1
|
Inderwiedenstraße L, Kienitz MC. Angiotensin receptors and α 1B-adrenergic receptors regulate native IK (ACh) and phosphorylation-deficient GIRK4 (S418A) channels through different PKC isoforms. Pflugers Arch 2024; 476:1041-1064. [PMID: 38658400 DOI: 10.1007/s00424-024-02966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Signaling of G protein-activated inwardly rectifying K+ (GIRK) channels is an important mechanism of the parasympathetic regulation of the heart rate and cardiac excitability. GIRK channels are inhibited during stimulation of Gq-coupled receptors (GqPCRs) by depletion of phosphatidyl-4,5-bisphosphate (PIP2) and/or channel phosphorylation by protein kinase C (PKC). The GqPCR-dependent modulation of GIRK currents in terms of specific PKC isoform activation was analyzed in voltage-clamp experiments in rat atrial myocytes and in CHO or HEK 293 cells. By using specific PKC inhibitors, we identified the receptor-activated PKC isoforms that contribute to phenylephrine- and angiotensin-induced GIRK channel inhibition. We demonstrate that the cPKC isoform PKCα significantly contributes to GIRK inhibition during stimulation of wildtype α1B-adrenergic receptors (α1B-ARs). Deletion of the α1B-AR serine residues S396 and S400 results in a preferential regulation of GIRK activity by PKCβ. As a novel finding, we report that the AT1-receptor-induced GIRK inhibition depends on the activation of the nPKC isoform PKCε whereas PKCα and PKCβ do not mainly participate in the angiotensin-mediated GIRK reduction. Expression of the dominant negative (DN) PKCε prolonged the onset of GIRK inhibition and significantly reduced AT1-R desensitization, indicating that PKCε regulates both GIRK channel activity and the strength of the receptor signal via a negative feedback mechanism. The serine residue S418 represents an important phosphorylation site for PKCε in the GIRK4 subunit. To analyze the functional impact of this PKC phosphorylation site for receptor-specific GIRK channel modulation, we monitored the activity of a phosphorylation-deficient (GIRK4 (S418A)) GIRK4 channel mutant during stimulation of α1B-ARs or AT1-receptors. Mutation of S418 did not impede α1B-AR-mediated GIRK inhibition, suggesting that S418 within the GIRK4 subunit is not subject to PKCα-induced phosphorylation. Furthermore, activation of angiotensin receptors induced pronounced GIRK4 (S418A) channel inhibition, excluding that this phosphorylation site contributes to the AT1-R-induced GIRK reduction. Instead, phosphorylation of S418 has a facilitative effect on GIRK activity that was abolished in the GIRK4 (S418A) mutant. To summarize, the present study shows that the receptor-dependent regulation of atrial GIRK channels is attributed to the GqPCR-specific activation of different PKC isoforms. Receptor-specific activated PKC isoforms target distinct phosphorylation sites within the GIRK4 subunit, resulting in differential regulation of GIRK channel activity with either facilitative or inhibitory effects on GIRK currents.
Collapse
Affiliation(s)
- Leonie Inderwiedenstraße
- Department for Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Marie-Cécile Kienitz
- Department for Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience 2022; 44:2077-2094. [DOI: 10.1007/s11357-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
|
3
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
4
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Iguchi N, Dönmez Mİ, Malykhina AP, Carrasco A, Wilcox DT. Preventative effects of a HIF inhibitor, 17-DMAG, on partial bladder outlet obstruction-induced bladder dysfunction. Am J Physiol Renal Physiol 2017; 313:F1149-F1160. [PMID: 28768664 DOI: 10.1152/ajprenal.00240.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/11/2023] Open
Abstract
Posterior urethral valves are the most common cause of partial bladder outlet obstruction (PBOO) in the pediatric population. Pathological changes in the bladder developed during PBOO are responsible for long-lasting voiding dysfunction in this population despite early surgical interventions. Increasing evidence showed PBOO induces an upregulation of hypoxia-inducible factors (HIFs) and their transcriptional target genes, and they play a role in pathophysiological changes in the obstructed bladders. We hypothesized that blocking HIF pathways can prevent PBOO-induced bladder dysfunction. PBOO was surgically created by ligation of the bladder neck in male C57BL/6J mice for 2 wk. PBOO mice received intraperitoneal injection of either saline or 17-DMAG (alvespimycin, 3 mg/kg) every 48 h starting from day 1 postsurgery. Sham-operated animals received injection of saline on the same schedule as PBOO mice and served as controls. The bladders were harvested after 2 wk, and basal activity and evoked contractility of the detrusor smooth muscle (DSM) were evaluated in vitro. Bladder function was assessed in vivo by void spot assay and cystometry in conscious, unrestrained mice. Results indicated the 17-DMAG treatment preserved DSM contractility and partially prevented the development of detrusor over activity in obstructed bladders. In addition, PBOO caused a significant increase in the frequency of micturition, which was significantly reduced by 17-DMAG treatment. The 17-DMAG treatment improved urodynamic parameters, including increases in the bladder pressure at micturition and nonvoid contractions observed in PBOO mice. These results demonstrate that treatment with 17-DMAG, a HIF inhibitor, significantly alleviated PBOO-induced bladder pathology in vivo.
Collapse
Affiliation(s)
- Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - M İrfan Dönmez
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | | | - Duncan T Wilcox
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and .,Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
6
|
Shaheen S, Wan Z, Li Z, Chau A, Li X, Zhang S, Liu Y, Yi J, Zeng Y, Wang J, Chen X, Xu L, Chen W, Wang F, Lu Y, Zheng W, Shi Y, Sun X, Li Z, Xiong C, Liu W. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase. eLife 2017; 6. [PMID: 28755662 PMCID: PMC5536945 DOI: 10.7554/elife.23060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The mechanosensing ability of lymphocytes regulates their activation in response to antigen stimulation, but the underlying mechanism remains unexplored. Here, we report that B cell mechanosensing-governed activation requires BCR signaling molecules. PMA-induced activation of PKCβ can bypass the Btk and PLC-γ2 signaling molecules that are usually required for B cells to discriminate substrate stiffness. Instead, PKCβ-dependent activation of FAK is required, leading to FAK-mediated potentiation of B cell spreading and adhesion responses. FAK inactivation or deficiency impaired B cell discrimination of substrate stiffness. Conversely, adhesion molecules greatly enhanced this capability of B cells. Lastly, B cells derived from rheumatoid arthritis (RA) patients exhibited an altered BCR response to substrate stiffness in comparison with healthy controls. These results provide a molecular explanation of how initiation of B cell activation discriminates substrate stiffness through a PKCβ-mediated FAK activation dependent manner.
Collapse
Affiliation(s)
- Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zongyu Li
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Alicia Chau
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xinxin Li
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Shaosen Zhang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yang Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Junyang Yi
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wei Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yun Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology, Tsinghua University, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Chunyang Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Scott DW, Tolbert CE, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell 2016; 27:1420-30. [PMID: 26985018 PMCID: PMC4850030 DOI: 10.1091/mbc.e15-12-0833] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
Forces on JAM-A activate RhoA to increase cell stiffness. Activation of RhoA requires GEF-H1 and p115 RhoGEF activation downstream of FAK/ERK and Src family kinases, respectively. Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.
Collapse
Affiliation(s)
- David W Scott
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caitlin E Tolbert
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
8
|
MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS One 2015; 10:e0141397. [PMID: 26528715 PMCID: PMC4631550 DOI: 10.1371/journal.pone.0141397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Background Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo. Methods and Results siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization. Conclusions MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular injury, but accelerated reestablishment of an intact endothelium. MARCKS is a novel translational target with beneficial cell type-specific effects on both ECs and VSMCs.
Collapse
|
9
|
Abstract
A large number of protein substrates are phosphorylated by each protein kinase under physiological and pathological conditions. However, it remains a challenge to determine which of these phosphorylated substrates of a given kinase is critical for each cellular response. Genetics enabled the generation of separation-of-function mutations that selectively cause a loss of one molecular event without affecting others, thus providing some tools to assess the importance of that one event for the measured physiological response. However, the genetic approach is laborious and not adaptable to all systems. Furthermore, pharmacological tools of the catalytic site are not optimal due to their non-selective nature. In the present brief review, we discuss some of the challenges in drug development that will regulate the multifunctional protein kinase Cδ (PKCδ).
Collapse
|
10
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Grover S, Arya R. Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion. Mol Neurobiol 2014; 50:257-73. [PMID: 24474513 DOI: 10.1007/s12035-013-8604-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022]
Abstract
Hereditary inclusion body myopathy (GNE myopathy) is a neuromuscular disorder due to mutation in key sialic acid biosynthetic enzyme, GNE. The pathomechanism of the disease is poorly understood as GNE is involved in other cellular functions beside sialic acid synthesis. In the present study, a HEK293 cell-based model system has been established where GNE is either knocked down or over-expressed along with pathologically relevant GNE mutants (D176V and V572L). The subcellular distribution of recombinant GNE and its mutant showed differential localization in the cell. The effect of mutation on GNE function was investigated by studying hyposialylation of cell membrane receptor, β1-integrin. Hyposialylated β1-integrin localized to internal vesicles that was restored upon supplementation with sialic acid. Fibronectin stimulation caused migration of hyposialylated β1-integrin to the cell membrane and co-localization with focal adhesion kinase (FAK) leading to increased focal adhesion formation. This further activated FAK and Src, downstream signaling molecules and led to increased cell adhesion. This is the first report to show that mutation in GNE affects β1-integrin-mediated cell adhesion process in GNE mutant cells.
Collapse
Affiliation(s)
- Sonam Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
12
|
Ott LE, Sung EJ, Melvin AT, Sheats MK, Haugh JM, Adler KB, Jones SL. Fibroblast Migration Is Regulated by Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein. PLoS One 2013; 8:e66512. [PMID: 23840497 PMCID: PMC3686679 DOI: 10.1371/journal.pone.0066512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/10/2013] [Indexed: 01/10/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitously expressed substrate of protein kinase C (PKC) that is involved in reorganization of the actin cytoskeleton. We hypothesized that MARCKS is involved in regulation of fibroblast migration and addressed this hypothesis by utilizing a unique reagent developed in this laboratory, the MANS peptide. The MANS peptide is a myristoylated cell permeable peptide corresponding to the first 24-amino acids of MARCKS that inhibits MARCKS function. Treatment of NIH-3T3 fibroblasts with the MANS peptide attenuated cell migration in scratch wounding assays, while a myristoylated, missense control peptide (RNS) had no effect. Neither MANS nor RNS peptide treatment altered NIH-3T3 cell proliferation within the parameters of the scratch assay. MANS peptide treatment also resulted in inhibited NIH-3T3 chemotaxis towards the chemoattractant platelet-derived growth factor-BB (PDGF-BB), with no effect observed with RNS treatment. Live cell imaging of PDGF-BB induced chemotaxis demonstrated that MANS peptide treatment resulted in weak chemotactic fidelity compared to RNS treated cells. MANS and RNS peptides did not affect PDGF-BB induced phosphorylation of MARCKS or phosphoinositide 3-kinase (PI3K) signaling, as measured by Akt phosphorylation. Further, no difference in cell migration was observed in NIH-3T3 fibroblasts that were transfected with MARCKS siRNAs with or without MANS peptide treatment. Genetic structure-function analysis revealed that MANS peptide-mediated attenuation of NIH-3T3 cell migration does not require the presence of the myristic acid moiety on the amino-terminus. Expression of either MANS or unmyristoylated MANS (UMANS) C-terminal EGFP fusion proteins resulted in similar levels of attenuated cell migration as observed with MANS peptide treatment. These data demonstrate that MARCKS regulates cell migration and suggests that MARCKS-mediated regulation of fibroblast migration involves the MARCKS amino-terminus. Further, this data demonstrates that MANS peptide treatment inhibits MARCKS function during fibroblast migration and that MANS mediated inhibition occurs independent of myristoylation.
Collapse
Affiliation(s)
- Laura E. Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eui Jae Sung
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Adam T. Melvin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary K. Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jason M. Haugh
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kenneth B. Adler
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Samuel L. Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Youn Jung S, Bok Kim O, Kang HK, Jang DH, Min BM, Yu FH. Protein kinase Cα/β inhibitor Gö6976 promotes PC12 cell adhesion and spreading through membrane recruitment and activation of protein kinase Cδ. Exp Cell Res 2013; 319:153-60. [DOI: 10.1016/j.yexcr.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/30/2022]
|
14
|
Boulter E, Estrach S, Errante A, Pons C, Cailleteau L, Tissot F, Meneguzzi G, Féral CC. CD98hc (SLC3A2) regulation of skin homeostasis wanes with age. ACTA ACUST UNITED AC 2013; 210:173-90. [PMID: 23296466 PMCID: PMC3549711 DOI: 10.1084/jem.20121651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of CD98hc expression in young adult skin induces changes similar to those associated with aging, including improper skin homeostasis and epidermal wound healing. Skin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro. We unravel CD98hc functions in vivo in skin. We report that CD98hc invalidation has no appreciable effect on cell adhesion, clearly showing that CD98hc disruption phenocopies neither CD98hc knockdown in cultured keratinocytes nor epidermal β1 integrin loss in vivo. Instead, we show that CD98hc deletion in murine epidermis results in improper skin homeostasis and epidermal wound healing. These defects resemble aged skin alterations and correlate with reduction of CD98hc expression observed in elderly mice. We also demonstrate that CD98hc absence in vivo induces defects as early as integrin-dependent Src activation. We decipher the molecular mechanisms involved in vivo by revealing a crucial role of the CD98hc/integrins/Rho guanine nucleotide exchange factor (GEF) leukemia-associated RhoGEF (LARG)/RhoA pathway in skin homeostasis. Finally, we demonstrate that the deregulation of RhoA activation in the absence of CD98hc is also a result of impaired CD98hc-dependent amino acid transports.
Collapse
Affiliation(s)
- Etienne Boulter
- Institute for Research on Cancer and Aging, Nice, AVENIR Team, University of Nice Sophia-Antipolis, Institut National de la Santé et de la Recherche Médicale U1081, Centre National de la Recherche Scientifique UMR 7284, Centre Antoine Lacassagne, Nice 06107, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Alli AA, Bao HF, Alli AA, Aldrugh Y, Song JZ, Ma HP, Yu L, Al-Khalili O, Eaton DC. Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 2012; 303:F800-11. [PMID: 22791334 PMCID: PMC3468524 DOI: 10.1152/ajprenal.00703.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/06/2012] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tochhawng L, Deng S, Pervaiz S, Yap CT. Redox regulation of cancer cell migration and invasion. Mitochondrion 2012; 13:246-53. [PMID: 22960576 DOI: 10.1016/j.mito.2012.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/03/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022]
Abstract
Cancer cell migration and invasion are the initial steps in metastasis. Through a series of cellular events, including cytoskeletal remodeling resulting in phenotype changes and degradation of the extracellular matrix, cells are able to detach from the primary tumor and metastasize to distant sites. These changes occur in response to intracellular signaling mechanisms triggered via cell surface receptor stimulation or signal amplification within the cell. Amongst the active molecules that participate in relaying cellular signals are the reactive oxygen species (ROS). Initially identified to participate in defense mechanisms to ward off invading pathogens, ROS are now considered to have important roles in several other biological processes including cancer development. In this report, we review recent evidence pointing towards the involvement of ROS in tumor progression. We discuss the biology of ROS and their roles at different stages during the process of cancer cell migration and invasion.
Collapse
|
17
|
Zhao Y, Koebis M, Suo S, Ohno S, Ishiura S. Regulation of the alternative splicing of sarcoplasmic reticulum Ca²⁺-ATPase1 (SERCA1) by phorbol 12-myristate 13-acetate (PMA) via a PKC pathway. Biochem Biophys Res Commun 2012; 423:212-7. [PMID: 22609207 DOI: 10.1016/j.bbrc.2012.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease with no established treatment to date. Small, cell-permeable molecules hold the potential to treat DM1. In this study, we investigated the association between protein kinase C (PKC) signaling and splicing of sarcoplasmic reticulum Ca(2+)-ATPase1 (SERCA1). Our aim was to clarify the mechanisms underlying the regulation of alternative splicing, in order to explore new therapeutic strategies for DM1. By assessing the splicing pattern of the endogenous SERCA1 gene in HEK293 cells, we found that treatment with phorbol 12-myristate 13-acetate (PMA) regulated SERCA1 splicing. Interestingly, treatment with PMA for 48 h normalized SERCA1 splicing, while treatment for 1.5h promoted aberrant splicing. These two responses showed dose dependency and were completely abolished by the PKC inhibitor Ro 31-8220. Furthermore, repression of PKCβII and PKCθ by RNAi mimicked prolonged PMA treatment. These results indicate that PKC signaling is involved in the splicing of SERCA1 and provide new evidence for a link between alternative splicing and PKC signaling.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
18
|
The potential of laminin-2-biomimetic short peptide to promote cell adhesion, spreading and migration by inducing membrane recruitment and phosphorylation of PKCδ. Biomaterials 2012; 33:3967-79. [DOI: 10.1016/j.biomaterials.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022]
|
19
|
Ferreira JCB, Boer BN, Grinberg M, Brum PC, Mochly-Rosen D. Protein quality control disruption by PKCβII in heart failure; rescue by the selective PKCβII inhibitor, βIIV5-3. PLoS One 2012; 7:e33175. [PMID: 22479367 PMCID: PMC3316563 DOI: 10.1371/journal.pone.0033175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/05/2012] [Indexed: 11/18/2022] Open
Abstract
Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform βII (PKCβII) in disrupting PQC. We show that active PKCβII directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKCβII, using a selective PKCβII peptide inhibitor (βIIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKCβII increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, βIIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKCβII activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKCβII as a novel inhibitor of proteasomal function. PQC disruption by increased PKCβII activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKCβII inhibition may benefit patients with heart failure. (218 words).
Collapse
Affiliation(s)
- Julio C B Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | | | | | | |
Collapse
|
20
|
Tanabe A, Shiraishi M, Negishi M, Saito N, Tanabe M, Sasaki Y. MARCKS dephosphorylation is involved in bradykinin-induced neurite outgrowth in neuroblastoma SH-SY5Y cells. J Cell Physiol 2012; 227:618-29. [PMID: 21448919 DOI: 10.1002/jcp.22763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-β and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.
Collapse
Affiliation(s)
- Atsuhiro Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414-28. [PMID: 22275363 DOI: 10.1074/jbc.m111.330662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the most abundant proteins in the cerebrospinal fluid, little is known about the function of L-PGDS in the central nervous system (CNS). To better understand the role of L-PGDS in the CNS, effects of L-PGDS on the migration and morphology of glial cells were investigated. The L-PGDS protein accelerated the migration of cultured glial cells. Expression of the L-pgds gene was detected in glial cells and neurons. L-PGDS protein also induced morphological changes in glia similar to the characteristic phenotypic changes in reactive gliosis. L-PGDS-induced cell migration was associated with augmented formation of actin filaments and focal adhesion, which was accompanied by activation of AKT, RhoA, and JNK pathways. L-PGDS protein injected into the mouse brain promoted migration and accumulation of astrocytes in vivo. Furthermore, the cell migration-promoting effect of L-PGDS on glial cells was independent of the PGD(2) products. The L-PGDS protein interacted with myristoylated alanine-rich protein kinase C substrate (MARCKS) to promote cell migration. These results demonstrate the critical role of L-PGDS as a secreted lipocalin in the regulation of glial cell migration and morphology. The results also indicate that L-PGDS may participate in reactive gliosis in an autocrine or paracrine manner, and may have pathological implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Shpakov AO. Signal protein-derived peptides as functional probes and regulators of intracellular signaling. JOURNAL OF AMINO ACIDS 2011; 2011:656051. [PMID: 22312467 PMCID: PMC3268021 DOI: 10.4061/2011/656051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/01/2011] [Indexed: 12/21/2022]
Abstract
The functionally important regions of signal proteins participating in their specific interaction and responsible for transduction of hormonal signal into cell are rather short in length, having, as a rule, 8 to 20 amino acid residues. Synthetic peptides corresponding to these regions are able to mimic the activated form of full-size signal protein and to trigger signaling cascades in the absence of hormonal stimulus. They modulate protein-protein interaction and influence the activity of signal proteins followed by changes in their regulatory and catalytic sites. The present review is devoted to the achievements and perspectives of the study of signal protein-derived peptides and to their application as selective and effective regulators of hormonal signaling systems in vitro and in vivo. Attention is focused on the structure, biological activity, and molecular mechanisms of action of peptides, derivatives of the receptors, G protein α subunits, and the enzymes generating second messengers.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 194223 St. Petersburg, Russia
| |
Collapse
|
23
|
Ott LE, McDowell ZT, Turner PM, Law JM, Adler KB, Yoder JA, Jones SL. Two myristoylated alanine-rich C-kinase substrate (MARCKS) paralogs are required for normal development in zebrafish. Anat Rec (Hoboken) 2011; 294:1511-24. [PMID: 21809467 DOI: 10.1002/ar.21453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/15/2011] [Indexed: 12/20/2022]
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin binding protein substrate of protein kinase C (PKC) and critical for mouse and Xenopus development. Herein two MARCKS paralogs, marcksa and marcksb, are identified in zebrafish and the role of these genes in zebrafish development is evaluated. Morpholino-based targeting of either MARCKS protein resulted in increased mortality and a range of gross phenotypic abnormalities. Phenotypic abnormalities were classified as mild, moderate or severe, which is characterized by a slight curve of a full-length tail, a severe curve or twist of a full-length tail and a truncated tail, respectively. All three phenotypes displayed abnormal neural architecture. Histopathology of Marcks targeted embryos revealed abnormalities in retinal layering, gill formation and skeletal muscle morphology. These results demonstrate that Marcksa and Marcksb are required for normal zebrafish development and suggest that zebrafish are a suitable model to further study MARCKS function.
Collapse
Affiliation(s)
- Laura E Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA. Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 2011; 286:27687-97. [PMID: 21652705 DOI: 10.1074/jbc.m111.261677] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
β-Catenin is an important regulator of dermal fibroblasts during cutaneous wound repair. However, the factors that modulate β-catenin activity in this process are not completely understood. We investigated the role of the extracellular matrix in regulating β-catenin and found an increase in β-catenin-mediated Tcf-dependent transcriptional activity in fibroblasts exposed to various extracellular matrix components. This occurs through an integrin-mediated GSK3β-dependent pathway. The physiologic role of this mechanism was demonstrated during wound repair in extra domain A-fibronectin-deficient mice, which exhibited decreased β-catenin-mediated signaling during the proliferative phase of healing. Extra domain A-fibronectin-deficient mice have wounds that fail at a lower tensile strength and contain fewer fibroblasts compared with wild type mice. This phenotype was rescued by genetic or pharmacologic activation of β-catenin signaling. Because fibronectin is a transcriptional target of β-catenin, this suggests the existence of a feedback loop between these two molecules that regulates dermal fibroblast cell behavior during wound repair.
Collapse
Affiliation(s)
- Kirsten A Bielefeld
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Madaro L, Marrocco V, Fiore P, Aulino P, Smeriglio P, Adamo S, Molinaro M, Bouché M. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase. Mol Biol Cell 2011; 22:1409-19. [PMID: 21346196 PMCID: PMC3078083 DOI: 10.1091/mbc.e10-10-0821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using both in vivo and in vitro protein kinase C (PKC) θ mutant models, we found that PKCθ, the PKC isoform predominantly expressed in skeletal muscle, is required for myoblast fusion and myofiber growth, by regulating focal adhesion kinase activity and, in turn, the expression of the pro-fusion genes caveolin-3 and β1D-integrin. Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKCθ, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKCθ is strongly up-regulated following freeze injury–induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKCθ knockout and muscle-specific PKCθ dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKCθ mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKCθ mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKCθ in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKCθ-null myoblasts. We thus propose that PKCθ signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.
Collapse
Affiliation(s)
- Luca Madaro
- Department of Anatomy, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Protein kinase Cdelta-mediated phosphorylation of phospholipase D controls integrin-mediated cell spreading. Mol Cell Biol 2010; 30:5086-98. [PMID: 20733000 DOI: 10.1128/mcb.00443-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin signaling plays critical roles in cell adhesion, spreading, and migration, and it is generally accepted that to regulate these integrin functions accurately, localized actin remodeling is required. However, the molecular mechanisms that control the targeting of actin regulation molecules to the proper sites are unknown. We previously demonstrated that integrin-mediated cell spreading and migration on fibronectin are dependent on the localized activation of phospholipase D (PLD). However, the mechanism underlying PLD activation by integrin is largely unknown. Here we demonstrate that protein kinase Cδ (PKCδ) is required for integrin-mediated PLD signaling. After integrin stimulation, PKCδ is activated and translocated to the edges of lamellipodia, where it colocalizes with PLD2. The abrogation of PKCδ activity inhibited integrin-induced PLD activation and cell spreading. Finally, we show that Thr566 of PLD2 is directly phosphorylated by PKCδ and that PLD2 mutation in this region prevents PLD2 activation, PLD2 translocation to the edge of lamellipodia, Rac translocation, and cell spreading after integrin activation. Together, these results suggest that PKCδ is a primary regulator of integrin-mediated PLD activation via the direct phosphorylation of PLD, which is essential for directing integrin-induced cell spreading.
Collapse
|
27
|
Walker AJ, Lacchini AH, Sealey KL, Mackintosh D, Davies AJ. Spreading by snail (Lymnaea stagnalis) defence cells is regulated through integrated PKC, FAK and Src signalling. Cell Tissue Res 2010; 341:131-45. [PMID: 20512591 DOI: 10.1007/s00441-010-0986-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/21/2010] [Indexed: 12/25/2022]
Abstract
Cell adhesion and spreading are vital to immune function. In molluscs, haemocytes (circulating phagocytes) are sentinels and effectors of the internal defence system; however, molecular mechanisms that regulate integrin-mediated spreading by haemocytes have not been characterised in detail. Visualisation of Lymnaea stagnalis haemocytes by scanning electron microscopy revealed membrane ruffling, formation of lamellipodia and extensive filopodia during early stages of cell adhesion and spreading. These events correlated with increased phosphorylation (activation) of protein kinase C (PKC) and focal adhesion kinase (FAK), sustained for 60 min. Treatment of haemocytes with the PKC inhibitors GF109203X or Gö 6976, or the Src/tyrosine kinase inhibitors SrcI or herbimycin A, attenuated haemocyte spread by 64, 46, 32 and 35%, respectively (P <or= 0.001); PKC or Src inhibition also prevented focal adhesion formation. Western blotting demonstrated that during spreading and adhesion these inhibitors also impaired PKC and FAK activation, with Gö 6976 or SrcI inhibiting FAK phosphorylation by at least 70% (P <or= 0.001), and herbimycin A or SrcI inhibiting PKC phosphorylation by at least 46% (P <or= 0.01). Confocal microscopy revealed phosphorylated PKC colocalised with focal adhesion sites, particularly during early phases of adhesion and spreading. Finally, fibronectin promoted PKC and FAK phosphorylation in suspended haemocytes demonstrating that activation can occur independent of cell adhesion. These novel data are consistent with PKC and FAK/Src playing an integrated role in integrin activation and integrin-mediated spreading by L. stagnalis haemocytes. We propose a model in which integrin engagement mediates association of PKC with FAK/Src complexes to promote focal adhesion assembly during immune recognition by these cells.
Collapse
Affiliation(s)
- Anthony J Walker
- School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, UK.
| | | | | | | | | |
Collapse
|
28
|
Echave P, Machado-da-Silva G, Arkell RS, Duchen MR, Jacobson J, Mitter R, Lloyd AC. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis. J Cell Sci 2009; 122:4516-25. [PMID: 19920079 DOI: 10.1242/jcs.049734] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRalpha. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell.
Collapse
Affiliation(s)
- Pedro Echave
- MRC Laboratory for Molecular Cell Biology, The Cancer Institute, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Micallef J, Taccone M, Mukherjee J, Croul S, Busby J, Moran MF, Guha A. Epidermal Growth Factor Receptor Variant III–Induced Glioma Invasion Is Mediated through Myristoylated Alanine-Rich Protein Kinase C Substrate Overexpression. Cancer Res 2009; 69:7548-56. [DOI: 10.1158/0008-5472.can-08-4783] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Reeves EKM, Gordish-Dressman H, Hoffman EP, Hathout Y. Proteomic profiling of glucocorticoid-exposed myogenic cells: Time series assessment of protein translocation and transcription of inactive mRNAs. Proteome Sci 2009; 7:26. [PMID: 19642986 PMCID: PMC2725035 DOI: 10.1186/1477-5956-7-26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Prednisone, one of the most highly prescribed drugs, has well characterized effects on gene transcription mediated by the glucocorticoid receptor. These effects are typically occurring on the scale of hours. Prednisone also has a number of non-transcriptional effects (occurring on minutes scale) on protein signaling, yet these are less well studied. We sought to expand the understanding of acute effects of prednisone action on cell signaling using a combination of SILAC strategy and subcellular fractionations from C2C12 myotubes. RESULTS De novo translation of proteins was inhibited in both SILAC labeled and unlabeled C2C12 myotubes. Unlabeled cells were exposed to prednisone while SILAC labeled cells remained untreated. After 0, 5, 15, and 30 minutes of prednisone exposure, labeled and unlabeled cells were mixed at 1:1 ratios and fractionated into cytosolic and nuclear fractions. A total of 534 proteins in the cytosol and 626 proteins in the nucleus were identified and quantitated, using 3 or more peptides per protein with peptide based probability < or = 0.001. We identified significant increases (1.7- to 3.1- fold) in cytoplasmic abundance of 11 ribosomal proteins within 5 minutes of exposure, all of which returned to baseline by 30 min. We hypothesized that these drug-induced acute changes in the subcellular localization of the cell's protein translational machinery could lead to altered translation of quiescent RNAs. To test this, de novo protein synthesis was assayed after 15 minutes of drug exposure. Quantitative fluorography identified 16 2D gel spots showing rapid changes in translation; five of these were identified by MS/MS (pyruvate kinase, annexin A6 isoform A and isoform B, nasopharyngeal epithelium specific protein 1, and isoform 2 of Replication factor C subunit 1), and all showed the 5' terminal oligopyrimidine motifs associated with mRNA sequestration to and from inactive mRNA pools. CONCLUSION We describe novel approaches of subcellular proteomic profiling and assessment of acute changes on a minute-based time scale. These data expand the current knowledge of acute, non-transcriptional activities of glucocorticoids, including changes in protein subcellular localization, altered translation of quiescent RNA pools, and PKC-mediated cytoskeleton remodeling.
Collapse
Affiliation(s)
- Erica K M Reeves
- Research Center for Genetic Medicine, Children's National Medical Center, NW, Washington, DC 20010, USA.
| | | | | | | |
Collapse
|
31
|
Estrada-Bernal A, Gatlin JC, Sunpaweravong S, Pfenninger KH. Dynamic adhesions and MARCKS in melanoma cells. J Cell Sci 2009; 122:2300-10. [PMID: 19509053 DOI: 10.1242/jcs.047860] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell motility necessitates the rapid formation and disassembly of cell adhesions. We have studied adhesions in a highly motile melanoma cell line using various biochemical approaches and microscopic techniques to image close adhesions. We report that WM-1617 melanoma cells contain at least two types of close adhesion: classic focal adhesions and more extensive, irregularly shaped adhesions that tend to occur along lamellipodial edges. In contrast to focal adhesions, these latter adhesions are highly dynamic and can be disassembled rapidly via protein kinase C (PKC) activation (e.g. by eicosanoid) and MARCKS phosphorylation. MARCKS overexpression, however, greatly increases the area of close adhesions and renders them largely refractory to PKC stimulation. This indicates that nonphosphorylated MARCKS is an adhesion stabilizer. Unlike focal adhesions, the dynamic adhesions contain alpha3 integrin and MARCKS, but they do not contain the focal adhesion marker vinculin. Overall, these results begin to define the molecular and functional properties of dynamic close adhesions involved in cell motility.
Collapse
Affiliation(s)
- Adriana Estrada-Bernal
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Cancer Center, and Colorado Intellectual and Developmental Disabilities Research Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
32
|
Yan M, Cheng C, Jiang J, Liu Y, Gao Y, Guo Z, Liu H, Shen A. Essential role of SRC suppressed C kinase substrates in Schwann cells adhesion, spreading and migration. Neurochem Res 2009; 34:1002-1010. [PMID: 18979197 DOI: 10.1007/s11064-008-9869-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2008] [Indexed: 11/26/2022]
Abstract
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Meijuan Yan
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fomin VP, Kronbergs A, Gunst S, Tang D, Simirskii V, Hoffman M, Duncan RL. Role of protein kinase Calpha in regulation of [Ca2+](I) and force in human myometrium. Reprod Sci 2009; 16:71-9. [PMID: 19087983 DOI: 10.1177/1933719108324892] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Recent findings implicate protein kinase C in regulation of contraction of uterine muscle (myometrium). However, the role of protein kinase C isoforms in myometrial contraction remains uncertain. Therefore, this study examined protein kinase Calpha's role in regulation of contraction and intracellular calcium concentration ([Ca2+](I)) of myometrium from term pregnant women. The authors demonstrated that protein kinase Calpha inhibitor Go6976 decreased the amplitude of potassium chloride-induced myometrial contractions in a time-dependent manner. The treatment of the myometrial strips with protein kinase Calpha-specific antisense oligodeoxynucleotides decreased the potassium chloride-induced contraction and [Ca2+](I) response to 39.3% + 6.8% and 50.0% + 3.3%, respectively, compared to control. The sense oligonucleotides treatment did not significantly change the potassium chloride responses (89.8% + 6.8% and 93.9% + 4.5% of the control for the contraction and [Ca2+](I), respectively). These data, coupled with the observation that protein kinase Calpha levels are elevated in the pregnant myometrium, suggest the involvement of protein kinase Calpha in regulation of human uterine contraction.
Collapse
Affiliation(s)
- Victor P Fomin
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Monahan TS, Andersen ND, Martin MC, Malek JY, Shrikhande GV, Pradhan L, Ferran C, LoGerfo FW. MARCKS silencing differentially affects human vascular smooth muscle and endothelial cell phenotypes to inhibit neointimal hyperplasia in saphenous vein. FASEB J 2008; 23:557-64. [PMID: 18940893 DOI: 10.1096/fj.08-114173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intimal hyperplasia (IH) limits the patency of all cardiovascular vein bypass grafts. We previously found the myristoylated alanine-rich C kinase substrate (MARCKS), a key protein kinase C (PKC) substrate, to be up-regulated in canine models of IH. Here, we further characterize the role of MARCKS in IH and examine the phenotypic consequences of MARCKS silencing by small interfering RNA (siRNA) transfection in human vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in vitro and use a rapid 10-min nonviral siRNA transfection technique to determine the effects of MARCKS silencing in human saphenous vein cultured ex vivo. We demonstrate MARCKS silencing attenuates VSMC migration and arrests VSMC proliferation in part through the up-regulation of the cyclin-dependent kinase inhibitor p27(kip1). Conversely, MARCKS silencing had little or no effect on EC migration or proliferation. These phenotypic changes culminated in reduced neointimal formation in cultured human saphenous vein. These data identify MARCKS as a pathogenic contributor to IH and indicate therapeutic MARCKS silencing could selectively suppress the "atherogenic," proliferative phenotype of VSMCs without collateral harm to the endothelium. This approach could be readily translated to the clinic to silence MARCKS in vein bypass grafts prior to implantation.
Collapse
Affiliation(s)
- Thomas S Monahan
- Department of Surgery, Division of Vascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim J, Choi YL, Vallentin A, Hunrichs BS, Hellerstein MK, Peehl DM, Mochly-Rosen D. Centrosomal PKCbetaII and pericentrin are critical for human prostate cancer growth and angiogenesis. Cancer Res 2008; 68:6831-9. [PMID: 18701509 PMCID: PMC2597632 DOI: 10.1158/0008-5472.can-07-6195] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis is critical in the progression of prostate cancer. However, the interplay between the proliferation kinetics of tumor endothelial cells (angiogenesis) and tumor cells has not been investigated. Also, protein kinase C (PKC) regulates various aspects of tumor cell growth, but its role in prostate cancer has not been investigated in detail. Here, we found that the proliferation rates of endothelial and tumor cells oscillate asynchronously during the growth of human prostate cancer xenografts. Furthermore, our analyses suggest that PKCbetaII was activated during increased angiogenesis and that PKCbetaII plays a key role in the proliferation of endothelial cells and tumor cells in human prostate cancer; treatment with a PKCbetaII-selective inhibitor, betaIIV5-3, reduced angiogenesis and tumor cell proliferation. We also find a unique effect of PKCbetaII inhibition on normalizing pericentrin (a protein regulating cytokinesis), especially in endothelial cells as well as in tumor cells. PKCbetaII inhibition reduced the level and mislocalization of pericentrin and normalized microtubule organization in the tumor endothelial cells. Although pericentrin has been known to be up-regulated in epithelial cells of prostate cancers, its level in tumor endothelium has not been studied in detail. We found that pericentrin is up-regulated in human tumor endothelium compared with endothelium adjacent to normal glands in tissues from prostate cancer patients. Our results suggest that a PKCbetaII inhibitor such as betaIIV5-3 may be used to reduce prostate cancer growth by targeting both angiogenesis and tumor cell growth.
Collapse
Affiliation(s)
- Jeewon Kim
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, 94305
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Alice Vallentin
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, 94305
| | - Ben S. Hunrichs
- Department of Molecular and Biochemical Nutrition and Metabolism, University of California, Berkeley, CA, 94720
| | - Marc K. Hellerstein
- Department of Molecular and Biochemical Nutrition and Metabolism, University of California, Berkeley, CA, 94720
- Department of Medicine, University of California, San Francisco, CA
| | - Donna M. Peehl
- Department of Urology, Stanford University, School of Medicine, Stanford, CA, 94305
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, 94305
| |
Collapse
|
36
|
Aranda-Orgillés B, Trockenbacher A, Winter J, Aigner J, Köhler A, Jastrzebska E, Stahl J, Müller EC, Otto A, Wanker EE, Schneider R, Schweiger S. The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex. Hum Genet 2008; 123:163-76. [PMID: 18172692 PMCID: PMC3774420 DOI: 10.1007/s00439-007-0456-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/15/2007] [Indexed: 01/31/2023]
Abstract
Opitz BBB/G syndrome (OS) is a heterogenous malformation syndrome mainly characterised by hypertelorism and hypospadias. In addition, patients may present with several other defects of the ventral midline such as cleft lip and palate and congenital heart defects. The syndrome-causing gene encodes the X-linked E3 ubiquitin ligase MID1 that mediates ubiquitin-specific modification and degradation of the catalytic subunit of the translation regulator protein phosphatase 2A (PP2A). Here, we show that the MID1 protein also associates with elongation factor 1alpha (EF-1alpha) and several other proteins involved in mRNA transport and translation, including RACK1, Annexin A2, Nucleophosmin and proteins of the small ribosomal subunits. Mutant MID1 proteins as found in OS patients lose the ability to interact with EF-1alpha. The composition of the MID1 protein complex was determined by several independent methods: (1) yeast two-hybrid screening and (2) immunofluorescence, (3) a biochemical approach involving affinity purification of the complex, (4) co-fractionation in a microtubule assembly assay and (5) immunoprecipitation. Moreover, we show that the cytoskeleton-bound MID1/translation factor complex specifically associates with G- and U-rich RNAs and incorporates MID1 mRNA, thus forming a microtubule-associated ribonucleoprotein (RNP) complex. Our data suggest a novel function of the OS gene product in directing translational control to the cytoskeleton. The dysfunction of this mechanism would lead to malfunction of microtubule-associated protein translation and to the development of OS.
Collapse
Affiliation(s)
- Beatriz Aranda-Orgillés
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Alexander Trockenbacher
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
- />Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University Innsbruck, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Jennifer Winter
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | - Johanna Aigner
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | - Andrea Köhler
- />Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University Innsbruck, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Ewa Jastrzebska
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
- />Department of Dermatology, Charité, Schumannstr. 21-22, 10117 Berlin, Germany
| | - Joachim Stahl
- />Max-Delbrueck Center of Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Eva-Christina Müller
- />Max-Delbrueck Center of Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Albrecht Otto
- />Max-Delbrueck Center of Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Erich E. Wanker
- />Max-Delbrueck Center of Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Rainer Schneider
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
- />Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University Innsbruck, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Susann Schweiger
- />Max-Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
- />Medical School, Division of Pathology and Neuroscience, University of Dundee, DD1 9SY Dundee, UK
| |
Collapse
|
37
|
Qi X, Mochly-Rosen D. The PKCdelta -Abl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J Cell Sci 2008; 121:804-13. [PMID: 18285444 DOI: 10.1242/jcs.024653] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conditions that compromise protein folding in the endoplasmic reticulum trigger the unfolded protein response (UPR), which either restores proper protein folding or results in cellular demise through apoptosis. In this study, we found that, in response to ER stress in vivo and in vitro, PKCdelta translocates to the ER where it binds to the tyrosine kinase Abl. Tyrosine phosphorylation and kinase activity of PKCdelta are required for PKCdelta binding to Abl in the ER. Moreover, we found that inhibition of PKCdelta by the PKCdelta-specific peptide inhibitor deltaV1-1 or by silencing of PKCdelta reduces ER-stress-induced JNK activation and inhibits ER-stress-mediated apoptosis. Furthermore, the inhibitor of PKCdelta kinase activity rottlerin blocks the translocation of the PKCdelta-Abl complex from the ER to the mitochondria and confers protection against apoptosis. Thus, PKCdelta communicates ER stress to the mitochondria by binding to ER-localized Abl. The PKCdelta-Abl complex then translocates to the mitochondria, communicating ER stress to this organelle, thereby, triggering apoptosis.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
38
|
Dubash AD, Wennerberg K, García-Mata R, Menold MM, Arthur WT, Burridge K. A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. J Cell Sci 2007; 120:3989-98. [DOI: 10.1242/jcs.003806] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adhesion of cells to extracellular matrix proteins such as fibronectin initiates signaling cascades that affect cell morphology, migration and survival. Some of these signaling pathways involve the Rho family of GTPases, such as Cdc42, Rac1 and RhoA, which play a key role in regulating the organization of the cytoskeleton. Although significant advances have been made in understanding how Rho proteins control cytoskeletal architecture, less is known about the signals controlling activation of the GTPases themselves. The focus of this study was to determine which guanine nucleotide exchange factor(s) are responsible for activation of RhoA downstream of adhesion to fibronectin. Using an affinity pulldown assay for activated exchange factors, we show that the RhoA-specific exchange factors Lsc/p115 RhoGEF and LARG are activated when cells are plated onto fibronectin, but not other exchange factors such as Ect2 or Dbl. Knockdown of Lsc and LARG together significantly decreases RhoA activation and formation of stress fibers and focal adhesions downstream of fibronectin adhesion. Similarly, overexpression of a catalytically inactive mutant of Lsc/p115 RhoGEF inhibits RhoA activity and formation of stress fibers and focal adhesions on fibronectin. These data establish a previously uncharacterized role for the exchange factors Lsc/p115 RhoGEF and LARG in linking fibronectin signals to downstream RhoA activation.
Collapse
Affiliation(s)
- Adi D. Dubash
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC 27599, USA
| | - Krister Wennerberg
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC 27599, USA
| | - Rafael García-Mata
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC 27599, USA
| | - Marisa M. Menold
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC 27599, USA
| | - William T. Arthur
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC 27599, USA
| | - Keith Burridge
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC 27599, USA
| |
Collapse
|
39
|
Abstract
This work combines expertise in stem cell biology and bioengineering to define the system for geometric control of proliferation and differentiation of myogenic progenitor cells. We have created an artificial niche of myogenic progenitor cells, namely, modified extracellular matrix (ECM) substrates with spatially embedded growth or differentiation factors (GF, DF) that predictably direct muscle cell fate in a geometric pattern. Embedded GF and DF signal progenitor cells from specifically defined areas on the ECM successfully competed against culture media for myogenic cell fate determination at a clearly defined boundary. Differentiation of myoblasts into myotubes is induced in growth-promoting medium, myotube formation is delayed in differentiation-promoting medium, and myogenic cells, at different stages of proliferation and differentiation, can be induced to coexist adjacently in identical culture media. This method can be used to identify molecular interactions between cells in different stages of myogenic differentiation, which are likely to be important determinants of tissue repair. The designed ECM niches can be further developed into a vehicle for transplantation of myogenic progenitor cells maintaining their regenerative potential. Additionally, this work may also serve as a general model to engineer synthetic cellular niches to harness the regenerative potential of organ stem cells.
Collapse
Affiliation(s)
- Elena M de Juan-Pardo
- Department of Bioengineering, University of California at Berkeley, Berkley, CA, USA
| | | | | |
Collapse
|
40
|
Cheng C, Liu H, Ge H, Qian J, Qin J, Sun L, Chen M, Yan M, Shen A. Lipopolysaccharide induces expression of SSeCKS in rat lung microvascular endothelial cell. Mol Cell Biochem 2007; 305:1-8. [PMID: 17551670 DOI: 10.1007/s11010-007-9521-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/16/2007] [Indexed: 10/25/2022]
Abstract
Src-suppressed C kinase substrate (SSeCKS) plays a role in membrane-cytoskeletal remodeling to regulate mitogenesis, cell differentiation, and motility. Previous study showed that lipopolysaccharide (LPS) induced a selective and strong expression of SSeCKS in the vascular endothelial cells of lung. Here we show that LPS stimulation elevated expression of SSeCKS mRNA and protein in Rat pulmonary microvascular endothelial cell (RPMVEC). LPS potentiated SSeCKS phosphorylation in a time- and dose-dependent manner, and partly induced translocation of SSeCKS from the cytosol to the membrane after LPS challenge. The PKC inhibitor, Calphostin C, significantly decreased LPS-induced phosphorylation of SSeCKS, inhibited SSeCKS translocation and actin cytoskeleton reorganization after LPS challenge, suggesting that PKC may play a role in LPS-induced SSeCKS translocation and actin rearrangement. We conclude that SSeCKS is located downstream of PKC and that SSeCKS and PKC are both necessary for LPS-induced stress fiber formation.
Collapse
Affiliation(s)
- Chun Cheng
- Institute of Nautical Medicine, Nantong University (former Nantong Medical College), Nantong, 226001, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cheng C, Liu H, Ge H, Qian J, Qin J, Sun L, Shen A. Essential role of Src suppressed C kinase substrates in endothelial cell adhesion and spreading. Biochem Biophys Res Commun 2007; 358:342-8. [PMID: 17482576 DOI: 10.1016/j.bbrc.2007.04.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/23/2007] [Indexed: 01/28/2023]
Abstract
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, but the mechanism by which this occurs is unknown. Src suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after cell adhesion and that SSeCKS translocated from the membrane to the cytosol during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we show that RPMVEC cells in which SSeCKS expression was inhibited reduce adhesion and spread on LN through blocking the formation of actin stress fibers and focal adhesions. These results demonstrated SSeCKS modulate endothelial cells adhesion and spreading by reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Chun Cheng
- Institute of Nautical Medicine, Nantong University, Nantong 226001, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Brunelli S, Relaix F, Baesso S, Buckingham M, Cossu G. Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev Biol 2007; 304:604-14. [PMID: 17275805 DOI: 10.1016/j.ydbio.2007.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 11/09/2006] [Accepted: 01/04/2007] [Indexed: 01/15/2023]
Abstract
Early activation of myogenesis in the somite depends on signals from surrounding tissues. Canonical beta-catenin dependent Wnt signalling preferentially activates Myf5. We now show, in explant experiments with presomitic mesoderm, that the expression of another myogenic determination factor, MyoD, depends on non-canonical Wnt signalling, probably emanating from the dorsal ectoderm. Inhibitors of PKC block MyoD expression, indicating that the intracellular Wnt pathway depends on this kinase. In the absence of Myf5 and Mrf4, this activation is only minorily affected and we identify Pax3 as the transcriptional mediator responsible for MyoD expression. When embryos expressing a constitutively active form of Pax3, PAX3-FKHR, are used for these studies in the presence of PKC inhibitors, MyoD expression is not affected, suggesting that Wnt signalling acts on the transcriptional activity of Pax3.
Collapse
Affiliation(s)
- Silvia Brunelli
- Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | | | | | | | | |
Collapse
|
43
|
Brandman R, Disatnik MH, Churchill E, Mochly-Rosen D. Peptides Derived from the C2 Domain of Protein Kinase Cϵ (ϵPKC) Modulate ϵPKC Activity and Identify Potential Protein-Protein Interaction Surfaces. J Biol Chem 2007; 282:4113-23. [PMID: 17142835 DOI: 10.1074/jbc.m608521200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides derived from protein kinase C (PKC) modulate its activity by interfering with critical protein-protein interactions within PKC and between PKC and PKC-binding proteins (Souroujon, M. C., and Mochly-Rosen, D. (1998) Nat. Biotechnol. 16, 919-924). We previously demonstrated that the C2 domain of PKC plays a critical role in these interactions. By focusing on epsilonPKC and using a rational approach, we then identified one C2-derived peptide that acts as an isozyme-selective activator and another that acts as a selective inhibitor of epsilonPKC. These peptides were used to identify the role of epsilonPKC in protection from cardiac and brain ischemic damage, in prevention of complications from diabetes, in reducing pain, and in protecting transplanted hearts. The efficacy of these two peptides led us to search for additional C2-derived peptides with PKC-modulating activities. Here we report on the activity of a series of 5-9-residue peptides that are derived from regions that span the length of the C2 domain of epsilonPKC. These peptides were tested for their effect on PKC activity in cells in vivo and in an ex vivo model of acute ischemic heart disease. Most of the peptides acted as activators of PKC, and a few peptides acted as inhibitors. PKC-dependent myristoylated alanine-rich C kinase substrate phosphorylation in epsilonPKC knock-out cells revealed that only a subset of the peptides were selective for epsilonPKC over other PKC isozymes. These epsilonPKC-selective peptides were also protective of the myocardium from ischemic injury, an epsilonPKC-dependent function (Liu, G. S., Cohen, M. V., Mochly-Rosen, D., and Downey, J. M. (1999) J. Mol. Cell. Cardiol. 31, 1937-1948), and caused selective translocation of epsilonPKC over other isozymes when injected systemically into mice. Examination of the structure of the C2 domain from epsilonPKC revealed that peptides with similar activities clustered into discrete regions within the domain. We propose that these regions represent surfaces of protein-protein interactions within epsilonPKC and/or between epsilonPKC and other partner proteins; some of these interactions are unique to epsilonPKC, and others are common to other PKC isozymes.
Collapse
Affiliation(s)
- Relly Brandman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
44
|
Siwko S, Mochly-Rosen D. Use of a novel method to find substrates of protein kinase C delta identifies M2 pyruvate kinase. Int J Biochem Cell Biol 2007; 39:978-87. [PMID: 17337233 PMCID: PMC1931518 DOI: 10.1016/j.biocel.2007.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 01/12/2007] [Accepted: 01/17/2007] [Indexed: 11/24/2022]
Abstract
Protein kinase C (PKC) family members have been implicated in numerous cellular processes. However, identifying the substrates of each PKC isozyme remains a challenge. Here, we describe a method using two-dimensional (2D) isoelectric focusing gel electrophoresis to identify substrates of delta PKC (deltaPKC) in MCF-7 breast carcinoma cells. We show that M2 pyruvate kinase is a substrate of deltaPKC, and further characterize the interaction between M2 pyruvate kinase and deltaPKC in MCF-7 cells by immunoprecipitation. deltaPKC activation in vitro or in cells did not appear to alter the enzyme activity or polymerization of M2 pyruvate kinase.
Collapse
Affiliation(s)
- Stefan Siwko
- Cancer Biology Program, CCSR Room 3145, 269 Campus Dr., Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
45
|
Abstract
Fluorescence resonance energy transfer (FRET) has been proven to be a powerful tool to visualize and quantify the signaling cascades in live cells with high spatiotemporal resolutions. Here we describe the development of the genetically encoded and FRET-based biosensors for imaging of integrin-related signaling cascades. The construction of a FRET biosensor for Src kinase, an important tyrosine kinase involved in integrin-related signaling pathways, is used as an example to illustrate the construction procedure and the pitfalls involved. The design strategies and considerations on improvements of sensitivity and specificity are also discussed. The FRET-based biosensors provide a complementary approach to traditional biochemical assays for the analysis of the functions of integrins and their associated signaling molecules. The dynamic and subcellular visualization enabled by FRET can shed new light on the molecular mechanisms regulating integrin signaling and advance our knowledge in the understanding of integrin-related pathophysiological processes.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Bioengineering and Molecular & Integrative Physiology, Neuroscience Program, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, USA
| | | |
Collapse
|
46
|
Heidkamp MC, Iyengar R, Szotek EL, Cribbs LL, Samarel AM. Protein kinase Cepsilon-dependent MARCKS phosphorylation in neonatal and adult rat ventricular myocytes. J Mol Cell Cardiol 2006; 42:422-31. [PMID: 17157309 PMCID: PMC1810205 DOI: 10.1016/j.yjmcc.2006.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 11/25/2022]
Abstract
The myristoylated, alanine-rich protein kinase C substrate (MARCKS) is a cytoskeletal protein implicated in the regulation of cell spreading, stress fiber formation, and focal adhesion assembly in nonmuscle cells. However, its precise role in cardiomyocyte growth, and its PKC-dependent regulation have not been fully explored. In this report, we show that MARCKS is expressed and phosphorylated under basal conditions in cultured neonatal and adult rat ventricular myocytes (NRVM and ARVM, respectively). The PKC activators phenylephrine, angiotensin II, and endothelin-1 (ET) further increased MARCKS phosphorylation, with ET inducing the greatest response. To determine which PKC isoenzyme was responsible for agonist-induced MARCKS phosphorylation, NRVM and ARVM were infected with replication-defective adenoviruses (Adv) encoding wildtype (wt) and constitutively active (ca) mutants of PKCepsilon, PKCdelta, and PKCalpha. Only PKCepsilon increased phosphorylated MARCKS (pMARCKS). In contrast, Adv-mediated overexpression of a dominant-negative (dn) mutant of PKCepsilon reduced basal and ET-stimulated pMARCKS. dnPKCepsilon overexpression also prevented ET-induced, apparent co-localization of pMARCKS with f-actin staining structures. Adv-mediated overexpression of GFP-tagged, wtMARCKS (wtMARCKS-GFP) increased phosphorylation of focal adhesion kinase (FAK) and also increased NRVM surface area. In contrast, overexpression of a GFP-tagged, non-phosphorylatable (np) MARCKS mutant (npMARCKS-GFP) decreased basal and ET-induced endogenous MARCKS and FAK phosphorylation, and blocked the ET-induced increase in NRVM surface area. We conclude that MARCKS is expressed in cardiomyocytes, is phosphorylated by PKCepsilon, and participates in the regulation of FAK phosphorylation and cell spreading.
Collapse
Affiliation(s)
- Maria C Heidkamp
- The Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
47
|
Plows LD, Cook RT, Davies AJ, Walker AJ. Integrin engagement modulates the phosphorylation of focal adhesion kinase, phagocytosis, and cell spreading in molluscan defence cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:779-86. [PMID: 16766054 DOI: 10.1016/j.bbamcr.2006.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/07/2006] [Accepted: 04/07/2006] [Indexed: 12/21/2022]
Abstract
Integrins play a key role in cellular immune responses in a variety of organisms; however, knowledge of integrins and their effects on cell signalling and functional responses in molluscan defence reactions is poor. Using integrin-mediated cell adhesion kits, alphaVbeta3 and beta1 integrin-like subunits were identified on the surface of Lymnaea stagnalis haemocytes. Haemocyte binding via these integrins was found to be dependent on Ca2+/Mg2+. Western blotting with an anti-phospho (anti-active) focal adhesion kinase (FAK) antibody revealed a 120-125 kDa FAK-like protein in these cells; this protein was transiently phosphorylated upon haemocyte adhesion over 90 min, with maximal phosphorylation occurring after 30 min binding. Also, integrin engagement with the tetrapeptide Arg-Gly-Asp-Ser (RGDS) resulted in a rapid increase in phosphorylation of the FAK-like protein; however, RGDS did not affect the phosphorylation of extracellular signal-regulated kinase. Treatment of haemocytes with RGDS (2 mM) inhibited phagocytosis of E. coli bioparticles by 88%. Moreover, at this concentration, RGDS reduced cell spreading by 61%; stress fiber formation was also impaired. Taken together, these results demonstrate a role for integrins in L. stagnalis haemocyte adhesion and defence reactions and, for the first time, link integrin engagement to FAK activation in molluscs.
Collapse
Affiliation(s)
- Louise D Plows
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | | | | | | |
Collapse
|
48
|
Gatlin JC, Estrada-Bernal A, Sanford SD, Pfenninger KH. Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding. Mol Biol Cell 2006; 17:5115-30. [PMID: 16987960 PMCID: PMC1679677 DOI: 10.1091/mbc.e05-12-1183] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone. Phosphorylation of MARCKS causes its translocation from the membrane to the cytosol. Silencing MARCKS expression dramatically reduces growth cone spread, whereas overexpression of wild-type MARCKS inhibits growth cone collapse triggered by PKC activation. Expression of phosphorylation-deficient, mutant MARCKS greatly expands growth cone adhesion, and this is characterized by extensive colocalization of MARCKS and alpha3-integrin, resistance to eicosanoid-triggered detachment and collapse, and reversal of Sema3A-induced repulsion into attraction. We conclude that MARCKS is involved in regulating growth cone adhesion as follows: its nonphosphorylated form stabilizes integrin-mediated adhesions, and its phosphorylation-triggered release from adhesions causes localized growth cone detachment critical for turning and collapse.
Collapse
Affiliation(s)
- Jesse C. Gatlin
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Adriana Estrada-Bernal
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Staci D. Sanford
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| | - Karl H. Pfenninger
- Departments of Pediatrics and of Cell and Developmental Biology, University of Colorado School of Medicine, and University of Colorado Cancer Center, Aurora, CO 80045
| |
Collapse
|
49
|
Krotova K, Hu H, Xia SL, Belayev L, Patel JM, Block ER, Zharikov S. Peptides modified by myristoylation activate eNOS in endothelial cells through Akt phosphorylation. Br J Pharmacol 2006; 148:732-40. [PMID: 16715118 PMCID: PMC1751869 DOI: 10.1038/sj.bjp.0706777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Myristoylated pseudosubstrate of PKCzeta (mPS) - a synthetic myristoylated peptide with a sequence (13 amino acids) mimicking the endogenous PKCzeta pseudosubstrate region -- is considered a selective cell-permeable inhibitor of PKCzeta. We present strong evidence that in endothelial cells the action of mPS is not limited to inhibition of PKC activity and that myristoylation of certain peptides can activate eNOS (endothelial nitric oxide synthase) through Akt phosphorylation. 2. mPS at micromolar concentrations (1-10 microM) induced profound phosphorylation of eNOS, Akt, ERK 1/2, and p38 MAPK in cultured pulmonary artery endothelial cells (PAEC). The same changes were observed after treatment of PAEC with a myristoylated scrambled version of mPS (mScr), whereas a cell-permeable version of PKCzeta pseudosubstrate fused to the HIV-TAT membrane-translocating peptide did not induce analogous changes, suggesting that myristoylation confers new properties on the peptides consisting of activation of different signaling pathways in endothelial cells. 3. In addition to mPS and mScr, a number of other myristoylated peptides induced phosphorylation of eNOS suggesting that myristoylation of peptides can activate eNOS by mechanisms unrelated to inhibition of PKC. All active myristoylated peptides contained basic amino acids motif and were longer than six amino acids. 4. Activation of eNOS by myristoylated peptides was dependent on the PI3K/Akt pathway and the rise of intracellular calcium and was associated with an elevation of cGMP levels in PAEC and with relaxation of precontracted isolated pulmonary artery segments. 5. Myristoylated peptides can be considered a new class of activators of NO production in endothelial cells and that using mPS as a specific inhibitor of PKC should be done with caution, especially in endothelial cells.
Collapse
Affiliation(s)
- Karina Krotova
- Department of Medicine, University of Florida, VA Medical Center, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Collazos A, Diouf B, Guérineau NC, Quittau-Prévostel C, Peter M, Coudane F, Hollande F, Joubert D. A spatiotemporally coordinated cascade of protein kinase C activation controls isoform-selective translocation. Mol Cell Biol 2006; 26:2247-61. [PMID: 16508001 PMCID: PMC1430303 DOI: 10.1128/mcb.26.6.2247-2261.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/22/2005] [Indexed: 12/22/2022] Open
Abstract
In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCbeta1, PKCalpha, PKCepsilon, and PKCdelta, resulting in their accumulation at the entire plasma membrane (PKCbeta and -delta) or selectively at the cell-cell contacts (PKCalpha and -epsilon). The duration of activation ranged from 20 s for PKCalpha to 20 min for PKCepsilon. PKCalpha and -epsilon selective localization was lost in the presence of Gö6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCalpha localization is controlled by PKCbeta1 activity and is calcium independent, while PKCepsilon localization is dependent on PKCalpha activity. PKCdelta was independent of the cascade linking PKCbeta1, -alpha, and -epsilon. Furthermore, PKCalpha, but not PKCepsilon, is involved in the TRH-induced beta-catenin relocation at cell-cell contacts, suggesting that PKCepsilon is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCbeta1 activation, which in turn initiates a calcium-independent but PKCbeta1 activity-dependent sequential translocation of PKCalpha and -epsilon. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.
Collapse
Affiliation(s)
- Alejandra Collazos
- Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|