1
|
Pérez-Sala D, Zorrilla S. Versatility of vimentin assemblies: From filaments to biomolecular condensates and back. Eur J Cell Biol 2025; 104:151487. [PMID: 40194320 DOI: 10.1016/j.ejcb.2025.151487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Cytoskeletal structures shape and confer resistance to cells. The intermediate filament protein vimentin forms versatile structures that play key roles in cytoskeletal crosstalk, in the integration of cellular responses to a variety of external and internal cues, and in the defense against stress. Such multifaceted roles can be fulfilled thanks to the vast variety of vimentin proteoforms, which in turn arise from the combinations of a myriad of tightly regulated posttranslational modifications. Diverse vimentin proteoforms will differentially shape its polymeric assemblies, underlying vimentin ability to organize in filaments, bundles, squiggles, droplets, cell surface-bound and/or various secreted forms. Interestingly, certain vimentin dots or droplets have been lately categorized as biomolecular condensates. Biomolecular condensates are phase-separated membraneless structures that are critical for the organization of cellular components and play important roles in pathophysiology. Recent findings have unveiled the importance of low complexity sequence domains in vimentin filament assembly. Moreover, several oxidants trigger the transition of vimentin filaments into phase-separated biomolecular condensates, a reversible process that may provide clues on the role of condensates as seeds for filament formation. Revisiting previous results in the light of recent knowledge prompts the hypothesis that vimentin condensates could play a role in traffic of filament precursors, cytoskeletal crosstalk and cellular responses to stress. Deciphering the "vimentin posttranslational modification code", that is, the structure-function relationships of vimentin proteoforms, constitutes a major challenge to understand the regulation of vimentin behavior and its multiple personalities. This will contribute to unveil essential cellular mechanisms and foster novel opportunities for drug discovery.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Silvia Zorrilla
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Todorow V, Hintze S, Schoser B, Meinke P. Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies. Biomedicines 2025; 13:606. [PMID: 40149583 PMCID: PMC11940573 DOI: 10.3390/biomedicines13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies-DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery-Dreifuss muscular dystrophy (EDMD)-to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers.
Collapse
Affiliation(s)
- Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
3
|
Malinow I, Fong DC, Miyamoto M, Badran S, Hong CC. Pediatric dilated cardiomyopathy: a review of current clinical approaches and pathogenesis. Front Pediatr 2024; 12:1404942. [PMID: 38966492 PMCID: PMC11223501 DOI: 10.3389/fped.2024.1404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Pediatric dilated cardiomyopathy (DCM) is a rare, yet life-threatening cardiovascular condition characterized by systolic dysfunction with biventricular dilatation and reduced myocardial contractility. Therapeutic options are limited with nearly 40% of children undergoing heart transplant or death within 2 years of diagnosis. Pediatric patients are currently diagnosed based on correlating the clinical picture with echocardiographic findings. Patient age, etiology of disease, and parameters of cardiac function significantly impact prognosis. Treatments for pediatric DCM aim to ameliorate symptoms, reduce progression of disease, and prevent life-threatening arrhythmias. Many therapeutic agents with known efficacy in adults lack the same evidence in children. Unlike adult DCM, the pathogenesis of pediatric DCM is not well understood as approximately two thirds of cases are classified as idiopathic disease. Children experience unique gene expression changes and molecular pathway activation in response to DCM. Studies have pointed to a significant genetic component in pediatric DCM, with variants in genes related to sarcomere and cytoskeleton structure implicated. In this regard, pediatric DCM can be considered pediatric manifestations of inherited cardiomyopathy syndromes. Yet exciting recent studies in infantile DCM suggest that this subset has a distinct etiology involving defective postnatal cardiac maturation, such as the failure of programmed centrosome breakdown in cardiomyocytes. Improved knowledge of pathogenesis is central to developing child-specific treatment approaches. This review aims to discuss the established biological pathogenesis of pediatric DCM, current clinical guidelines, and promising therapeutic avenues, highlighting differences from adult disease. The overarching goal is to unravel the complexities surrounding this condition to facilitate the advancement of novel therapeutic interventions and improve prognosis and overall quality of life for pediatric patients affected by DCM.
Collapse
Affiliation(s)
- Ian Malinow
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel C. Fong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Miyamoto
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Badran
- Department of Pediatric Cardiology, Michigan State University College of Human Medicine Helen Devos Children’s Hospital, Grand Rapids, MI, United States
| | - Charles C. Hong
- Department of Medicine, Division of Cardiology, Michigan State University College of Human Medicine, East Lansing, MI, United States
| |
Collapse
|
4
|
Lubin SR, Paulraj S, Ahmed J. Lamin A/C cardiomyopathy presenting as high-grade atrioventricular (AV) block, atrial fibrillation, heart failure and ventricular tachycardia in a single-family cluster. BMJ Case Rep 2023; 16:e255605. [PMID: 37348923 PMCID: PMC10314414 DOI: 10.1136/bcr-2023-255605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Mutations in the lamin A/C (LMNA) gene have been associated with both cardiac and skeletal muscle abnormalities. Cardiac manifestations in LMNA cardiomyopathy have a variable age of onset and range from mild to life-threatening. We describe a case series illustrating manifestations of LMNA mutation in a single family with an extensive history of cardiac disease, including sudden cardiac death, and the implications for diagnosis and management. This discussion highlights potential presentations of LMNA mutations and the importance of genetic testing in patients with a family history of conduction abnormalities.
Collapse
Affiliation(s)
| | - Shweta Paulraj
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamal Ahmed
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
5
|
Idriss H, Siddig B, González-Maldonado P, Elkhair HM, Alakhras AI, Abdallah EM, Elzupir AO, Sotelo PH. Inhibitory Activity of Saussurea costus Extract against Bacteria, Candida, Herpes, and SARS-CoV-2. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030460. [PMID: 36771546 PMCID: PMC9920761 DOI: 10.3390/plants12030460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
Medicinal herbs have long been utilized to treat various diseases or to relieve the symptoms of some ailments for extended periods. The present investigation demonstrates the phytochemical profile, molecular docking, anti-Candida activity, and anti-viral activity of the Saussurea costus acetic acid extract. GC-MS analysis of the extract revealed the presence of 69 chemical compounds. The chemical compounds were alkaloids (4%), terpenoids (79%), phenolic compounds (4%), hydrocarbons (7%), and sterols (6%). Molecular docking was used to study the inhibitory activity of 69 identified compounds against SARS-CoV-2. In total, 12 out of 69 compounds were found to have active properties exhibiting SARS-CoV-2 inhibition. The binding scores of these molecules were significantly low, ranging from -7.8 to -5.6 kcal/mol. The interaction of oxatricyclo [20.8.0.0(7,16)] triaconta-1(22),7(16),9,13,23,29-hexaene with the active site is more efficient. Furthermore, the extract exhibited significant antimicrobial activity (in vitro) against Candida albicans, which was the most susceptible microorganism, followed by Bacillus cereus, Salmonella enterica, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, respectively. On the other hand, its antiviral activity was evaluated against HSV-1 and SARS-CoV-2, and the results showed a significant positive influence against HSV-1 (EC50 = 82.6 g/mL; CC50 = 162.9 g/mL; selectivity index = 1.9). In spite of this, no impact could be observed in terms of inhibiting the entry of SARS-CoV-2 in vitro.
Collapse
Affiliation(s)
- Hajo Idriss
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Babeker Siddig
- Alawia Imam Institute for Pharmaceutical Research and Development, University of Medical Science and Technology, Khartoum 11115, Sudan
- Savola Edible Oils, Khartoum 11115, Sudan
| | - Pamela González-Maldonado
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - H. M. Elkhair
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Abbas I. Alakhras
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Amin O. Elzupir
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Pablo H. Sotelo
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| |
Collapse
|
6
|
Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nat Commun 2022; 13:3068. [PMID: 35654881 PMCID: PMC9163128 DOI: 10.1038/s41467-022-30800-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature ageing disorder caused by a point mutation in the LMNA gene (LMNA c.1824 C > T), resulting in the production of a detrimental protein called progerin. Adenine base editors recently emerged with a promising potential for HGPS gene therapy. However adeno-associated viral vector systems currently used in gene editing raise concerns, and the long-term effects of heterogeneous mutation correction in highly proliferative tissues like the skin are unknown. Here we use a non-integrative transient lentiviral vector system, expressing an adenine base editor to correct the HGPS mutation in the skin of HGPS mice. Transient adenine base editor expression corrected the mutation in 20.8-24.1% of the skin cells. Four weeks post delivery, the HGPS skin phenotype was improved and clusters of progerin-negative keratinocytes were detected, indicating that the mutation was corrected in both progenitor and differentiated skin cells. These results demonstrate that transient non-integrative viral vector mediated adenine base editor expression is a plausible approach for future gene-editing therapies.
Collapse
|
7
|
Kituyi SN, Edkins AL. Hop/STIP1 depletion alters nuclear structure via depletion of nuclear structural protein emerin. Biochem Biophys Res Commun 2018; 507:503-509. [PMID: 30449594 DOI: 10.1016/j.bbrc.2018.11.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Hop/STIP1 is a co-chaperone of Hsp70 and Hsp90 that regulates a number of cell biology processes via interactions with cellular proteins. Here we report a new relationship between Hop and the nuclear structural protein emerin in maintenance of nuclear morphology. Depletion or overexpression of Hop resulted in the reduction of emerin protein levels via proteasomal and lysosomal pathways. Co-immunoprecipitation assays confirmed that Hop and emerin are in a common complex, which could accommodate Hsp70 but not Hsp90, and that TPR2AB is required for the association. Loss of Hop or emerin led to a deformation of nuclear structure, a statistically significant decrease in nuclear size, and was associated with changes in the levels of nuclear proteins, lamin A-C and fibrillarin. The nuclear defects upon Hop loss could be rescued by emerin overexpression. Taken together, these data suggest that Hop stabilises emerin and that loss of Hop alters nuclear structure via emerin degradation.
Collapse
Affiliation(s)
- Sarah Naulikha Kituyi
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
8
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
9
|
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford Progeria Syndrome: A Premature Aging Disease. Mol Neurobiol 2017; 55:4417-4427. [PMID: 28660486 DOI: 10.1007/s12035-017-0610-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
Progeria is sporadic, very rare, autosomal dominant, deadly childhood disorder. It is one of the progeroid syndromes also known as Hutchinson-Gilford progeria syndrome (HGPS). Aging is a developmental process that begins with fertilization and ends up with death involving a lot of environmental and genetic factors. The disease firstly involves premature aging and then death from complications of atherosclerosis such as myocardial infarction, stroke, atherosclerosis, or heart failure. The lifespan of the patient is normally up to teen age or early twenties. It is usually not inherited because a patient normally dies before the age of reproduction. The most important genetic linkage between progeria and aging is shortening of telomere ends with each replication cycle. The patients are normally observed to have extremely short telomeres. Currently, 90% of the patients are said to have de novo point mutations in the LMNA gene that substitute cytosine with thymine and have been found in individuals with HGPS. Lmna encodes lamins A and C, and the A-type lamins have important structural function in the nuclear envelope. The most common type of HGPS mutation is located at codon 608 (G608G). It could not be diagnosed at birth, but after the age of 2 years, visible, prominent symptoms can be observed. Still, lot of research is needed to solve this mystery; hopefully, future research on HGPS would provide important clues for progeria and other fatal age-related disorders.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan.,Department of Biological Engineering/Institute of Biotransformation and Synthetic Biosystem, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Sana Ikram
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Nousheen Bibi
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan.,National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Asif Mir
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
10
|
Abstract
The nuclear lamina is involved in fundamental nuclear functions and provides mechanical stability to the nucleus. Lamin filaments form a meshwork closely apposed to the inner nuclear membrane and a small fraction of lamins exist in the nuclear interior. Mutations in lamin genes cause severe hereditary diseases, the laminopathies. During vertebrate evolution the lamin protein family has expanded. While most vertebrate genomes contain 4 lamin genes, encoding the lamins A, B1, B2, and LIII, the majority of non-vertebrate genomes harbor only a single lamin gene. We have collected lamin gene and cDNA sequence information for representatives of the major vertebrate lineages. With the help of RNA-seq data we have determined relative lamin expression levels for representative tissues for species of 9 different gnathostome lineages. Here we report that the level of lamin A expression is low in cartilaginous fishes and ancient fishes and increases toward the mammals. Lamin B1 expression shows an inverse tendency to that of lamin A. Possible implications for the change in the lamin A to B ratio is discussed in the light of its role in nuclear mechanics.
Collapse
Affiliation(s)
- Reimer Stick
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| | - Annette Peter
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| |
Collapse
|
11
|
Expression of nuclear membrane proteins in normal, hyperplastic, and neoplastic thyroid epithelial cells. Virchows Arch 2015; 467:427-36. [DOI: 10.1007/s00428-015-1816-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/30/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
12
|
Hanson EL, Hershberger RE. Genetic Counseling and Screening Issues in Familial Dilated Cardiomyopathy. J Genet Couns 2015; 10:397-415. [PMID: 26141267 DOI: 10.1023/a:1016641504606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Idiopathic dilated cardiomyopathy (IDC), a treatable condition characterized by left ventricular dilatation and systolic dysfunction of unknown cause, has only recently been recognized to have genetic etiologies. Although familial dilated cardiomyopathy (FDC) was thought to be infrequent, it is now believed that 30-50% of cases of IDC may be familial. Echocardiographic and electrocardiographic (ECG) screening of first-degree relatives of individuals with IDC and FDC is indicated because detection and treatment are possible prior to the onset of advanced, symptomatic disease. However, such screening often creates uncertainty and anxiety surrounding the significance of the results. Furthermore, FDC demonstrates incomplete penetrance, variable expression, and significant locus and allelic heterogeneity, making genetic counseling complex. The provision of genetic counseling for IDC and FDC will require collaboration between cardiologists and genetics professionals, and may also improve the recognition of FDC, the availability of support services, and overall outcomes for patients and families.
Collapse
Affiliation(s)
- E L Hanson
- Division of Cardiology, Department of Medicine, Oregon Health Sciences University, Portland, Oregon,
| | | |
Collapse
|
13
|
Bose T, Cieślar-Pobuda A, Wiechec E. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells. Cell Death Dis 2015; 6:e1648. [PMID: 25695601 PMCID: PMC4669790 DOI: 10.1038/cddis.2015.23] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.
Collapse
Affiliation(s)
- T Bose
- Leibniz-Institute of Neurobiology, Brenneckestrasse 6, D-39 Magdeburg, Germany
| | - A Cieślar-Pobuda
- 1] Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden [2] Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - E Wiechec
- Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
14
|
Ribeiro AJ, Khanna P, Sukumar A, Dong C, Dahl KN. Nuclear stiffening inhibits migration of invasive melanoma cells. Cell Mol Bioeng 2014; 7:544-551. [PMID: 25544862 PMCID: PMC4276563 DOI: 10.1007/s12195-014-0358-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals. Melanoma cells, both WM35 and Lu1205, both show reduced nuclear deformability and reduced cell invasion with the expression of Δ50 lamin A. These studies suggest that cellular aging including expression of Δ50 lamin A and nuclear stiffening may reduce the potential for metastatic cancer migration. Thus, the pathway of cancer metastasis may be kept in check by mechanical factors in addition to known chemical pathway regulation.
Collapse
Affiliation(s)
| | - Payal Khanna
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802
| | - Aishwarya Sukumar
- Department of Biomedical Engineering, Carnegie Melon University, Pittsburgh, PA 15213
| | - Cheng Dong
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Melon University, Pittsburgh, PA 15213
| |
Collapse
|
15
|
Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M, Straatman KR, Worman HJ, Gundersen GG, Lattanzi G, Wehnert M, Shackleton S. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 2014; 10:e1004605. [PMID: 25210889 PMCID: PMC4161305 DOI: 10.1371/journal.pgen.1004605] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning. Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder involving muscle wasting and weakness, accompanied by cardiac defects. The disease is variable in its severity and also in its genetic cause. So far, 6 genes have been linked to EDMD, most encoding proteins that form a structural network that supports the nucleus of the cell and connects it to structural elements of the cytoplasm. This network is particularly important in muscle cells, providing resistance to mechanical strain. Weakening of this network is thought to contribute to development of muscle disease in these patients. Despite rigorous screening, at least 50% of patients with EDMD have no detectable mutation in the 6 known genes. We therefore undertook screening and identified mutations in two additional genes that encode other components of the nuclear structural network, SUN1 and SUN2. Our findings add to the genetic complexity of this disease since some individuals carry mutations in more than one gene. We also show that the mutations disrupt connections between the nucleus and the structural elements of cytoplasm, leading to mis-positioning and clustering of nuclei in muscle cells. This nuclear mis-positioning is likely to be another factor contributing to pathogenesis of EDMD.
Collapse
Affiliation(s)
- Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Elisabetta Mattioli
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Farhana Haque
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Susumu Antoku
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Howard J. Worman
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Giovanna Lattanzi
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sue Shackleton
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
McKenna T, Rosengardten Y, Viceconte N, Baek JH, Grochová D, Eriksson M. Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development. Aging Cell 2014; 13:292-302. [PMID: 24305605 PMCID: PMC4331787 DOI: 10.1111/acel.12173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2013] [Indexed: 01/14/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) are two laminopathies caused by mutations leading to cellular accumulation of prelamin A or one of its truncated forms, progerin. One proposed mechanism for the more severe symptoms in patients with RD compared with HGPS is that higher levels of farnesylated lamin A are produced in RD. Here, we show evidence in support of that hypothesis. Overexpression of the most common progeroid lamin A mutation (LMNA c.1824C>T, p.G608G) during skin development results in a severe phenotype, characterized by dry scaly skin. At postnatal day 5 (PD5), progeroid animals showed a hyperplastic epidermis, disorganized sebaceous glands and an acute inflammatory dermal response, also involving the hypodermal fat layer. PD5 animals also showed an upregulation of multiple inflammatory response genes and an activated NF-kB target pathway. Careful analysis of the interfollicular epidermis showed aberrant expression of the lamin B receptor (LBR) in the suprabasal layer. Prolonged expression of LBR, in 14.06% of the cells, likely contributes to the observed arrest of skin development, clearly evident at PD4 when the skin had developed into single-layer epithelium in the wild-type animals while progeroid animals still had the multilayered appearance typical for skin at PD3. Suprabasal cells expressing LBR showed altered DNA distribution, suggesting the induction of gene expression changes. Despite the formation of a functional epidermal barrier and proven functionality of the gap junctions, progeroid animals displayed a greater rate of water loss as compared with wild-type littermates and died within the first two postnatal weeks.
Collapse
Affiliation(s)
- Tomás McKenna
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, NovumSE-14183, Huddinge, Sweden
| | - Ylva Rosengardten
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, NovumSE-14183, Huddinge, Sweden
| | | | | | - Diana Grochová
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, NovumSE-14183, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, NovumSE-14183, Huddinge, Sweden
| |
Collapse
|
17
|
Garcia-Pavia P, Cobo-Marcos M, Guzzo-Merello G, Gomez-Bueno M, Bornstein B, Lara-Pezzi E, Segovia J, Alonso-Pulpon L. Genetics in dilated cardiomyopathy. Biomark Med 2014; 7:517-33. [PMID: 23905888 DOI: 10.2217/bmm.13.77] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Discoveries made during the last 20 years have revealed a genetic origin in many cases of dilated cardiomyopathy (DCM). Currently, over 40 genes have been associated with the disease. Mutations in DCM-causing genes induce the condition through a variety of different pathological pathways with complex and not completely understood mechanisms. Genes that encode for sarcomeric, cytoskeletal, nuclear membrane, dystrophin-associated glycoprotein complex and desmosomal proteins are the principal genes involved. In this review we discuss the most frequent DCM-causing genes. We propose a classification in which DCM genes are considered as being major or minor genes according to their mutation frequency and the available supporting evidence. The main phenotypic characteristics associated with each gene are discussed.
Collapse
Affiliation(s)
- Pablo Garcia-Pavia
- Heart Failure & Cardiomyopathy Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Al-Haggar M, Shams A, Madej-Pilarczyk A, Barakat T, Puzianowska-Kuznicka M. Ultrastructural skin changes in Egyptian mandibuloacral dysplasia patients with p.Arg527Leu LMNA mutation and in their asymptomatic heterozygotic mothers. J Clin Pathol 2013; 66:1000-1004. [PMID: 23775434 DOI: 10.1136/jclinpath-2013-201690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammad Al-Haggar
- Genetics Unit, Pediatrics Department, Faculty of Medicine, Mansoura University, , Mansoura, Egypt
| | | | | | | | | |
Collapse
|
19
|
Chen W, Huo J, Ma A, Bai L, Liu P. A novel mutation of the LMNA gene in a family with dilated cardiomyopathy, conduction system disease, and sudden cardiac death of young females. Mol Cell Biochem 2013; 382:307-11. [DOI: 10.1007/s11010-013-1734-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022]
|
20
|
Martínez-Vieyra IA, Vásquez-Limeta A, González-Ramírez R, Morales-Lázaro SL, Mondragón M, Mondragón R, Ortega A, Winder SJ, Cisneros B. A role for β-dystroglycan in the organization and structure of the nucleus in myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:698-711. [PMID: 23220011 DOI: 10.1016/j.bbamcr.2012.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 12/19/2022]
Abstract
We recently characterized a nuclear import pathway for β-dystroglycan; however, its nuclear role remains unknown. In this study, we demonstrate for the first time, the interaction of β-dystroglycan with distinct proteins from different nuclear compartments, including the nuclear envelope (NE) (emerin and lamins A/C and B1), splicing speckles (SC35), Cajal bodies (p80-coilin), and nucleoli (Nopp140). Electron microscopy analysis revealed that β-dystroglycan localized in the inner nuclear membrane, nucleoplasm, and nucleoli. Interestingly, downregulation of β-dystroglycan resulted in both mislocalization and decreased expression of emerin and lamin B1, but not lamin A/C, as well in disorganization of nucleoli, Cajal bodies, and splicing speckles with the concomitant decrease in the levels of Nopp140, and p80-coilin, but not SC35. Quantitative reverse transcription PCR and cycloheximide-mediated protein arrest assays revealed that β-dystroglycan deficiency did not change mRNA expression of NE proteins emerin and lamin B1 bud did alter their stability, accelerating protein turnover. Furthermore, knockdown of β-dystroglycan disrupted NE-mediated processes including nuclear morphology and centrosome-nucleus linkage, which provides evidence that β-dystroglycan association with NE proteins is biologically relevant. Unexpectedly, β-dystroglycan-depleted cells exhibited multiple centrosomes, a characteristic of cancerous cells. Overall, these findings imply that β-dystroglycan is a nuclear scaffolding protein involved in nuclear organization and NE structure and function, and that might be a contributor to the biogenesis of nuclear envelopathies.
Collapse
Affiliation(s)
- Ivette A Martínez-Vieyra
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07360, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The Pelger-Huët anomaly (PHA) is a recognized morphologic variant affecting all granulocytes but is most evident in polymorphonuclear neutrophils (PMNs). PHA is caused by a decreased amount of the lamin B receptor (LBR). Recognition of PHA morphologic features serves as a marker for mutations in the LBR gene. This review summarizes the history of PHA and the current knowledge of the functions of the LBR. Guidance is given for distinguishing PHA from other hematologic disorders in which granulocytes may show similar changes. Recognition of PHA in the laboratory should prompt communication to the patient's physician about the possible clinical significance of this finding and the recommended screening for the anomaly in other family members by CBC and review of a peripheral blood smear.
Collapse
Affiliation(s)
- Rita Colella
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
22
|
Poitelon Y, Kozlov S, Devaux J, Vallat JM, Jamon M, Roubertoux P, Rabarimeriarijaona S, Baudot C, Hamadouche T, Stewart CL, Levy N, Delague V. Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). Neuromolecular Med 2012; 14:40-52. [PMID: 22331516 DOI: 10.1007/s12017-012-8168-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/18/2012] [Indexed: 01/03/2023]
Abstract
In 2002, we identified LMNA as the first gene responsible for an autosomal recessive axonal form of Charcot-Marie-Tooth disease, AR-CMT2A. All patients were found to be homozygous for the same mutation in the LMNA gene, p.Arg298Cys. In order to investigate the physiopathological mechanisms underlying AR-CMT2A, we have generated a knock-in mouse model for the Lmna p.Arg298Cys mutation. We have explored these mice through an exhaustive series of behavioral tests and histopathological analyses, but were not able to find any peripheral nerve phenotype, even at 18 months of age. Interestingly at the molecular level, however, we detect a downregulation of the Lmna gene in all tissues tested from the homozygous knock-in mouse Lmna (R298C/R298C) (skeletal muscle, heart, peripheral nerve, spinal cord and cerebral trunk). Importantly, we further reveal a significant upregulation of Pmp22, specifically in the sciatic nerves of Lmna (R298C/R298C) mice. These results indicate that, despite the absence of a perceptible phenotype, abnormalities exist in the peripheral nerves of Lmna (R298C/R298C) mice that are absent from other tissues. Although the mechanisms leading to deregulation of Pmp22 in Lmna (R298C/R298C) mice are still unclear, our results support a relation between Lmna and Pmp22 and constitute a first step toward understanding AR-CMT2A physiopathology.
Collapse
Affiliation(s)
- Yannick Poitelon
- UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Inserm, 13385 Marseille cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lussi YC, Hügi I, Laurell E, Kutay U, Fahrenkrog B. The nucleoporin Nup88 is interacting with nuclear lamin A. Mol Biol Cell 2011; 22:1080-90. [PMID: 21289091 PMCID: PMC3069011 DOI: 10.1091/mbc.e10-05-0463] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein-tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A.
Collapse
Affiliation(s)
- Yvonne C Lussi
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
24
|
LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice. PLoS One 2010; 5:e15167. [PMID: 21151901 PMCID: PMC2997782 DOI: 10.1371/journal.pone.0015167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022] Open
Abstract
The lamin A/C (LMNA), nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K) transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP), procollagen type III α1 (Col3α1) and skeletal muscle actin α1 (Actα1) were detected in the hearts of Lmna(E82K) transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K) transgenic mice than that of non-transgenic (NTG) mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.
Collapse
|
25
|
Abstract
The nuclear envelope of eukaryotic cells is composed of double lipid-bilayer membranes, the membrane-connected nuclear pore complexes and an underlying nuclear lamina network. The nuclear pore complexes serve as gates for regulating the transport of macromolecules between cytoplasm and nucleus. The nuclear lamina not only provides an intact meshwork for maintaining the nuclear stiffness but also presents a natural barrier against most DNA viruses. Herpesviruses are large DNA viruses associated with multiple human and animal diseases. The complex herpesviral virion contains more than 30 viral proteins. After viral DNA replication, the newly synthesised genome is packaged into the pre-assembled intranuclear capsid. The nucleocapsid must then transverse through the nuclear envelope to the cytoplasm for the subsequent maturation process. Information regarding how nucleocapsid breaches the rigid nuclear lamina barrier and accesses the inner nuclear membrane for primary envelopment has emerged recently. From the point of view of both viral components and nuclear structure, this review summarises recent advances in the complicated protein-protein interactions and the phosphorylation regulations involved in the nuclear egress of herpesviral nucleocapsids.
Collapse
Affiliation(s)
- Chung-Pei Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
26
|
Coffinier C, Fong LG, Young SG. LINCing lamin B2 to neuronal migration: growing evidence for cell-specific roles of B-type lamins. Nucleus 2010; 1:407-11. [PMID: 21278813 PMCID: PMC3027074 DOI: 10.4161/nucl.1.5.12830] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/19/2022] Open
Abstract
Nuclear lamins are major components of the nuclear lamina, and play essential roles in supporting the nucleus and organizing nuclear structures. While a large number of clinically important mutations have been mapped to the LMNA gene in humans, very few mutations have been associated with the B-type lamins. We have shown that lamin B2-deficiency in mice results in severe brain abnormalities. While the early stages of forebrain development in lamin B2-deficient mice appear to be normal, cortical neurons fail to migrate and organize into proper layers within the cerebral cortex. The morphogenesis of the hippocampus and cerebellum is also severely impaired. These phenotypes are reminiscent of lissencephaly, a human brain developmental disorder characterized by an abnormal neuronal migration. Most mutations in lissencephaly patients affect cytoplasmic regulators of nuclear translocation, which is a crucial step in neuronal migration. The phenotypes of lamin B2-deficient mice suggest that lamin B2 may also play a key role in nuclear translocation. Potential mechanisms for lamin B2 involvement, which include mechanical and non-mechanical roles, and participation in LINC complexes in the nuclear envelope, are discussed along with evidence that lamins B1 and B2 play distinct, cell-specific functions.
Collapse
Affiliation(s)
- Catherine Coffinier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
27
|
Kvell K, Varecza Z, Bartis D, Hesse S, Parnell S, Anderson G, Jenkinson EJ, Pongracz JE. Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence. PLoS One 2010; 5:e10701. [PMID: 20502698 PMCID: PMC2872673 DOI: 10.1371/journal.pone.0010701] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/27/2010] [Indexed: 11/24/2022] Open
Abstract
Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2alpha expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2alpha and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2alpha over-expression provoked a surge of PPARgamma expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARgamma. Murine embryonic thymic lobes have also been transfected with LAP2alpha- or Wnt4-encoding lentiviral vectors. As expected LAP2alpha over-expression increased, while additional Wnt4 secretion suppressed PPARgamma expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2alpha expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes.
Collapse
Affiliation(s)
- Krisztian Kvell
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Zoltan Varecza
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Domokos Bartis
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Sebastian Hesse
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Sonia Parnell
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Eric J. Jenkinson
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Judit E. Pongracz
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, University of Pecs, Pecs, Hungary
- Division of Immunity and Infection, Department of Anatomy, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 2010; 285:3487-98. [PMID: 19933576 PMCID: PMC2823409 DOI: 10.1074/jbc.m109.071910] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Indexed: 11/06/2022] Open
Abstract
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209-228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.
Collapse
Affiliation(s)
- Farhana Haque
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Daniela Mazzeo
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Jennifer T. Patel
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Dawn T. Smallwood
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Juliet A. Ellis
- The Randall Division of Cell and Molecular Biophysics, Kings College, London SE1 1UL, and
| | - Catherine M. Shanahan
- the Cardiovascular Division, James Black Centre, Kings College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Sue Shackleton
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| |
Collapse
|
29
|
Chandar S, Yeo LS, Leimena C, Tan JC, Xiao XH, Nikolova-Krstevski V, Yasuoka Y, Gardiner-Garden M, Wu J, Kesteven S, Karlsdotter L, Natarajan S, Carlton A, Rainer S, Feneley MP, Fatkin D. Effects of mechanical stress and carvedilol in lamin A/C-deficient dilated cardiomyopathy. Circ Res 2009; 106:573-82. [PMID: 20019332 DOI: 10.1161/circresaha.109.204388] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mutations in the LMNA gene, which encodes the nuclear lamina proteins lamin A and lamin C, are the most common cause of familial dilated cardiomyopathy (DCM). Mechanical stress-induced apoptosis has been proposed as the mechanism underpinning DCM in lamin A/C-deficient hearts, but supporting in vivo evidence has been lacking. OBJECTIVE Our aim was to study interventions to modify mechanical stress in heterozygous Lmna knockout (Lmna(+/-)) mice. METHODS AND RESULTS Cardiac structure and function were evaluated before and after exercise training, thoracic aortic constriction, and carvedilol treatment. Lmna(+/-) mice develop adult-onset DCM with relatively more severe disease in males. Lmna(+/-) cardiomyocytes show altered nuclear morphology and perinuclear desmin organization, with enhanced responses to hypo-osmotic stress indicative of cytoskeletal instability. Despite these structural defects that provide a template for mechanical stress-induced damage, young Lmna(+/-) mice subjected to 6 weeks of moderate or strenuous exercise training did not show induction of apoptosis or accelerated DCM. In contrast, regular moderate exercise attenuated DCM development in male Lmna(+/-) mice. Sustained pressure overload generated by thoracic aortic constriction depressed ventricular contraction in young wild-type and Lmna(+/-) mice with no sex or genotype differences in the time-course or severity of response. Treatment of male Lmna(+/-) mice from 12 to 40 weeks with the beta-blocker, carvedilol, prevented the dilatation and contractile dysfunction that was observed in placebo-treated mice. CONCLUSIONS These data suggest that factors other than mechanical stress-induced apoptosis contribute to DCM and provide the first demonstration that regular moderate exercise and carvedilol can modify disease progression in lamin A/C-deficient hearts.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/therapeutic use
- Animals
- Aorta, Thoracic
- Apoptosis
- Carbazoles/therapeutic use
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Carvedilol
- Constriction
- Desmin/analysis
- Female
- Genotype
- Heart/physiopathology
- Lamin Type A/deficiency
- Lamin Type A/genetics
- Male
- Mice
- Mice, Knockout
- Myocardium/pathology
- Osmotic Pressure
- Physical Conditioning, Animal
- Propanolamines/therapeutic use
- Stress, Mechanical
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Suchitra Chandar
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, 405 Liverpool St, PO Box 699, Darlinghurst NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Busch A, Kiel T, Heupel WM, Wehnert M, Hübner S. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants. Exp Cell Res 2009; 315:2373-85. [PMID: 19442658 DOI: 10.1016/j.yexcr.2009.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 04/12/2009] [Accepted: 05/06/2009] [Indexed: 01/29/2023]
Abstract
Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.
Collapse
Affiliation(s)
- Albert Busch
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
During mitosis in metazoans, the nuclear envelope (NE) breaks down at prophase and reassembles at telophase. The regulation of NE assembly is essential to correct cell functioning. The complex issue of the regulation of NE formation remains to be solved. It is still uncertain that a single mechanism depicts NE formation during mitosis. The aim of this review is to address some of the cytological, biophysical, and molecular aspects of models of NE formation. Our emphasis is on the role of lipids and their modifying enzymes in envelope assembly. We consider how the NE can be used as a model in characterizing membrane dynamics during membrane fusion. Fusion mechanisms that give insight into the formation of the double membrane of the envelope are summarized. We speculate on the possible roles of phosphoinositides in membrane fusion and NE formation.
Collapse
Affiliation(s)
- Banafshé Larijani
- Lincoln's Inn Fields Laboratories, Cancer Research UK, London WC2A 3PX, UK.
| | | |
Collapse
|
32
|
Koikkalainen JR, Antila M, Lötjönen JMP, Heliö T, Lauerma K, Kivistö SM, Sipola P, Kaartinen MA, Kärkkäinen STJ, Reissell E, Kuusisto J, Laakso M, Orešič M, Nieminen MS, Peuhkurinen KJ. Early Familial Dilated Cardiomyopathy: Identification with Determination of Disease State Parameter from Cine MR Image Data. Radiology 2008; 249:88-96. [DOI: 10.1148/radiol.2491071584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 2008; 82:11913-26. [PMID: 18815303 DOI: 10.1128/jvi.01100-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA viruses adopt various strategies to modulate the cellular environment for efficient genome replication and virion production. Previously, we demonstrated that the BGLF4 kinase of Epstein-Barr virus (EBV) induces premature chromosome condensation through the activation of condensin and topoisomerase IIalpha (C. P. Lee, J. Y. Chen, J. T. Wang, K. Kimura, A. Takemoto, C. C. Lu, and M. R. Chen, J. Virol. 81:5166-5180, 2007). In this study, we show that BGLF4 interacts with lamin A/C and phosphorylates lamin A protein in vitro. Using a green fluorescent protein (GFP)-lamin A system, we found that Ser-22, Ser-390, and Ser-392 of lamin A are important for the BGLF4-induced disassembly of the nuclear lamina and the EBV reactivation-mediated redistribution of nuclear lamin. Virion production and protein levels of two EBV primary envelope proteins, BFRF1 and BFLF2, were reduced significantly by the expression of GFP-lamin A(5A), which has five Ser residues replaced by Ala at amino acids 22, 390, 392, 652, and 657 of lamin A. Our data indicate that BGLF4 kinase phosphorylates lamin A/C to promote the reorganization of the nuclear lamina, which then may facilitate the interaction of BFRF1 and BFLF2s and subsequent virion maturation. UL kinases of alpha- and betaherpesviruses also induce the disassembly of the nuclear lamina through similar sites on lamin A/C, suggesting a conserved mechanism for the nuclear egress of herpesviruses.
Collapse
|
34
|
Perrot A, Hussein S, Ruppert V, Schmidt HHJ, Wehnert MS, Duong NT, Posch MG, Panek A, Dietz R, Kindermann I, Böhm M, Michalewska-Wludarczyk A, Richter A, Maisch B, Pankuweit S, Ozcelik C. Identification of mutational hot spots in LMNA encoding lamin A/C in patients with familial dilated cardiomyopathy. Basic Res Cardiol 2008; 104:90-9. [PMID: 18795223 DOI: 10.1007/s00395-008-0748-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 08/22/2008] [Indexed: 01/06/2023]
Abstract
The familial form of dilated cardiomyopathy (DCM) occurs in about 20%-50% of DCM cases. It is a heterogeneous genetic disease: mutations in more than 20 different genes have been shown to cause familial DCM. LMNA, encoding the nuclear membrane protein lamin A/C, is one of the most important disease gene for that disease. Therefore, we analyzed the LMNA gene in a large cohort of 73 patients with familial DCM. Clinical examination (ECG, echocardiography, and catheterization) was followed by genetic characterization of LMNA by direct sequencing. We detected five heterozygous missense mutations (prevalence 7%) in five different families characterized by severe DCM and heart failure with conduction system disease necessitating pacemaker implantation and heart transplantation. Four of these variants clustered in the protein domain coil 1B, which is important for lamin B interaction and lamin A/C dimerization. Although we identified two novel mutations (E203V, K219T) besides three known ones (E161K, R190Q, R644C), it was remarkable that four mutations represent LMNA hot spots. DCM patients with LMNA mutations show a notable homogenous severe phenotype as we could confirm in our study. Testing LMNA in such families seems to be recommended because genotype information in an individual could definitely be useful for the clinician.
Collapse
Affiliation(s)
- Andreas Perrot
- Charité-Universitätsmedizin Berlin, Kardiologie am Campus Buch und Virchow-Klinikum, Experimental and Clinical Research Center (ECRC) am Max-Delbrück-Centrum für Molekulare Medizin, Lindenberger Weg 80, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Willis ND, Cox TR, Rahman-Casañs SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruïne A, Hutchison CJ. Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 2008; 3:e2988. [PMID: 18714339 PMCID: PMC2496895 DOI: 10.1371/journal.pone.0002988] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/17/2008] [Indexed: 11/23/2022] Open
Abstract
Background A-type lamins are type V intermediate filament proteins encoded by the gene LMNA. Mutations in LMNA give rise to diverse degenerative diseases related to premature ageing. A-type lamins also influence the activity of the Retinoblastoma protein (pRb) and oncogenes such a β-catenin. Consequently, it has been speculated that expression of A-type lamins may also influence tumour progression. Methodology/Principal Findings An archive of colorectal cancer (CRC) and normal colon tissue was screened for expression of A-type lamins. We used the Cox proportional hazard ratio (HR) method to investigate patient survival. Using CRC cell lines we investigated the effects of lamin A expression on other genes by RT-PCR; on cell growth by FACS analysis; and on invasiveness by cell migration assays and siRNA knockdown of targeted genes. We found that lamin A is expressed in colonic stem cells and that patients with A-type lamin-expressing tumours have significantly worse prognosis than patients with A-type lamin negative tumours (HR = 1.85, p = 0.005). To understand this finding, we established a model system based upon expression of GFP-lamin A in CRC cells. We found that expression of GFP-lamin A in these cells did not affect cell proliferation but did promote greatly increased cell motility and invasiveness. The reason for this increased invasiveness was that expression of lamin A promoted up-regulation of the actin bundling protein T-plastin, leading to down regulation of the cell adhesion molecule E-cadherin. Conclusions Expression of A-type lamins increases the risk of death from CRC because its presence gives rise to increased invasiveness and potentially a more stem cell-like phenotype. This report directly links A-type lamin expression to tumour progression and raises the profile of LMNA from one implicated in multiple but rare genetic conditions to a gene involved in one of the commonest diseases in the Western World.
Collapse
Affiliation(s)
- Naomi D. Willis
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Thomas R. Cox
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | | | - Kim Smits
- Department of Epidemiology, University of Maastricht, Maastricht, The Netherlands
| | - Stefan A. Przyborski
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Piet van den Brandt
- Department of Epidemiology, University of Maastricht, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology, University of Maastricht, Maastricht, The Netherlands
| | | | - Adriaan de Bruïne
- Department of Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Christopher J. Hutchison
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Jing HC, Dijkwel PP. CPR5: A Jack of all trades in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:562-3. [PMID: 19704469 PMCID: PMC2634497 DOI: 10.4161/psb.3.8.5708] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/08/2008] [Indexed: 05/21/2023]
Abstract
In our recent paper in Journal of Experimental Botany, we examined the effects of cpr5/old1 mutations and CPR5 overexpression on Arabidopsis growth and development.1 We found that CPR5 is important for early plant growth but promotes senescence at late development and hence proposed it as a senescence-regulatory gene as predicted by the Evolutionary Theory of Senescence derived from studies on animal ageing. One of the key unsolved issues is how CPR5 contributes to the early plant growth and development. Here we discuss the possible cellular functions of CPR5.
Collapse
Affiliation(s)
- Hai-Chun Jing
- Centre for Sustainable Pest and Disease Management; Department of Plant Pathology and Microbiology; Rothamsted Research; Harpenden, UK
| | | |
Collapse
|
37
|
Araújo-Vilar D, Lado-Abeal J, Palos-Paz F, Lattanzi G, Bandín MA, Bellido D, Domínguez-Gerpe L, Calvo C, Pérez O, Ramazanova A, Martínez-Sánchez N, Victoria B, Costa-Freitas AT. A novel phenotypic expression associated with a new mutation in LMNA gene, characterized by partial lipodystrophy, insulin resistance, aortic stenosis and hypertrophic cardiomyopathy. Clin Endocrinol (Oxf) 2008; 69:61-8. [PMID: 18031308 DOI: 10.1111/j.1365-2265.2007.03146.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Lipodystrophies are a heterogeneous group of diseases characterized by abnormal fat distribution. Familial partial lipodystrophy 2 (FPLD2) is due to mutations in the LMNA gene. Previous studies have suggested that LMNA mutations 5' to the nuclear localization signal (NLS) are more likely to underlie laminopathies with cardiac or skeletal muscle involvement, while mutations 3' to the NLS are more likely to underlie lipodystrophy and progeroid syndromes. OBJECTIVE To study the clinical and molecular features of a subject with FPLD. SUBJECTS AND METHODS We carried out mutational analysis of LMNA gene in a woman with FPLD phenotype and in her relatives. Insulin resistance was evaluated by minimal model. Body composition was evaluated by dual-energy X-ray absorptiometry (DEXA). Echocardiography was done in affected subjects. 3T3-L1 preadipocytes were transfected with wild-type or mutant prelamin A constructs. In transfected cells, lamin A was detected using a Cy3-conjugated monoclonal anti-FLAG antibody. RESULTS The patient showed atypical fat distribution, insulin resistance, severe aortic stenosis and hypertrophic cardiomyopathy. She has an affected 11-year-old son, not yet lipodystrophic but with an incipient aortic disease. LMNA sequencing showed that mother and son were both heterozygous for a novel c.1772G > T missense mutation in exon 11, which causes the substitution of the cysteine at residue 591 by a phenylalanine (C591F). In mouse preadipocytes transfected with the mutant human LMNA gene, the mutant lamin A isoform was mislocated in the nucleus. CONCLUSIONS This patient shows a novel clinical form of FPLD2, due to a mutation affecting lamin A only, with cardiac involvement.
Collapse
Affiliation(s)
- David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (UETeM), Department of Medicine, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 2008; 213:5-25. [PMID: 18638067 PMCID: PMC2475560 DOI: 10.1111/j.1469-7580.2008.00928.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2008] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Science, Integrated Cell Biology Laboratories, Durham University, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
39
|
Sagelius H, Rosengardten Y, Hanif M, Erdos MR, Rozell B, Collins FS, Eriksson M. Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. J Cell Sci 2008; 121:969-78. [DOI: 10.1242/jcs.022913] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disorder characterized by striking progeroid features. Clinical findings in the skin include scleroderma, alopecia and loss of subcutaneous fat. HGPS is usually caused by a dominant-negative mutation in LMNA, a gene that encodes two major proteins of the inner nuclear lamina: lamin A and lamin C. We have generated tetracycline-inducible transgenic lines that carry a minigene of human LMNA under the control of a tet-operon. Two mouse lines were created: one carrying the wild-type sequence of LMNA and the other carrying the most common HGPS mutation. Targeted expression of the HGPS mutation in keratin-5-expressing tissues led to abnormalities in the skin and teeth, including fibrosis, loss of hypodermal adipocytes, structural defects in the hair follicles and sebaceous glands, and abnormal incisors. The severity of the defects was related to the level of expression of the transgene in different mouse lines. These transgenic mice appear to be good models for studies of the molecular mechanisms of skin abnormalities in HGPS and other related disorders.
Collapse
Affiliation(s)
- Hanna Sagelius
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, SE-14186 Stockholm, Sweden
| | - Ylva Rosengardten
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, SE-14186 Stockholm, Sweden
| | - Mubashir Hanif
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, SE-14186 Stockholm, Sweden
| | - Michael R. Erdos
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA
| | - Björn Rozell
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-14186 Stockholm, Sweden
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, SE-14186 Stockholm, Sweden
| |
Collapse
|
40
|
Dreuillet C, Harper M, Tillit J, Kress M, Ernoult-Lange M. Mislocalization of human transcription factor MOK2 in the presence of pathogenic mutations of lamin A/C. Biol Cell 2008; 100:51-61. [PMID: 17760566 DOI: 10.1042/bc20070053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION hsMOK2 (human MOK2) is a DNA-binding transcriptional repressor. For example, it represses the IRBP (interphotoreceptor retinoid-binding protein) gene by competing with the CRX (cone-rod homeobox protein) transcriptional activator for DNA binding. Previous studies have shown an interaction between hsMOK2 and nuclear lamin A/C. This interaction could be important to explain hsMOK2 ability to repress transcription. RESULTS In the present study, we have tested whether missense pathogenic mutations of lamin A/C, which are located in the hsMOK2-binding domain, could affect the interaction with hsMOK2. We find that none of the tested mutations is able to disrupt hsMOK2 binding in vitro or in vivo. However, we observe an aberrant cellular localization of hsMOK2 into nuclear aggregates when pathogenic lamin A/C mutant proteins are expressed. CONCLUSIONS These results indicate that pathogenic mutations in lamin A/C lead to sequestration of hsMOK2 into nuclear aggregates, which may deregulate MOK2 target genes.
Collapse
Affiliation(s)
- Caroline Dreuillet
- CNRS-FRE2937, Institut André Lwoff, 7 rue Guy Môquet, 94801 Villejuif, France
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Vaillant DC, Paulin-Levasseur M. Evaluation of mammalian cell-free systems of nuclear disassembly and assembly. J Histochem Cytochem 2007; 56:157-73. [PMID: 17967934 DOI: 10.1369/jhc.7a7330.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian cell-free systems are very useful for the biochemical and structural study of nuclear disassembly and assembly. Through experimental manipulations, the role of specific proteins in these processes can be studied. Recently, we intended to examine the involvement of integral and peripheral inner nuclear membrane proteins in nuclear disassembly and assembly. However, we could not achieve proper disassembly when isolated interphase HeLa nuclei were exposed to mitotic soluble extracts obtained from the same cell line and containing cyclin B1. Homogenates of synchronized mitotic HeLa cells left to reassemble their nuclei generated incomplete nuclear envelopes on chromatin masses. Digitonin-permeabilized mitotic cells also assembled incomplete nuclei, generating a lot of cytoplasmic inclusions of inner nuclear membrane proteins as an intermediate. These results were therefore used as a basis for a critical evaluation of mammalian cell-free systems. We present here evidence that cell synchronization itself can interfere with the progress of nuclear assembly, possibly by causing aberrant nuclear disassembly and/or by inducing the formation of an abnormal number of mitotic spindles.
Collapse
Affiliation(s)
- Dominique C Vaillant
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
43
|
Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. ACTA ACUST UNITED AC 2007; 178:897-904. [PMID: 17785515 PMCID: PMC2064615 DOI: 10.1083/jcb.200702026] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type II inner nuclear membrane protein emerin is a component of the LINC complex that connects the nuclear lamina to the actin cytoskeleton. In emerin-null or -deficient human dermal fibroblasts we find that the centrosome is detached from the nucleus. Moreover, following siRNA knockdown of emerin in wild-type fibroblasts, the centrosome also becomes detached from the nucleus. We show that emerin interacts with tubulin, and that nocadozole-treated wild-type cells phenocopy the detached centrosome characteristic of emerin-null/deficient cells. We also find that a significant fraction of emerin is located at the outer nuclear membrane and peripheral ER, where it interacts directly with the centrosome. Our data provide the first evidence in mammalian cells as to the nature of the linkage of the centrosome, and therefore the tubulin cytoskeleton, with the outer nuclear membrane.
Collapse
Affiliation(s)
- Georgia Salpingidou
- School of Biological and Biomedical Sciences, The University of Durham, Durham, England, UK
| | | | | | | | | |
Collapse
|
44
|
Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J. Cell nuclei spin in the absence of lamin b1. J Biol Chem 2007; 282:20015-26. [PMID: 17488709 DOI: 10.1074/jbc.m611094200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations of the nuclear lamins cause a wide range of human diseases, including Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome. Defects in A-type lamins reduce nuclear structural integrity and affect transcriptional regulation, but few data exist on the biological role of B-type lamins. To assess the functional importance of lamin B1, we examined nuclear dynamics in fibroblasts from Lmnb1(Delta/Delta) and wild-type littermate embryos by time-lapse videomicroscopy. Here, we report that Lmnb1(Delta/Delta) cells displayed striking nuclear rotation, with approximately 90% of Lmnb1(Delta/Delta) nuclei rotating at least 90 degrees during an 8-h period. The rotation involved the nuclear interior as well as the nuclear envelope. The rotation of nuclei required an intact cytoskeletal network and was eliminated by expressing lamin B1 in cells. Nuclear rotation could also be abolished by expressing larger nesprin isoforms with long spectrin repeats. These findings demonstrate that lamin B1 serves a fundamental role within the nuclear envelope: anchoring the nucleus to the cytoskeleton.
Collapse
Affiliation(s)
- Julie Y Ji
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Antoniades L, Eftychiou C, Kyriakides T, Christodoulou K, Katritsis DG. Malignant mutation in the lamin A/C gene causing progressive conduction system disease and early sudden death in a family with mild form of limb-girdle muscular dystrophy. J Interv Card Electrophysiol 2007; 19:1-7. [PMID: 17605093 DOI: 10.1007/s10840-007-9133-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/01/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lamin proteins A and C are major functional and structural components of the nuclear lamina. Mutations of the LMNA gene have been associated with dilated cardiomyopathy, conduction system defects and skeletal muscle dystrophy simultaneously, in variable involvement. We report on a family with a mutation of the lamin A/C gene (c.908-909delCT). METHODS Thirty five members of the family of a proband were studied and underwent clinical and genetic evaluation. Family members were considered to be affected if they demonstrated conduction system defects, limb-girdle muscular dystrophy, dilated cardiomyopathy, carried the lamin A/C mutation or suffered sudden death. RESULTS Fifteen members of the family were considered to be affected. Conduction system defects were the major feature of the affected members (67%), with variable involvement of dilated cardiomyopathy (33%), and limb-girdle muscular dystrophy (53%). Sudden death occurred in four members (27%) and was the presenting feature in three (20%) of the affected members at an early age. Mutation c.908-909delCT was confirmed in 12 of the affected members. The pattern of inheritance was autosomal dominant. CONCLUSION Lamin c.908-909delCT mutation is malignant compared to other dilated cardiomyopathy-associated mutations of the Lamin A/C gene. Patients with this mutation have rapid progression of atrioventricular conduction abnormalities, and sudden death may be the presenting feature. Early identification of affected families and consideration of an implantable defibrillator is important in this setting.
Collapse
|
46
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
48
|
Houben F, Ramaekers FCS, Snoeckx LHEH, Broers JLV. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:675-86. [PMID: 17050008 DOI: 10.1016/j.bbamcr.2006.09.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/12/2006] [Accepted: 09/08/2006] [Indexed: 01/08/2023]
Abstract
The response of individual cells to cellular stress is vital for cellular functioning. A large network of physically interconnected cellular components, starting from the structural components of the cells' nucleus, via cytoskeleton filaments to adhesion molecules and the extracellular matrix, constitutes an integrated matrix that functions as a scaffold allowing the cell to cope with mechanical stress. Next to a role in mechanical properties, this network also has a mechanotransductional function in the response to mechanical stress. This signaling route does not only regulate a rapid reorganization of structural components such as actin filaments, but also stimulates for example gene activation via NFkappaB and other transcription factors. The importance of an intact mechano-signaling network is illustrated by the physiological consequences of several genetic defects of cellular network components e.g. actin, dystrophin, desmin and lamins. These give rise to an impaired response of the affected cells to mechanical stress and often result in dystrophy of the affected tissue. Recently, the importance of the cell nucleus in cellular strength has been established. Several new interconnecting proteins, such as the nesprins that link the nuclear lamina to the cytoskeleton, have been identified. Furthermore, the function of nuclear lamins in determining cellular strength and nuclear stability was illustrated in lamin-knock-out cells. Absence of the A-type lamins or mutations in these structural components of the nuclear lamina lead to an impaired cellular response to mechanical stress and disturbances in cytoskeletal organization. In addition, laminopathies show clinical phenotypes comparable to those seen for diseases resulting from genetic defects in cytoskeletal components, further indicating that lamins play a central role in maintaining the mechanical properties of the cell.
Collapse
Affiliation(s)
- F Houben
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht (CARIM) and Research Institute for Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Halaschek-Wiener J, Brooks-Wilson A. Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 2007; 62:3-8. [PMID: 17301031 DOI: 10.1093/gerona/62.1.3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal genetic disorder that is characterized by segmental accelerated aging. The major causal mutation associated with HGPS triggers abnormal messenger RNA splicing of the lamin A gene leading to changes in the nuclear architecture. To date, two models have been proposed to explain how mutations in the lamin A gene could lead to HGPS, structural fragility and altered gene expression. We favor a compatible model that links HGPS to stem cell-driven tissue regeneration. In this model, nuclear fragility of lamin A-deficient cells increases apoptotic cell death to levels that exhaust tissues' ability for stem cell-driven regeneration. Tissue-specific differences in cell death or regenerative potential, or both, result in the tissue-specific segmental aging pattern seen in HGPS. We propose that the pattern of aging-related conditions present or absent in HGPS can provide insight into the genetic and environmental factors that contribute to normal aging.
Collapse
Affiliation(s)
- Julius Halaschek-Wiener
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, BC Cnacer Research centre, Vancouver, Canada.
| | | |
Collapse
|
50
|
Heydemann A, Doherty KR, McNally EM. Genetic modifiers of muscular dystrophy: Implications for therapy. Biochim Biophys Acta Mol Basis Dis 2007; 1772:216-28. [PMID: 16916601 DOI: 10.1016/j.bbadis.2006.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
The genetic understanding of the muscular dystrophies has advanced considerably in the last two decades. Over 25 different individual genes are now known to produce muscular dystrophy, and many different "private" mutations have been described for each individual muscular dystrophy gene. For the more common forms of muscular dystrophy, phenotypic variability can be explained by precise mutations. However, for many genetic mutations, the presence of the identical mutation is associated with marked phenotypic range that affects muscle function as well as cardiac function. The explanation for phenotype variability in the muscular dystrophies is only now being explored. The availability of genetically engineered animal models has allowed the generation of single mutations on the background of highly inbred strain. Phenotypic variation that is altered by genetic background argues for the presence of genetic modifier loci that can ameliorate or enhance aspects of the dystrophic phenotype. A number of individual genes have been implicated as modifiers of muscular dystrophy by studies in genetically engineered mouse models of muscular dystrophy. The value of these genes and products is that the pathways identified through these experiments may be exploited for therapy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|