1
|
Wang J, Niu S, Hu X, Li T, Liu S, Tu Y, Shang Z, Zhao L, Xu P, Lin J, Chen L, Billadeau DD, Jia D. Trans-Golgi network tethering factors regulate TBK1 trafficking and promote the STING-IFN-I pathway. Cell Discov 2025; 11:23. [PMID: 40097395 PMCID: PMC11914254 DOI: 10.1038/s41421-024-00763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
The cGAS-STING pathway mediates the innate immune response to cytosolic DNA, contributing to surveillance against microbial invasion or cellular damage. Once activated, STING recruits TBK1 at the trans-Golgi network (TGN), which in turn phosphorylates IRF3 to induce type I interferon (IFN-I) expression. In contrast to STING, little is known about how TBK1 is transported to the TGN for activation. Here, we show that multiple TGN tethering factors, a group of proteins involved in vesicle capturing, are indispensable for STING-IFN-I signaling. Deletion of TBC1D23, a recently reported tethering factor, in mice impairs the STING-IFN-I signaling, but with insignificant effect on STING-NF-κB signaling. Mechanistically, TBC1D23 interacts with TBK1 via the WASH complex subunit FAM21 and promotes its endosome-to-TGN translocation. Furthermore, multiple TGN tethering factors were reduced in aged mice and senescent fibroblasts. In summary, our study uncovers that TGN tethering factors are key regulators of the STING-IFN-I signaling and suggests that their reduction in senescence may produce aberrant STING signaling.
Collapse
Affiliation(s)
- Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwen Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Duan HD, Jain BK, Li H, Graham TR, Li H. Structural insight into an Arl1-ArfGEF complex involved in Golgi recruitment of a GRIP-domain golgin. Nat Commun 2024; 15:1942. [PMID: 38431634 PMCID: PMC10908827 DOI: 10.1038/s41467-024-46304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Arl1 is an Arf-like (Arl) GTP-binding protein that interacts with the guanine nucleotide exchange factor Gea2 to recruit the golgin Imh1 to the Golgi. The Arl1-Gea2 complex also binds and activates the phosphatidylserine flippase Drs2 and these functions may be related, although the underlying molecular mechanism is unclear. Here we report high-resolution cryo-EM structures of the full-length Gea2 and the Arl1-Gea2 complex. Gea2 is a large protein with 1459 residues and is composed of six domains (DCB, HUS, SEC7, HDS1-3). We show that Gea2 assembles a stable dimer via an extensive interface involving hydrophobic and electrostatic interactions in the DCB and HUS region. Contrary to the previous report on a Gea2 homolog in which Arl1 binds to the dimerization surface of the DCB domain, implying a disrupted dimer upon Arl1 binding, we find that Arl1 binds to the outside surface of the Gea2 DCB domain, leaving the Gea2 dimer intact. The interaction between Arl1 and Gea2 involves the classic FWY aromatic residue triad as well as two Arl1-specific residues. We show that key mutations that disrupt the Arl1-Gea2 interaction abrogate Imh1 Golgi association. This work clarifies the Arl1-Gea2 interaction and improves our understanding of molecular events in the membrane trafficking.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
3
|
Vti1a/b support distinct aspects of TGN and cis-/medial Golgi organization. Sci Rep 2022; 12:20870. [PMID: 36460703 PMCID: PMC9718741 DOI: 10.1038/s41598-022-25331-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Retrograde trafficking towards the trans-Golgi network (TGN) is important for dense core vesicle (DCV) biogenesis. Here, we used Vti1a/b deficient neurons to study the impact of disturbed retrograde trafficking on Golgi organization and cargo sorting. In Vti1a/b deficient neurons, staining intensity of cis-/medial Golgi proteins (e.g., GM130 and giantin) was increased, while the intensity of two recycling TGN proteins, TGN38 and TMEM87A, was decreased and the TGN-resident protein Golgin97 was normal. Levels and localization of DCV cargo markers, LAMP1 and KDEL were also altered. This phenotype was not caused by reduced Golgi size or absence of a TGN compartment. The phenotype was partially phenocopied by disturbing sphingolipid homeostasis, but was not rescued by overexpression of sphingomyelin synthases or the sphingolipid synthesis inhibitor myriocin. We conclude that Vti1a/b are important for distinct aspects of TGN and cis-/medial Golgi organization. Our data underline the importance of retrograde trafficking for Golgi organization, DCV cargo sorting and the distribution of proteins of the regulated secretory pathway.
Collapse
|
4
|
Fasano G, Muto V, Radio FC, Venditti M, Mosaddeghzadeh N, Coppola S, Paradisi G, Zara E, Bazgir F, Ziegler A, Chillemi G, Bertuccini L, Tinari A, Vetro A, Pantaleoni F, Pizzi S, Conti LA, Petrini S, Bruselles A, Prandi IG, Mancini C, Chandramouli B, Barth M, Bris C, Milani D, Selicorni A, Macchiaiolo M, Gonfiantini MV, Bartuli A, Mariani R, Curry CJ, Guerrini R, Slavotinek A, Iascone M, Dallapiccola B, Ahmadian MR, Lauri A, Tartaglia M. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish. Nat Commun 2022; 13:6841. [PMID: 36369169 PMCID: PMC9652361 DOI: 10.1038/s41467-022-34354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.
Collapse
Affiliation(s)
- Giulia Fasano
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Niloufar Mosaddeghzadeh
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simona Coppola
- grid.416651.10000 0000 9120 6856National Center for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Graziamaria Paradisi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Erika Zara
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Università “Sapienza”, Rome, 00185 Italy
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alban Ziegler
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Giovanni Chillemi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Lucia Bertuccini
- grid.416651.10000 0000 9120 6856Servizio grandi strumentazioni e core facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Tinari
- grid.416651.10000 0000 9120 6856Centro di riferimento per la medicina di genere, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Annalisa Vetro
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Francesca Pantaleoni
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Libenzio Adrian Conti
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessandro Bruselles
- grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ingrid Guarnetti Prandi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cecilia Mancini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Balasubramanian Chandramouli
- grid.431603.30000 0004 1757 1950Super Computing Applications and Innovation, CINECA, 40033 Casalecchio di Reno, Italy
| | - Magalie Barth
- grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Céline Bris
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Donatella Milani
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelo Selicorni
- grid.512106.1Mariani Center for Fragile Children Pediatric Unit, Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy
| | - Marina Macchiaiolo
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Michaela V. Gonfiantini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Bartuli
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Riccardo Mariani
- grid.414603.4Department of Laboratories Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cynthia J. Curry
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Renzo Guerrini
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Anne Slavotinek
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Maria Iascone
- grid.460094.f0000 0004 1757 8431Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Bruno Dallapiccola
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Mohammad Reza Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonella Lauri
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| |
Collapse
|
5
|
Shi M, Tie HC, Divyanshu M, Sun X, Zhou Y, Boh BK, Vardy LA, Lu L. Arl15 upregulates the TGFβ family signaling by promoting the assembly of the Smad-complex. eLife 2022; 11:76146. [PMID: 35834310 PMCID: PMC9352346 DOI: 10.7554/elife.76146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The hallmark event of the canonical transforming growth factor β (TGFβ) family signaling is the assembly of the Smad-complex, consisting of the common Smad, Smad4, and phosphorylated receptor-regulated Smads. How the Smad-complex is assembled and regulated is still unclear. Here, we report that active Arl15, an Arf-like small G protein, specifically binds to the MH2 domain of Smad4 and colocalizes with Smad4 at the endolysosome. The binding relieves the autoinhibition of Smad4, which is imposed by the intramolecular interaction between its MH1 and MH2 domains. Activated Smad4 subsequently interacts with phosphorylated receptor-regulated Smads, forming the Smad-complex. Our observations suggest that Smad4 functions as an effector and a GTPase activating protein (GAP) of Arl15. Assembly of the Smad-complex enhances the GAP activity of Smad4 toward Arl15, therefore dissociating Arl15 before the nuclear translocation of the Smad-complex. Our data further demonstrate that Arl15 positively regulates the TGFβ family signaling.
Collapse
Affiliation(s)
- Meng Shi
- Skin Research Laboratory, A*STAR, Singapore, singapore, Singapore
| | - Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mahajan Divyanshu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiuping Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Boon Kim Boh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Leah A Vardy
- Skin Research Laboratory, A*STAR, Singapore, singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Jaimon E, Tripathi A, Khurana A, Ghosh D, Sugatha J, Datta S. Binding with heat shock cognate protein HSC70 fine-tunes the Golgi association of the small GTPase ARL5B. J Biol Chem 2021; 297:101422. [PMID: 34798070 PMCID: PMC8661063 DOI: 10.1016/j.jbc.2021.101422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
ARL5B, an ARF-like small GTPase localized to the trans-Golgi, is known for regulating endosome-Golgi trafficking and promoting the migration and invasion of breast cancer cells. Although a few interacting partners have been identified, the mechanism of the shuttling of ARL5B between the Golgi membrane and the cytosol is still obscure. Here, using GFP-binding protein (GBP) pull-down followed by mass spectrometry, we identified heat shock cognate protein (HSC70) as an additional interacting partner of ARL5B. Our pull-down and isothermal titration calorimetry (ITC)-based studies suggested that HSC70 binds to ARL5B in an ADP-dependent manner. Additionally, we showed that the N-terminal helix and the nucleotide status of ARL5B contribute to its recognition by HSC70. The confocal microscopy and cell fractionation studies in MDA-MB-231 breast cancer cells revealed that the depletion of HSC70 reduces the localization of ARL5B to the Golgi. Using in vitro reconstitution approach, we provide evidence that HSC70 fine-tunes the association of ARL5B with Golgi membrane. Finally, we demonstrated that the interaction between ARL5B and HSC70 is important for the localization of cation independent mannose-6-phosphate receptor (CIMPR) at Golgi. Collectively, we propose a mechanism by which HSC70, a constitutively expressed chaperone, modulates the Golgi association of ARL5B, which in turn has implications for the Golgi-associated functions of this GTPase.
Collapse
Affiliation(s)
- Ebsy Jaimon
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Arohi Khurana
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Dipanjana Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Jini Sugatha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
7
|
Kim HJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Do PA, Kim EJ, Cheong KA, Kim KS, Huy Phùng H, Rahman M, Jang JY, Rho SB, Kang GJ, Park MK, Lee H, Lee K, Cho J, Han HK, Kim SG, Lee AY, Lee CH. Resolvin D1 Suppresses H 2O 2-Induced Senescence in Fibroblasts by Inducing Autophagy through the miR-1299/ARG2/ARL1 Axis. Antioxidants (Basel) 2021; 10:1924. [PMID: 34943028 PMCID: PMC8750589 DOI: 10.3390/antiox10121924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
ARG2 has been reported to inhibit autophagy in vascular endothelial cells and keratinocytes. However, studies of its mechanism of action, its role in skin fibroblasts, and the possibility of promoting autophagy and inhibiting cellular senescence through ARG2 inhibition are lacking. We induced cellular senescence in dermal fibroblasts by using H2O2. H2O2-induced fibroblast senescence was inhibited upon ARG2 knockdown and promoted upon ARG2 overexpression. The microRNA miR-1299 suppressed ARG2 expression, thereby inhibiting fibroblast senescence, and miR-1299 inhibitors promoted dermal fibroblast senescence by upregulating ARG2. Using yeast two-hybrid assay, we found that ARG2 binds to ARL1. ARL1 knockdown inhibited autophagy and ARL1 overexpression promoted it. Resolvin D1 (RvD1) suppressed ARG2 expression and cellular senescence. These data indicate that ARG2 stimulates dermal fibroblast cell senescence by inhibiting autophagy after interacting with ARL1. In addition, RvD1 appears to promote autophagy and inhibit dermal fibroblast senescence by inhibiting ARG2 expression. Taken together, the miR-1299/ARG2/ARL1 axis emerges as a novel mechanism of the ARG2-induced inhibition of autophagy. Furthermore, these results indicate that miR-1299 and pro-resolving lipids, including RvD1, are likely involved in inhibiting cellular senescence by inducing autophagy.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyung Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Lu Yu
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Tuan Minh Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Thi Ha Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Phuong Anh Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Kyung Sung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hiệu Huy Phùng
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Mostafizur Rahman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ji Yun Jang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mi Kyung Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Ho Lee
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Jungsook Cho
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyo Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ai Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| |
Collapse
|
8
|
Feng H, Cheng H, Hsiao T, Lin T, Hsu J, Huang L, Yu C. ArfGAP1 acts as a GTPase‐activating protein for human ADP‐ribosylation factor‐like 1 protein. FASEB J 2021; 35:e21337. [DOI: 10.1096/fj.202000818rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Hsiang‐Pu Feng
- Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University Taoyuan Taiwan
| | - Hsiao‐Yun Cheng
- Department of Cell and Molecular Biology, College of Medicine Chang Gung University Taoyuan Taiwan
| | - Ting‐Feng Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University Taoyuan Taiwan
| | - Tai‐Wei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University Taoyuan Taiwan
| | - Jia‐Wei Hsu
- Institute of Molecular Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Institute of Biochemical Sciences, College of Life Science National Taiwan University Taipei Taiwan
| | - Lien‐Hung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Neurosurgery Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Chia‐Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Cell and Molecular Biology, College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Thoracic Medicine Chang Gung Memorial Hospital Taoyuan Taiwan
- Molecular Medicine Research Center Chang Gung University Taoyuan Taiwan
| |
Collapse
|
9
|
Patiño-Medina JA, Valle-Maldonado MI, Maldonado-Herrera G, Pérez-Arques C, Jácome-Galarza IE, Díaz-Pérez C, Díaz-Pérez AL, Araiza-Cervantes CA, Villagomez-Castro JC, Campos-García J, Ramírez-Díaz MI, Garre V, Meza-Carmen V. Role of Arf-like proteins (Arl1 and Arl2) of Mucor circinelloides in virulence and antifungal susceptibility. Fungal Genet Biol 2019; 129:40-51. [DOI: 10.1016/j.fgb.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
|
10
|
Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol 2019; 218:1634-1652. [PMID: 30917996 PMCID: PMC6504893 DOI: 10.1083/jcb.201901115] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
ATG9A is a multispanning membrane protein essential for autophagy. Normally resident in Golgi membranes and endosomes, during amino acid starvation, ATG9A traffics to sites of autophagosome formation. ATG9A is not incorporated into autophagosomes but is proposed to supply so-far-unidentified proteins and lipids to the autophagosome. To address this function of ATG9A, a quantitative analysis of ATG9A-positive compartments immunoisolated from amino acid-starved cells was performed. These ATG9A vesicles are depleted of Golgi proteins and enriched in BAR-domain containing proteins, Arfaptins, and phosphoinositide-metabolizing enzymes. Arfaptin2 regulates the starvation-dependent distribution of ATG9A vesicles, and these ATG9A vesicles deliver the PI4-kinase, PI4KIIIβ, to the autophagosome initiation site. PI4KIIIβ interacts with ATG9A and ATG13 to control PI4P production at the initiation membrane site and the autophagic response. PI4KIIIβ and PI4P likely function by recruiting the ULK1/2 initiation kinase complex subunit ATG13 to nascent autophagosomes.
Collapse
Affiliation(s)
- Delphine Judith
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | | | - Stefan Boeing
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - David Frith
- Proteomics, The Francis Crick Institute, London, UK
| | | | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| |
Collapse
|
11
|
Drosophila Arl8 is a general positive regulator of lysosomal fusion events. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:533-544. [DOI: 10.1016/j.bbamcr.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
|
12
|
Despres J, Ramdani Y, di Giovanni M, Bénard M, Zahid A, Montero-Hadjadje M, Yvergnaux F, Saguet T, Driouich A, Follet-Gueye ML. Replicative senescence of human dermal fibroblasts affects structural and functional aspects of the Golgi apparatus. Exp Dermatol 2019; 28:922-932. [DOI: 10.1111/exd.13886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Julie Despres
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale; Normandie Université; UNIROUEN, Fédération de recherche Normandie-Végétal - FED 4277, GDR CNRS 3711, COSM'ACTIFS; Mont-Saint-Aignan France
- Bioeurope; Groupe SOLABIA; Route d'OulinsAnet France
| | - Yasmina Ramdani
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale; Normandie Université; UNIROUEN, Fédération de recherche Normandie-Végétal - FED 4277, GDR CNRS 3711, COSM'ACTIFS; Mont-Saint-Aignan France
| | - Marine di Giovanni
- Cell Imaging Platform (PRIMACEN-IRIB); Normandie Université; UNIROUEN; Mont-Saint-Aignan France
| | - Magalie Bénard
- Cell Imaging Platform (PRIMACEN-IRIB); Normandie Université; UNIROUEN; Mont-Saint-Aignan France
| | - Abderrakib Zahid
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale; Normandie Université; UNIROUEN, Fédération de recherche Normandie-Végétal - FED 4277, GDR CNRS 3711, COSM'ACTIFS; Mont-Saint-Aignan France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie; Normandie Univ; UNIROUEN; INSERM U1239; Rouen France
| | | | | | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale; Normandie Université; UNIROUEN, Fédération de recherche Normandie-Végétal - FED 4277, GDR CNRS 3711, COSM'ACTIFS; Mont-Saint-Aignan France
- Cell Imaging Platform (PRIMACEN-IRIB); Normandie Université; UNIROUEN; Mont-Saint-Aignan France
| | - Marie-Laure Follet-Gueye
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale; Normandie Université; UNIROUEN, Fédération de recherche Normandie-Végétal - FED 4277, GDR CNRS 3711, COSM'ACTIFS; Mont-Saint-Aignan France
- Cell Imaging Platform (PRIMACEN-IRIB); Normandie Université; UNIROUEN; Mont-Saint-Aignan France
| |
Collapse
|
13
|
Tie HC, Ludwig A, Sandin S, Lu L. The spatial separation of processing and transport functions to the interior and periphery of the Golgi stack. eLife 2018; 7:41301. [PMID: 30499774 PMCID: PMC6294550 DOI: 10.7554/elife.41301] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
It is unclear how the two principal functions of the Golgi complex, processing and transport, are spatially organized. Studying such spatial organization by optical imaging is challenging, partially due to the dense packing of stochastically oriented Golgi stacks. Using super-resolution microscopy and markers such as Giantin, we developed a method to identify en face and side views of individual nocodazole-induced Golgi mini-stacks. Our imaging uncovered that Golgi enzymes preferentially localize to the cisternal interior, appearing as a central disk or inner-ring, whereas components of the trafficking machinery reside at the periphery of the stack, including the cisternal rim. Interestingly, conventional secretory cargos appeared at the cisternal interior during their intra-Golgi trafficking and transiently localized to the cisternal rim before exiting the Golgi. In contrast, bulky cargos were found only at the rim. Our study therefore directly demonstrates the spatial separation of processing and transport functions within the Golgi complex.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nat Commun 2018; 9:4987. [PMID: 30478271 PMCID: PMC6255761 DOI: 10.1038/s41467-018-07444-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
The endosome-to-Golgi or endocytic retrograde trafficking pathway is an important post-Golgi recycling route. Here we show that amino acids (AAs) can stimulate the retrograde trafficking and regulate the cell surface localization of certain Golgi membrane proteins. By testing components of the AA-stimulated mTORC1 signaling pathway, we demonstrate that SLC38A9, v-ATPase and Ragulator, but not Rag GTPases and mTORC1, are essential for the AA-stimulated trafficking. Arl5, an ARF-like family small GTPase, interacts with Ragulator in an AA-regulated manner and both Arl5 and its effector, the Golgi-associated retrograde protein complex (GARP), are required for the AA-stimulated trafficking. We have therefore identified a mechanistic connection between the nutrient signaling and the retrograde trafficking pathway, whereby SLC38A9 and v-ATPase sense AA-sufficiency and Ragulator might function as a guanine nucleotide exchange factor to activate Arl5, which, together with GARP, a tethering factor, probably facilitates the endosome-to-Golgi trafficking. Amino acid levels are known to regulate anabolic and catabolic pathways. Here, the authors report that amino acids also affect membrane trafficking by stimulating endosome-to-Golgi retrograde trafficking and regulating cell surface localization of certain Golgi proteins through Ragulator and Arl5.
Collapse
|
15
|
Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 2018; 13:e0201849. [PMID: 30092086 PMCID: PMC6084943 DOI: 10.1371/journal.pone.0201849] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022] Open
Abstract
The cellular uptake of dsRNA after dietary exposure is critical for RNAi efficiency; however, the mechanism of its uptake in many insects remains to be understood. In this study, we evaluated the roles of the endocytic pathway genes Clathrin heavy chain (Chc), Clathrin adaptor protein AP50, ADP ribosylation factor-like 1 (Arf72A), Vacuolar H+ATPase 16 kDa subunit (Vha16), and small GTPase Rab7 and putative sid-1-like genes (silA and silC) in RNAi response in western corn rootworm (WCR) using a two-stage dsRNA exposure bioassay. Silencing of Chc, Vha16, and AP50 led to a significant decrease in the effects of laccase2 dsRNA reporter, indicating that these genes are involved in RNAi response. However, the knockdown of either Arf72A or Rab7 did not suppress the response to laccase2 dsRNA. The silencing of the silC gene did not lead to a significant reduction in mortality or increase in the expression of V-ATPase A reporter. While the silencing of the silA gene significantly decreased insect mortality, significant changes in V-ATPase A expression were not detected. These results suggest that clathrin-dependent endocytosis is a biological mechanism that plays an important role during RNAi response in WCR adults. The fact that no definitive support for the roles of silA or silC in RNAi response was obtained support the idea that RNAi response varies greatly in different insect species, demanding additional studies focused on elucidating their involvement in this mechanism.
Collapse
|
16
|
Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia. Am J Hum Genet 2017; 101:441-450. [PMID: 28823706 DOI: 10.1016/j.ajhg.2017.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.
Collapse
|
17
|
Shao J, Xu L, Chen L, Lu Q, Xie X, Shi W, Xiong H, Shi C, Huang X, Mei J, Rao H, Lu H, Lu N, Luo S. Arl13b Promotes Gastric Tumorigenesis by Regulating Smo Trafficking and Activation of the Hedgehog Signaling Pathway. Cancer Res 2017; 77:4000-4013. [PMID: 28611043 PMCID: PMC5540784 DOI: 10.1158/0008-5472.can-16-2461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/21/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
Inhibitors of the Hedgehog (Hh) pathway transducer Smoothened (Smo) have been approved for cancer treatment, but Smo mutations often lead to tumor resistance and it remains unclear how Smo is regulated. In this study, we identified the small GTPase Arl13b as a novel partner and regulator of Smo. Arl13b regulated Smo stability, trafficking, and localization, which are each crucial for Hh signaling. In gastric cancer cells, Arl13b stimulated proliferation, migration, and invasion in vitro and in vivo In clinical specimens of gastric cancer, Arl13b expression correlated strongly with tumor size and depth of invasion; patients with high levels of Arl13b had a poor prognosis. Our results show how Arl13b participates in Hh pathway activation in gastric cancer. Cancer Res; 77(15); 4000-13. ©2017 AACR.
Collapse
Affiliation(s)
- Jia Shao
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Limin Chen
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xinsheng Xie
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huanting Xiong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuan Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hai Rao
- Department of Molecular Medicine, University of Texas Health, San Antonio, Texas
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nonghua Lu
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
18
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
19
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
20
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M. Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog 2017; 13:e1006205. [PMID: 28192532 PMCID: PMC5325608 DOI: 10.1371/journal.ppat.1006205] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/24/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.
Collapse
Affiliation(s)
- Hayet Labbaoui
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | | | - Vikram Ghugtyal
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| |
Collapse
|
22
|
Mishra AK, Lambright DG. Invited review: Small GTPases and their GAPs. Biopolymers 2016; 105:431-48. [PMID: 26972107 PMCID: PMC5439442 DOI: 10.1002/bip.22833] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Widespread utilization of small GTPases as major regulatory hubs in many different biological systems derives from a conserved conformational switch mechanism that facilitates cycling between GTP-bound active and GDP-bound inactive states under control of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which accelerate slow intrinsic rates of activation by nucleotide exchange and deactivation by GTP hydrolysis, respectively. Here we review developments leading to current understanding of intrinsic and GAP catalyzed GTP hydrolytic reactions in small GTPases from structural, molecular and chemical mechanistic perspectives. Despite the apparent simplicity of the GTPase cycle, the structural bases underlying the hallmark hydrolytic reaction and catalytic acceleration by GAPs are considerably more diverse than originally anticipated. Even the most fundamental aspects of the reaction mechanism have been challenging to decipher. Through a combination of experimental and in silico approaches, the outlines of a consensus view have begun to emerge for the best studied paradigms. Nevertheless, recent observations indicate that there is still much to be learned. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 431-448, 2016.
Collapse
Affiliation(s)
- Ashwini K Mishra
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - David G Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
23
|
Kerr SC, Kahn RA. Tool box: Plasmids for the expression or knockdown of human ARF Family GTPases (ARF/ARL/SAR) and their co-expression in bacteria with N-myristoyltransferases. CELLULAR LOGISTICS 2016; 5:e1090523. [PMID: 27057421 PMCID: PMC4820815 DOI: 10.1080/21592799.2015.1090523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 10/30/2022]
Affiliation(s)
- Shana C Kerr
- School of Biology; Georgia Institute of Technology ; Atlanta, GA USA
| | - Richard A Kahn
- Department of Biochemistry; Emory University School of Medicine ; Atlanta, GA USA
| |
Collapse
|
24
|
Tie HC, Mahajan D, Chen B, Cheng L, VanDongen AMJ, Lu L. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes. Mol Biol Cell 2016; 27:848-61. [PMID: 26764092 PMCID: PMC4803310 DOI: 10.1091/mbc.e15-09-0664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
A novel imaging-based method is introduced to quantitatively localize Golgi proteins at nanometer resolution. The method reveals different intra-Golgi trafficking of secretory cargoes. Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent.
Collapse
Affiliation(s)
- Hieng Chiong Tie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Bing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Li Cheng
- Bioinformatics Institute, Singapore 138671 School of Computing, National University of Singapore, Singapore 117417
| | - Antonius M J VanDongen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
25
|
Kessels MM, Qualmann B. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 2015; 128:3177-85. [PMID: 26285709 DOI: 10.1242/jcs.174193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.
Collapse
Affiliation(s)
- Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
26
|
Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells. J Virol 2015; 89:10359-70. [PMID: 26246569 DOI: 10.1128/jvi.01225-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients. More recently, they have been associated with neurological diseases in mammals, including humans, and are also responsible for different pathologies in birds. In this work, we provide evidence that astrovirus RNA replication and virus assembly occur in contact with cell membranes potentially derived from multiple cell organelles and show that membrane-associated cellular proteins involved in lipid metabolism are required for efficient viral replication. Our findings provide information to enhance our knowledge of astrovirus biology and provide information that might be useful for the development of therapeutic interventions to prevent virus replication.
Collapse
|
27
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Huang LH, Lee WC, You ST, Cheng CC, Yu CJ. Arfaptin-1 negatively regulates Arl1-mediated retrograde transport. PLoS One 2015; 10:e0118743. [PMID: 25789876 PMCID: PMC4366199 DOI: 10.1371/journal.pone.0118743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/11/2015] [Indexed: 12/24/2022] Open
Abstract
The small GTPase Arf-like protein 1 (Arl1) is well known for its role in intracellular vesicular transport at the trans-Golgi network (TGN). In this study, we used differential affinity chromatography combined with mass spectrometry to identify Arf-interacting protein 1b (arfaptin-1b) as an Arl1-interacting protein and characterized a novel function for arfaptin-1 (including the arfaptin-1a and 1b isoforms) in Arl1-mediated retrograde transport. Using a Shiga-toxin subunit B (STxB) transportation assay, we demonstrated that knockdown of arfaptin-1 accelerated the retrograde transport of STxB from the endosome to the Golgi apparatus, whereas Arl1 knockdown inhibited STxB transport compared with control cells. Arfaptin-1 overexpression, but not an Arl1 binding-defective mutant (arfaptin-1b-F317A), consistently inhibited STxB transport. Exogenous arfaptin-1 expression did not interfere with the localization of the Arl1-interacting proteins golgin-97 and golgin-245 to the TGN and vice versa. Moreover, we found that the N-terminal region of arfaptin-1 was involved in the regulation of retrograde transport. Our results show that arfaptin-1 acts as a negative regulator in Arl1-mediated retrograde transport and suggest that different functional complexes containing Arl1 form in distinct microdomains and are responsible for different functions.
Collapse
Affiliation(s)
- Lien-Hung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shu-Ting You
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chen Cheng
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Torres IL, Rosa-Ferreira C, Munro S. The Arf family G protein Arl1 is required for secretory granule biogenesis in Drosophila. J Cell Sci 2014; 127:2151-60. [PMID: 24610947 DOI: 10.1242/jcs.122028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The small G protein Arf like 1 (Arl1) is found at the Golgi complex, and its GTP-bound form recruits several effectors to the Golgi including GRIP-domain-containing coiled-coil proteins, and the Arf1 exchange factors Big1 and Big2. To investigate the role of Arl1, we have characterised a loss-of-function mutant of the Drosophila Arl1 orthologue. The gene is essential, and examination of clones of cells lacking Arl1 shows that it is required for recruitment of three of the four GRIP domain golgins to the Golgi, with Drosophila GCC185 being less dependent on Arl1. At a functional level, Arl1 is essential for formation of secretory granules in the larval salivary gland. When Arl1 is missing, Golgi are still present but there is a dispersal of adaptor protein 1 (AP-1), a clathrin adaptor that requires Arf1 for its membrane recruitment and which is known to be required for secretory granule biogenesis. Arl1 does not appear to be required for AP-1 recruitment in all tissues, suggesting that it is crucially required to enhance Arf1 activation at the trans-Golgi in particular tissues.
Collapse
Affiliation(s)
- Isabel L Torres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
30
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
31
|
Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase. Sci Rep 2013; 3:3362. [PMID: 24285343 PMCID: PMC3842536 DOI: 10.1038/srep03362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/08/2022] Open
Abstract
Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.
Collapse
|
32
|
Cruz-Garcia D, Ortega-Bellido M, Scarpa M, Villeneuve J, Jovic M, Porzner M, Balla T, Seufferlein T, Malhotra V. Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO J 2013; 32:1717-29. [PMID: 23695357 DOI: 10.1038/emboj.2013.116] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 04/25/2013] [Indexed: 11/09/2022] Open
Abstract
The BAR (Bin/Amphiphysin/Rvs) domain proteins arfaptin1 and arfaptin2 are localized to the trans-Golgi network (TGN) and, by virtue of their ability to sense and/or generate membrane curvature, could play an important role in the biogenesis of transport carriers. We report that arfaptins contain an amphipathic helix (AH) preceding the BAR domain, which is essential for their binding to phosphatidylinositol 4-phosphate (PI(4)P)-containing liposomes and the TGN of mammalian cells. The binding of arfaptin1, but not arfaptin2, to PI(4)P is regulated by protein kinase D (PKD) mediated phosphorylation at Ser100 within the AH. We also found that only arfaptin1 is required for the PKD-dependent trafficking of chromogranin A by the regulated secretory pathway. Altogether, these findings reveal the importance of PI(4)P and PKD in the recruitment of arfaptins at the TGN and their requirement in the events leading to the biogenesis of secretory storage granules.
Collapse
|
33
|
Arf1 and membrane curvature cooperate to recruit Arfaptin2 to liposomes. PLoS One 2013; 8:e62963. [PMID: 23638170 PMCID: PMC3639266 DOI: 10.1371/journal.pone.0062963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
Arfaptin2 contains a Bin/Amphiphysin/Rvs (BAR) domain and directly interacts with proteins of the Arf/Arl family in their active GTP-bound state. It has been proposed that BAR domains are able to sense membrane curvature and to induce membrane tubulation. We report here that active Arf1 is required for the recruitment of Arfaptin2 to artificial liposomes mimicking the Golgi apparatus lipid composition. The Arf1-dependent recruitment of Arfaptin2 increases with membrane curvature, while the recruitment of Arf1 itself is not sensitive to curvature. At high protein concentrations, the binding of Arfaptin2 induces membrane tubulation. Finally, membrane-bound Arfaptin2 is released from the liposome when ArfGAP1 catalyzes the hydrolysis of GTP to GDP in Arf1. These results show that both Arf1 activation and high membrane curvature are required for efficient recruitment of Arfaptin2 to membranes.
Collapse
|
34
|
Zhou Y, Hong W, Lu L. Imaging beads-retained prey assay for rapid and quantitative protein-protein interaction. PLoS One 2013; 8:e59727. [PMID: 23555762 PMCID: PMC3612083 DOI: 10.1371/journal.pone.0059727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/17/2013] [Indexed: 12/03/2022] Open
Abstract
Conventional Western blot based pull-down methods involve lengthy and laborious work and the results are generally not quantitative. Here, we report the imaging beads-retained prey (IBRP) assay that is rapid and quantitative in studying protein-protein interactions. In this assay, the bait is immobilized onto beads and the prey is fused with a fluorescence protein. The assay takes advantage of the fluorescence of prey and directly quantifies the amount of prey binding to the immobilized bait under a microscope. We validated the assay using previously well studied interactions and found that the amount of prey retained on beads could have a relative linear relationship to both the inputs of bait and prey. IBRP assay provides a universal, fast, quantitative and economical method to study protein interactions and it could be developed to a medium- or high-throughput compatible method. With the availability of fluorescence tagged whole genome ORFs in several organisms, we predict IBRP assay should have wide applications.
Collapse
Affiliation(s)
- Yan Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
35
|
Hemsworth GR, Price HP, Smith DF, Wilson KS. Crystal structure of the small GTPase Arl6/BBS3 from Trypanosoma brucei. Protein Sci 2013. [PMID: 23184293 DOI: 10.1002/pro.2198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Arl6/BBS3 is a small GTPase, mutations in which are implicated in the human ciliopathy Bardet-Biedl Syndrome (BBS). Arl6 is proposed to facilitate the recruitment of a large protein complex known as the BBSome to the base of the primary cilium, mediating specific trafficking of molecules to this important sensory organelle. Orthologues of Arl6 and the BBSome core subunits have been identified in the genomes of trypanosomes. Flagellum function and motility are crucial to the survival of Trypanosoma brucei, the causative agent of human African sleeping sickness, in the human bloodstream stage of its lifecycle and so the function of the BBSome proteins in trypanosomes warrants further study. RNAi knockdown of T. brucei Arl6 (TbArl6) has recently been shown to result in shortening of the trypanosome flagellum. Here we present the crystal structure of TbArl6 with the bound non-hydrolysable GTP analog GppNp at 2.0 Å resolution and highlight important differences between the trypanosomal and human proteins. Analysis of the TbArl6 active site confirms that it lacks the key glutamine that activates the nucleophile during GTP hydrolysis in other small GTPases. Furthermore, the trypanosomal proteins are significantly shorter at their N-termini suggesting a different method of membrane insertion compared to humans. Finally, analysis of sequence conservation suggests two surface patches that may be important for protein-protein interactions. Our structural analysis thus provides the basis for future biochemical characterisation of this important family of small GTPases.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, United Kingdom
| | | | | | | |
Collapse
|
36
|
Padovani D, Zeghouf M, Traverso JA, Giglione C, Cherfils J. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase. Small GTPases 2013; 4:3-8. [PMID: 23319116 DOI: 10.4161/sgtp.22895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays.
Collapse
Affiliation(s)
- Dominique Padovani
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif (CNRS), Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
37
|
Chen KY, Tsai PC, Liu YW, Lee FJS. Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi. J Cell Sci 2012; 125:4586-96. [PMID: 22767516 DOI: 10.1242/jcs.107797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Golgins play diverse roles in regulating the structure and function of the Golgi. The yeast golgin Imh1p is targeted to the trans-Golgi network (TGN) through interaction of its GRIP domain with GTP-bound Arl1p. Recycling of Arl1p and Imh1p to the cytosol requires the hydrolysis of GTP bound to Arl1p; however, the point at which GTP hydrolysis occurs remains unknown. Here, we report that self-interaction of Imh1p plays a role in modulating spatial inactivation of Arl1p. Deletion of IMH1 in yeast decreases the amount of the GTP-bound Arl1p and results in less Arl1p residing on the TGN. Biochemically, purified Imh1p competes with Gcs1p, an Arl1p GTPase-activating protein (GAP), for binding to Arl1p, thus interfering with the GAP activity of Gcs1p toward Arl1p. Furthermore, we demonstrate that the self-interaction of Imh1p attenuates the Gcs1p-dependent GTP hydrolysis of Arl1p. Thus, we propose that the golgin Imh1p serves as a feedback regulator to modulate the GTP hydrolysis of Arl1p.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
38
|
Price HP, Hodgkinson MR, Wright MH, Tate EW, Smith BA, Carrington M, Stark M, Smith DF. A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1178-91. [PMID: 22609302 PMCID: PMC3793860 DOI: 10.1016/j.bbamcr.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 04/23/2012] [Accepted: 05/05/2012] [Indexed: 11/17/2022]
Abstract
The small GTPase Arl6 is implicated in the ciliopathic human genetic disorder Bardet-Biedl syndrome, acting at primary cilia in recruitment of the octomeric BBSome complex, which is required for specific trafficking events to and from the cilium in eukaryotes. Here we describe functional characterisation of Arl6 in the flagellated model eukaryote Trypanosoma brucei, which requires motility for viability. Unlike human Arl6 which has a ciliary localisation, TbARL6 is associated with electron-dense vesicles throughout the cell body following co-translational modification by N-myristoylation. Similar to the related protein ARL-3A in T. brucei, modulation of expression of ARL6 by RNA interference does not prevent motility but causes a significant reduction in flagellum length. Tubulin is identified as an ARL6 interacting partner, suggesting that ARL6 may act as an anchor between vesicles and cytoplasmic microtubules. We provide evidence that the interaction between ARL6 and the BBSome is conserved in unicellular eukaryotes. Overexpression of BBS1 leads to translocation of endogenous ARL6 to the site of exogenous BBS1 at the flagellar pocket. Furthermore, a combination of BBS1 overexpression and ARL6 RNAi has a synergistic inhibitory effect on cell growth. Our findings indicate that ARL6 in trypanosomes contributes to flagellum biogenesis, most likely through an interaction with the BBSome.
Collapse
Key Words
- arf, adp-ribosylation factor
- arl, adp-ribosylation factor-like
- arl6ip, arl6 interacting protein
- bbs, bardet–biedl syndrome
- bbs1, bardet–biedl syndrome 1 protein
- bsf, bloodstream form
- cona, concanavalin a
- gef, guanine nucleotide exchange factor
- gpcr, g-protein coupled receptor
- hrg4, human retinal gene 4
- ift, intraflagellar transport
- itc, isothermal titration calorimetry
- mant, n-methylanthraniloyl
- map2, microtubule associated protein 2
- nes, nuclear export signal
- nls, nuclear localisation signal
- nmt, myristoyl-coa:protein n-myristoyltransferase
- pcf, procyclic form
- pcm1, pericentriolar material 1
- pfr, paraflagellar rod
- pm, plasma membrane
- rnai, rna interference
- rp2, retinitis pigmentosa protein 2
- tap, tandem affinity purification
- tiem, transmission immuno-electron microscopy
- trypanosoma brucei
- arl6
- bbsome
- bbs1
- flagellum
- tubulin
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5YW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Manlandro CMA, Palanivel VR, Schorr EB, Mihatov N, Antony AA, Rosenwald AG. Mon2 is a negative regulator of the monomeric G protein, Arl1. FEMS Yeast Res 2012; 12:637-50. [PMID: 22594927 DOI: 10.1111/j.1567-1364.2012.00814.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/27/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022] Open
Abstract
Using site-directed mutants of ARL1 predicted to alter nucleotide binding, we examined phenotypes associated with the loss of ARL1 , including effects on membrane traffic and K (+) homeostasis. The GTP-restricted allele, ARL[Q72L] , complemented the membrane traffic phenotype (CPY secretion), but not the K (+) homeostasis phenotypes (sensitivity to hygromycin B, steady-state levels of K (+) , and accumulation of (86) Rb (+) ), while the XTP-restricted mutant, ARL1[D130N] , complemented the ion phenotypes, but not the membrane traffic phenotype. A GDP-restricted allele, ARL1[T32N] , did not effectively complement either phenotype. These results are consistent with a model in which Arl1 has three different conformations in vivo. We also explored the relationship between ARL1 and MON2 using the synthetic lethal phenotype exhibited by these two genes and demonstrated that MON2 is a negative regulator of the GTP-restricted allele of ARL1 , ARL1[Q72L] . Finally, we constructed several new alleles predicted to alter binding of Arl1 to the sole GRIP domain containing protein in yeast, Imh1, and found that ARL1[F52G] and ARL1[Y82G] were unable to complement the loss of ARL1 with respect to either the membrane traffic or K (+) homeostasis phenotypes. Our study expands understanding of the roles of Arl1 in vivo.
Collapse
|
40
|
Houghton FJ, Bellingham SA, Hill AF, Bourges D, Ang DK, Gemetzis T, Gasnereau I, Gleeson PA. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp Cell Res 2012; 318:464-77. [DOI: 10.1016/j.yexcr.2011.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/04/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
|
41
|
Shin HW, Takatsu H, Nakayama K. Mechanisms of membrane curvature generation in membrane traffic. MEMBRANES 2012; 2:118-33. [PMID: 24957965 PMCID: PMC4021884 DOI: 10.3390/membranes2010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.
Collapse
Affiliation(s)
- Hye-Won Shin
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Takatsu
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
42
|
Christis C, Munro S. The small G protein Arl1 directs the trans-Golgi-specific targeting of the Arf1 exchange factors BIG1 and BIG2. ACTA ACUST UNITED AC 2012; 196:327-35. [PMID: 22291037 PMCID: PMC3275380 DOI: 10.1083/jcb.201107115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specificity in Arf1 GEF recruitment to the trans-Golgi, and thus in localized Arf1 activation, is provided by an Arf-like G protein. The small G protein Arf1 regulates Golgi traffic and is activated by two related types of guanine nucleotide exchange factor (GEF). GBF1 acts at the cis-Golgi, whereas BIG1 and its close paralog BIG2 act at the trans-Golgi. Peripheral membrane proteins such as these GEFs are often recruited to membranes by small G proteins, but the basis for specific recruitment of Arf GEFs, and hence Arfs, to Golgi membranes is not understood. In this paper, we report a liposome-based affinity purification method to identify effectors for small G proteins of the Arf family. We validate this with the Drosophila melanogaster Arf1 orthologue (Arf79F) and the related class II Arf (Arf102F), which showed a similar pattern of effector binding. Applying the method to the Arf-like G protein Arl1, we found that it binds directly to Sec71, the Drosophila ortholog of BIG1 and BIG2, via an N-terminal region. We show that in mammalian cells, Arl1 is necessary for Golgi recruitment of BIG1 and BIG2 but not GBF1. Thus, Arl1 acts to direct a trans-Golgi–specific Arf1 GEF, and hence active Arf1, to the trans side of the Golgi.
Collapse
Affiliation(s)
- Chantal Christis
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | | |
Collapse
|
43
|
Lee J, Lee J, Ju BG. Drosophila arf72A acts as an essential regulator of endoplasmic reticulum quality control and suppresses autosomal-dominant retinopathy. Int J Biochem Cell Biol 2011; 43:1392-401. [PMID: 21693198 DOI: 10.1016/j.biocel.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
Abstract
The eukaryotic endoplasmic reticulum operates multiple quality control mechanisms to ensure that only properly folded proteins are exported to their final destinations via the secretory pathway and those that are not are destroyed via the degradation pathway. However, molecular mechanisms underlying such regulated exportation to these distinct routes are unknown. In this article, we report the role of Drosophila arf72A--the fly homologue of the mammalian Arl1 - in the quality checks of proteins and in the autosomal-dominant retinopathy. ARF72A localizes to the Golgi membranes of Drosophila photoreceptor cells, consistent with mammalian Arl1 localization in cell culture systems. A loss of arf72A function changes the membrane character of the endoplasmic reticulum and shifts the membrane balance between the endoplasmic reticulum and the Golgi complex toward the Golgi complex, resulting in over-proliferated Golgi complexes and accelerated protein secretion. Interestingly, our study indicated that more ARF72A localized on the endoplasmic reticulum in the ninaE(D1) photoreceptor cell, a Drosophila model of autosomal-dominant retinitis pigmentosa, compared to that in the wild-type. In addition, arf72A loss was shown to rescue the ninaE(D1)-related membrane accumulation and the rhodopsin maturation defect, and suppress ninaE(D1)-triggered retinal degeneration, indicating that rhodopsin accumulated in the endoplasmic reticulum bypasses the quality checks. While previous studies of ARF small GTPases have focused on their roles in vesicular budding and transport between the specific organelles, our findings establish an additional function of arf72A in the quality check machinery of the endoplasmic reticulum distinguishing the cargoes for secretion from those for degradation.
Collapse
Affiliation(s)
- Jongwoo Lee
- Department of Biological Science, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
44
|
Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake. G3-GENES GENOMES GENETICS 2011; 1:43-56. [PMID: 22384317 PMCID: PMC3276120 DOI: 10.1534/g3.111.000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022]
Abstract
Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.
Collapse
|
45
|
Yang YK, Qu H, Gao D, Di W, Chen HW, Guo X, Zhai ZH, Chen DY. ARF-like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a GTP-dependent manner. J Biol Chem 2011; 286:10568-80. [PMID: 21233210 PMCID: PMC3060509 DOI: 10.1074/jbc.m110.206896] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/11/2011] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) recognizes RNA virus-derived nucleic acids, which leads to the production of type I interferon (IFN) in most cell types. Tight regulation of RIG-I activity is important to prevent ultra-immune responses. In this study, we identified an ARF-like (ARL) family member, ARL16, as a protein that interacts with RIG-I. Overexpression of ARL16, but not its homologous proteins ARL1 and ARF1, inhibited RIG-I-mediated downstream signaling and antiviral activity. Knockdown of endogenous ARL16 by RNAi potentiated Sendai virus-induced IFN-β expression and vesicular stomatitis virus replication. ARL16 interacted with the C-terminal domain (CTD) of RIG-I to suppress the association between RIG-I and RNA. ARL16 (T37N) and ARL16Δ45-54, which were restricted to the GTP-disassociated form, did not interact with RIG-I and also lost the inhibitory function. Furthermore, we suggest that endogenous ARL16 changes to GTP binding status upon viral infection and binds with the RIG-I CTD to negatively control its signaling activity. These findings suggested a novel innate immune function for an ARL family member, and a GTP-dependent model in which RIG-I is regulated.
Collapse
Affiliation(s)
- Yong-Kang Yang
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| | - Hong Qu
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| | - Dong Gao
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| | - Wei Di
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| | - Hai-Wei Chen
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| | - Xin Guo
- the Key Laboratory of Zoonosis of Ministry of Agriculture, China Agriculture University, Beijing 100083, China
| | - Zhong-He Zhai
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| | - Dan-Ying Chen
- From the Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China and
| |
Collapse
|
46
|
Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J Biol Chem 2011; 286:11569-78. [PMID: 21239483 DOI: 10.1074/jbc.m110.201442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arfaptins (arfaptin-1 and arfaptin-2/POR1) were originally identified as binding partners of the Arf small GTPases. Both proteins contain a BAR (Bin/Amphiphysin/Rvs) domain, which participates in membrane deformation. Here we show that arfaptins associate with trans-Golgi membranes. Unexpectedly, Arl1 (Arf-like 1), but not Arfs, determines the trans-Golgi association of arfaptins. We also demonstrate that arfaptins interact with Arl1 through their BAR domain-containing region and compete for Arl1 binding with golgin-97 and golgin-245/p230, both of which also bind to Arl1 through their GRIP (golgin-97/RanBP2/Imh1p/p230) domains. However, arfaptins and these golgins show only limited colocalization at the trans-Golgi. Time-lapse imaging of cells overexpressing fluorescent protein-tagged arfaptins and golgin-97 reveals that arfaptins, but not golgin-97, are included in vesicular and tubular structures emanating from the Golgi region. These observations indicate that arfaptins are recruited onto trans-Golgi membranes by interacting with Arl1, and capable of inducing membrane deformation via their BAR domains.
Collapse
Affiliation(s)
- Zhiqiu Man
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Webster MT, McCaffery JM, Cohen-Fix O. Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. ACTA ACUST UNITED AC 2010; 191:1079-88. [PMID: 21135138 PMCID: PMC3002040 DOI: 10.1083/jcb.201006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The parameters that control nuclear size and shape are poorly understood. In yeast, unregulated membrane proliferation, caused by deletion of the phospholipid biosynthesis inhibitor SPO7, leads to a single nuclear envelope "flare" that protrudes into the cytoplasm. This flare is always associated with the asymmetrically localized nucleolus, which suggests that the site of membrane expansion is spatially confined by an unknown mechanism. Here we show that in spo7Δ cells, mutations in vesicle-trafficking genes lead to multiple flares around the entire nucleus. These mutations also alter the distribution of small nucleolar RNA-associated nucleolar proteins independently of their effect on nuclear shape. Both single- and multi-flared nuclei have increased nuclear envelope surface area, yet they maintain the same nuclear/cell volume ratio as wild-type cells. These data suggest that, upon membrane expansion, the spatial confinement of the single nuclear flare is dependent on vesicle trafficking. Moreover, flares may facilitate maintenance of a constant nuclear/cell volume ratio in the face of altered membrane proliferation.
Collapse
Affiliation(s)
- Micah T Webster
- The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJS. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci 2010; 123:3478-89. [PMID: 20841378 DOI: 10.1242/jcs.074237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, Arl3p recruits Arl1p GTPase to regulate Golgi function and structure. However, the molecular mechanism involved in regulating activation of Arl1p at the Golgi is unknown. Here, we show that Syt1p promoted activation of Arl1p and recruitment of a golgin protein, Imh1p, to the Golgi. Deletion of SYT1 resulted in the majority of Arl1p being distributed diffusely throughout the cytosol. Overexpression of Syt1p increased Arl1p-GTP production in vivo and the Syt1-Sec7 domain promoted nucleotide exchange on Arl1p in vitro. Syt1p function required the N-terminal region, Sec7 and PH domains. Arl1p, but not Arl3p, interacted with Syt1p. Localization of Syt1p to the Golgi did not require Arl3p. Unlike arl1Δ or arl3Δ mutants, syt1Δ did not show defects in Gas1p transport, cell wall integrity or vacuolar structure. These findings reveal that activation of Arl1p is regulated in part by Syt1p, and imply that Arl1p activation, by using more than one GEF, exerts distinct biological activities at the Golgi compartment.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wei S, Xu Y, Shi H, Wong SH, Han W, Talbot K, Hong W, Ong WY. EHD1 is a synaptic protein that modulates exocytosis through binding to snapin. Mol Cell Neurosci 2010; 45:418-29. [PMID: 20696250 DOI: 10.1016/j.mcn.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/29/2010] [Accepted: 07/28/2010] [Indexed: 12/30/2022] Open
Abstract
EHD1 is an EH (Eps15 homology) domain-containing protein involved in endosomal recycling. Our yeast two hybrid screening experiments showed that EHD1 interacts with a synaptic protein, snapin, and the present study was carried out to further elucidate the functional significance of this interaction. Immunoreactivity to EHD1 is observed in the cerebral cortex, hippocampus and striatum, in the rat brain. The protein is colocalized with the axon terminal marker synaptophysin in cultured neurons. EHD1 binds to the C terminus of snapin via its C terminus EH domain. It negatively affects the binding of a SNARE complex protein, SNAP-25, to snapin, probably due to the competition for overlapping binding sites on the C terminus of snapin. EHD1 affects the coupling of synaptotagmin-1 to the SNARE complex, and could be a negative regulator of exocytosis. This is supported by electrophysiological findings that PC-12 cells which overexpress EHD1 show reduced depolarization-induced exocytosis compared to controls, but the reduced exocytosis is not observed in cells which overexpress the N terminus of EHD1 that is unable to bind snapin. Together, the above results indicate that EHD1 is a synaptic protein that negatively affects exocytosis through binding to snapin.
Collapse
Affiliation(s)
- Shunhui Wei
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore 138667, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Duldulao NA, Lee S, Sun Z. Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development 2009; 136:4033-42. [PMID: 19906870 PMCID: PMC2778746 DOI: 10.1242/dev.036350] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 12/27/2022]
Abstract
arl13b was initially cloned as the novel cystic kidney gene scorpion (sco) in zebrafish and was shown to be required for cilia formation in the kidney duct. In mouse, a null mutant of Arl13b shows abnormal ultrastructure of the cilium and defective sonic hedgehog (Shh) signaling. Importantly, a recent study linked mutations in ARL13B to a classical form of Joubert syndrome (JS), an autosomal recessive disorder characterized by a distinctive cerebellar malformation. In this study, we analyzed the zebrafish arl13b (sco) mutant and gene products in detail. We first demonstrate that Arl13b is a protein that is highly enriched in the cilium and is required for cilia formation in multiple organs in zebrafish, and that knockdown of arl13b leads to multiple cilia-associated phenotypes. We additionally show that multiple regions of Arl13b are required for its localization to the cilium. By means of rescuing experiments with a series of deletion and point mutants, we further demonstrate that the ciliary localization is crucial for the in vivo function of Arl13b. Together, these results strongly support the hypothesis that JS-related disease (JSRD) is a ciliopathy, or a disease caused by ciliary defects, and that Arl13b functions mainly through the cilium.
Collapse
Affiliation(s)
| | | | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, NSB-393, New Haven, CT 06520, USA
| |
Collapse
|