1
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Ohtsuka H, Imada K, Shimasaki T, Aiba H. Sporulation: A response to starvation in the fission yeast Schizosaccharomyces pombe. Microbiologyopen 2022; 11:e1303. [PMID: 35765188 PMCID: PMC9214231 DOI: 10.1002/mbo3.1303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistryNational Institute of Technology (KOSEN), Suzuka CollegeSuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversitySumiyoshi‐kuOsakaJapan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityChikusa‐kuNagoyaJapan
| |
Collapse
|
3
|
Das P, Badhe MR, Sahoo PK, Reddy RRK, Suryawanshi AR, Mohanty J. Immunoproteomic analysis of fish ectoparasite, Argulus siamensis antigens. Parasite Immunol 2021; 43:e12837. [PMID: 33811350 DOI: 10.1111/pim.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
AIM An immunoproteomic approach was followed to identify immunoreactive antigens of fish ectoparasite, Argulus siamensis with rohu (Labeo rohita) immune sera for screening of potential vaccine candidates. MATERIALS AND RESULTS The whole adult Argulus antigen was run in 2D electrophoresis with IEF in 7 cm IPG strips of pH 4-7 and SDS-PAGE with 12% acrylamide concentration. Two parallel gels were run; one was stained with silver stain, and the other was Western blotted to nitrocellulose paper (NCP) and reacted with rohu anti-A siamensis sera. Fourteen protein spots corresponding to the spots developed in NCP were picked from the silver-stained gel and subjected to mass spectrometry in MALDI-TOF/TOF. The MS/MS spectra were analysed in MASCOT software with taxonomy 'other metazoa' and the proteins identified based on similarity with the proteins from heterologous species. The gene ontology analysis revealed a majority of proteins being involved in binding activity in 'molecular function' and belonging to metabolic processes in 'biologic process' categories. The possibility of these proteins as vaccine candidates against A siamensis is discussed in the paper. CONCLUSION Three of the identified proteins namely, bromodomain-containing protein, anaphase-promoting complex subunit 5 and elongation factor-2 could possibly serve as vaccine candidates against argulosis in carps.
Collapse
Affiliation(s)
- Priyanka Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | | | | | | |
Collapse
|
4
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
Krapp A, Hamelin R, Armand F, Chiappe D, Krapp L, Cano E, Moniatte M, Simanis V. Analysis of the S. pombe Meiotic Proteome Reveals a Switch from Anabolic to Catabolic Processes and Extensive Post-transcriptional Regulation. Cell Rep 2020; 26:1044-1058.e5. [PMID: 30673600 DOI: 10.1016/j.celrep.2018.12.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Meiotic progression in S. pombe is regulated by stage-specific gene expression and translation, changes in RNA stability, expression of anti-sense transcripts, and targeted proteolysis of regulatory proteins. We have used SILAC labeling to examine the relative levels of proteins in diploid S. pombe cells during meiosis. Among the 3,268 proteins quantified at all time points, the levels of 880 proteins changed at least 2-fold; the majority of proteins showed stepwise increases or decreases during the meiotic divisions, while some changed transiently. Overall, we observed reductions in proteins involved in anabolism and increases in proteins involved in catabolism. We also observed increases in the levels of proteins of the ESCRT-III complex and revealed a role for ESCRT-III components in chromosome segregation and spore formation. Correlation with studies of meiotic gene expression and ribosome occupancy reveals that many of the changes in steady-state protein levels are post-transcriptional.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Romain Hamelin
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Florence Armand
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Diego Chiappe
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Lucien Krapp
- EPFL SV IBI-SV UPDALPE, AAB 1 17, Station 19, 1015 Lausanne, Switzerland
| | - Elena Cano
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland
| | - Marc Moniatte
- EPFL Proteomics Core Facility, EPFL SV PTECH PTP, AI 0149, Station 15, 1015 Lausanne, Switzerland
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Niimi T, Nakamura T. The fission yeast SPB component Dms1 is required to initiate forespore membrane formation and maintain meiotic SPB components. PLoS One 2018; 13:e0197879. [PMID: 29813128 PMCID: PMC5973557 DOI: 10.1371/journal.pone.0197879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022] Open
Abstract
The spindle pole body (SPB) plays a central role in spore plasma membrane formation in addition to its recognized role in microtubule organization. During meiosis, a biomembrane called the forespore membrane (FSM) is newly formed at the SPB. Although several SPB proteins essential for the initiation of FSM formation (meiotic SPB components) have been identified, the molecular mechanism is still unknown. Here, we report the isolation and functional characterization of Dms1 as a component of the SPB. We show that FSM formation does not initiate in dms1Δ cells. Dms1 protein is constitutively expressed throughout the life cycle and localizes to the SPB and the nuclear envelope. The predicted Dms1 protein has a transmembrane domain, which is required for correct localization at the SPB. Dms1 is essential for the proper localization of three meiotic SPB components, Spo15, Spo2, and Spo13, but these components do not affect localization of Dms1. Collectively, these results suggest that Dms1 anchors these meiotic SPB components to the SPB, thereby facilitating the initiation of FSM formation.
Collapse
Affiliation(s)
- Touko Niimi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
7
|
Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen. Genetics 2017; 208:589-603. [PMID: 29259000 PMCID: PMC5788524 DOI: 10.1534/genetics.117.300527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis.
Collapse
|
8
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Yang HJ, Osakada H, Kojidani T, Haraguchi T, Hiraoka Y. Lipid droplet dynamics during Schizosaccharomyces pombe sporulation and their role in spore survival. Biol Open 2017; 6:217-222. [PMID: 28011631 PMCID: PMC5312105 DOI: 10.1242/bio.022384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon nitrogen starvation, the fission yeast Schizosaccharomyces pombe forms dormant spores; however, the mechanisms by which a spore sustains life without access to exogenous nutrients remain unclear. Lipid droplets are reservoirs of neutral lipids that act as important cellular energy resources. Using live-cell imaging analysis, we found that the lipid droplets of mother cells redistribute to their nascent spores. Notably, this process was actin polymerization-dependent and facilitated by the leading edge proteins of the forespore membrane. Spores lacking triacylglycerol synthesis, which is essential for lipid droplet formation, failed to germinate. Our results suggest that the lipid droplets are important for the sustenance of life in spores. Summary: Lipid droplets of yeast mother cells are shown to redistribute to their nascent spores by live-cell imaging analysis, suggesting that the lipid droplets are important for yeast spore survival.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroko Osakada
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tomoko Kojidani
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Japan Women's University, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan .,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
10
|
Imada K, Nakamura T. The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Mol Biol Cell 2016; 27:3317-3328. [PMID: 27630265 PMCID: PMC5170864 DOI: 10.1091/mbc.e16-03-0162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/07/2016] [Indexed: 11/24/2022] Open
Abstract
Two Rabs, Ypt3 and Ypt2, regulating the trafficking of Golgi-derived secretory vesicles have key roles in biogenesis of the spore plasma membrane in fission yeast. During sporulation, the Rabs and secretory vesicles relocalize at the meiotic spindle pole body, where spore plasma membrane formation subsequently initiates. During fission yeast sporulation, a membrane compartment called the forespore membrane (FSM) is newly formed on the spindle pole body (SPB). The FSM expands by membrane vesicle fusion, encapsulates the daughter nucleus resulting from meiosis, and eventually matures into the plasma membrane of the spore. Although many of the genes involved in FSM formation have been identified, its molecular mechanism is not fully understood. Here a genetic screen for sporulation-deficient mutations identified Ypt3, a Rab-family small GTPase known to function in the exocytic pathway. The ypt3-ki8 mutant showed defects in both the initiation of FSM biogenesis and FSM expansion. We also show that a mutation in Ypt2, another Rab protein that may function in the same pathway as Ypt3, compromises the initiation of FSM formation. As meiosis proceeds, both GFP-Ypt3 and GFP-Ypt2 are observed at the SPB and then relocalize to the FSM. Their localizations at the SPB precede FSM formation and depend on the meiotic SPB component Spo13, a putative GDP/GTP exchange factor for Ypt2. Given that Spo13 is essential for initiating FSM formation, these results suggest that two exocytic Rabs, Ypt3 and Ypt2, regulate the initiation of FSM formation on the SPB in concert with Spo13.
Collapse
Affiliation(s)
- Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
11
|
Takaine M, Imada K, Numata O, Nakamura T, Nakano K. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast. J Cell Sci 2014; 127:4429-42. [PMID: 25146394 DOI: 10.1242/jcs.151738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
12
|
A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1173-82. [PMID: 24727291 PMCID: PMC4065261 DOI: 10.1534/g3.114.011049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.
Collapse
|
13
|
Fukunishi K, Miyakubi K, Hatanaka M, Otsuru N, Hirata A, Shimoda C, Nakamura T. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3. Mol Biol Cell 2014; 25:1549-59. [PMID: 24623719 PMCID: PMC4019487 DOI: 10.1091/mbc.e13-12-0731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses.
Collapse
Affiliation(s)
- Kana Fukunishi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kana Miyakubi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Mitsuko Hatanaka
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Natsumi Otsuru
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
14
|
Krapp A, Simanis V. Dma1-dependent degradation of Septation Initiation Network proteins during meiosis in Schizosaccharomyces pombe. J Cell Sci 2014; 127:3149-61. [DOI: 10.1242/jcs.148585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of the SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound spg1p is not the main determinant of the timing of cdc7p and sid1p association with the SPB during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; byr4p is degraded after meiosis I, while the degradation of cdc7p, cdc11p and sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase dma1p. Finally, dma1p-dependent degradation is not restricted to the SIN, for we show that dma1p is needed for the degradation of mcp6p/hrs1p in meiosis I. Together, these data suggest that stage-specific targetted proteolysis will play an important role in regulating meiotic progression.
Collapse
|
15
|
Ohta M, Sato M, Yamamoto M. Spindle pole body components are reorganized during fission yeast meiosis. Mol Biol Cell 2012; 23:1799-811. [PMID: 22438582 PMCID: PMC3350546 DOI: 10.1091/mbc.e11-11-0951] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We show that spindle pole body (SPB) remodeling during meiosis in fission yeast is essential for meiosis. Many SPB components disappear during meiotic prophase and return to the SPBs at meiosis I onset. We found novel functions for Polo kinase/Plo1 and centrin/Cdc31 in the meiotic reorganization of SPB components. During meiosis, the centrosome/spindle pole body (SPB) must be regulated in a manner distinct from that of mitosis to achieve a specialized cell division that will produce gametes. In this paper, we demonstrate that several SPB components are localized to SPBs in a meiosis-specific manner in the fission yeast Schizosaccharomyces pombe. SPB components, such as Cut12, Pcp1, and Spo15, which stay on the SPB during the mitotic cell cycle, disassociate from the SPB during meiotic prophase and then return to the SPB immediately before the onset of meiosis I. Interestingly, the polo kinase Plo1, which normally localizes to the SPB during mitosis, is excluded from them in meiotic prophase, when meiosis-specific, horse-tail nuclear movement occurs. We found that exclusion of Plo1 during this period was essential to properly remodel SPBs, because artificial targeting of Plo1 to SPBs resulted in an overduplication of SPBs. We also found that the centrin Cdc31 was required for meiotic SPB remodeling. Thus Plo1 and a centrin play central roles in the meiotic SPB remodeling, which is essential for generating the proper number of meiotic SPBs and, thereby provide unique characteristics to meiotic divisions.
Collapse
Affiliation(s)
- Midori Ohta
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Interpolar microtubules are dispensable in fission yeast meiosis II. Nat Commun 2012; 3:695. [PMID: 22426216 DOI: 10.1038/ncomms1725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/03/2012] [Indexed: 11/08/2022] Open
Abstract
The mitotic spindle consists of two types of microtubules. Dynamic kinetochore microtubules capture kinetochores, whereas stable interpolar microtubules serve as the structural backbone that connects the two spindle poles. Both have been believed to be indispensable for cell division in eukaryotes. Here we demonstrate that interpolar microtubules are dispensable for the second division of meiosis in fission yeast. Even when interpolar microtubules are disrupted by a microtubule-depolymerizing drug, spindle poles separate and chromosomes segregate poleward in second division of meiosis in most zygotes, producing viable spores. The forespore membrane, which encapsulates the nucleus in second division of meiosis and is guided by septins and the leading-edge proteins, is responsible for carrying out meiotic events in the absence of interpolar microtubules. Furthermore, during physiological second division of meiosis without microtubule perturbation, the forespore membrane assembly contributes structurally to spindle pole separation and nuclear division, generating sufficient force for spindle pole separation and subsequent events independently of interpolar microtubules.
Collapse
|
17
|
Wu P, Zhao R, Ye Y, Wu JQ. Roles of the DYRK kinase Pom2 in cytokinesis, mitochondrial morphology, and sporulation in fission yeast. PLoS One 2011; 6:e28000. [PMID: 22174761 PMCID: PMC3236194 DOI: 10.1371/journal.pone.0028000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/29/2011] [Indexed: 01/04/2023] Open
Abstract
Pom2 is predicted to be a dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) related to Pom1 in Schizosaccharomyces pombe. DYRKs share a kinase domain capable of catalyzing autophosphorylation on tyrosine and exogenous phosphorylation on serine/threonine residues. Here we show that Pom2 is functionally different from the well-characterized Pom1, although they share 55% identity in the kinase domain and the Pom2 kinase domain functionally complements that of Pom1. Pom2 localizes to mitochondria throughout the cell cycle and to the contractile ring during late stages of cytokinesis. Overexpression but not deletion of pom2 results in severe defects in cytokinesis, indicating that Pom2 might share an overlapping function with other proteins in regulating cytokinesis. Gain and loss of function analyses reveal that Pom2 is required for maintaining mitochondrial morphology independently of microtubules. Intriguingly, most meiotic pom2Δ cells form aberrant asci with meiotic and/or forespore membrane formation defects. Taken together, Pom2 is a novel DYRK kinase involved in regulating cytokinesis, mitochondrial morphology, meiosis, and sporulation in fission yeast.
Collapse
Affiliation(s)
- Pengcheng Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America.
| | | | | | | |
Collapse
|
18
|
Nakamura-Kubo M, Hirata A, Shimoda C, Nakamura T. The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis. Mol Biol Cell 2011; 22:3442-55. [PMID: 21775631 PMCID: PMC3172268 DOI: 10.1091/mbc.e11-02-0125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 11/12/2022] Open
Abstract
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.
Collapse
Affiliation(s)
- Michiko Nakamura-Kubo
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
19
|
Kashiwazaki J, Yamasaki Y, Itadani A, Teraguchi E, Maeda Y, Shimoda C, Nakamura T. Endocytosis is essential for dynamic translocation of a syntaxin 1 orthologue during fission yeast meiosis. Mol Biol Cell 2011; 22:3658-70. [PMID: 21832151 PMCID: PMC3183020 DOI: 10.1091/mbc.e11-03-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fission yeast sporulation seems to accompany a dynamic alteration of membrane traffic pathways in which the destination of secretory vesicles changes from the plasma membrane to the developing spore membrane. Evidence shows that endocytosis is responsible for this alteration in traffic pathways via the relocalization of syntaxin 1. Syntaxin is a component of the target soluble N-ethylmaleimide–sensitive factor attachment protein receptor complex, which is responsible for fusion of membrane vesicles at the target membrane. The fission yeast syntaxin 1 orthologue Psy1 is essential for both vegetative growth and spore formation. During meiosis, Psy1 disappears from the plasma membrane (PM) and dramatically relocalizes on the nascent forespore membrane, which becomes the PM of the spore. Here we report the molecular details and biological significance of Psy1 relocalization. We find that, immediately after meiosis I, Psy1 is selectively internalized by endocytosis. In addition, a meiosis-specific signal induced by the transcription factor Mei4 seems to trigger this internalization. The internalization of many PM proteins is facilitated coincident with the initiation of meiosis, whereas Pma1, a P-type ATPase, persists on the PM even during the progression of meiosis II. Ergosterol on the PM is also important for the internalization of PM proteins in general during meiosis. We consider that during meiosis in Schizosaccharomyces pombe cells, the characteristics of endocytosis change, thereby facilitating internalization of Psy1 and accomplishing sporulation.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Li WZ, Yu ZY, Ma PF, Wang Y, Jin QW. A novel role of Dma1 in regulating forespore membrane assembly and sporulation in fission yeast. Mol Biol Cell 2010; 21:4349-60. [PMID: 20980623 PMCID: PMC3002388 DOI: 10.1091/mbc.e10-01-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
By characterizing the fission yeast Dma1's function during meiosis, we revealed that Dma1 is required for spore formation, while it is dispensable for fidelity of nuclear divisions. We also found that Dma1 is functionally related to SIN pathway and meiosis-specific kinase Slk1 during sporulation. In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1+ is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.
Collapse
Affiliation(s)
- Wen-zhu Li
- School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | | | | |
Collapse
|
21
|
Arai K, Sato M, Tanaka K, Yamamoto M. Nuclear compartmentalization is abolished during fission yeast meiosis. Curr Biol 2010; 20:1913-8. [PMID: 20970334 DOI: 10.1016/j.cub.2010.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/31/2010] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.
Collapse
Affiliation(s)
- Kunio Arai
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
22
|
Schizosaccharomyces pombe calmodulin, Cam1, plays a crucial role in sporulation by recruiting and stabilizing the spindle pole body components responsible for assembly of the forespore membrane. EUKARYOTIC CELL 2010; 9:1925-35. [PMID: 20833892 DOI: 10.1128/ec.00022-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calmodulin in Schizosaccharomyces pombe is encoded by the cam1(+) gene, which is indispensable for both vegetative growth and sporulation. Here, we report how Cam1 functions in spore formation. We found that Cam1 preferentially localized to the spindle pole body (SPB) during meiosis and sporulation. Formation of the forespore membrane, a precursor of the plasma membrane in spores, was blocked in a missense cam1 mutant, which was viable but unable to sporulate. Three SPB proteins necessary for the onset of forespore membrane formation, Spo2, Spo13, and Spo15, were unable to localize to the SPB in the cam1 mutant although five core SPB components that were tested were present. Recruitment of Spo2 and Spo13 is known to require the presence of Spo15 in the SPB. Notably, Spo15 was unstable in the cam1 mutant, and as a result, SPB localization of Spo2 and Spo13 was lost. Overexpression of Spo15 partially alleviated the sporulation defect in the cam1 mutant. These results indicate that calmodulin plays an essential role in forespore membrane formation by stably maintaining Spo15, and thus Spo2 and Spo13, at the SPB in meiotic cells.
Collapse
|
23
|
Krapp A, Del Rosario EC, Simanis V. The role of Schizosaccharomyces pombe dma1 in spore formation during meiosis. J Cell Sci 2010; 123:3284-93. [PMID: 20826461 DOI: 10.1242/jcs.069112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis is a specialised form of the cell cycle that gives rise to haploid gametes. In Schizosaccharomyces pombe, the products of meiosis are four spores, which are formed by encapsulation of the four meiosis II nuclei within the cytoplasm of the zygote produced by fusion of the mating cells. The S. pombe spindle pole body is remodelled during meiosis II and membrane vesicles are then recruited there to form the forespore membrane, which encapsulates the haploid nucleus to form a prespore. Spore wall material is then deposited, giving rise to the mature spore. The septation initiation network is required to coordinate cytokinesis and mitosis in the vegetative cycle and for spore formation in the meiotic cycle. We have investigated the role of the SIN regulator dma1p in meiosis; we find that although both meiotic divisions occur in the absence of dma1p, asci frequently contain fewer than four spores, which are larger than in wild-type meiosis. Our data indicate that dma1p acts in parallel to the leading-edge proteins and septins to assure proper formation for the forespore membrane. Dma1p also contributes to the temporal regulation of the abundance of the meiosis-specific SIN component mug27p.
Collapse
Affiliation(s)
- Andrea Krapp
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
24
|
Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem J 2010; 429:225-34. [PMID: 20578993 DOI: 10.1042/bj20100273] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Translin, and its binding partner protein TRAX (translin-associated factor-X) are a paralogous pair of conserved proteins, which have been implicated in a broad spectrum of biological activities, including cell growth regulation, mRNA processing, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis, although their precise role in some of these processes remains unclear. Furthermore, translin (with or without TRAX) has nucleic-acid-binding activity and it is apparent that controlling nucleic acid metabolism and distribution are central to the biological role(s) of this protein and its partner TRAX. More recently, translin and TRAX have together been identified as enhancer components of an RNAi (RNA interference) pathway in at least one organism and this might provide critical insight into the biological roles of this enigmatic partnership. In the present review we discuss the biological and the biochemical properties of these proteins that indicate that they play a central and important role in eukaryotic cell biology.
Collapse
|
25
|
Mizutani M, Naganuma T, Tsutsumi KI, Saitoh Y. The syncytium-specific expression of the Orysa;KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:791-8. [PMID: 19933315 PMCID: PMC2814109 DOI: 10.1093/jxb/erp343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/01/2009] [Accepted: 11/03/2009] [Indexed: 05/18/2023]
Abstract
During rice (Oryza sativa L.) seed development, the primary endosperm nucleus undergoes a series of divisions without cytokinesis, producing a multinucleate cell, known as a syncytium. After several rounds of rapid nuclear proliferation, the syncytium ceases to undergo mitosis; thereafter, the syncytium is partitioned into individual cells by a specific type of cytokinesis called cellularization. The transition between syncytium and cellularization is important in determining the final seed size and is a model for studying the cell cycle and cytokinesis. The involvement of cyclin-dependent kinase (CDK) inhibitors (CKIs) in cell cycle control was investigated here during the transition between syncytium and cellularization. It was found that one of the rice CKIs, Orysa;KRP3, is strongly expressed in the caryopsis at 2 d after flowering (DAF), and its expression is significantly reduced at 3 DAF. The other CKI transcripts did not show such a shift at 2 DAF. In situ hybridization analysis revealed that Orysa;KRP3 is expressed in multinucleate syncytial endosperm at 2 DAF, but not in cellularized endosperm at 3 DAF. Two-hybrid assays showed that Orysa;KRP3 binds Orysa;CDKA;1, Orysa;CDKA;2, Orysa;CycA1;1, and Orysa;CycD2;2. By contrast, Orysa;CDKB2;1 and Orysa;CycB2;2 do not show binding to Orysa;KRP3. Orysa;KRP3 was able to rescue yeast premature cell division due to the dominant positive expression of mutant rice CDKA;1 indicating that Orysa;KRP3 inhibited rice CDK. These data suggest that Orysa;KRP3 is involved in cell cycle control of syncytial endosperm.
Collapse
Affiliation(s)
- Masanori Mizutani
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
| | - Takuma Naganuma
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
| | - Ken-ichi Tsutsumi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
| | - Yasushi Saitoh
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate 020-8550, Japan
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
26
|
Role of septins in the orientation of forespore membrane extension during sporulation in fission yeast. Mol Cell Biol 2010; 30:2057-74. [PMID: 20123972 DOI: 10.1128/mcb.01529-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During yeast sporulation, a forespore membrane (FSM) initiates at each spindle-pole body and extends to form the spore envelope. We used Schizosaccharomyces pombe to investigate the role of septins during this process. During the prior conjugation of haploid cells, the four vegetatively expressed septins (Spn1, Spn2, Spn3, and Spn4) coassemble at the fusion site and are necessary for its normal morphogenesis. Sporulation involves a different set of four septins (Spn2, Spn5, Spn6, and the atypical Spn7) that does not include the core subunits of the vegetative septin complex. The four sporulation septins form a complex in vitro and colocalize interdependently to a ring-shaped structure along each FSM, and septin mutations result in disoriented FSM extension. The septins and the leading-edge proteins appear to function in parallel to orient FSM extension. Spn2 and Spn7 bind to phosphatidylinositol 4-phosphate [PtdIns(4)P] in vitro, and PtdIns(4)P is enriched in the FSMs, suggesting that septins bind to the FSMs via this lipid. Cells expressing a mutant Spn2 protein unable to bind PtdIns(4)P still form extended septin structures, but these structures fail to associate with the FSMs, which are frequently disoriented. Thus, septins appear to form a scaffold that helps to guide the oriented extension of the FSM.
Collapse
|
27
|
Sharifmoghadam MR, de Leon N, Hoya M, Curto MA, Valdivieso MH. Different steps of sexual development are differentially regulated by the Sec8p and Exo70p exocyst subunits. FEMS Microbiol Lett 2010; 305:71-80. [PMID: 20180855 DOI: 10.1111/j.1574-6968.2010.01915.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this paper we show that in Schizosaccharomyces pombe, mating-specific cell adhesion is dependent on the exocyst subunit Sec8p, but independent of the exocyst subunit Exo70p. In the absence of Exo70p, the forespore membrane does not develop properly and the leading edge protein Meu14p is abnormally distributed. Additionally, the spindle pole body is aberrant in a significant number of exo70Delta asci. In both the sec8-1 and the exo70Delta mutants, the development of the spore cell wall is impaired. These results show that different steps of sexual development are differentially regulated by the exocyst and suggest the existence of exocyst subcomplexes with distinct roles in mating.
Collapse
Affiliation(s)
- Mohammad Reza Sharifmoghadam
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Salamanca, Spain
| | | | | | | | | |
Collapse
|
28
|
Kashiwazaki J, Iwaki T, Takegawa K, Shimoda C, Nakamura T. Two Fission Yeast Rab7 Homologs, Ypt7 and Ypt71, Play Antagonistic Roles in the Regulation of Vacuolar Morphology. Traffic 2009; 10:912-24. [DOI: 10.1111/j.1600-0854.2009.00907.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Yan H, Ge W, Chew TG, Chow JY, McCollum D, Neiman AM, Balasubramanian MK. The meiosis-specific Sid2p-related protein Slk1p regulates forespore membrane assembly in fission yeast. Mol Biol Cell 2008; 19:3676-90. [PMID: 18562696 DOI: 10.1091/mbc.e07-10-1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1 Delta cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1 Delta. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.
Collapse
Affiliation(s)
- Hongyan Yan
- Cell Division Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
30
|
Nakamura T, Asakawa H, Nakase Y, Kashiwazaki J, Hiraoka Y, Shimoda C. Live observation of forespore membrane formation in fission yeast. Mol Biol Cell 2008; 19:3544-53. [PMID: 18550796 DOI: 10.1091/mbc.e08-04-0414] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sporulation in the fission yeast Schizosaccharomyces pombe is a unique biological process in that the plasma membrane of daughter cells is assembled de novo within the mother cell cytoplasm. A double unit membrane called the forespore membrane (FSM) is constructed dynamically during meiosis. To obtain a dynamic view of FSM formation, we visualized FSM in living cells by using green fluorescent protein fused with Psy1, an FSM-resident protein, together with the nucleus or microtubules. The assembly of FSM initiates in prophase II, and four FSMs in a cell expand in a synchronous manner at the same rate throughout meiosis II. After the meiosis II completes, FSMs continue to expand until closure to form the prespore, a spore precursor. Prespores are initially ellipsoidal, and eventually become spheres. FSM formation was also observed in the sporulation-deficient mutants spo3, spo14, and spo15. In the spo15 mutant, the initiation of FSM formation was completely blocked. In the spo3 mutant, the FSM expanded normally during early meiosis II, but it was severely inhibited during late and postmeiosis, whereas in the spo14 mutant, membrane expansion was more severely inhibited throughout meiosis II. These observations suggest that FSM expansion is composed of two steps, early meiotic FSM expansion and late and post meiotic FSM expansion. Possible regulatory mechanisms of FSM formation in fission yeast are discussed.
Collapse
Affiliation(s)
- Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Nakase Y, Nakamura-Kubo M, Ye Y, Hirata A, Shimoda C, Nakamura T. Meiotic spindle pole bodies acquire the ability to assemble the spore plasma membrane by sequential recruitment of sporulation-specific components in fission yeast. Mol Biol Cell 2008; 19:2476-87. [PMID: 18367542 DOI: 10.1091/mbc.e08-02-0118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle pole body (SPB) of Schizosaccharomyces pombe is required for assembly of the forespore membrane (FSM) during meiosis. Before de novo biogenesis of the FSM, the meiotic SPB forms outer plaques, an event referred to as SPB modification. A constitutive SPB component, Spo15, plays an indispensable role in SPB modification and sporulation. Here, we analyzed two sporulation-specific genes, spo13(+) and spo2(+), which are not required for progression of meiotic nuclear divisions, but are essential for sporulation. Spo13 is a 16-kDa coiled-coil protein, and Spo2 is a 15-kDa nonconserved protein. Both Spo13 and Spo2 specifically associated with the meiotic SPB. The respective deletion mutants are viable, but defective in SPB modification and in the onset of FSM formation. Spo13 and Spo2 localized on the cytoplasmic side of the SPB in close contact with the nascent FSM. Localization of Spo13 to the SPB was dependent on Spo15 and Spo2; that of Spo2 depended only on Spo15, suggesting that their recruitment to the SPB is strictly controlled. Spo2 physically associated with both Spo15 and Spo13, but Spo13 and Spo15 did not interact directly. Taken together, these observations indicate that Spo2 is recruited to the SPB during meiosis and then assists in the localization of Spo13 to the outer surface of the SPB.
Collapse
Affiliation(s)
- Yukiko Nakase
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Ye Y, Fujii M, Hirata A, Kawamukai M, Shimoda C, Nakamura T. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation. Mol Biol Cell 2007; 18:3568-81. [PMID: 17596513 PMCID: PMC1951748 DOI: 10.1091/mbc.e07-02-0112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.
Collapse
Affiliation(s)
- Yanfang Ye
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Fujii
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan; and
| | - Makoto Kawamukai
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Chikashi Shimoda
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
33
|
Ohtaka A, Saito TT, Okuzaki D, Nojima H. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe. Cell Div 2007; 2:14. [PMID: 17509158 PMCID: PMC1885245 DOI: 10.1186/1747-1028-2-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/18/2007] [Indexed: 01/07/2023] Open
Abstract
Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.
Collapse
Affiliation(s)
- Ayami Ohtaka
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Genetics, Harvard Medical School 77 Avenue Louis Pasteur, New Research Building, Room 334, Boston, MA 02115, USA
| | - Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Ohtaka A, Okuzaki D, Saito TT, Nojima H. Mcp4, a meiotic coiled-coil protein, plays a role in F-actin positioning during Schizosaccharomyces pombe meiosis. EUKARYOTIC CELL 2007; 6:971-83. [PMID: 17435009 PMCID: PMC1951525 DOI: 10.1128/ec.00016-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some meiosis-specific proteins of Schizosaccharomyces pombe harbor coiled-coil motifs and play essential roles in meiotic progression. Here we describe Mcp4, a novel meiosis-specific protein whose expression is abruptly induced at the horsetail phase and which remains expressed until sporulation is finished. Fluorescence microscopic analysis revealed that Mcp4 alters its subcellular localization during meiosis in a manner that partially resembles the movement of F-actin during meiosis. Mcp4 and F-actin never colocalize; rather, they are located in a side-by-side manner. When forespore membrane formation begins at metaphase II, the Mcp4 signals assemble at the lagging face of the dividing nuclei. At this stage, they are sandwiched between F-actin and the nucleus. Mcp4, in turn, appears to sandwich F-actin with Meu14. In mcp4Delta cells at anaphase II, the F-actin, which is normally dumbbell-shaped, adopts an abnormal balloon shape. Spores of mcp4Delta cells were sensitive to NaCl, although their shape and viability were normal. Taken together, we conclude that Mcp4 plays a role in the accurate positioning of F-actin during S. pombe meiosis.
Collapse
Affiliation(s)
- Ayami Ohtaka
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
35
|
Kasama T, Shigehisa A, Hirata A, Saito TT, Tougan T, Okuzaki D, Nojima H. Spo5/Mug12, a putative meiosis-specific RNA-binding protein, is essential for meiotic progression and forms Mei2 dot-like nuclear foci. EUKARYOTIC CELL 2007; 5:1301-13. [PMID: 16896214 PMCID: PMC1539142 DOI: 10.1128/ec.00099-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here a functional analysis of spo5(+)(mug12(+)) of Schizosaccharomyces pombe, which encodes a putative RNA-binding protein. The disruption of spo5(+) caused abnormal sporulation, generating inviable spores due to failed forespore membrane formation and the absence of a spore wall, as determined by electron microscopy. Spo5 regulates the progression of meiosis I because spo5 mutant cells display normal premeiotic DNA synthesis and the timely initiation of meiosis I but they show a delay in the peaking of cells with two nuclei, abnormal tyrosine 15 dephosphorylation of Cdc2, incomplete degradation of Cdc13, retarded formation and repair of double strand breaks, and a reduced frequency of intragenic recombination. Immunostaining showed that Spo5-green fluorescent protein (GFP) appeared in the cytoplasm at the horsetail phase, peaked around the metaphase I to anaphase I transition, and suddenly disappeared after anaphase II. Images of Spo5-GFP in living cells revealed that Spo5 forms a dot in the nucleus at prophase I that colocalized with the Mei2 dot. Unlike the Mei2 dot, however, the Spo5 dot was observed even in sme2Delta cells. Taken together, we conclude that Spo5 is a novel regulator of meiosis I and that it may function in the vicinity of the Mei2 dot.
Collapse
Affiliation(s)
- Takashi Kasama
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Nakamura T, Kashiwazaki J, Shimoda C. A fission yeast SNAP-25 homologue, SpSec9, is essential for cytokinesis and sporulation. Cell Struct Funct 2006; 30:15-24. [PMID: 16272747 DOI: 10.1247/csf.30.15] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The soluble NSF attachment protein 25 (SNAP-25) is a component of the SNARE complex that is essential for regulated exocytosis in diverse cell types. Here, we identified a fission yeast SNAP-25 homologue, SpSec9. The sec9+ gene was essential for vegetative growth. sec9 mRNA was detected in vegetative cells and further increased during sporulation. This increase during sporulation was dependent on Mei4, a meiosis-specific transcription factor. A sporulation-deficient sec9 mutant was isolated by random PCR mutagenesis (sec9-10). The sec9-10 mutant also exhibited temperature sensitivity for growth and cell division was found to arrest before completion of cell separation at restrictive temperatures. In sec9-10 cells, the forespore membrane was normally initiated near spindle pole bodies during meiosis II. However, subsequent extension of the membrane was severely impaired. These results indicate that SpSec9 plays an important role both in cytokinesis and in sporulation.
Collapse
Affiliation(s)
- Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | | | | |
Collapse
|
37
|
Yoshida SH, Nakamura T, Shimoda C. The cation-transporting P-type ATPase Cta4 is required for assembly of the forespore membrane in fission yeast. Genes Genet Syst 2006; 80:317-24. [PMID: 16394583 DOI: 10.1266/ggs.80.317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel sporulation-deficient mutant, sev4-L5, was isolated in a genetic screen of a collection of temperature-sensitive mutants of Schizosaccharomyces pombe. The wild-type sev4 gene was identified as cta4+, which encodes a putative cation-transporting P-type ATPase. The sev4-L5 allele harbored a single missense mutation that caused replacement of Gly615 with a glutamate at the putative ATP-binding site. Similar to cta4-null mutants, sev4-L5 exhibited defects in growth at high and low temperatures, and sensitivity to high and extremely low concentrations of Ca2+. The cta4+ mRNA level was considerably enhanced during meiosis. When sev4-L5 cells were incubated in sporulation medium at the permissive temperature, meiotic nuclear divisions proceeded with normal kinetics, but spores were not formed. Structural alteration of the spindle pole body, which is prerequisite to construction of the forespore membrane in wild type, was incomplete. Consequently, formation of the forespore membrane was severely impaired. These observations show that perturbation of Ca2+ homeostasis by mutation of cta4/sev4 blocks sporulation mainly by interfering with forespore membrane assembly.
Collapse
Affiliation(s)
- Shu-Hei Yoshida
- Department of Biology, Graduate School of Science, Osaka City University, Sugimoto, Japan
| | | | | |
Collapse
|
38
|
Itadani A, Nakamura T, Shimoda C. Localization of Type I Myosin and F-actin to the Leading Edge Region of the Forespore Membrane in Schizosaccharomyces pombe. Cell Struct Funct 2006; 31:181-95. [PMID: 17202724 DOI: 10.1247/csf.06027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myo1, a heavy chain of type I myosin of the fission yeast Schizosaccharomyces pombe, is essential for sporulation. Here we have analyzed the expression, localization and cellular function of the type I myosin light chain calmodulin, Cam2, encoded by cam2(+). Transcription of cam2(+) was constitutive and markedly enhanced in meiosis. The cam2 null mutant was viable and completed sporulation normally at 28 degrees C, but formed four-spored asci poorly at 34 degrees C. In those sporulation-defective cells, the forespore membrane was formed abnormally. A Cam2-GFP fusion protein accumulated at the cell poles in interphase cells and at the medial septation site in postmitotic cells, colocalizing with Myo1 and F-actin patches. During the mating process, a single Cam2-GFP dot was detected at the tip of the mating projection. During meiosis-I, the Cam2-GFP dots dispersed into the cell periphery and the cytoplasm. At metaphase-II, intense Cam2-GFP signals appeared near Meu14 rings which were formed at the leading edge of expanding forespore membranes. This localization of Cam2 was dependent upon Myo1; and sporulation defect of cam2Delta at 34 degrees C was alleviated by overexpressing Myo1DeltaIQ. These results suggest a close relationship between Cam2 and Myo1. In addition, both F-actin and Myo1 localized with Cam2 in the leading edge region. In summary, type I myosin and F-actin accumulate at the leading edge area of the forespore membrane and may play a pivotal role in its assembly.
Collapse
Affiliation(s)
- Akiko Itadani
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | |
Collapse
|
39
|
Abstract
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, New York 11794-5215, USA.
| |
Collapse
|
40
|
Abstract
We isolated several related but distinct cDNA clones encoding novel structure proteins (NSP) when screening a cDNA library. Analysis revealed that these cDNAs and several similar ESTs in the public databases are derived from a single gene of 17 exons that span a minimum of 227-kb region. This gene is located at chromosome 17p11.2, a region frequently amplified in human gliomas and osteosarcomas, and involved in Birt-Hogg-Dube syndrome, a tumor-prone syndrome. The major coding sequences shared by all isolated transcripts are predicted to encode SMC (structural maintenance of chromosome)/SbcC ATPase motifs and coiled-coil domains commonly seen in motor or structure proteins. Two 5'-end and two 3'-end variants (type 5alpha/beta and 3alpha/beta, respectively) were identified, making a total of four possible transcripts. Both 5alpha and 5beta variants were detected in human testis mRNA, but only type 5alpha was detectable in RNA samples extracted from HeLa cells. The unique carboxyl-terminus of 3beta contains a Ca(2+)-dependent actin-binding domain. Immunohistochemistry studies revealed that NSPs were mostly localized to nuclei. Northern blot analysis demonstrated two major bands and the expression levels are tremendously high in testis while barely detectable in other normal tissues examined. Interestingly, NSP5alpha3alpha is highly expressed in some tumor cell lines. These results suggest that NSPs represent a new family of structure proteins with a possible role in nuclear dynamics during cell division, and that NSP5alpha3alpha may serve as a tumor marker.
Collapse
Affiliation(s)
- Nianli Sang
- Program of Molecular Biology, Temple University, Philadelphia, PA 19122, USA
- Kimmel Cancer Institute and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107; USA
- Cardeza Foundation for Hematological Research and Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Donna M Fath
- Cardeza Foundation for Hematological Research and Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Program of Molecular Biology, Temple University, Philadelphia, PA 19122, USA
- Kimmel Cancer Institute and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107; USA
- Sbarro Institute for Cancer Research and Molecular Medicine and Department of Biology, College of Science and Technology Temple University, Philadelphia PA 19122, USA
- Correspondence:A Giordano, Temple University, Bio Life Science Bldg., 1900 N. 12th Street, Suite #333, Philadelphia, PA 19122 USA;
| |
Collapse
|
41
|
Tange Y, Fujita A, Toda T, Niwa O. Functional dissection of the gamma-tubulin complex by suppressor analysis of gtb1 and alp4 mutations in Schizosaccharomyces pombe. Genetics 2005; 167:1095-107. [PMID: 15280226 PMCID: PMC1470944 DOI: 10.1534/genetics.104.027946] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In fission yeast, gamma-tubulin (encoded by the gtb1+ gene), Alp4 (Spc97/GCP2), and Alp6 (Spc98/GCP3) are essential components of the gamma-tubulin complex. We isolated gtb1 mutants as allele-specific suppressors of temperature-sensitive alp4 mutations. Mutation sites in gtb1 mutants and in several alp4 alleles were determined. The majority of substituted amino acids were mapped to a small area on the predicted surface of the gamma-tubulin molecule that might directly interact with the Alp4 protein. The cold sensitivity of gamma-tubulin mutants was almost completely suppressed by an alpha-tubulin mutation and partially suppressed by a low concentration of thiabendazole, a microtubule assembly inhibitor. Other gtb1 mutants had increased resistance to this drug. Gel-filtration and immunoprecipitation analyses suggested that the mutant gamma-tubulin formed an altered gamma-tubulin complex with increased stability compared to wild-type gamma-tubulin. In most gtb1 mutants, sexual development was impaired, and aberrant asci that contained an irregular spore shape and number were produced. In contrast, spore formation was not appreciably damaged in some alp4 and alp6 mutants, even at temperatures where vegetative proliferation was substantially defective. These results suggested that the function of the gamma-tubulin complex or the requirement of each component of the complex is differentially regulated between the vegetative and sexual phases of the life cycle in fission yeast. In addition, genetic data indicated intimate functional connections of gamma-tubulin with several kinesin-like proteins.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | | | | | |
Collapse
|
42
|
Nakase Y, Nakamura T, Okazaki K, Hirata A, Shimoda C. The Sec14 family glycerophospholipid-transfer protein is required for structural integrity of the spindle pole body during meiosis in fission yeast. Genes Cells 2004; 9:1275-86. [PMID: 15569158 DOI: 10.1111/j.1365-2443.2004.00806.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fission yeast spo20+ gene encodes a glycerophospholipid-transfer protein. spo20 mutants are unable to assemble the forespore membrane properly. Here we studied the structural integrity of the spindle pole body (SPB) in spo20-H6 mutants during meiosis. Meiotic cells expressing a GFP-tagged SPB marker protein, Spo15-GFP, showed an excess number of SPBs, some of which were not localized to the spindle poles and were termed 'pseudo-SPBs'. Formation of spindles for meiosis I was significantly delayed in spo20-H6 cells, although the morphology of spindles and segregation of the sister chromatids seemed normal. The SPB of spo20-H6 contained meiosis-specific outer plaques, though outermost layers were less evident. Time-lapse studies of spo20-H6 cells showed that the pseudo-SPBs originated from normal SPBs at the spindle poles during meiosis I. Among the SPB components tested, Spo15, Spo13, Sad1 and Cut12 were localized to the pseudo-SPBs, but Sid4 was not always present. Alp4, a component of the gamma-tubulin complex, was also present in about 40% of the pseudo-SPBs. The forespore membranes initiated from both the SPBs and the pseudo-SPBs. We conclude that Spo20 plays a role in maintaining the structural integrity of the meiotic SPB, besides supplying membrane vesicles for forespore membrane assembly.
Collapse
Affiliation(s)
- Yukiko Nakase
- Department of Biology, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
43
|
Nakamura T, Abe H, Hirata A, Shimoda C. ADAM family protein Mde10 is essential for development of spore envelopes in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2004; 3:27-39. [PMID: 14871934 PMCID: PMC329507 DOI: 10.1128/ec.3.1.27-39.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 11/11/2003] [Indexed: 11/20/2022]
Abstract
We report the identification of Schizosaccharomyces pombe mde10+ as a gene possessing a FLEX element, which forms a binding site for the meiosis-specific transcription factor Mei4. In fact, mde10+ is transcribed only in diploid cells that are induced to meiosis in a Mei4-dependent manner. Western blot analysis indicated that the epitope-tagged Mde10 protein accumulates transiently during meiosis and then rapidly decreases. Mde10 is a multidomain protein containing a metalloprotease catalytic domain, a disintegrin domain, a cysteine-rich domain, and membrane-spanning regions, all of which are shared by members of the mammalian ADAM family. A fusion protein of Mde10 and green fluorescent protein localized to the endoplasmic reticulum during meiosis and was located at the peripheral region of spores at the end of meiosis. An mde10Delta deletion mutant showed no apparent defects in meiosis, sporulation, or spore germination. However, the mutant spores exhibited an aberrant surface appearance, in which the ragged outer spore wall was lost to a large extent. Furthermore, mde10Delta spores were found to be less tolerant to ethanol and diethyl ether than were wild-type spores. The mutagenic replacement of the conserved glutamic acid in the putative protease active site with an alanine residue did not affect the surface morphology or the resistance of spores to environmental stress. Our observations indicate that Mde10 is important in the development of the spore envelope, although this function of Mde10 seems to be independent of its metalloprotease activity.
Collapse
MESH Headings
- Alanine/chemistry
- Alleles
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Catalytic Domain
- Cell Membrane/metabolism
- Centrifugation, Density Gradient
- Cysteine/chemistry
- DNA, Complementary/metabolism
- Endoplasmic Reticulum/metabolism
- Epitopes
- Ethanol/pharmacology
- Ether/pharmacology
- Fungal Proteins/metabolism
- Fungal Proteins/physiology
- Gene Deletion
- Gene Library
- Genotype
- Green Fluorescent Proteins
- Luminescent Proteins/metabolism
- Meiosis
- Metalloproteases/chemistry
- Metalloproteases/physiology
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames
- Plasmids/metabolism
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Schizosaccharomyces/physiology
- Schizosaccharomyces pombe Proteins/chemistry
- Schizosaccharomyces pombe Proteins/physiology
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Faculty of Intellectual Property, Osaka Institute of Technology, Asahi-ku, Osaka 535-8585, Japan
| | | | | | | |
Collapse
|
44
|
Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki M, Niwa O. Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol Genet Genomics 2003; 270:449-61. [PMID: 14655046 DOI: 10.1007/s00438-003-0938-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 09/24/2003] [Indexed: 11/25/2022]
Abstract
In interphase cells of fission yeast, the spindle pole body (SPB) is thought to be connected with chromosomal centromeres by an as yet unknown mechanism that spans the nuclear membrane. To elucidate this mechanism, we performed two-hybrid screens for proteins that interact with Kms1 and Sad1, which are constitutive membrane-bound components of the SPB that interact with each other. Seven and 26 genes were identified whose products potentially interact with Kms1 and Sad1, respectively. With the exception of Dlc1 (a homolog of the 14-kDa dynein light chain), all of the Kms1 interactors also interacted with Sad1. Among the genes identified were the previously known genes rhp9+ / crb2+, cut6+, ags1+ / mok1+, gst3+, kms2+, and sid4+. The products of kms2+ and sid4+ localize to the SPB. The novel genes were characterized by constructing disruption mutations and by localization of the gene products. Two of them, putative homologues of budding yeast UFE1 (which encodes a t-SNARE) and SFH1 (an essential component of a chromatin-remodeling complex), were essential for viability. Two further genes, which were only conditionally essential, genetically interact with sad1+. One of these was named sif1+ (for Sad1-interacting factor) and is required for proper septum formation at high temperature. Cells in which this gene was overexpressed displayed a wee -like phenotype. The product of the other gene, apm1+, is very similar to the medium chain of an adaptor protein complex in clathrin-coated vesicles. Apm1 appears to be required for SPB separation and spindle formation, and tended to accumulate at the SPB when it was overproduced. It was functionally distinct from its homologues Apm2 and Apm4. Other novel genes identified in this study included one for a nucleoporin and genes encoding novel membrane-bound proteins that were genetically related to Sad1. We found that none of the newly identified genes tested were necessary for centromere/telomere clustering.
Collapse
Affiliation(s)
- F Miki
- Kazusa DNA Research Institute, 292-0818, Kisarazu, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Yoshida SH, Al-Amodi H, Nakamura T, McInerny CJ, Shimoda C. The Schizosaccharomyces pombe cdt2(+) gene, a target of G1-S phase-specific transcription factor complex DSC1, is required for mitotic and premeiotic DNA replication. Genetics 2003; 164:881-93. [PMID: 12871901 PMCID: PMC1462634 DOI: 10.1093/genetics/164.3.881] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have defined five sev genes by genetic analysis of Schizosaccharomyces pombe mutants, which are defective in both proliferation and sporulation. sev1(+)/cdt2(+) was transcribed during the G1-S phase of the mitotic cell cycle, as well as during the premeiotic S phase. The mitotic expression of cdt2(+) was regulated by the MCB-DSC1 system. A mutant of a component of DSC1 affected cdt2(+) expression in vivo, and a cdt2(+) promoter fragment containing MCB motifs bound DSC1 in vitro. Cdt2 protein also accumulated in S phase and localized to the nucleus. cdt2 null mutants grew slowly at 30 degrees and were unable to grow at 19 degrees. These cdt2 mutants were also medially sensitive to hydroxyurea, camptothecin, and 4-nitroquinoline-1-oxide and were synthetically lethal in combination with DNA replication checkpoint mutations. Flow cytometry analysis and pulsed-field gel electrophoresis revealed that S-phase progression was severely retarded in cdt2 mutants, especially at low temperatures. Under sporulation conditions, premeiotic DNA replication was impaired with meiosis I blocked. Furthermore, overexpression of suc22(+), a ribonucleotide reductase gene, fully complemented the sporulation defect of cdt2 mutants and alleviated their growth defect at 19 degrees. These observations suggest that cdt2(+) plays an important role in DNA replication in both the mitotic and the meiotic life cycles of fission yeast.
Collapse
Affiliation(s)
- Shu-hei Yoshida
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
46
|
Nakamura-Kubo M, Nakamura T, Hirata A, Shimoda C. The fission yeast spo14+ gene encoding a functional homologue of budding yeast Sec12 is required for the development of forespore membranes. Mol Biol Cell 2003; 14:1109-24. [PMID: 12631727 PMCID: PMC151583 DOI: 10.1091/mbc.e02-08-0504] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Schizosaccharomyces pombe spo14-B221 mutant was originally isolated as a sporulation-deficient mutant. However, the spo14(+) gene is essential for cell viability and growth. spo14(+) is identical to the previously characterized stl1(+) gene encoding a putative homologue of Saccharomyces cerevisiae Sec12, which is essential for protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. In the spo14 mutant cells, ER-like membranes were accumulated beneath the plasma membrane and the ER/Golgi shuttling protein Rer1 remained in the ER. Sec12 is a guanine nucleotide exchange factor for the Sar1 GTPase. Overproduction of psr1(+) coding for an S. pombe Sar1 homologue suppressed both the sporulation defect of spo14-B221 and cold-sensitive growth of newly isolated spo14-6 and spo14-7 mutants. These results indicate that Spo14 is involved in early steps of the protein secretory pathway. The spo14-B221 allele carries a single nucleotide change in the branch point consensus of the fifth intron, which reduces the abundance of the spo14 mRNA. During meiosis II, the forespore membrane was initiated near spindle pole bodies; however, subsequent extension of the membrane was arrested before its closure into a sac. We conclude that Spo14 is responsible for the assembly of the forespore membrane by supplying membrane vesicles.
Collapse
Affiliation(s)
- Michiko Nakamura-Kubo
- Department of Biology, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Japan
| | | | | | | |
Collapse
|
47
|
Morishita M, Morimoto F, Kitamura K, Koga T, Fukui Y, Maekawa H, Yamashita I, Shimoda C. Phosphatidylinositol 3-phosphate 5-kinase is required for the cellular response to nutritional starvation and mating pheromone signals in Schizosaccharomyces pombe. Genes Cells 2002; 7:199-215. [PMID: 11895483 DOI: 10.1046/j.1356-9597.2001.00510.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phosphatidylinositol (3,5) bisphosphate, which is converted from phosphatidylinositol 3-phosphate by phosphatidylinositol 3-phosphate 5-kinase, is implicated in vacuolar functions and the sorting of cell surface proteins within endosomes in the endocytic pathway of budding yeast. A homologous protein, SpFab1p, has been found in the fission yeast Schizosaccharomyces pombe, but its role is not known. RESULTS Here we report that SpFab1p is encoded by ste12+ known as a fertility gene in S. pombe. The ste12 mutant grew normally under stress-free conditions, but was highly vacuolated and swelled at high temperatures and under starvation conditions. In nitrogen-free medium, ste12 cells were arrested in G1 phase, but partially defective in the expression of genes responsible for mating and meiosis. The ste12 mutant was defective both in the production of, and in the response to, mating pheromones. The amount of the pheromone receptor protein Map3p, was substantially decreased in ste12 cells. Map3p was transported to the cell surface, then internalized and eventually transported to the vacuolar lumen, even in the ste12 mutant. CONCLUSION The results indicate that phosphatidylinositol(3,5)bisphosphate is essential for cellular responses to various stresses and for the mating pheromone signalling under starvation conditions.
Collapse
Affiliation(s)
- Masayo Morishita
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakamura T, Nakamura-Kubo M, Nakamura T, Shimoda C. Novel fission yeast Cdc7-Dbf4-like kinase complex required for the initiation and progression of meiotic second division. Mol Cell Biol 2002; 22:309-20. [PMID: 11739743 PMCID: PMC134210 DOI: 10.1128/mcb.22.1.309-320.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cdc7, a conserved serine/threonine protein kinase, controls initiation of DNA replication. A regulatory subunit, Dbf4, stimulates the kinase activity of Cdc7 and recruits it to the replication origins. Schizosaccharomyces pombe has a homologous kinase complex, composed of Hsk1 and Dfp1/Him1. Here, we report a novel protein kinase of S. pombe, Spo4, which shares common structural features with the Cdc7 kinases. In spite of the structural similarities, Spo4 is dispensable for mitotic growth and premeiotic DNA replication. Intriguingly, spo4 null mutants are defective in initiation and progression of the second meiotic division. Spindles for meiosis II are often fragmented. Spo4 kinase activity is markedly enhanced when the enzyme is associated with its regulatory subunit, Spo6, a Dbf4-like protein. Expression of Spo4 is specifically induced during meiosis. Spo4 is preferentially present in nuclei, but this nuclear localization does not require Spo6. These results suggest that Spo4 is a Cdc7 kinase whose primary role is in meiosis, not in DNA replication. This is the first report of an organism which has two Cdc7-related kinase complexes with different biological functions.
Collapse
Affiliation(s)
- Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, Japan
| | | | | | | |
Collapse
|
49
|
Nakamura T, Nakamura-Kubo M, Hirata A, Shimoda C. The Schizosaccharomyces pombe spo3+ gene is required for assembly of the forespore membrane and genetically interacts with psy1(+)-encoding syntaxin-like protein. Mol Biol Cell 2001; 12:3955-72. [PMID: 11739793 PMCID: PMC60768 DOI: 10.1091/mbc.12.12.3955] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Formation of the forespore membrane, which becomes the plasma membrane of spores, is an intriguing step in the sporulation of the fission yeast Schizosaccharomyces pombe. Here we report two novel proteins that localize to the forespore membrane. spo3(+) encodes a potential membrane protein, which was expressed only during sporulation. Green fluorescent protein (GFP) fusion revealed that Spo3 localized to the forespore membrane. The spo3 disruptant was viable and executed meiotic nuclear divisions as efficiently as the wild type but did not form spores. One of the spo3 alleles, spo3-KC51, was dose-dependently suppressed by psy1(+), which encodes a protein similar to mammalian syntaxin-1A, a component of the plasma membrane docking/fusion complex. psy1(+) was essential for vegetative growth, and its transcription was enhanced during sporulation. As expected, Psy1 localized to the plasma membrane during vegetative growth. Interestingly, Psy1 on the plasma membrane disappeared immediately after first meiotic division and relocalized to the forespore membrane as the second division initiated. In the spo3 null mutant, the forespore membrane was initiated but failed to develop a normal morphology. Electron microscopy revealed that membrane vesicles were accumulated in the cytoplasm of immature spo3Delta asci. These results suggest that Spo3 is a key component of the forespore membrane and is essential for its assembly acting in collaboration with the syntaxin-like protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Western
- Cell Division
- Cell Membrane/metabolism
- Gene Expression Regulation, Fungal
- Meiosis
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Qa-SNARE Proteins
- RNA, Messenger/metabolism
- Schizosaccharomyces/cytology
- Schizosaccharomyces/genetics
- Schizosaccharomyces/growth & development
- Schizosaccharomyces/ultrastructure
- Schizosaccharomyces pombe Proteins/chemistry
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Sequence Homology, Amino Acid
- Spores, Fungal/cytology
- Spores, Fungal/genetics
- Spores, Fungal/growth & development
- Spores, Fungal/ultrastructure
- Suppression, Genetic/genetics
- Time Factors
Collapse
Affiliation(s)
- T Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
50
|
Nakase Y, Nakamura T, Hirata A, Routt SM, Skinner HB, Bankaitis VA, Shimoda C. The Schizosaccharomyces pombe spo20(+) gene encoding a homologue of Saccharomyces cerevisiae Sec14 plays an important role in forespore membrane formation. Mol Biol Cell 2001; 12:901-17. [PMID: 11294895 PMCID: PMC32275 DOI: 10.1091/mbc.12.4.901] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Schizosaccharomyces pombe spo20-KC104 mutation was originally isolated in a screen for sporulation-deficient mutants, and the spo20-KC104 mutant exhibits temperature-sensitive growth. Herein, we report that S. pombe, spo20(+) is essential for fission yeast cell viability and is constitutively expressed throughout the life cycle. We also demonstrate that the spo20(+) gene product is structurally homologous to Saccharomyces cerevisiae Sec14, the major phosphatidylinositol transfer protein of budding yeast. This structural homology translates to a significant degree of functional relatedness because reciprocal complementation experiments demonstrate that each protein is able to fulfill the essential function of the other. Moreover, biochemical experiments show that, like Sec14, Spo20 is a phosphatidylinositol/phosphatidylcholine-transfer protein. That Spo20 is required for Golgi secretory function in vegetative cells is indicated by our demonstration that the spo20-KC104 mutant accumulates aberrant Golgi cisternae at restrictive temperatures. However, a second phenotype observed in Spo20-deficient fission yeast is arrest of cell division before completion of cell separation. Consistent with a direct role for Spo20 in controlling cell septation in vegetatively growing cells, localization experiments reveal that Spo20 preferentially localizes to the cell poles and to sites of septation of fission yeast cells. We also report that, when fission yeasts are challenged with nitrogen starvation, Spo20 translocates to the nucleus. This nuclear localization persists during conjugation and meiosis. On completion of meiosis, Spo20 translocates to forespore membranes, and it is the assembly of forespore membranes that is abnormal in spo20-KC104 cells. In such mutants, a considerable fraction of forming prespores fail to encapsulate the haploid nucleus. Our results indicate that Spo20 regulates the formation of specialized membrane structures in addition to its recognized role in regulating Golgi secretory function.
Collapse
Affiliation(s)
- Y Nakase
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|