied by an accumulation of zoids (0N1K), 2N1K, and multinucleated cells (xNyK). The 2N1K cells are blocked in late mitosis as nucleolar segregation is completed. TbNOP86 depletion in bloodstream form caused a drastic growth inhibition producing cells bearing two kinetoplasts and an enlarged nucleus (1N(*)2K), followed by an accumulation of 2N2K cells with connected nuclei and xNyK cells. These studies of TbNOP86 provide a more comprehensive account of proteins involved in mitotic events in trypanosomes and should lead to the identification of partners with similar function.
Collapse
Affiliation(s)
- Nathalie Boucher
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR/CNRS-5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
20
|
Luu VD, Brems S, Hoheisel JD, Burchmore R, Guilbride DL, Clayton C. Functional analysis of Trypanosoma brucei PUF1. Mol Biochem Parasitol 2006; 150:340-9. [PMID: 17052765 DOI: 10.1016/j.molbiopara.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/01/2022]
Abstract
The genomes of Trypanosoma brucei, Leishmania major and Trypanosoma cruzi each encode 10 proteins with PUF domains. PUF domain proteins from yeast and metazoa have been shown to bind RNA and to regulate mRNA stability and translation. Phylogenetic analysis suggested that the PUF proteins were duplicated and diverged early in evolution, and that most PUF proteins were lost during the evolution of mammals. Depletion of any of the first nine T. brucei PUF protein mRNAs by RNA interference had no effect on cell growth; combined depletion of PUF1 and PUF3, PUF3 and PUF4, and PUF1 and PUF4 mRNAs also had no effect. In conflict with a previous report, procyclic trypanosomes lacking PUF1 genes grew normally and we could find no evidence that PUF1 is required for growth of trypanosomes in culture. Depletion or elimination of PUF1 mRNA did not affect the abundances of any other mRNAs, as detected in microarray analysis, and also had minimal effects on the proteome. (In control experiments, treatment of bloodstream and procyclic cells with 100 ng/ml tetracycline also had no detectable effects on the transcriptome and proteome.) PUF1 preferentially bound to retroposon RNAs and was not associated with polysomes. We suggest that, as in yeast, there may be functional redundancy among the Kinetoplastid PUF proteins, or they may be involved in fine-tuning gene expression together with other proteins. Alternatively, PUF proteins may be needed in differentiating trypanosomes or in non-culturable life-cycle stages.
Collapse
Affiliation(s)
- Van-Duc Luu
- ZMBH, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hoek M, Zanders T, Cross GAM. Trypanosoma brucei expression-site-associated-gene-8 protein interacts with a Pumilio family protein. Mol Biochem Parasitol 2002; 120:269-83. [PMID: 11897132 DOI: 10.1016/s0166-6851(02)00009-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The expression site (ES) loci of Trypanosoma brucei are a valuable model for allelic exclusion and post-transcriptional regulation in a highly divergent eukaryote. ES exist to facilitate the expression and switching of the variant surface glycoproteins (VSG) that are central to trypanosome virulence and persistence. A collection of other potential virulence determinants, known as expression-site-associated-genes (ESAGs), are co-transcribed from the single upstream promoter. ESAGs may be involved in regulating the transcriptional state of the ES, as well as contributing additional surface proteins and receptors. We have previously shown that a putative regulatory protein, ESAG8, accumulates within the nucleolus, although 20% of the protein is cytoplasmic. Here we identify TbPUF1, a cytoplasmic ESAG8-interacting protein that falls into the Puf family of regulators of mRNA stability. Our experiments show that, as in other Puf family proteins, the most C-terminal repeats of TbPUF1 mediate its interaction with ESAG8. TbPUF1 is essential for cell viability, and preliminary results suggest that its overexpression seriously affects parasite virulence. T. brucei is the most evolutionary divergent organism in which a Puf family protein has been identified, and our initial experiments suggest that this protein may also regulate RNA stability in trypanosomes.
Collapse
Affiliation(s)
- Maarten Hoek
- Laboratory of Molecular Parasitology, The Rockefeller University, Box 185, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
22
|
Hoek M, Cross GA. Expression-site-associated-gene-8 (ESAG8) is not required for regulation of the VSG expression site in Trypanosoma brucei. Mol Biochem Parasitol 2001; 117:211-5. [PMID: 11606231 DOI: 10.1016/s0166-6851(01)00341-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M Hoek
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 2001; 114:1-16. [PMID: 11356509 DOI: 10.1016/s0166-6851(01)00242-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) genes of Trypanosoma brucei are transcribed in telomeric loci termed VSG expression sites (ESs). Despite permanent initiation of transcription in most if not all of these multiple loci, RNA elongation is abortive except in bloodstream forms where full transcription up to the VSG occurs only in a single ES at a time. The ESs active in bloodstream forms are polycistronic and contain several genes in addition to the VSG, named ES-associated genes (ESAGs). So far 12 ESAGs have been identified, some of which are present only in some ESs. Most of these genes encode surface proteins and this list includes different glycosyl phosphatidyl inositol (GPI)-anchored proteins such as the heterodimeric receptor for the host transferrin (ESAG7/6), integral membrane proteins such as the receptor-like transmembrane adenylyl cyclase (ESAG4) and a surface transporter (ESAG10). An interesting exception is ESAG8, which may encode a cell cycle regulator involved in the differentiation of long slender into short stumpy bloodstream forms. Several ESAGs belong to multigene families including pseudogenes and members transcribed out of the ESs, named genes related to ESAGs (GRESAGs). However, some ESAGs (7, 6 and 8) appear to be restricted to the ESs. Most of these genes can be deleted from the active ES without apparently affecting the phenotype of bloodstream form trypanosomes, probably either due to the expression of ESAGs from 'inactive' ESs (ESAG7/6) or due to the expression of GRESAGs (in particular, GRESAGs4 and GRESAGs1). At least three ESAGs (ESAG7, ESAG6 and SRA) share the evolutionary origin of VSGs. The presence of these latter genes in ESs may confer an increased capacity of the parasite for adaptation to various mammalian hosts, as suggested in the case of ESAG7/6 and proven for SRA, which allows T. brucei to infect humans. Similarly, the existence of a collection of slightly different ESAG4s in the multiple ESs might provide the parasite with adenylyl cyclase isoforms that may regulate growth in response to different environmental conditions. The high transcription rate and high recombination level that prevail in VSG ESs may have favored the generation and/or recruitment in these sites of genes whose hyper-evolution allows adaptation to a larger variety of hosts.
Collapse
Affiliation(s)
- E Pays
- Laboratory of Molecular Parasitology, IBMM, Department of Molecular Biology, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | | | | | |
Collapse
|