1
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
2
|
Perez-Vale KZ, Yow KD, Gurley NJ, Greene M, Peifer M. Rap1 regulates apical contractility to allow embryonic morphogenesis without tissue disruption and acts in part via Canoe-independent mechanisms. Mol Biol Cell 2023; 34:ar7. [PMID: 36287827 PMCID: PMC9816648 DOI: 10.1091/mbc.e22-05-0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023] Open
Abstract
Embryonic morphogenesis is powered by dramatic changes in cell shape and arrangement driven by the cytoskeleton and its connections to adherens junctions. This requires robust linkage allowing morphogenesis without disrupting tissue integrity. The small GTPase Rap1 is a key regulator of cell adhesion, controlling both cadherin-mediated and integrin-mediated processes. We have defined multiple roles in morphogenesis for one Rap1 effector, Canoe/Afadin, which ensures robust junction-cytoskeletal linkage. We now ask what mechanisms regulate Canoe and other junction-cytoskeletal linkers during Drosophila morphogenesis, defining roles for Rap1 and one of its guanine nucleotide exchange factor (GEF) regulators, Dizzy. Rap1 uses Canoe as one effector, regulating junctional planar polarity. However, Rap1 has additional roles in junctional protein localization and balanced apical constriction-in its absence, Bazooka/Par3 localization is fragmented, and cells next to mitotic cells apically constrict and invaginate, disrupting epidermal integrity. In contrast, the GEF Dizzy has phenotypes similar to but slightly less severe than Canoe loss, suggesting that this GEF regulates Rap1 action via Canoe. Taken together, these data reveal that Rap1 is a crucial regulator of morphogenesis, likely acting in parallel via Canoe and other effectors, and that different Rap1 GEFs regulate distinct functions of Rap1.
Collapse
Affiliation(s)
- Kia Z. Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristi D. Yow
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Melissa Greene
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
3
|
Lee J, Park J, Kim JH, Lee G, Park TE, Yoon KJ, Kim YK, Lim C. LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biol 2020; 18:e3001002. [PMID: 33362237 PMCID: PMC7757817 DOI: 10.1371/journal.pbio.3001002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleocytoplasmic transport (NCT) defects have been implicated in neurodegenerative diseases such as C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we identify a neuroprotective pathway of like-Sm protein 12 (LSM12) and exchange protein directly activated by cyclic AMP 1 (EPAC1) that sustains the nucleocytoplasmic RAN gradient and thereby suppresses NCT dysfunction by the C9ORF72-derived poly(glycine-arginine) protein. LSM12 depletion in human neuroblastoma cells aggravated poly(GR)-induced impairment of NCT and nuclear integrity while promoting the nuclear accumulation of poly(GR) granules. In fact, LSM12 posttranscriptionally up-regulated EPAC1 expression, whereas EPAC1 overexpression rescued the RAN gradient and NCT defects in LSM12-deleted cells. C9-ALS patient-derived neurons differentiated from induced pluripotent stem cells (C9-ALS iPSNs) displayed low expression of LSM12 and EPAC1. Lentiviral overexpression of LSM12 or EPAC1 indeed restored the RAN gradient, mitigated the pathogenic mislocalization of TDP-43, and suppressed caspase-3 activation for apoptosis in C9-ALS iPSNs. EPAC1 depletion biochemically dissociated RAN-importin β1 from the cytoplasmic nuclear pore complex, thereby dissipating the nucleocytoplasmic RAN gradient essential for NCT. These findings define the LSM12-EPAC1 pathway as an important suppressor of the NCT-related pathologies in C9-ALS/FTD. A post-transcriptional circuit comprising LSM12 and EPAC1 suppresses neurodegenerative pathologies in C9ORF72-associated amyotrophic lateral sclerosis by establishing the RAN gradient and sustaining nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jumin Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Giwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Tae-Eun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.
Collapse
|
5
|
Naim N, Reece JM, Zhang X, Altschuler DL. Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation. Methods Mol Biol 2020; 2173:201-216. [PMID: 32651920 PMCID: PMC7968876 DOI: 10.1007/978-1-0716-0755-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
cAMP is a crucial mediator of multiple cell signaling pathways. This cyclic nucleotide requires strict spatiotemporal control for effective function. Light-activated proteins have become a powerful tool to study signaling kinetics due to having quick on/off rates and minimal off-target effects. The photoactivated adenylyl cyclase from Beggiatoa (bPAC) produces cAMP rapidly upon stimulation with blue light. However, light delivery is not always feasible, especially in vivo. Hence, we created a luminescence-activated cyclase by fusing bPAC with nanoluciferase (nLuc) to allow chemical activation of cAMP activity. This dual-activated adenylyl cyclase can be stimulated using short bursts of light or long-term chemical activation with furimazine and other related luciferins. Together these can be used to mimic transient, chronic, and oscillating patterns of cAMP signaling. Moreover, when coupled to compartment-specific targeting domains, these reagents provide a new powerful tool for cAMP spatiotemporal dynamic studies. Here, we describe detailed methods for working with bPAC-nLuc in mammalian cells, stimulating cAMP production with light and luciferins, and measuring total cAMP accumulation.
Collapse
Affiliation(s)
- Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Addgene, Watertown, MA, USA
| | - Jeff M Reece
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Advanced Light Microscopy & Image Analysis Core (ALMIAC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Davies SA, Cabrero P, Marley R, Corrales GM, Ghimire S, Dornan AJ, Dow JAT. Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model. Methods Mol Biol 2019; 1926:203-221. [PMID: 30742274 DOI: 10.1007/978-1-4939-9021-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the 'omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.
Collapse
Affiliation(s)
- Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Guillermo Martinez Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
7
|
Naim N, White AD, Reece JM, Wankhede M, Zhang X, Vilardaga JP, Altschuler DL. Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis. J Biol Chem 2018; 294:1095-1103. [PMID: 30559293 DOI: 10.1074/jbc.ac118.004905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fine-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
Collapse
Affiliation(s)
- Nyla Naim
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Alex D White
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261; Molecular Pharmacology Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeff M Reece
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261
| | | | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
8
|
Ding H, Bai F, Cao H, Xu J, Fang L, Wu J, Yuan Q, Zhou Y, Sun Q, He W, Dai C, Zen K, Jiang L, Yang J. PDE/cAMP/Epac/C/EBP-β Signaling Cascade Regulates Mitochondria Biogenesis of Tubular Epithelial Cells in Renal Fibrosis. Antioxid Redox Signal 2018; 29:637-652. [PMID: 29216750 DOI: 10.1089/ars.2017.7041] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Cyclic adenosine 3'5'-monophosphate (cAMP) is a universal second messenger that plays an important role in intracellular signal transduction. cAMP is synthesized by adenylate cyclases from adenosine triphosphate and terminated by the phosphodiesterases (PDEs). In the present study, we investigated the role of the cAMP pathway in tubular epithelial cell mitochondrial biogenesis in the pathogenesis of renal fibrosis. RESULTS We found that the cAMP levels were decreased in fibrotic kidney tissues, and replenishing cAMP could ameliorate tubular atrophy and extracellular matrix deposition. The downregulation of cAMP was mainly attributed to the increased PDE4 expression in tubular epithelial cells. The inhibition of PDE4 by PDE4 siRNA or the specific inhibitor, rolipram, attenuated unilateral ureteral obstruction-induced renal interstitial fibrosis and transforming growth factor (TGF)-β1-stimulated primary tubular epithelial cell (PTC) damage. The Epac1/Rap1 pathway contributed to the main effect of cAMP on renal fibrosis. Rolipram could restore C/EBP-β and PGC-1α expression and protect the mitochondrial function and structure of PTCs under TGF-β1 stimulation. The antifibrotic role of rolipram in renal fibrosis relies on C/EBP-β and PGC-1α expression in tubular epithelial cells. Innovation and Conclusion: The results of the present study indicate that cAMP signaling regulates the mitochondrial biogenesis of tubular epithelial cells in renal fibrosis. Restoring cAMP by the PDE4 inhibitor rolipram may ameliorate renal fibrosis by targeting C/EBP-β/PGC1-α and mitochondrial biogenesis. Antioxid. Redox Signal. 29, 637-652.
Collapse
Affiliation(s)
- Hao Ding
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Feng Bai
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China .,2 Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second People's Hospital , Huai'an, China
| | - Hongdi Cao
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Jing Xu
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Li Fang
- 3 Department of Nephrology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jining Wu
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Qi Yuan
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Yang Zhou
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Qi Sun
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Weichun He
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Chunsun Dai
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Ke Zen
- 4 State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences , Nanjing, China
| | - Lei Jiang
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| | - Junwei Yang
- 1 Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University , Nanjing, China
| |
Collapse
|
9
|
Liang X, Yong Z, Su R. Inhibition of protein kinase A and GIRK channel reverses fentanyl-induced respiratory depression. Neurosci Lett 2018; 677:14-18. [PMID: 29679681 DOI: 10.1016/j.neulet.2018.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/07/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Opioid-induced respiratory depression is a major obstacle to improving the clinical management of moderate to severe chronic pain. Opioids inhibit neuronal activity via various pathways, including calcium channels, adenylyl cyclase, and potassium channels. Currently, the underlying molecular pathway of opioid-induced respiratory depression is only partially understood. This study aimed to investigate the mechanisms of opioid-induced respiratory depression in vivo by examining the effects of different pharmacological agents on fentanyl-induced respiratory depression. Respiratory parameters were detected using whole body plethysmography in conscious rats. We show that pre-treatment with the protein kinase A (PKA) inhibitor H89 reversed the fentanyl-related effects on respiratory rate, inspiratory time, and expiratory time. Pre-treatment with the G protein-gated inwardly rectifying potassium (GIRK) channel blocker Tertiapin-Q dose-dependently reversed the fentanyl-related effects on respiratory rate and inspiratory time. A phosphodiesterase 4 (PDE4) inhibitor and cyclic adenosine monophosphate (cAMP) analogs did not affect fentanyl-induced respiratory depression. These findings suggest that PKA and GIRK may be involved in fentanyl-induced respiratory depression and could represent useful therapeutic targets for the treatment of fentanyl-induced ventilatory depression.
Collapse
Affiliation(s)
- Xiaonan Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zheng Yong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
10
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
11
|
Richlitzki A, Latour P, Schwärzel M. Null EPAC mutants reveal a sequential order of versatile cAMP effects during Drosophila aversive odor learning. ACTA ACUST UNITED AC 2017; 24:210-215. [PMID: 28416632 PMCID: PMC5397686 DOI: 10.1101/lm.043646.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
Abstract
Here, we define a role of the cAMP intermediate EPAC in Drosophila aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the rutabaga adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom body Kenyon cells (KCs) as a necessary and sufficient site of EPAC action. We provide mechanistic insights by analyzing acquisition dynamics and using the "performance increment" as a means to access the trial-based sequential organization of odor learning. Thereby we show that versatile cAMP-dependent mechanisms are engaged within a sequential order that correlate to individual trials of the training session.
Collapse
Affiliation(s)
- Antje Richlitzki
- Freie Universität Berlin, Biology/Neurobiology, D-14195 Berlin, Germany
| | - Philipp Latour
- Freie Universität Berlin, Biology/Neurobiology, D-14195 Berlin, Germany
| | - Martin Schwärzel
- Freie Universität Berlin, Biology/Neurobiology, D-14195 Berlin, Germany
| |
Collapse
|
12
|
Jansen V, Jikeli JF, Wachten D. How to control cyclic nucleotide signaling by light. Curr Opin Biotechnol 2017; 48:15-20. [PMID: 28288335 DOI: 10.1016/j.copbio.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
Optogenetics allows to non-invasively manipulate cellular functions with spatio-temporal precision by combining genetic engineering with the control of protein function by light. Since the discovery of channelrhodopsin has pioneered the field, the optogenetic toolkit has been ever expanding and allows now not only to control neuronal activity by light, but rather a multitude of other cellular functions. One important application that has been established in recent years is the light-dependent control of second messenger signaling. The optogenetic toolkit now allows to control cyclic nucleotide-dependent signaling by light in vitro and in vivo.
Collapse
Affiliation(s)
- Vera Jansen
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Jan F Jikeli
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany; Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
13
|
Vonhoff F, Keshishian H. Cyclic nucleotide signaling is required during synaptic refinement at the Drosophila neuromuscular junction. Dev Neurobiol 2016; 77:39-60. [PMID: 27281494 DOI: 10.1002/dneu.22407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
Abstract
The removal of miswired synapses is a fundamental prerequisite for normal circuit development, leading to clinical problems when aberrant. However, the underlying activity-dependent molecular mechanisms involved in synaptic pruning remain incompletely resolved. Here the dynamic properties of intracellular calcium oscillations and a role for cAMP signaling during synaptic refinement in intact Drosophila embryos were examined using optogenetic tools. We provide In vivo evidence at the single gene level that the calcium-dependent adenylyl cyclase rutabaga, the phosphodiesterase dunce, the kinase PKA, and Protein Phosphatase 1 (PP1) all operate within a functional signaling pathway to modulate Sema2a-dependent chemorepulsion. It was found that presynaptic cAMP levels were required to be dynamically maintained at an optimal level to suppress connectivity defects. It was also proposed that PP1 may serve as a molecular link between cAMP signaling and CaMKII in the pathway underlying refinement. The results introduced an in vivo model where presynaptic cAMP levels, downstream of electrical activity and calcium influx, act via PKA and PP1 to modulate the neuron's response to chemorepulsion involved in the withdrawal of off-target synaptic contacts. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 39-60, 2017.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| |
Collapse
|
14
|
Bacillus bombysepticus α-Toxin Binding to G Protein-Coupled Receptor Kinase 2 Regulates cAMP/PKA Signaling Pathway to Induce Host Death. PLoS Pathog 2016; 12:e1005527. [PMID: 27022742 PMCID: PMC4811588 DOI: 10.1371/journal.ppat.1005527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial pathogens and their toxins target host receptors, leading to aberrant behavior or host death by changing signaling events through subversion of host intracellular cAMP level. This is an efficient and widespread mechanism of microbial pathogenesis. Previous studies describe toxins that increase cAMP in host cells, resulting in death through G protein-coupled receptor (GPCR) signaling pathways by influencing adenylyl cyclase or G protein activity. G protein-coupled receptor kinase 2 (GRK2) has a central role in regulation of GPCR desensitization. However, little information is available about the pathogenic mechanisms of toxins associated with GRK2. Here, we reported a new bacterial toxin-Bacillus bombysepticus (Bb) α-toxin that was lethal to host. We showed that Bb α-toxin interacted with BmGRK2. The data demonstrated that Bb α-toxin directly bound to BmGRK2 to promote death by affecting GPCR signaling pathways. This mechanism involved stimulation of Gαs, increase level of cAMP and activation of protein kinase A (PKA). Activated cAMP/PKA signal transduction altered downstream effectors that affected homeostasis and fundamental biological processes, disturbing the structural and functional integrity of cells, resulting in death. Preventing cAMP/PKA signaling transduction by inhibitions (NF449 or H-89) substantially reduced the pathogenicity of Bb α-toxin. The discovery of a toxin-induced host death specifically linked to GRK2 mediated signaling pathway suggested a new model for bacterial toxin action. Characterization of host genes whose expression and function are regulated by Bb α-toxin and GRK2 will offer a deeper understanding of the pathogenesis of infectious diseases caused by pathogens that elevate cAMP. Interference with regulation of host signaling by pathogens can alter gene expression, leading to functional disarray in the host cells that causes abnormal division or death. Here, we propose a previously undescribed model for how bacterial toxins subvert host processes via interaction with GRK2 that influences cAMP/PKA signaling. Our findings provide new fundamental information about how bacterial pathogens regulate host signal transduction to cause death, which offers additional perspectives in host-pathogen systems. These findings will help to advance our understanding of bacteria pathogenic mechanism. Furthermore, these might extend to other microbial pathogenesis and assist in designing new or safer strategies against pathogens.
Collapse
|
15
|
Efetova M, Schwärzel M. Photoactivatable adenylyl cyclases (PACs) as a tool to study cAMP signaling in vivo: an overview. Methods Mol Biol 2015; 1294:131-5. [PMID: 25783882 DOI: 10.1007/978-1-4939-2537-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Photoactivatable adenylyl cyclases (PACs) are proteins that combine the capacity of a photoreceptor with that of an adenylyl cyclase. When ectopically expressed under the control of specific promoters, these naturally occurring proteins become potent transgenic tools that facilitate the increase of cellular cAMP levels by the use of light. Currently, three different PAC transgenes-the euglenoid euPACα and euPACβ, as well as the b eggiatoan bPac-are available. These transgenic tools provide cyclase activity capable of increasing cellular cAMP levels up to a hundredfold with either phasic- or tonic-like kinetic characteristics. Here, we consider the functional features of different cyclases and provide operating guidelines to optimize the use of PACs in vivo.
Collapse
Affiliation(s)
- Marina Efetova
- Institute for Biology/Neurobiology, Freie Universität Berlin, Königin-Luise-Str. 28-30, Berlin, D-14195, Germany
| | | |
Collapse
|
16
|
Schellinger JN, Rodan AR. Use of the Ramsay Assay to Measure Fluid Secretion and Ion Flux Rates in the Drosophila melanogaster Malpighian Tubule. J Vis Exp 2015. [PMID: 26650886 DOI: 10.3791/53144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Modulation of renal epithelial ion transport allows organisms to maintain ionic and osmotic homeostasis in the face of varying external conditions. The Drosophila melanogaster Malpighian (renal) tubule offers an unparalleled opportunity to study the molecular mechanisms of epithelial ion transport, due to the powerful genetics of this organism and the accessibility of its renal tubules to physiological study. Here, we describe the use of the Ramsay assay to measure fluid secretion rates from isolated fly renal tubules, with the use of ion-specific electrodes to measure sodium and potassium concentrations in the secreted fluid. This assay allows study of transepithelial fluid and ion fluxes of ~20 tubules at a time, without the need to transfer the secreted fluid to a separate apparatus to measure ion concentrations. Genetically distinct tubules can be analyzed to assess the role of specific genes in transport processes. Additionally, the bathing saline can be modified to examine the effects of its chemical characteristics, or drugs or hormones added. In summary, this technique allows the molecular characterization of basic mechanisms of epithelial ion transport in the Drosophila tubule, as well as regulation of these transport mechanisms.
Collapse
Affiliation(s)
| | - Aylin R Rodan
- Department of Internal Medicine, University of Texas Southwestern Medical Center;
| |
Collapse
|
17
|
Richter F, Scheib US, Mehlhorn J, Schubert R, Wietek J, Gernetzki O, Hegemann P, Mathes T, Möglich A. Upgrading a microplate reader for photobiology and all-optical experiments. Photochem Photobiol Sci 2015; 14:270-9. [PMID: 25373866 DOI: 10.1039/c4pp00361f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Automation can vastly reduce the cost of experimental labor and thus facilitate high experimental throughput, but little off-the-shelf hardware for the automation of illumination experiments is commercially available. Here, we use inexpensive open-source electronics to add programmable illumination capabilities to a multimode microplate reader. We deploy this setup to characterize light-triggered phenomena in three different sensory photoreceptors. First, we study the photoactivation of Arabidopsis thaliana phytochrome B by light of different wavelengths. Second, we investigate the dark-state recovery kinetics of the Synechocystis sp. blue-light sensor Slr1694 at multiple temperatures and imidazole concentrations; while the kinetics of the W91F mutant of Slr1694 are strongly accelerated by imidazole, the wild-type protein is hardly affected. Third, we determine the light response of the Beggiatoa sp. photoactivatable adenylate cyclase bPAC in Chinese hamster ovary cells. bPAC is activated by blue light in dose-dependent manner with a half-maximal intensity of 0.58 mW cm(-2); intracellular cAMP spikes generated upon bPAC activation decay with a half time of about 5 minutes after light switch-off. Taken together, we present a setup which is easily assembled and which thus offers a facile approach to conducting illumination experiments at high throughput, reproducibility and fidelity.
Collapse
Affiliation(s)
- Florian Richter
- Humboldt-Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boularan C, Gales C. Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 2015; 6:203. [PMID: 26483685 PMCID: PMC4589651 DOI: 10.3389/fphar.2015.00203] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
Collapse
Affiliation(s)
- Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| | - Céline Gales
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|
19
|
Patel N, Gold MG. The genetically encoded tool set for investigating cAMP: more than the sum of its parts. Front Pharmacol 2015; 6:164. [PMID: 26300778 PMCID: PMC4526808 DOI: 10.3389/fphar.2015.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Intracellular fluctuations of the second messenger cyclic AMP (cAMP) are regulated with spatial and temporal precision. This regulation is supported by the sophisticated arrangement of cyclases, phosphodiesterases, anchoring proteins, and receptors for cAMP. Discovery of these nuances to cAMP signaling has been facilitated by the development of genetically encodable tools for monitoring and manipulating cAMP and the proteins that support cAMP signaling. In this review, we discuss the state-of-the-art in development of different genetically encoded tools for sensing cAMP and the activity of its primary intracellular receptor protein kinase A (PKA). We introduce sequences for encoding adenylyl cyclases that enable cAMP levels to be artificially elevated within cells. We chart the evolution of sequences for selectively modifying protein-protein interactions that support cAMP signaling, and for driving cAMP sensors and manipulators to different subcellular locations. Importantly, these different genetically encoded tools can be applied synergistically, and we highlight notable instances that take advantage of this property. Finally, we consider prospects for extending the utility of the tool set to support further insights into the role of cAMP in health and disease.
Collapse
Affiliation(s)
- Neha Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
20
|
Wu Y, Baum M, Huang CL, Rodan AR. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26224687 DOI: 10.1152/ajpregu.00148.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inwardly rectifying potassium channels play essential roles in renal physiology across phyla. Barium-sensitive K(+) conductances are found on the basolateral membrane of a variety of insect Malpighian (renal) tubules, including Drosophila melanogaster. We found that barium decreases the lumen-positive transepithelial potential difference in isolated perfused Drosophila tubules and decreases fluid secretion and transepithelial K(+) flux. In those insect species in which it has been studied, transcripts from multiple genes encoding inwardly rectifying K(+) channels are expressed in the renal (Malpighian) tubule. In Drosophila melanogaster, this includes transcripts of the Irk1, Irk2, and Irk3 genes. The role of each of these gene products in renal tubule function is unknown. We found that simultaneous knockdown of Irk1 and Irk2 in the principal cell of the fly tubule decreases transepithelial K(+) flux, with no additive effect of Irk3 knockdown, and decreases barium sensitivity of transepithelial K(+) flux by ∼50%. Knockdown of any of the three inwardly rectifying K(+) channels individually has no effect, nor does knocking down Irk3 simultaneously with Irk1 or Irk2. Irk1/Irk2 principal cell double-knockdown tubules remain sensitive to the kaliuretic effect of cAMP. Inhibition of the Na(+)/K(+)-ATPase with ouabain and Irk1/Irk2 double knockdown have additive effects on K(+) flux, and 75% of transepithelial K(+) transport is due to Irk1/Irk2 or ouabain-sensitive pathways. In conclusion, Irk1 and Irk2 play redundant roles in transepithelial ion transport in the Drosophila melanogaster renal tubule and are additive to Na(+)/K(+)-ATPase-dependent pathways.
Collapse
Affiliation(s)
- Yipin Wu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Michel Baum
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
21
|
Yang F, Liu Y, Tu J, Wan J, Zhang J, Wu B, Chen S, Zhou J, Mu Y, Wang L. Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat Commun 2014; 5:5627. [PMID: 25517983 PMCID: PMC4284631 DOI: 10.1038/ncomms6627] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.
Collapse
Affiliation(s)
- Fan Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunhui Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Tu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Wan
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zhang
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bifeng Wu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanping Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawei Zhou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yangling Mu
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
22
|
Ryu MH, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 2014; 3:802-10. [PMID: 24926804 PMCID: PMC4277780 DOI: 10.1021/sb400182x] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Enormous
potential of cell-based therapeutics is hindered by the
lack of effective means to control genetically engineered cells in
mammalian tissues. Here, we describe a synthetic module for remote
photocontrol of engineered cells that can be adapted for such applications.
The module involves photoactivated synthesis of cyclic dimeric GMP
(c-di-GMP), a stable small molecule that is not produced by higher
eukaryotes and therefore is suitable for orthogonal regulation. The
key component of the photocontrol module is an engineered bacteriophytochrome
diguanylate cyclase, which synthesizes c-di-GMP from GTP in a light-dependent
manner. Bacteriophytochromes are particularly attractive photoreceptors
because they respond to light in the near-infrared window of the spectrum,
where absorption by mammalian tissues is minimal, and also because
their chromophore, biliverdin IXα, is naturally available in
mammalian cells. The second component of the photocontrol module,
a c-di-GMP phosphodiesterase, maintains near-zero background levels
of c-di-GMP in the absence of light, which enhances the photodynamic
range of c-di-GMP concentrations. In the E. coli model
used in this study, the intracellular c-di-GMP levels could be upregulated
by light by >50-fold. Various c-di-GMP-responsive proteins and
riboswitches
identified in bacteria can be linked downstream of the c-di-GMP-mediated
photocontrol module for orthogonal regulation of biological activities
in mammals as well as in other organisms lacking c-di-GMP signaling.
Here, we linked the photocontrol module to a gene expression output
via a c-di-GMP-responsive transcription factor and achieved a 40-fold
photoactivation of gene expression.
Collapse
Affiliation(s)
- Min-Hyung Ryu
- Department of Molecular Biology, University of Wyoming, 1000 East
University Avenue, Dept. 3944, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, 1000 East
University Avenue, Dept. 3944, Laramie, Wyoming 82071, United States
| |
Collapse
|
23
|
Davies SA, Cabrero P, Overend G, Aitchison L, Sebastian S, Terhzaz S, Dow JAT. Cell signalling mechanisms for insect stress tolerance. ACTA ACUST UNITED AC 2014; 217:119-28. [PMID: 24353211 DOI: 10.1242/jeb.090571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insects successfully occupy most environmental niches and this success depends on surviving a broad range of environmental stressors including temperature, desiccation, xenobiotic, osmotic and infection stress. Epithelial tissues play key roles as barriers between the external and internal environments and therefore maintain homeostasis and organismal tolerance to multiple stressors. As such, the crucial role of epithelia in organismal stress tolerance cannot be underestimated. At a molecular level, multiple cell-specific signalling pathways including cyclic cAMP, cyclic cGMP and calcium modulate tissue, and hence, organismal responses to stress. Thus, epithelial cell-specific signal transduction can be usefully studied to determine the molecular mechanisms of organismal stress tolerance in vivo. This review will explore cell signalling modulation of stress tolerance in insects by focusing on cell signalling in a fluid transporting epithelium--the Malpighian tubule. Manipulation of specific genes and signalling pathways in only defined tubule cell types can influence the survival outcome in response to multiple environmental stressors including desiccation, immune, salt (ionic) and oxidative stress, suggesting that studies in the genetic model Drosophila melanogaster may reveal novel pathways required for stress tolerance.
Collapse
Affiliation(s)
- Shireen A Davies
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.
Collapse
|