1
|
Villa-Consuegra S, Tallada VA, Jimenez J. Aurora B kinase erases monopolar microtubule-kinetochore arrays at the meiosis I-II transition. iScience 2023; 26:108339. [PMID: 38026180 PMCID: PMC10654595 DOI: 10.1016/j.isci.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
During meiosis, faithful chromosome segregation requires monopolar spindle microtubule-kinetochore arrays in MI to segregate homologous chromosomes, but bipolar in MII to segregate sister chromatids. Using fission yeasts, we found that the universal Aurora B kinase localizes to kinetochores in metaphase I and in the mid-spindle during anaphase I, as in mitosis; but in the absence of an intervening S phase, the importin α Imp1 propitiates its release from the spindle midzone to re-localize at kinetochores during meiotic interkinesis. We show that "error-correction" activity of kinetochore re-localized Aurora B becomes essential to erase monopolar arrangements from anaphase I, a prerequisite to satisfy the spindle assembly checkpoint (SAC) and to generate proper bipolar arrays at the onset of MII. This microtubule-kinetochore resetting activity of Aurora B at the MI-MII transition is required to prevent chromosome missegregation in meiosis II, a type of error often associated with birth defects and infertility in humans.
Collapse
Affiliation(s)
- Sergio Villa-Consuegra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A. Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
2
|
Zhou KD, Zhang CX, Niu FR, Bai HC, Wu DD, Deng JC, Qian HY, Jiang YL, Ma W. Exploring Plant Meiosis: Insights from the Kinetochore Perspective. Curr Issues Mol Biol 2023; 45:7974-7995. [PMID: 37886947 PMCID: PMC10605258 DOI: 10.3390/cimb45100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Cai-Xia Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| | - Fu-Rong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hao-Chen Bai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Dan-Dan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jia-Cheng Deng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Hong-Yuan Qian
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Yun-Lei Jiang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| |
Collapse
|
3
|
Rezig IM, Yaduma WG, Gould GW, McInerny CJ. The role of anillin/Mid1p during medial division and cytokinesis: from fission yeast to cancer cells. Cell Cycle 2023; 22:633-644. [PMID: 36426865 PMCID: PMC9980708 DOI: 10.1080/15384101.2022.2147655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cytokinesis is the final stage of cell division cycle when cellular constituents are separated to produce two daughter cells. This process is driven by the formation and constriction of a contractile ring. Progression of these events is controlled by mechanisms and proteins that are evolutionary conserved in eukaryotes from fungi to humans. Genetic and molecular studies in different model organisms identified essential cytokinesis genes, with several conserved proteins, including the anillin/Mid1p proteins, constituting the core cytokinetic machinery. The fission yeast Schizosaccharomyces pombe represents a well-established model organism to study eukaryotic cell cycle regulation. Cytokinesis in fission yeast and mammalian cells depends on the placement, assembly, maturation, and constriction of a medially located actin-myosin contractile ring (ACR). Here, we review aspects of the ACR assembly and cytokinesis process in fission yeast and consider the regulation of such events in mammalian cells. First, we briefly describe the role of anillin during mammalian ACR assembly and cytokinesis. Second, we describe different aspects of the anillin-like protein Mid1p regulation during the S. pombe cell cycle, including its structure, function, and phospho-regulation. Third, we briefly discuss Mid1pindependent ACR assembly in S. pombe. Fourth, we highlight emerging studies demonstrating the roles of anillin in human tumourigenesis introducing anillin as a potential drug target for cancer treatment. Collectively, we provide an overview of the current understanding of medial division and cytokinesis in S. pombe and suggest the implications of these observations in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Imane M. Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK
| | - Wandiahyel G. Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK,Department of Chemistry, School of Sciences, Adamawa State College of Education Hong, Nigeria
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Christopher J. McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, UK,CONTACT Christopher J. McInerny School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, GlasgowG12 8QQ, UK
| |
Collapse
|
4
|
Jian Y, Nie L, Liu S, Jiang Y, Dou Z, Liu X, Yao X, Fu C. The fission yeast kinetochore complex Mhf1-Mhf2 regulates the spindle assembly checkpoint and faithful chromosome segregation. J Cell Sci 2023; 136:286678. [PMID: 36537249 DOI: 10.1242/jcs.260124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The outer kinetochore serves as a platform for the initiation of the spindle assembly checkpoint (SAC) and for mediating kinetochore-microtubule attachments. How the inner kinetochore subcomplex CENP-S-CENP-X is involved in regulating the SAC and kinetochore-microtubule attachments has not been well characterized. Using live-cell microscopy and yeast genetics, we found that Mhf1-Mhf2, the CENP-S-CENP-X counterpart in the fission yeast Schizosaccharomyces pombe, plays crucial roles in promoting the SAC and regulating chromosome segregation. The absence of Mhf2 attenuates the SAC, impairs the kinetochore localization of most of the components in the constitutive centromere-associated network (CCAN), and alters the localization of the kinase Ark1 (yeast homolog of Aurora B) to the kinetochore. Hence, our findings constitute a model in which Mhf1-Mhf2 ensures faithful chromosome segregation by regulating the accurate organization of the CCAN complex, which is required for promoting SAC signaling and for regulating kinetochore-microtubule attachments. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Sikai Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China230027
| |
Collapse
|
5
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
6
|
Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V. The Dictyostelium Centrosome. Cells 2021; 10:cells10102657. [PMID: 34685637 PMCID: PMC8534566 DOI: 10.3390/cells10102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.
Collapse
|
7
|
Escorcia W, Tripathi VP, Yuan JP, Forsburg SL. A visual atlas of meiotic protein dynamics in living fission yeast. Open Biol 2021; 11:200357. [PMID: 33622106 PMCID: PMC8061692 DOI: 10.1098/rsob.200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Meiosis is a carefully choreographed dynamic process that re-purposes proteins from somatic/vegetative cell division, as well as meiosis-specific factors, to carry out the differentiation and recombination pathway common to sexually reproducing eukaryotes. Studies of individual proteins from a variety of different experimental protocols can make it difficult to compare details between them. Using a consistent protocol in otherwise wild-type fission yeast cells, this report provides an atlas of dynamic protein behaviour of representative proteins at different stages during normal zygotic meiosis in fission yeast. This establishes common landmarks to facilitate comparison of different proteins and shows that initiation of S phase likely occurs prior to nuclear fusion/karyogamy.
Collapse
Affiliation(s)
- Wilber Escorcia
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 45207, USA
| | - Vishnu P Tripathi
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Ji-Ping Yuan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. Quantitative Phosphoproteomics Reveals the Signaling Dynamics of Cell-Cycle Kinases in the Fission Yeast Schizosaccharomyces pombe. Cell Rep 2019; 24:503-514. [PMID: 29996109 PMCID: PMC6057490 DOI: 10.1016/j.celrep.2018.06.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple protein kinases regulate cell-cycle progression, of which the cyclin-dependent kinases (CDKs) are thought to act as upstream master regulators. We have used quantitative phosphoproteomics to analyze the fission yeast cell cycle at sufficiently high temporal resolution to distinguish fine-grain differences in substrate phosphorylation dynamics on a proteome-wide scale. This dataset provides a useful resource for investigating the regulatory dynamics of cell-cycle kinases and their substrates. For example, our analysis indicates that the substrates of different mitotic kinases (CDK, NIMA-related, Polo-like, and Aurora) are phosphorylated in sequential, kinase-specific waves during mitosis. Phosphoproteomics analysis after chemical-genetic manipulation of CDK activity suggests that the timing of these waves is established by the differential dependency of the downstream kinases on upstream CDK. We have also examined the temporal organization of phosphorylation during G1/S, as well as the coordination between the NDR-related kinase Orb6, which controls polarized growth, and other cell-cycle kinases. Global analysis of phosphorylation dynamics during the fission yeast cell cycle Reveals kinase-specific waves of phosphorylation throughout interphase and mitosis Mitotic kinases show significantly different dependencies on upstream CDK activity Kinases directly downstream of CDK mediate earlier waves of mitotic phosphorylation
Collapse
Affiliation(s)
- Matthew P Swaffer
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Andrew W Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
9
|
Salas-Pino S, Daga RR. Spatiotemporal control of spindle disassembly in fission yeast. Cell Mol Life Sci 2019; 76:3543-3551. [PMID: 31129857 PMCID: PMC11105212 DOI: 10.1007/s00018-019-03139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Maintenance of genomic stability during cell division is one of the most important cellular tasks, and it critically depends on the faithful replication of the genetic material and its equal partitioning into daughter cells, gametes, or spores in the case of yeasts. Defective mitotic spindle assembly and disassembly both result in changes in cellular ploidy that ultimately impinge proliferation fitness and might increase tumor malignancy. Although a great progress has been made in understanding how spindles are assembled to orchestrate chromosome segregation, much less is known about how they are disassembled once completed their function. Here, we review two recently uncovered mechanisms of spindle disassembly that operate at different stages of the fission yeast life cycle.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| |
Collapse
|
10
|
Chiu SC, Chen KC, Hsia JY, Chuang CY, Wan CX, Wei TYW, Huang YRJ, Chen JMM, Liao YTA, Yu CTR. Overexpression of Aurora-A bypasses cytokinesis through phosphorylation of suppressed in lung cancer. Am J Physiol Cell Physiol 2019; 317:C600-C612. [PMID: 31314582 DOI: 10.1152/ajpcell.00032.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jiun-Yi Hsia
- Department of Surgery, Chung Shan Hospital, Taichung, Taiwan, Republic of China.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Yu-Ting Amber Liao
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China
| |
Collapse
|
11
|
Aurora kinase protein family in Trypanosoma cruzi: Novel role of an AUK-B homologue in kinetoplast replication. PLoS Negl Trop Dis 2019; 13:e0007256. [PMID: 30897087 PMCID: PMC6445472 DOI: 10.1371/journal.pntd.0007256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/02/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023] Open
Abstract
Aurora kinases constitute a family of enzymes that play a key role during metazoan cells division, being involved in events like centrosome maturation and division, chromatin condensation, mitotic spindle assembly, control of kinetochore-microtubule attachments, and cytokinesis initiation. In this work, three Aurora kinase homologues were identified in Trypanosoma cruzi (TcAUK1, -2 and -3), a protozoan parasite of the Kinetoplastida Class. The genomic organization of these enzymes was fully analyzed, demonstrating that TcAUK1 is a single-copy gene, TcAUK2 coding sequence is present in two different forms (short and long) and TcAUK3 is a multi-copy gene. The three TcAUK genes are actively expressed in the different life cycle forms of T. cruzi (amastigotes, trypomastigotes and epimastigotes). TcAUK1 showed a changing localization along the cell cycle of the proliferating epimastigote form: at interphase it is located at the extremes of the kinetoplast while in mitosis it is detected at the cell nucleus, in close association with the mitotic spindle. Overexpression of TcAUK1 in epimastigotes leaded to a delay in the G2/M phases of the cell cycle due a retarded beginning of kinetoplast duplication. By immunofluorescence, we found that when it was overexpressed TcAUK1 lost its localization at the extremes of the kinetoplast during interphase, being observed inside the cell nucleus throughout the entire cell cycle. In summary, TcAUK1 appears to be a functional homologue of human Aurora B kinase, as it is related to mitotic spindle assembling and chromosome segregation. Moreover, TcAUK1 also seems to play a role during the initiation of kinetoplast duplication, a novel role described for this protein.
Collapse
|
12
|
Size matters! Aurora A controls Drosophila larval development. Dev Biol 2018; 440:88-98. [DOI: 10.1016/j.ydbio.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
|
13
|
DeLuca JG. Aurora A Kinase Function at Kinetochores. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:91-99. [PMID: 29700233 DOI: 10.1101/sqb.2017.82.034991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most important regulatory aspects of chromosome segregation is the ability of kinetochores to precisely control their attachment strength to spindle microtubules. Central to this regulation is Aurora B, a mitotic kinase that phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the kinetochore protein Ndc80/Hec1, which is a component of the NDC80 complex, the primary force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, it is becoming clear that this kinase is not solely responsible for phosphorylating Hec1 and other kinetochore substrates to facilitate microtubule turnover. In particular, there is growing evidence that Aurora A kinase, whose activities at spindle poles have been extensively described, has additional roles at kinetochores in regulating the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| |
Collapse
|
14
|
Ibarlucea-Benitez I, Ferro LS, Drubin DG, Barnes G. Kinesins relocalize the chromosomal passenger complex to the midzone for spindle disassembly. J Cell Biol 2018; 217:1687-1700. [PMID: 29563217 PMCID: PMC5940302 DOI: 10.1083/jcb.201708114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Mitotic spindle disassembly after chromosome separation is as important as spindle assembly, yet the molecular mechanisms for spindle disassembly are unclear. In this study, we investigated how the chromosomal passenger complex (CPC), which contains the Aurora B kinase Ipl1, swiftly concentrates at the spindle midzone in late anaphase, and we researched the role of this dramatic relocalization during spindle disassembly. We showed that the kinesins Kip1 and Kip3 are essential for CPC relocalization. In cells lacking Kip1 and Kip3, spindle disassembly is severely delayed until after contraction of the cytokinetic ring. Purified Kip1 and Kip3 interact directly with the CPC and recruit it to microtubules in vitro, and single-molecule experiments showed that the CPC diffuses dynamically on microtubules but that diffusion stops when the CPC encounters a Kip1 molecule. We propose that Kip1 and Kip3 trap the CPC at the spindle midzone in late anaphase to ensure timely spindle disassembly.
Collapse
Affiliation(s)
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
15
|
Jirakkakul J, Roytrakul S, Srisuksam C, Swangmaneecharern P, Kittisenachai S, Jaresitthikunchai J, Punya J, Prommeenate P, Senachak J, So L, Tachaleat A, Tanticharoen M, Cheevadhanarak S, Wattanachaisaereekul S, Amnuaykanjanasin A. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. Fungal Biol 2017; 122:156-171. [PMID: 29458719 DOI: 10.1016/j.funbio.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 01/18/2023]
Abstract
The quality of Beauveria bassiana conidia directly affects the virulence against insects. In this study, continuous subculturing of B. bassiana on both rice grains and potato dextrose agar (PDA) resulted in 55 and 49 % conidial yield reduction after 12 passages and 68 and 60 % virulence reduction after 20 and 12 passages at four d post-inoculation, respectively. The passage through Tenebrio molitor and Spodoptera exigua restored the virulence of rice and PDA subcultures, respectively. To explore the molecular mechanisms underlying the conidial quality and the decline of virulence after multiple subculturing, we investigated the conidial proteomic changes. Successive subculturing markedly increased the protein levels in oxidative stress response, autophagy, amino acid homeostasis, and apoptosis, but decreased the protein levels in DNA repair, ribosome biogenesis, energy metabolism, and virulence. The nitro blue tetrazolium assay verified that the late subculture's colony and conidia had a higher oxidative stress level than the early subculture. A 2A-type protein phosphatase and a Pleckstrin homology domain protein Slm1, effector proteins of the target of rapamycin (TOR) complex 1 and 2, respectively, were dramatically increased in the late subculture. These results suggest that TOR signalling might be associated with ageing in B. bassiana late subculture, in turn affecting its physiological characteristics and virulence.
Collapse
Affiliation(s)
- Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Pratchya Swangmaneecharern
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Suthathip Kittisenachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Janthima Jaresitthikunchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Juntira Punya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Peerada Prommeenate
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Jittisak Senachak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Laihong So
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Morakot Tanticharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
16
|
Hindriksen S, Lens SMA, Hadders MA. The Ins and Outs of Aurora B Inner Centromere Localization. Front Cell Dev Biol 2017; 5:112. [PMID: 29312936 PMCID: PMC5743930 DOI: 10.3389/fcell.2017.00112] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] Open
Abstract
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael A Hadders
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Rothe C, Rødland GE, Anda S, Stonyte V, Boye E, Lopez-Aviles S, Grallert B. A checkpoint-independent mechanism delays entry into mitosis after UV irradiation. J Cell Sci 2017; 130:4028-4037. [PMID: 29046339 DOI: 10.1242/jcs.204693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
When cells are exposed to stress they delay entry into mitosis. The most extensively studied mechanism behind this delay is the DNA-damage-induced G2/M checkpoint. Here, we show the existence of an additional stress-response pathway in Schizosaccharomyces pombe that is independent of the classic ATR/Rad3-dependent checkpoint. This novel mechanism delays entry mitosis independently of the spindle assembly checkpoint and the mitotic kinases Fin1, Ark1 and Plo1. The pathway delays activation of the mitotic cyclin-dependent kinase (CDK) Cdc2 after UV irradiation. Furthermore, we demonstrate that translation of the mitotic cyclin Cdc13 is selectively downregulated after UV irradiation, and we propose that this downregulation of Cdc13 contributes to the delayed activation of Cdc2 and the delayed mitosis.
Collapse
Affiliation(s)
- Christiane Rothe
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Silje Anda
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Vilte Stonyte
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway.,Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Sandra Lopez-Aviles
- Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
18
|
Salas-Pino S, Gallardo P, Barrales RR, Braun S, Daga RR. The fission yeast nucleoporin Alm1 is required for proteasomal degradation of kinetochore components. J Cell Biol 2017; 216:3591-3608. [PMID: 28974540 PMCID: PMC5674884 DOI: 10.1083/jcb.201612194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/28/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
TPR nucleoporins form the nuclear pore complex basket. The fission yeast TPR Alm1 is required for localization of the proteasome to the nuclear envelope, which is in turn required for kinetochore homeostasis and proper chromosome segregation. Kinetochores (KTs) are large multiprotein complexes that constitute the interface between centromeric chromatin and the mitotic spindle during chromosome segregation. In spite of their essential role, little is known about how centromeres and KTs are assembled and how their precise stoichiometry is regulated. In this study, we show that the nuclear pore basket component Alm1 is required to maintain both the proteasome and its anchor, Cut8, at the nuclear envelope, which in turn regulates proteostasis of certain inner KT components. Consistently, alm1-deleted cells show increased levels of KT proteins, including CENP-CCnp3, spindle assembly checkpoint activation, and chromosome segregation defects. Our data demonstrate a novel function of the nucleoporin Alm1 in proteasome localization required for KT homeostasis.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| | - Paola Gallardo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| | - Ramón R Barrales
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martiensried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martiensried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| |
Collapse
|
19
|
The molecular mechanisms of Monascus purpureus M9 responses to blue light based on the transcriptome analysis. Sci Rep 2017; 7:5537. [PMID: 28717254 PMCID: PMC5514072 DOI: 10.1038/s41598-017-05990-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/16/2017] [Indexed: 01/14/2023] Open
Abstract
Light is an important environmental factor that regulates various physiological processes of fungi. To thoroughly study the responses of Monascus to blue light, transcriptome sequencing was performed on mRNAs isolated from samples of Monascus purpureus M9 cultured under three conditions: darkness (D); exposure to blue light for 15 min/d (B15); and exposure to blue light for 60 min/d over 8 days (B60). The number of differentially expressed genes between the three pairs of samples-B15 vs D, B60 vs B15, and B60 vs D-was 1167, 1172, and 220, respectively. KEGG analysis showed the genes involved in primary metabolism including carbon and nitrogen metabolism were downregulated by B15 light treatment, whereas B15 upregulated expression of genes involved with aromatic amino acid metabolism, which associated with development, and branched chain amino acid metabolism, and fatty acid degradation, which can produce the biosynthetic precursors of pigments. When exposed to B60 conditions, genes with roles in carbohydrate metabolism and protein synthesis were upregulated as part of a stress response to blue light. Based on this study, we propose a predicted light-stimulated signal transduction pathway in Monascus. Our work is the first comprehensive investigation concerning the mechanism of Monascus responses to blue light.
Collapse
|
20
|
De Souza CP, Hashmi SB, Hage N, Fitch RM, Osmani AH, Osmani SA. Location and functional analysis of the Aspergillus nidulans Aurora kinase confirm mitotic functions and suggest non-mitotic roles. Fungal Genet Biol 2017; 103:1-15. [PMID: 28315405 PMCID: PMC11443558 DOI: 10.1016/j.fgb.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/12/2017] [Indexed: 11/17/2022]
Abstract
Filamentous fungi have devastating negative impacts as pathogens and agents of food spoilage but also have critical ecological importance and are utilized for industrial applications. The characteristic multinucleate nature of filamentous fungi is facilitated by limiting if, when and where septation, the fungal equivalent of cytokinesis, occurs. In the model filamentous fungus Aspergillus nidulans septation does not occur immediately after mitosis and is an incomplete process resulting in the formation of a septal pore whose permeability is cell cycle regulated. How mitotic regulators, such as the Aurora kinase, contribute to the often unique biology of filamentous fungi is not well understood. The Aurora B kinase has not previously been investigated in any detail during hyphal growth. Here we demonstrate for the first time that Aurora displays cell cycle dependent locations to the region of forming septa, the septal pore and mature septa as well as the mitotic apparatus. To functionally analyze Aurora, we generated a temperature sensitive allele revealing essential mitotic and spindle assembly checkpoint functions consistent with its location to the kinetochore region and spindle midzone. Our analysis also reveals that cellular and kinetochore Aurora levels increase during a mitotic spindle assembly checkpoint arrest and we propose that this could be important for checkpoint inactivation when spindle formation is prevented. We demonstrate that Aurora accumulation at mature septa following mitotic entry does not require mitotic progression but is dependent upon a timing mechanism. Surprisingly we also find that Aurora inactivation leads to cellular swelling and lysis indicating an unexpected function for Aurora in fungal cell growth. Thus in addition to its conserved mitotic functions our data suggest that Aurora has the capacity to be an important regulator of septal biology and cell growth in filamentous fungi.
Collapse
Affiliation(s)
- Colin P De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Shahr B Hashmi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Natalie Hage
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Rebecca M Fitch
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
21
|
Li T, Mary H, Grosjean M, Fouchard J, Cabello S, Reyes C, Tournier S, Gachet Y. MAARS: a novel high-content acquisition software for the analysis of mitotic defects in fission yeast. Mol Biol Cell 2017; 28:1601-1611. [PMID: 28450455 PMCID: PMC5469604 DOI: 10.1091/mbc.e16-10-0723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Faithful segregation of chromosomes during cell division relies on multiple processes such as chromosome attachment and correct spindle positioning. Yet mitotic progression is defined by multiple parameters, which need to be quantitatively evaluated. To study the spatiotemporal control of mitotic progression, we developed a high-content analysis (HCA) approach that combines automated fluorescence microscopy with real-time quantitative image analysis and allows the unbiased acquisition of multiparametric data at the single-cell level for hundreds of cells simultaneously. The Mitotic Analysis and Recording System (MAARS) provides automatic and quantitative single-cell analysis of mitotic progression on an open-source platform. It can be used to analyze specific characteristics such as cell shape, cell size, metaphase/anaphase delays, and mitotic abnormalities including spindle mispositioning, spindle elongation defects, and chromosome segregation defects. Using this HCA approach, we were able to visualize rare and unexpected events of error correction during anaphase in wild-type or mutant cells. Our study illustrates that such an expert system of mitotic progression is able to highlight the complexity of the mechanisms required to prevent chromosome loss during cell division.
Collapse
Affiliation(s)
- Tong Li
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Hadrien Mary
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Marie Grosjean
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Jonathan Fouchard
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Simon Cabello
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Céline Reyes
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Sylvie Tournier
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Yannick Gachet
- Laboratoire de Biologie Cellulaire et Moléculaire du Controle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| |
Collapse
|
22
|
Inositol Pyrophosphate Kinase Asp1 Modulates Chromosome Segregation Fidelity and Spindle Function in Schizosaccharomyces pombe. Mol Cell Biol 2016; 36:3128-3140. [PMID: 27697865 DOI: 10.1128/mcb.00330-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Chromosome transmission fidelity during mitosis is of critical importance for the fitness of an organism, as mistakes will lead to aneuploidy, which has a causative role in numerous severe diseases. Proper segregation of chromosomes depends on interdependent processes at the microtubule-kinetochore interface and the spindle assembly checkpoint. Here we report the discovery of a new element essential for chromosome transmission fidelity that implicates inositol pyrophosphates (IPPs) as playing a key role in this process. The protein is Asp1, the Schizosaccharomyces pombe member of the highly conserved Vip1 family. Vip1 enzymes are bifunctional: they consist of an IPP-generating kinase domain and a pyrophosphatase domain that uses such IPPs as substrates. We show that Asp1 kinase function is required for bipolar spindle formation. The absence of Asp1-generated IPPs resulted in errors in sister chromatid biorientation, a prolonged checkpoint-controlled delay of anaphase onset, and chromosome missegregation. Remarkably, expression of Asp1 variants that generated higher-than-wild-type levels of IPPs led to a faster-than-wild-type entry into anaphase A without an increase in chromosome missegregation. In fact, the chromosome transmission fidelity of a nonessential chromosome was enhanced with increased cellular IPPs. Thus, we identified an element that optimized the wild-type chromosome transmission process.
Collapse
|
23
|
Hagan IM, Grallert A, Simanis V. Analysis of the Schizosaccharomyces pombe Cell Cycle. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top082800. [PMID: 27587785 DOI: 10.1101/pdb.top082800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle.
Collapse
Affiliation(s)
- Iain M Hagan
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Agnes Grallert
- CRUK Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Nakazawa N, Mehrotra R, Arakawa O, Yanagida M. ICRF
‐193, an anticancer topoisomerase
II
inhibitor, induces arched telophase spindles that snap, leading to a ploidy increase in fission yeast. Genes Cells 2016; 21:978-93. [DOI: 10.1111/gtc.12397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Norihiko Nakazawa
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| | - Rajesh Mehrotra
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
- Department of Biological Sciences BITS Pilani Rajasthan 333031 India
| | - Orie Arakawa
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit Okinawa Institute of Science and Technology Graduate University Onna‐son Okinawa 904‐0495 Japan
| |
Collapse
|
25
|
Weimer AK, Demidov D, Lermontova I, Beeckman T, Van Damme D. Aurora Kinases Throughout Plant Development. TRENDS IN PLANT SCIENCE 2016; 21:69-79. [PMID: 26616196 DOI: 10.1016/j.tplants.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Aurora kinases are evolutionarily conserved key mitotic determinants in all eukaryotes. Yeasts contain a single Aurora kinase, whereas multicellular eukaryotes have at least two functionally diverged members. The involvement of Aurora kinases in human cancers has provided an in-depth mechanistic understanding of their roles throughout cell division in animal and yeast models. By contrast, understanding Aurora kinase function in plants is only starting to emerge. Nevertheless, genetic, cell biological, and biochemical approaches have revealed functional diversification between the plant Aurora kinases and suggest a role in formative (asymmetric) divisions, chromatin modification, and genome stability. This review provides an overview of the accumulated knowledge on the function of plant Aurora kinases as well as some major challenges for the future.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, 06466 Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, 06466 Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
26
|
Quartuccio SM, Schindler K. Functions of Aurora kinase C in meiosis and cancer. Front Cell Dev Biol 2015; 3:50. [PMID: 26347867 PMCID: PMC4542505 DOI: 10.3389/fcell.2015.00050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/04/2015] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome encodes three Aurora kinase protein family members: A, B, and C. While Aurora kinase A (AURKA) and B (AURKB) are found in cells throughout the body, significant protein levels of Aurora kinase C (AURKC) are limited to cells that undergo meiosis (sperm and oocyte). Despite its discovery nearly 20 years ago, we know little about the function of AURKC compared to that of the other 2 Aurora kinases. This lack of understanding can be attributed to the high sequence homology between AURKB and AURKC preventing the use of standard approaches to understand non-overlapping and meiosis I (MI)-specific functions of the two kinases. Recent evidence has revealed distinct functions of AURKC in meiosis and may aid in our understanding of why chromosome segregation during MI often goes awry in oocytes. Many cancers aberrantly express AURKC, but because we do not fully understand AURKC function in its normal cellular context, it is difficult to predict the biological significance of this expression on the disease. Here, we consolidate and update what is known about AURKC signaling in meiotic cells to better understand why it has oncogenic potential.
Collapse
Affiliation(s)
- Suzanne M Quartuccio
- Department of Genetics, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey Piscataway, NJ, USA
| |
Collapse
|
27
|
Liu H, Zhang S, Ma J, Dai Y, Li C, Lyu X, Wang C, Xu JR. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum. PLoS Pathog 2015; 11:e1004913. [PMID: 26083253 PMCID: PMC4470668 DOI: 10.1371/journal.ppat.1004913] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle regulation is different between vegetative and infectious hyphae in F. graminearum and Cdc2A, possibly by interacting with a stage-specific cyclin, plays a more important role than Cdc2B during ascosporogenesis and plant infection. In the model yeasts and filamentous fungi, CDC2 is an essential gene that encodes the only CDK essential for mitotic cell cycle progression. However, the wheat scab fungus F. graminearum contains two CDC2 orthologs. The cdc2A and cdc2B deletion mutants had no defects in vegetative growth but deletion of both is lethal. Whereas the cdc2B mutant was normal, the cdc2A mutant was almost non-pathogenic, indicating that only Cdc2A is essential in infectious hyphae. Cdc2A and Cdc2B differ in subcellular localization and only localization of Cdc2A to the nucleus was increased in cells active in mitosis. Furthermore, F. graminearum uniquely has two orthologs of Ipl1 Aurora kinase and mutants deleted of orthologs of five essential yeast mitotic kinase genes were viable. However, most of these mutants were significantly reduced in virulence. Overall, our data indicate that F. graminearum differs from the model fungi in CDK and other key mitotic kinase genes, and cell cycle regulation is different between vegetative and infectious hyphae. This is the first report on two Cdc2 kinases in fungi and they differ in subcellular localization and functions during sexual reproduction and plant infection.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiwen Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yafeng Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xueliang Lyu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Reyes C, Serrurier C, Gauthier T, Gachet Y, Tournier S. Aurora B prevents chromosome arm separation defects by promoting telomere dispersion and disjunction. ACTA ACUST UNITED AC 2015; 208:713-27. [PMID: 25778919 PMCID: PMC4362453 DOI: 10.1083/jcb.201407016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The segregation of centromeres and telomeres at mitosis is coordinated at multiple levels to prevent the formation of aneuploid cells, a phenotype frequently observed in cancer. Mitotic instability arises from chromosome segregation defects, giving rise to chromatin bridges at anaphase. Most of these defects are corrected before anaphase onset by a mechanism involving Aurora B kinase, a key regulator of mitosis in a wide range of organisms. Here, we describe a new role for Aurora B in telomere dispersion and disjunction during fission yeast mitosis. Telomere dispersion initiates in metaphase, whereas disjunction takes place in anaphase. Dispersion is promoted by the dissociation of Swi6/HP1 and cohesin Rad21 from telomeres, whereas disjunction occurs at anaphase after the phosphorylation of condensin subunit Cnd2. Strikingly, we demonstrate that deletion of Ccq1, a telomeric shelterin component, rescued cell death after Aurora inhibition by promoting the loading of condensin on chromosome arms. Our findings reveal an essential role for telomeres in chromosome arm segregation.
Collapse
Affiliation(s)
- Céline Reyes
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Céline Serrurier
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Tiphaine Gauthier
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Yannick Gachet
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| | - Sylvie Tournier
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la prolifération, Université de Toulouse, F-31062 Toulouse, France Centre National de la Recherche Scientifique, LBCMCP-UMR5088, F-31062 Toulouse, France
| |
Collapse
|
29
|
Aoi Y, Kawashima SA, Simanis V, Yamamoto M, Sato M. Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis. Open Biol 2015; 4:rsob.140063. [PMID: 24990387 PMCID: PMC4118601 DOI: 10.1098/rsob.140063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast.
Collapse
Affiliation(s)
- Yuki Aoi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Viesturs Simanis
- EPFL SV ISREC UPSIM SV2.1830, Station 19, Lausanne 1015, Switzerland
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan Laboratory of Cell Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
30
|
Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, Hagan IM. A PP1-PP2A phosphatase relay controls mitotic progression. Nature 2015; 517:94-98. [PMID: 25487150 PMCID: PMC4338534 DOI: 10.1038/nature14019] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/27/2014] [Indexed: 12/28/2022]
Abstract
The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.
Collapse
Affiliation(s)
- Agnes Grallert
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Elvan Boke
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Anja Hagting
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ben Hodgson
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Yvonne Connolly
- Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - John R Griffiths
- Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Duncan L Smith
- Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Jonathon Pines
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Iain M Hagan
- Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
31
|
Chen JMM, Chiu SC, Wei TYW, Lin SY, Chong CM, Wu CC, Huang JY, Yang ST, Ku CF, Hsia JY, Yu CTR. The involvement of nuclear factor-κappaB in the nuclear targeting and cyclin E1 upregulating activities of hepatoma upregulated protein. Cell Signal 2014; 27:26-36. [PMID: 25289861 DOI: 10.1016/j.cellsig.2014.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 11/28/2022]
Abstract
Hepatoma upregulated protein (HURP) is originally isolated during the search for the genes associated with hepatoma. HURP is upregulated in many human cancers. Culture cells exhibit transformed and invasive phenotype when ectopic HURP is introduced, revealing HURP as an oncogene candidate. Our previous studies demonstrated that Aurora-A regulated the cell transforming activities of HURP by phosphorylating HURP at four serines. To unravel how the Aurora-A/HURP cascade contributes to cell transformation, we firstly noticed that HURP shuttled between cytoplasm and nucleus. The nuclear localization activity of HURP was promoted or abolished by overexpression or knockdown of Aurora-A. Similarly, the HURP phosphorylation mimicking mutant 4E had higher nuclear targeting activity than the phosphorylation deficient mutant 4A. The HURP 4E accelerated G1 progression and upregulated cyclin E1, and the cyclin E1 upregulating and cell transforming activities of HURP were diminished when the nuclear localization signal (NLS) was removed from HURP. Furthermore, HURP employed p38/nuclear factor-κB (NF-κB) cascade to stimulate cell growth. Interestingly, NF-κB trapped HURP in nucleus by interacting with HURP 4E. At last, the HURP/NF-κB complex activated the cyclin E1 promoter. Collectively, Aurora-A/HURP relays cell transforming signal to NF-κB, and the HURP/NF-κB complex is engaged in the regulation of cyclin E1 expression.
Collapse
Affiliation(s)
- Jo-Mei Maureen Chen
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan; Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Tong-You Wade Wei
- Department of Applied Chemistry, National Chi Nan University, Taiwan
| | - Shin-Yi Lin
- Department of Applied Chemistry, National Chi Nan University, Taiwan
| | - Cheong-Meng Chong
- Department of Applied Chemistry, National Chi Nan University, Taiwan
| | - Chi-Chen Wu
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan
| | - Jiao-Ying Huang
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan
| | - Shu-Ting Yang
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan
| | - Chia-Feng Ku
- Department of Applied Chemistry, National Chi Nan University, Taiwan
| | - Jiun-Yi Hsia
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan; Department of Applied Chemistry, National Chi Nan University, Taiwan.
| |
Collapse
|
32
|
Increased Aurora B activity causes continuous disruption of kinetochore-microtubule attachments and spindle instability. Proc Natl Acad Sci U S A 2014; 111:E3996-4005. [PMID: 25201961 DOI: 10.1073/pnas.1408017111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aurora B kinase regulates the proper biorientation of sister chromatids during mitosis. Lack of Aurora B kinase function results in the inability to correct erroneous kinetochore-microtubule attachments and gives rise to aneuploidy. Interestingly, increased Aurora B activity also leads to problems with chromosome segregation, and overexpression of this kinase has been observed in various types of cancer. However, little is known about the mechanisms by which an increase in Aurora B kinase activity can impair mitotic progression and cell viability. Here, using a yeast model, we demonstrate that increased Aurora B activity as a result of the overexpression of the Aurora B and inner centromere protein homologs triggers defects in chromosome segregation by promoting the continuous disruption of chromosome-microtubule attachments even when sister chromatids are correctly bioriented. This disruption leads to a constitutive activation of the spindle-assembly checkpoint, which therefore causes a lack of cytokinesis even though spindle elongation and chromosome segregation take place. Finally, we demonstrate that this increase in Aurora B activity causes premature collapse of the mitotic spindle by promoting instability of the spindle midzone.
Collapse
|
33
|
Zheng F, Li T, Jin DY, Syrovatkina V, Scheffler K, Tran PT, Fu C. Csi1p recruits alp7p/TACC to the spindle pole bodies for bipolar spindle formation. Mol Biol Cell 2014; 25:2750-60. [PMID: 25057016 PMCID: PMC4161510 DOI: 10.1091/mbc.e14-03-0786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spindle pole body (SPB) localization of the fission yeast Schizosaccharomyces pombe TACC orthologue alp7p depends on the SPB protein csi1p. Compromised interaction between csi1p and alp7p delays bipolar spindle formation and leads to abnormal chromosome segregation. Accurate chromosome segregation requires timely bipolar spindle formation during mitosis. The transforming acidic coiled-coil (TACC) family proteins and the ch-TOG family proteins are key players in bipolar spindle formation. They form a complex to stabilize spindle microtubules, mainly dependent on their localization to the centrosome (the spindle pole body [SPB] in yeast). The molecular mechanism underlying the targeting of the TACC–ch-TOG complex to the centrosome remains unclear. Here we show that the fission yeast Schizosaccharomyces pombe TACC orthologue alp7p is recruited to the SPB by csi1p. The csi1p-interacting region lies within the conserved TACC domain of alp7p, and the carboxyl-terminal domain of csi1p is responsible for interacting with alp7p. Compromised interaction between csi1p and alp7p impairs the localization of alp7p to the SPB during mitosis, thus delaying bipolar spindle formation and leading to anaphase B lagging chromosomes. Hence our study establishes that csi1p serves as a linking molecule tethering spindle-stabilizing factors to the SPB for promoting bipolar spindle assembly.
Collapse
Affiliation(s)
- Fan Zheng
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Tianpeng Li
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Kathleen Scheffler
- Institut Curie, Centre National de la Recherche Scientifique, Paris 75005, France
| | - Phong T Tran
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 10104 Institut Curie, Centre National de la Recherche Scientifique, Paris 75005, France
| | - Chuanhai Fu
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
34
|
Chiu SC, Chen JMM, Wei TYW, Cheng TS, Wang YHC, Ku CF, Lian CH, Liu CCJ, Kuo YC, Yu CTR. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation. Am J Physiol Cell Physiol 2014; 307:C466-78. [PMID: 25009111 DOI: 10.1152/ajpcell.00164.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan; Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, Taiwan; and
| | - Tai-Shan Cheng
- Graduate Institute of Biochemistry of Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Hui Candice Wang
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chia-Feng Ku
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, Taiwan; and
| | - Chiao-Hsuan Lian
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chun-Chih Jared Liu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Yi-Chun Kuo
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan; Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, Taiwan; and
| |
Collapse
|
35
|
Rheostat-ing mitosis. ACTA ACUST UNITED AC 2013; 20:142-3. [PMID: 23438742 DOI: 10.1016/j.chembiol.2013.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ark1, the unique Aurora kinase in Schizosaccharomyces pombe, regulates multiple aspects of mitosis. In this issue of Chemistry & Biology, Kawashima and colleagues report the discovery and validation of a fungal Ark1 inhibitor, which they employ to evaluate the mitotic outputs of endogenous Ark1 signaling.
Collapse
|
36
|
Hochegger H, Hégarat N, Pereira-Leal JB. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open Biol 2013; 3:120185. [PMID: 23516109 PMCID: PMC3718339 DOI: 10.1098/rsob.120185] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| | | | | |
Collapse
|
37
|
Kawashima SA, Takemoto A, Nurse P, Kapoor TM. A chemical biology strategy to analyze rheostat-like protein kinase-dependent regulation. CHEMISTRY & BIOLOGY 2013; 20:262-71. [PMID: 23438755 PMCID: PMC3626098 DOI: 10.1016/j.chembiol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/04/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
Protein kinases may function more like variable rheostats rather than two-state switches. However, we lack approaches to properly analyze this aspect of kinase-dependent regulation. To address this, we develop a strategy in which a kinase inhibitor is identified using genetics-based screens, kinase mutations that confer resistance are characterized, and dose-dependent responses of isogenic drug-sensitive and resistant cells to inhibitor treatments are compared. This approach has the advantage that function of wild-type kinase, rather than mutants, is examined. To develop this approach, we focus on Ark1, the fission yeast member of the conserved Aurora kinase family. Applying this approach reveals that proper chromosome compaction in fission yeast needs high Ark1 activity, while other processes depend on significantly lower activity levels. Our strategy is general and can be used to examine the functions of other molecular rheostats.
Collapse
Affiliation(s)
| | - Ai Takemoto
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY10065
| |
Collapse
|
38
|
Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2013; 151:671-83. [PMID: 23101633 PMCID: PMC3482660 DOI: 10.1016/j.cell.2012.09.019] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/11/2012] [Accepted: 07/26/2012] [Indexed: 01/17/2023]
Abstract
Data on absolute molecule numbers will empower the modeling, understanding, and comparison of cellular functions and biological systems. We quantified transcriptomes and proteomes in fission yeast during cellular proliferation and quiescence. This rich resource provides the first comprehensive reference for all RNA and most protein concentrations in a eukaryote under two key physiological conditions. The integrated data set supports quantitative biology and affords unique insights into cell regulation. Although mRNAs are typically expressed in a narrow range above 1 copy/cell, most long, noncoding RNAs, except for a distinct subset, are tightly repressed below 1 copy/cell. Cell-cycle-regulated transcription tunes mRNA numbers to phase-specific requirements but can also bring about more switch-like expression. Proteins greatly exceed mRNAs in abundance and dynamic range, and concentrations are regulated to functional demands. Upon transition to quiescence, the proteome changes substantially, but, in stark contrast to mRNAs, proteins do not uniformly decrease but scale with cell volume.
Collapse
Affiliation(s)
- Samuel Marguerat
- University College London, Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
39
|
Grallert A, Patel A, Tallada VA, Chan KY, Bagley S, Krapp A, Simanis V, Hagan IM. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat Cell Biol 2013; 15:88-95. [PMID: 23222840 PMCID: PMC3549529 DOI: 10.1038/ncb2633] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/29/2012] [Indexed: 01/18/2023]
Abstract
Activation of mitosis-promoting factor (MPF) drives mitotic commitment. In human cells active MPF appears first on centrosomes. We show that local activation of MPF on the equivalent organelle of fission yeast, the spindle pole body (SPB), promotes Polo kinase activity at the SPBs long before global MPF activation drives mitotic commitment. Artificially promoting MPF or Polo activity at various locations revealed that this local control of Plo1 activity on G2 phase SPBs dictates the timing of mitotic commitment. Cytokinesis of the rod-shaped fission yeast cell generates a naive, new, cell end. Growth is restricted to the experienced old end until a point in G2 phase called new end take off (NETO) when bipolar growth is triggered. NETO coincided with MPF activation of Plo1 on G2 phase SPBs (ref. 4). Both MPF and Polo activities were required for NETO and both induced NETO when ectopically activated at interphase SPBs. NETO promotion by MPF required polo. Thus, local MPF activation on G2 SPBs directs polo kinase to control at least two distinct and temporally separated, cell-cycle transitions at remote locations.
Collapse
Affiliation(s)
- Agnes Grallert
- CRUK Cell Division Group, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.
Collapse
|
41
|
The S. pombe cytokinesis NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1. Nat Cell Biol 2012; 14:738-45. [PMID: 22684255 PMCID: PMC4284365 DOI: 10.1038/ncb2514] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/08/2012] [Indexed: 01/24/2023]
Abstract
Mitotic exit integrates the reversal of the phosphorylation events initiated by mitotic kinases with a controlled cytokinesis event that cleaves the cell in two. The Mitotic Exit Network (MEN) of budding yeast regulates both processes, while the fission yeast equivalent, the Septum Initiation Network (SIN), only controls the execution of cytokinesis. The components and architecture of the SIN and MEN are highly conserved1. It is currently assumed that the functions of the core SIN/MEN components are restricted to their characterised roles at the end of mitosis. We now show that the NDR kinase component of the fission yeast SIN, Sid2/Mob1, acts independently of the other known SIN components in G2 phase of the cell cycle to control the timing of mitotic commitment. Sid2/Mob1 promotes mitotic commitment by directly activating the NIMA related kinase Fin1. Fin1’s activation promotes its own destruction, thereby making Fin1 activation a transient feature of G2 phase. This spike of Fin1 activation modulates the activity of the Pom1/Cdr1/Cdr2 geometry network towards Wee1.
Collapse
|
42
|
Koch A, Rode HB, Richters A, Rauh D, Hauf S. A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase. ACS Chem Biol 2012; 7:723-31. [PMID: 22264160 DOI: 10.1021/cb200465c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The perturbation of protein kinases with small organic molecules is a powerful approach to dissect kinase function in complex biological systems. Covalent kinase inhibitors that target thiols in the ATP binding pocket of the kinase domain proved to be ideal reagents for the investigation of highly dynamic cellular processes. However, due to the covalent inhibitors' possible off-target reactivities, it is required that the overall shape of the inhibitor as well as the intrinsic reactivity of the electrophile are precisely tuned to favor the reaction with only the desired cysteine. Here we report on the design and biological characterization of covalent anilinoquinazolines as potent inhibitors of genetically engineered Aurora kinase in fission yeast.
Collapse
Affiliation(s)
- André Koch
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse
39, D-72076 Tübingen, Germany
| | - Haridas B. Rode
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse
15, D-44227 Dortmund, Germany
- Council of Scientific and Industrial Research (CSIR) Headquarters, 2, Rafi
Marg, New Delhi-110001, India
| | - André Richters
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse
15, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse
15, D-44227 Dortmund, Germany
- Fakultät Chemie, Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Silke Hauf
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse
39, D-72076 Tübingen, Germany
| |
Collapse
|
43
|
Tamm T, Grallert A, Grossman EPS, Alvarez-Tabares I, Stevens FE, Hagan IM. Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle. ACTA ACUST UNITED AC 2012; 195:467-84. [PMID: 22042620 PMCID: PMC3206342 DOI: 10.1083/jcb.201106076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insertion into and release of the cytoplasmic domain of the Schizosaccharomyces pombe spindle pole body from a nuclear envelope fenestra during mitosis requires Brr6. The fission yeast interphase spindle pole body (SPB) is a bipartite structure in which a bulky cytoplasmic domain is separated from a nuclear component by the nuclear envelope. During mitosis, the SPB is incorporated into a fenestra that forms within the envelope during mitotic commitment. Closure of this fenestra during anaphase B/mitotic exit returns the cytoplasmic component to the cytoplasmic face of an intact interphase nuclear envelope. Here we show that Brr6 is transiently recruited to SPBs at both SPB insertion and extrusion. Brr6 is required for both SPB insertion and nuclear envelope integrity during anaphase B/mitotic exit. Genetic interactions with apq12 and defective sterol assimilation suggest that Brr6 may alter envelope composition at SPBs to promote SPB insertion and extrusion. The restriction of the Brr6 domain to eukaryotes that use a polar fenestra in an otherwise closed mitosis suggests a conserved role in fenestration to enable a single microtubule organizing center to nucleate both cytoplasmic and nuclear microtubules on opposing sides of the nuclear envelope.
Collapse
Affiliation(s)
- Tiina Tamm
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, Manchester M20 4BX, England, UK
| | | | | | | | | | | |
Collapse
|
44
|
Cell-Cycle Control in Oocytes and During Early Embryonic Cleavage Cycles in Ascidians. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:235-64. [DOI: 10.1016/b978-0-12-394308-8.00006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Hálová L, Petersen J. Aurora promotes cell division during recovery from TOR-mediated cell cycle arrest by driving spindle pole body recruitment of Polo. J Cell Sci 2011; 124:3441-9. [PMID: 21965528 DOI: 10.1242/jcs.083683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coordination of cell division and growth in response to changes in nutrient supply is mediated by TOR signalling. In fission yeast, increased nutrient provision transiently delays mitotic onset without affecting growth. The result is an increase in cell size at division. We find that this block to cell division relies upon TOR and MAPK signalling and that mitotic entry during recovery from this block is regulated by the Aurora kinase Ark1. We show that Ark1 phosphorylation of polo kinase Plo1 within the linker region between the kinase domain and polo boxes drives Plo1 onto the spindle poles where it promotes mitosis. Interestingly, the use of Ark1 to phosphorylate Plo1 and promote mitotic entry is dependent on the environment.
Collapse
Affiliation(s)
- Lenka Hálová
- University of Manchester, C.4255 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
46
|
Tückmantel S, Greul JN, Janning P, Brockmeyer A, Grütter C, Simard JR, Gutbrod O, Beck ME, Tietjen K, Rauh D, Schreier PH. Identification of Ustilago maydis Aurora kinase as a novel antifungal target. ACS Chem Biol 2011; 6:926-33. [PMID: 21671622 DOI: 10.1021/cb200112y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infestation of crops by pathogenic fungi has continued to have a major impact by reducing yield and quality, emphasizing the need to identify new targets and develop new agents to improve methods of crop protection. Here we present Aurora kinase from the phytopathogenic fungus Ustilago maydis as a novel target for N-substituted diaminopyrimidines, a class of small-molecule kinase inhibitors. We show that Aurora kinase is essential in U. maydis and that diaminopyrimidines inhibit its activity in vitro. Furthermore, we observed an overall good correlation between in vitro inhibition of Aurora kinase and growth inhibition of diverse fungi in vivo. In vitro inhibition assays with Ustilago and human Aurora kinases indicate that some compounds of the N-substituted diaminopyrimidine class show specificity for the Ustilago enzyme, thus revealing their potential as selective fungicides.
Collapse
Affiliation(s)
- Sandra Tückmantel
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Jörg N. Greul
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Petra Janning
- Department IV - Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Andreas Brockmeyer
- Department IV - Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Christian Grütter
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Jeffrey R. Simard
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Oliver Gutbrod
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Michael E. Beck
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Klaus Tietjen
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Daniel Rauh
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- Fakultät Chemie - Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Peter H. Schreier
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| |
Collapse
|
47
|
Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic Substrates of the Kinase Aurora with Roles in Chromatin Regulation Identified Through Quantitative Phosphoproteomics of Fission Yeast. Sci Signal 2011; 4:rs6. [DOI: 10.1126/scisignal.2001588] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Nakazawa N, Mehrotra R, Ebe M, Yanagida M. Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2. J Cell Sci 2011; 124:1795-807. [PMID: 21540296 DOI: 10.1242/jcs.078733] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Condensin is a conserved protein complex that functions in chromosome condensation and segregation. It has not been previously unequivocally determined whether condensin is required throughout mitosis. Here, we examined whether Schizosaccharomyces pombe condensin continuously acts on chromosomes during mitosis and compared its role with that of DNA topoisomerase II (Top2). Using double mutants containing a temperature-sensitive allele of the condensin SMC2 subunit cut14 (cut14-208) or of top2, together with the cold-sensitive nda3-KM311 mutation (in β-tubulin), temperature-shift experiments were performed. These experiments allowed inactivation of condensin or Top2 at various stages throughout mitosis, even after late anaphase. The results established that mitotic chromosomes require condensin and Top2 throughout mitosis, even in telophase. We then showed that the Cnd2 subunit of condensin (also known as Barren) is the target subunit of Aurora-B-like kinase Ark1 and that Ark1-mediated phosphorylation of Cnd2 occurred throughout mitosis. The phosphorylation sites in Cnd2 were determined by mass spectrometry, and alanine and glutamate residue replacement mutant constructs for these sites were constructed. Alanine substitution mutants of Cnd2, which mimic the unphosphorylated protein, exhibited broad mitotic defects, including at telophase, and overexpression of these constructs caused a severe dominant-negative effect. By contrast, glutamate substitution mutants, which mimic the phosphorylated protein, alleviated the segregation defect in Ark1-inhibited cells. In telophase, the condensin subunits in cut14-208 mutant accumulated in lumps that contained telomeric DNA and proteins that failed to segregate. Condensin might thus serve to keep the segregated chromosomes apart during telophase.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- Okinawa Institute and Science Technology Promotion Corporation, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0412, Japan
| | | | | | | |
Collapse
|
49
|
Furuya K, Miyabe I, Tsutsui Y, Paderi F, Kakusho N, Masai H, Niki H, Carr AM. DDK phosphorylates checkpoint clamp component Rad9 and promotes its release from damaged chromatin. Mol Cell 2010; 40:606-18. [PMID: 21095590 DOI: 10.1016/j.molcel.2010.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/11/2010] [Accepted: 08/27/2010] [Indexed: 01/22/2023]
Abstract
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.
Collapse
Affiliation(s)
- Kanji Furuya
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bohnert KA, Chen JS, Clifford DM, Vander Kooi CW, Gould KL. A link between aurora kinase and Clp1/Cdc14 regulation uncovered by the identification of a fission yeast borealin-like protein. Mol Biol Cell 2009; 20:3646-59. [PMID: 19570910 DOI: 10.1091/mbc.e09-04-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe. Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1-Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe.
Collapse
Affiliation(s)
- K Adam Bohnert
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|