1
|
Patten J, Halligan P, Bashiri G, Kegel M, Bonadio JD, Wang K. EDA Fibronectin Microarchitecture and YAP Translocation during Wound Closure. ACS Biomater Sci Eng 2025; 11:2249-2262. [PMID: 40029610 DOI: 10.1021/acsbiomaterials.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Fibronectin (Fn) is an extracellular matrix glycoprotein with mechanosensitive structure-function. Extra domain A (EDA) Fn, a Fn isoform, is not present in adult tissue but is required for tissue repair. Curiously, EDA Fn is linked to both regenerative and fibrotic tissue repair. Given that Fn mechanoregulates cell behavior, EDA Fn organization during wound closure might play a role in mediating these differing responses. One mechanism by which cells sense and respond to their microenvironment is by activating a transcriptional coactivator, yes-associated protein (YAP). Interestingly, YAP activity is not only required for wound closure but similarly linked to both regenerative and fibrotic repair. Therefore, this study aims to evaluate how, during normal and fibrotic wound closure, EDA Fn organization might modulate YAP translocation by culturing human dermal fibroblasts on polydimethylsiloxane substrates mimicking normal (soft: 18 kPa) and fibrotic (stiff: 146 kPa) wounded skin. On stiffer substrates mimicking fibrotic wounds, fibroblasts assembled an aligned EDA Fn matrix comprising thinner fibers, suggesting increased microenvironmental tension. To evaluate if cell binding to the EDA domain of Fn was essential to overall matrix organization, fibroblasts were treated with Irigenin, which inhibits binding to the EDA domain within Fn. Blocking adhesion to EDA led to randomly organized EDA Fn matrices with thicker fibers, suggesting reduced microenvironmental tension even during fibrotic wound closure. To evaluate whether YAP signaling plays a role in EDA Fn organization, fibroblasts were treated with CA3, which suppresses YAP activity in a dose-dependent manner. Treatment with CA3 also led to randomly organized EDA Fn matrices with thicker fibers, suggesting a potential connected mechanism of reducing tension during fibrotic wound closure. Next, YAP activity was assessed to evaluate the impact of EDA Fn organization. Interestingly, fibroblasts migrating on softer substrates mimicking normal wounds increased YAP activity, but on stiffer substrates, they decreased YAP activity. When fibroblasts on stiffer substrates were treated with Irigenin or CA3, fibroblasts increased YAP activity. These results suggest that there may be disrupted signaling between EDA Fn organization and YAP translocation during fibrotic wound closure that could be restored when reestablishing normal EDA Fn matrix organization to instead drive regenerative wound repair.
Collapse
Affiliation(s)
- Jennifer Patten
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
2
|
Patten J, Halligan P, Bashiri G, Kegel M, Bonadio JD, Wang K. EDA Fibronectin Microarchitecture and YAP Translocation During Wound Closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614581. [PMID: 39386582 PMCID: PMC11463502 DOI: 10.1101/2024.09.23.614581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fibronectin (Fn) is an extracellular matrix glycoprotein with mechanosensitive structure-function. EDA Fn, a Fn isoform, is not present in adult tissue but is required for tissue repair. Curiously, EDA Fn is linked to both regenerative and fibrotic tissue repair. Given that Fn mechanoregulates cell behavior, Fn EDA organization during wound closure might play a role in mediating these differing responses. One mechanism by which cells sense and respond to their microenvironment is by activating a transcriptional co-activator, Yes-associated protein (YAP). Interestingly, YAP activity is not only required for wound closure, but similarly linked to both regenerative and fibrotic repair. Therefore, this study aims to evaluate how, during normal and fibrotic wound closure, EDA Fn organization might modulate YAP translocation by culturing human dermal fibroblasts on polydimethylsiloxane (PDMS) substrates mimicking normal (soft: 18 kPa) and fibrotic (stiff: 146 kPa) wounded skin. On stiffer substrates mimicking fibrotic wounds, fibroblasts assembled an aligned EDA Fn matrix comprising thinner fibers, suggesting increased microenvironmental tension. To evaluate if cell binding to the EDA domain of Fn was essential to overall matrix organization, fibroblasts were treated with Irigenin, which inhibits binding to the EDA domain within Fn. Blocking adhesion to EDA led to randomly organized EDA Fn matrices with thicker fibers, suggesting reduced microenvironmental tension even during fibrotic wound closure. To evaluate if YAP signaling plays a role in EDA Fn organization, fibroblasts were treated with CA3, which suppresses YAP activity in a dose-dependent manner. Treatment with CA3 also led to randomly organized EDA Fn matrices with thicker fibers, suggesting a potential connected mechanism of reducing tension during fibrotic wound closure. Next, YAP activity was assessed to evaluate the impact of EDA Fn organization. Interestingly, fibroblasts migrating on softer substrates mimicking normal wounds increased YAP activity but on stiffer substrates, decreased YAP activity. When fibroblasts on stiffer substrates were treated with Irigenin or CA3, fibroblasts increased YAP activity. These results suggest there may be disrupted signaling between EDA Fn organization and YAP translocation during fibrotic wound closure that could be restored when reestablishing normal EDA Fn matrix organization to instead drive regenerative wound repair.
Collapse
Affiliation(s)
- Jennifer Patten
- Department of Bioengineering, Temple University, Pennsylvania
| | | | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Pennsylvania
| | - Michael Kegel
- Department of Bioengineering, Temple University, Pennsylvania
| | - Jacob D Bonadio
- Department of Bioengineering, Temple University, Pennsylvania
| | - Karin Wang
- Department of Bioengineering, Temple University, Pennsylvania
| |
Collapse
|
3
|
Kechagia Z, Sáez P, Gómez-González M, Canales B, Viswanadha S, Zamarbide M, Andreu I, Koorman T, Beedle AEM, Elosegui-Artola A, Derksen PWB, Trepat X, Arroyo M, Roca-Cusachs P. The laminin-keratin link shields the nucleus from mechanical deformation and signalling. NATURE MATERIALS 2023; 22:1409-1420. [PMID: 37709930 PMCID: PMC10627833 DOI: 10.1038/s41563-023-01657-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.
Collapse
Affiliation(s)
- Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Brenda Canales
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Srivatsava Viswanadha
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Laboratori de Càlcul Numèric (LàCaN), Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Matemátiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Jafari A, Behjat E, Malektaj H, Mobini F. Alignment behavior of nerve, vascular, muscle, and intestine cells in two- and three-dimensional strategies. WIREs Mech Dis 2023; 15:e1620. [PMID: 37392045 DOI: 10.1002/wsbm.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
By harnessing structural hierarchical insights, plausibly simulate better ones imagination to figure out the best choice of methods for reaching out the unprecedented developments of the tissue engineering products as a next level. Constructing a functional tissue that incorporates two-dimensional (2D) or higher dimensions requires overcoming technological or biological limitations in order to orchestrate the structural compilation of one-dimensional and 2D sheets (microstructures) simultaneously (in situ). This approach enables the creation of a layered structure that can be referred to as an ensemble of layers or, after several days of maturation, a direct or indirect joining of layers. Here, we have avoided providing a detailed methodological description of three-dimensional and 2D strategies, except for a few interesting examples that highlight the higher alignment of cells and emphasize rarely remembered facts associated with vascular, peripheral nerve, muscle, and intestine tissues. The effective directionality of cells in conjunction with geometric cues (in the range of micrometers) is well known to affect a variety of cell behaviors. The curvature of a cell's environment is one of the factors that influence the formation of patterns within tissues. The text will cover cell types containing some level of stemness, which will be followed by their consequences for tissue formation. Other important considerations pertain to cytoskeleton traction forces, cell organelle positioning, and cell migration. An overview of cell alignment along with several pivotal molecular and cellular level concepts, such as mechanotransduction, chirality, and curvature of structure effects on cell alignments will be presented. The mechanotransduction term will be used here in the context of the sensing capability that cells show as a result of force-induced changes either at the conformational or the organizational levels, a capability that allows us to modify cell fate by triggering downstream signaling pathways. A discussion of the cells' cytoskeleton and of the stress fibers involvement in altering the cell's circumferential constitution behavior (alignment) based on exposed scaffold radius will be provided. Curvatures with size similarities in the range of cell sizes cause the cell's behavior to act as if it was in an in vivo tissue environment. The revision of the literature, patents, and clinical trials performed for the present study shows that there is a clear need for translational research through the implementation of clinical trial platforms that address the tissue engineering possibilities raised in the current revision. This article is categorized under: Infectious Diseases > Biomedical Engineering Neurological Diseases > Biomedical Engineering Cardiovascular Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Amir Jafari
- Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erfan Behjat
- Department of Biomaterials, School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | - Faezeh Mobini
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
5
|
Andreu I, Falcones B, Hurst S, Chahare N, Quiroga X, Le Roux AL, Kechagia Z, Beedle AEM, Elosegui-Artola A, Trepat X, Farré R, Betz T, Almendros I, Roca-Cusachs P. The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening. Nat Commun 2021; 12:4229. [PMID: 34244477 PMCID: PMC8270983 DOI: 10.1038/s41467-021-24383-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved.
Collapse
Affiliation(s)
- Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Sebastian Hurst
- Institute of Cell Biology, Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Nimesh Chahare
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat Politècnica de Catalunya (UPC), Campus Nord, Barcelona, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, Strand, London, UK
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ramon Farré
- Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Timo Betz
- Institute of Cell Biology, Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Isaac Almendros
- Universitat de Barcelona, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Stankevicins L, Ecker N, Terriac E, Maiuri P, Schoppmeyer R, Vargas P, Lennon-Duménil AM, Piel M, Qu B, Hoth M, Kruse K, Lautenschläger F. Deterministic actin waves as generators of cell polarization cues. Proc Natl Acad Sci U S A 2020; 117:826-835. [PMID: 31882452 PMCID: PMC6969493 DOI: 10.1073/pnas.1907845117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells "patrol" the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens.
Collapse
Affiliation(s)
- Luiza Stankevicins
- Bio Interfaces, Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Nicolas Ecker
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Terriac
- Bio Interfaces, Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Paolo Maiuri
- International Foundations of Medicine (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milano, Italy
| | - Rouven Schoppmeyer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Pablo Vargas
- INSERM U932, Institut Curie, 75005 Paris, France
- CNRS UMR144, Institut Curie, 75005 Paris, France
| | | | - Matthieu Piel
- Institut Curie, CNRS, UMR 144, Université Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France
| | - Bin Qu
- International Foundations of Medicine (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milano, Italy
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
- National Center for Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Franziska Lautenschläger
- Bio Interfaces, Leibniz Institute for New Materials, 66123 Saarbrücken, Germany;
- Department of Natural Sciences, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Multiscale model of integrin adhesion assembly. PLoS Comput Biol 2019; 15:e1007077. [PMID: 31163027 PMCID: PMC6568411 DOI: 10.1371/journal.pcbi.1007077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
The ability of adherent cells to form adhesions is critical to numerous phases of their physiology. The assembly of adhesions is mediated by several types of integrins. These integrins differ in physical properties, including rate of diffusion on the plasma membrane, rapidity of changing conformation from bent to extended, affinity for extracellular matrix ligands, and lifetimes of their ligand-bound states. However, the way in which nanoscale physical properties of integrins ensure proper adhesion assembly remains elusive. We observe experimentally that both β-1 and β-3 integrins localize in nascent adhesions at the cell leading edge. In order to understand how different nanoscale parameters of β-1 and β-3 integrins mediate proper adhesion assembly, we therefore develop a coarse-grained computational model. Results from the model demonstrate that morphology and distribution of nascent adhesions depend on ligand binding affinity and strength of pairwise interactions. Organization of nascent adhesions depends on the relative amounts of integrins with different bond kinetics. Moreover, the model shows that the architecture of an actin filament network does not perturb the total amount of integrin clustering and ligand binding; however, only bundled actin architectures favor adhesion stability and ultimately maturation. Together, our results support the view that cells can finely tune the expression of different integrin types to determine both structural and dynamic properties of adhesions.
Collapse
|
8
|
Abstract
B cells are essential to the adaptive immune system for providing the humoral immunity against cohorts of pathogens. The presentation of antigen to the B cell receptor (BCR) leads to the initiation of B cell activation, which is a process sensitive to the stiffness features of the substrates presenting the antigens. Mechanosensing of the B cells, potentiated through BCR signaling and the adhesion molecules, efficiently regulates B cell activation, proliferation and subsequent antibody responses. Defects in sensing of the antigen-presenting substrates can lead to the activation of autoreactive B cells in autoimmune diseases. The use of high-resolution, high-speed live-cell imaging along with the sophisticated biophysical materials, has uncovered the mechanisms underlying the initiation of B cell activation within seconds of its engagement with the antigen presenting substrates. In this chapter, we reviewed studies that have contributed to uncover the molecular mechanisms of B cell mechanosensing during the initiation of B cell activation.
Collapse
Affiliation(s)
- Samina Shaheen
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kabeer Haneef
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wang Jing
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Wanli Liu
- Center for life sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Tsui TY, Logan M, Moussa HI, Aucoin MG. What's Happening on the Other Side? Revealing Nano-Meter Scale Features of Mammalian Cells on Engineered Textured Tantalum Surfaces. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E114. [PMID: 30602684 PMCID: PMC6337376 DOI: 10.3390/ma12010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Advanced engineered surfaces can be used to direct cell behavior. These behaviors are typically characterized using either optical, atomic force, confocal, or electron microscopy; however, most microscopic techniques are generally restricted to observing what's happening on the "top" side or even the interior of the cell. Our group has focused on engineered surfaces typically reserved for microelectronics as potential surfaces to control cell behavior. These devices allow the exploration of novel substrates including titanium, tungsten, and tantalum intermixed with silicon oxide. Furthermore, these devices allow the exploration of the intricate patterning of surface materials and surface geometries i.e., trenches. Here we present two important advancements in our research: (1) the ability to split a fixed cell through the nucleus using an inexpensive three-point bend micro-cleaving technique and image 3D nanometer scale cellular components using high-resolution scanning electron microscopy; and (2) the observation of nanometer projections from the underbelly of a cell as it sits on top of patterned trenches on our devices. This application of a 3-point cleaving technique to visualize the underbelly of the cell is allowing a new understanding of how cells descend into surface cavities and is providing a new insight on cell migration mechanisms.
Collapse
Affiliation(s)
- Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Hassan I Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
10
|
Newman MR, Russell SG, Schmitt CS, Marozas IA, Sheu TJ, Puzas JE, Benoit DSW. Multivalent Presentation of Peptide Targeting Groups Alters Polymer Biodistribution to Target Tissues. Biomacromolecules 2017; 19:71-84. [PMID: 29227674 DOI: 10.1021/acs.biomac.7b01193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug delivery to bone is challenging, whereby drug distribution is commonly <1% of injected dose, despite development of several bone-targeted drug delivery systems specific to hydroxyapatite. These bone-targeted drug delivery systems still suffer from poor target cell localization within bone, as at any given time overall bone volume is far greater than acutely remodeling bone volume, which harbors relevant cell targets (osteoclasts or osteoblasts). Thus, there exists a need to target bone-acting drugs specifically to sites of bone remodeling. To address this need, this study synthesized oligo(ethylene glycol) copolymers based on a peptide with high affinity to tartrate-resistant acid phosphatase (TRAP), an enzyme deposited by osteoclasts during the bone resorption phase of bone remodeling, which provides greater specificity relevant for bone cell drugging. Gradient and random peptide orientations, as well as polymer molecular weights, were investigated. TRAP-targeted, high molecular weight (Mn) random copolymers exhibited superior accumulation in remodeling bone, where fracture accumulation was observed for at least 1 week and accounted for 14% of tissue distribution. Intermediate and low Mn random copolymer accumulation was lower, indicating residence time depends on Mn. High Mn gradient polymers were cleared, with only 2% persisting at fractures after 1 week, suggesting TRAP binding depends on peptide density. Peptide density and Mn are easily modified in this versatile targeting platform, which can be applied to a range of bone drug delivery applications.
Collapse
Affiliation(s)
- Maureen R Newman
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Steven G Russell
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Christopher S Schmitt
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Ian A Marozas
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Tzong-Jen Sheu
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - J Edward Puzas
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Biomedical Engineering and ‡Chemical Engineering, University of Rochester , Rochester, New York 14627, United States.,Center for Musculoskeletal Research, ∥Department of Orthopaedics, ¶Center for Oral Biology, and ⊥Department of Biomedical Genetics, University of Rochester Medical Center , Rochester, New York 14642, United States
| |
Collapse
|
11
|
Varadaraj A, Jenkins LM, Singh P, Chanda A, Snider J, Lee NY, Amsalem-Zafran AR, Ehrlich M, Henis YI, Mythreye K. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell 2017; 28:1195-1207. [PMID: 28298487 PMCID: PMC5415016 DOI: 10.1091/mbc.e16-08-0601] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
There is increased recycling of soluble fibronectin from the cell surface for fibrillogenesis. This recycling is regulated by TGF-β in a transcription- and SMAD-independent manner via specific TβRII and integrin α5β1 interactions. The recycling of fibronectin is Rab11 dependent and is required for TGF-β–induced cell migration. Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β–induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface–internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Priyanka Singh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201
| | - John Snider
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - N Y Lee
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
12
|
González-Tarragó V, Elosegui-Artola A, Bazellières E, Oria R, Pérez-González C, Roca-Cusachs P. Binding of ZO-1 to α5β1 integrins regulates the mechanical properties of α5β1-fibronectin links. Mol Biol Cell 2017; 28:1847-1852. [PMID: 28251923 PMCID: PMC5541835 DOI: 10.1091/mbc.e17-01-0006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Abstract
Fundamental processes in cell adhesion, motility, and rigidity adaptation are regulated by integrin-mediated adhesion to the extracellular matrix (ECM). The link between the ECM component fibronectin (fn) and integrin α5β1 forms a complex with ZO-1 in cells at the edge of migrating monolayers, regulating cell migration. However, how this complex affects the α5β1-fn link is unknown. Here we show that the α5β1/ZO-1 complex decreases the resistance to force of α5β1-fn adhesions located at the edge of migrating cell monolayers while also increasing α5β1 recruitment. Consistently with a molecular clutch model of adhesion, this effect of ZO-1 leads to a decrease in the density and intensity of adhesions in cells at the edge of migrating monolayers. Taken together, our results unveil a new mode of integrin regulation through modification of the mechanical properties of integrin-ECM links, which may be harnessed by cells to control adhesion and migration.
Collapse
Affiliation(s)
- Víctor González-Tarragó
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain.,University of Barcelona, 08028 Barcelona, Spain
| | | | - Elsa Bazellières
- IBDM, Institut de Biologie du Développement de Marseille, UMR 7288, 13009 Marseille, France
| | - Roger Oria
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain.,University of Barcelona, 08028 Barcelona, Spain
| | - Carlos Pérez-González
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain.,University of Barcelona, 08028 Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain .,University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Liang EI, Mah EJ, Yee AF, Digman MA. Correlation of focal adhesion assembly and disassembly with cell migration on nanotopography. Integr Biol (Camb) 2017; 9:145-155. [PMID: 28092391 PMCID: PMC5399776 DOI: 10.1039/c6ib00193a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective cell adhesion is desirable to control cell growth and migration on biomedical implants. Mesenchymal cell migration is regulated through focal adhesions (FAs) and can be modulated by their microenvironment, including changes in surface topography. We use the Number and Molecular Brightness (N&B) imaging analysis to provide a unique perspective on FA assembly and disassembly. This imaging analysis generates a map of real-time fluctuations of protein monomers, dimers, and higher order aggregates of FA proteins, such as paxillin during assembly and disassembly. We show a dynamic view of how nanostructured surfaces (nanoline gratings or nanopillars) regulate single molecular dynamics. In particular, we report that the smallest nanopillars (100 nm spacing) gave rise to a low population of disassembling adhesion clusters of ∼2 paxillin proteins whereas the larger nanopillars (380 nm spacing) gave rise to a much larger population of larger disassembling clusters of ∼3-5 paxillin proteins. Cells were more motile on the smaller nanopillars (spaced 100-130 nm apart) compared to all other surfaces studied. Thus, physical nanotopography influences cell motility, adhesion size, and adhesion assembly and disassembly. We report for the first time, with single molecular detection, how nanotopography influences cell motility and protein reorganization in adhesions.
Collapse
Affiliation(s)
- Elena I Liang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA.
| | - Emma J Mah
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA
| | - Albert F Yee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA. and Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, USA. and Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
14
|
Karimi F, McKenzie TG, O'Connor AJ, Qiao GG, Heath DE. Nano-scale clustering of integrin-binding ligands regulates endothelial cell adhesion, migration, and endothelialization rate: novel materials for small diameter vascular graft applications. J Mater Chem B 2017; 5:5942-5953. [DOI: 10.1039/c7tb01298e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blood contacting devices are commonly used in today's medical landscape.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Chemical and Biomedical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
- Australia
| | - Thomas G. McKenzie
- Polymer Science Group
- Department of Chemical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
| | - Andrea J. O'Connor
- School of Chemical and Biomedical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
| | - Daniel E. Heath
- School of Chemical and Biomedical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
15
|
Rossier O, Giannone G. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking. Exp Cell Res 2016; 343:28-34. [DOI: 10.1016/j.yexcr.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 10/24/2022]
|
16
|
Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R, Fässler R. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 2016; 5:e10130. [PMID: 26821125 PMCID: PMC4749545 DOI: 10.7554/elife.10130] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/19/2015] [Indexed: 12/28/2022] Open
Abstract
Integrins require an activation step prior to ligand binding and signaling. How talin and kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report that fibroblasts lacking either talin or kindlin failed to activate β1 integrins, adhere to fibronectin (FN) or maintain their integrins in a high affinity conformation induced by Mn(2+). Despite compromised integrin activation and adhesion, Mn(2+) enabled talin- but not kindlin-deficient cells to initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling node at newly formed adhesion sites in a talin-independent manner.
Collapse
Affiliation(s)
- Marina Theodosiou
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Moritz Widmaier
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Emanuel Rognoni
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maik Veelders
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Armin Lambacher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katharina Austen
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, United States
- Department of Medicine, Veterans Affairs Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
17
|
Isabey D, Pelle G, André Dias S, Bottier M, Nguyen NM, Filoche M, Louis B. Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting. Biomech Model Mechanobiol 2015; 15:947-63. [PMID: 26459324 DOI: 10.1007/s10237-015-0734-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
Cellular adhesion forces depend on local biological conditions meaning that adhesion characterization must be performed while preserving cellular integrity. We presently postulate that magnetic bead twisting provides an appropriate stress, i.e., basically a clamp, for assessment in living cells of both cellular adhesion and mechanical properties of the cytoskeleton. A global dissociation rate obeying a Bell-type model was used to determine the natural dissociation rate ([Formula: see text]) and a reference stress ([Formula: see text]). These adhesion parameters were determined in parallel to the mechanical properties for a variety of biological conditions in which either adhesion or cytoskeleton was selectively weakened or strengthened by changing successively ligand concentration, actin polymerization level (by treating with cytochalasin D), level of exerted stress (by increasing magnetic torque), and cell environment (by using rigid and soft 3D matrices). On the whole, this multiscale evaluation of the cellular and molecular responses to a controlled stress reveals an evolution which is consistent with stochastic multiple bond theories and with literature results obtained with other molecular techniques. Present results confirm the validity of the proposed bead-twisting approach for its capability to probe cellular and molecular responses in a variety of biological conditions.
Collapse
Affiliation(s)
- Daniel Isabey
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.
| | - Gabriel Pelle
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,APHP, Groupe Hospitalier H. Mondor A. Chenevier, Service des Explorations Fonctionnelles, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Sofia André Dias
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Mathieu Bottier
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Ngoc-Minh Nguyen
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Marcel Filoche
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| | - Bruno Louis
- Inserm, U955, Équipe 13, Biomécanique and Appareil Respiratoire: une approche multi-échelle, UMR S955, CNRS, ERL 7240, Université Paris Est, UPEC, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| |
Collapse
|
18
|
Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 2014; 15:825-33. [PMID: 25355507 PMCID: PMC9339222 DOI: 10.1038/nrm3903] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the shapes of organisms are encoded in their genome, the developmental processes that lead to the final form of vertebrates involve a constant feedback between dynamic mechanical forces, and cell growth and motility. Mechanobiology has emerged as a discipline dedicated to the study of the effects of mechanical forces and geometry on cell growth and motility—for example, during cell-matrix adhesion development—through the signalling process of mechanotransduction.
Collapse
Affiliation(s)
- Thomas Iskratsch
- 1] Department of Biological Sciences, Columbia University, New York 10027, USA. [2]
| | - Haguy Wolfenson
- 1] Department of Biological Sciences, Columbia University, New York 10027, USA. [2]
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, and the Department of Biological Sciences, Columbia University, New York 10027, USA
| |
Collapse
|
19
|
Liu Y, Medda R, Liu Z, Galior K, Yehl K, Spatz JP, Cavalcanti-Adam E, Salaita K. Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission. NANO LETTERS 2014; 14:5539-46. [PMID: 25238229 PMCID: PMC4189618 DOI: 10.1021/nl501912g] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/29/2014] [Indexed: 05/06/2023]
Abstract
Herein we aimed to understand how nanoscale clustering of RGD ligands alters the mechano-regulation of their integrin receptors. We combined molecular tension fluorescence microscopy with block copolymer micelle nanolithography to fabricate substrates with arrays of precisely spaced probes that can generate a 10-fold fluorescence response to pN-forces. We found that the mechanism of sensing ligand spacing is force-mediated. This strategy is broadly applicable to investigating receptor clustering and its role in mechanotransduction pathways.
Collapse
Affiliation(s)
- Yang Liu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rebecca Medda
- Department
of Biophysical Chemistry, Institute of Physical Chemistry, Ruprecht-Karls-University, INF 253, 69120 Heidelberg, Germany
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Zheng Liu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Kornelia Galior
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Kevin Yehl
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Joachim P. Spatz
- Department
of Biophysical Chemistry, Institute of Physical Chemistry, Ruprecht-Karls-University, INF 253, 69120 Heidelberg, Germany
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Elisabetta
Ada Cavalcanti-Adam
- Department
of Biophysical Chemistry, Institute of Physical Chemistry, Ruprecht-Karls-University, INF 253, 69120 Heidelberg, Germany
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
20
|
Andarawewa KL, Moissoglu K, Sup Lee C, Ando Y, Yu M, Debnath P, Shannon JD, Sirinivasan S, Conaway MR, Weber MJ, Schwartz MA. Integrin adjunct therapy for melanoma. Pigment Cell Melanoma Res 2014; 28:114-6. [PMID: 25264294 DOI: 10.1111/pcmr.12320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kumari L Andarawewa
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun Z, Lambacher A, Fässler R. Nascent Adhesions: From Fluctuations to a Hierarchical Organization. Curr Biol 2014; 24:R801-3. [DOI: 10.1016/j.cub.2014.07.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Miyoshi H, Adachi T. Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:609-27. [PMID: 24720435 DOI: 10.1089/ten.teb.2013.0728] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiological role of the actin cytoskeleton is well known: it provides mechanical support and endogenous force generation for formation of a cell shape and for migration. Furthermore, a growing number of studies have demonstrated another significant role of the actin cytoskeleton: it offers dynamic epigenetic memory for guiding cell fate, in particular, proliferation and differentiation. Because instantaneous imbalance in the mechanical homeostasis is adjusted through actin remodeling, a synthetic extracellular matrix (ECM) niche as a source of topographical and mechanical cues is expected to be effective at modulation of the actin cytoskeleton. In this context, the synthetic ECM niche determines cell migration, proliferation, and differentiation, all of which have to be controlled in functional tissue engineering scaffolds to ensure proper regulation of tissue/organ formation, maintenance of tissue integrity and repair, and regeneration. Here, with an emphasis on the epigenetic role of the actin cytoskeletal system, we propose a design concept of micro/nanotopography of a tissue engineering scaffold for control of cell migration, proliferation, and differentiation in a stable and well-defined manner, both in vitro and in vivo.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- 1 Ultrahigh Precision Optics Technology Team , RIKEN Center for Advanced Photonics, Saitama, Japan
| | | |
Collapse
|
23
|
Bachir AI, Zareno J, Moissoglu K, Plow EF, Gratton E, Horwitz AR. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Curr Biol 2014; 24:1845-53. [PMID: 25088556 DOI: 10.1016/j.cub.2014.07.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/03/2014] [Accepted: 07/04/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND A complex network of putative molecular interactions underlies the architecture and function of cell-matrix adhesions. Most of these interactions are implicated from coimmunoprecipitation studies using expressed components, but few have been demonstrated or characterized functionally in living cells. RESULTS We introduce fluorescence fluctuation methods to determine, at high spatial and temporal resolution, "when" and "where" molecular complexes form and their stoichiometry in nascent adhesions (NAs). We focus on integrin-associated molecules implicated in integrin activation and in the integrin-actin linkage in NAs and show that these molecules form integrin-containing complexes hierarchically within the adhesion itself. Integrin and kindlin reside in a molecular complex as soon as adhesions are visible; talin, although also present early, associates with the integrin-kindlin complex only after NAs have formed and in response to myosin II activity. Furthermore, talin and vinculin association precedes the formation of the integrin-talin complex. Finally, α-actinin enters NAs periodically and in clusters that transiently associate with integrins. The absolute number and stoichiometry of these molecules varies among the molecules studied and changes as adhesions mature. CONCLUSIONS These observations suggest a working model for NA assembly whereby transient α-actinin-integrin complexes help nucleate NAs within the lamellipodium. Subsequently, integrin complexes containing kindlin, but not talin, emerge. Once NAs have formed, myosin II activity promotes talin association with the integrin-kindlin complex in a stoichiometry consistent with each talin molecule linking two integrin-kindlin complexes.
Collapse
Affiliation(s)
- Alexia I Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jessica Zareno
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Konstadinos Moissoglu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
24
|
Custódio CA, Reis RL, Mano JF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 2014; 3:797-810. [PMID: 24464880 DOI: 10.1002/adhm.201300603] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Indexed: 12/12/2022]
Abstract
Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.
Collapse
Affiliation(s)
- Catarina A. Custódio
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
25
|
Elosegui-Artola A, Bazellières E, Allen MD, Andreu I, Oria R, Sunyer R, Gomm JJ, Marshall JF, Jones JL, Trepat X, Roca-Cusachs P. Rigidity sensing and adaptation through regulation of integrin types. NATURE MATERIALS 2014; 13:631-7. [PMID: 24793358 PMCID: PMC4031069 DOI: 10.1038/nmat3960] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/27/2014] [Indexed: 05/13/2023]
Abstract
Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5β1 integrins (constitutively expressed) or αvβ6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin.
Collapse
Affiliation(s)
- Alberto Elosegui-Artola
- Centre for Tumour Biology Barts Cancer Institute - a Cancer Research UK Centre of Excellence. Queen Mary, University of London, London, UK
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | | | - Michael D. Allen
- Centre for Tumour Biology Barts Cancer Institute - a Cancer Research UK Centre of Excellence. Queen Mary, University of London, London, UK
| | - Ion Andreu
- CEIT and TECNUN (University of Navarra). Donostia-San Sebastian, Spain
| | - Roger Oria
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Jennifer J. Gomm
- Centre for Tumour Biology Barts Cancer Institute - a Cancer Research UK Centre of Excellence. Queen Mary, University of London, London, UK
| | - John F. Marshall
- Centre for Tumour Biology Barts Cancer Institute - a Cancer Research UK Centre of Excellence. Queen Mary, University of London, London, UK
| | - J. Louise Jones
- Centre for Tumour Biology Barts Cancer Institute - a Cancer Research UK Centre of Excellence. Queen Mary, University of London, London, UK
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Authors for correspondence: Pere Roca-Cusachs, PhD, Assistant professor, Institute for Bioengineering of Catalonia / University of Barcelona, C/ Baldiri i Reixac, 15-21, 08028, Barcelona Spain, Tel: (+34) 934 020 863, ; Xavier Trepat, PhD, ICREA Research Professor, Institute for Bioengineering of Catalonia, C/ Baldiri i Reixac, 15-21, 08028, Barcelona Spain, Tel: (+34) 934 020 265,
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Authors for correspondence: Pere Roca-Cusachs, PhD, Assistant professor, Institute for Bioengineering of Catalonia / University of Barcelona, C/ Baldiri i Reixac, 15-21, 08028, Barcelona Spain, Tel: (+34) 934 020 863, ; Xavier Trepat, PhD, ICREA Research Professor, Institute for Bioengineering of Catalonia, C/ Baldiri i Reixac, 15-21, 08028, Barcelona Spain, Tel: (+34) 934 020 265,
| |
Collapse
|
26
|
Amaral IF, Sousa SR, Neiva I, Marcos-Silva L, Kirkpatrick CJ, Barbosa MA, Pêgo AP. Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by ¹²⁵I-radiolabelling. BIOMATTER 2013; 3:24791. [PMID: 23635535 PMCID: PMC3749804 DOI: 10.4161/biom.24791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, (125)I-radiolabelling was explored to follow the kinetics and isotherm of fibronectin (FN) adsorption to porous polymeric scaffolds, as well as to assess the elution and exchangeability of pre-adsorbed FN following incubation in serum-containing culture medium. Chitosan (CH) porous scaffolds with two different degrees of acetylation (DA 4% and 15%) were incubated in FN solutions with concentrations ranging from 5 to 50 µg/mL. The kinetic and isotherm of FN adsorption to CH were successfully followed using (125)I-FN as a tracer molecule. While on DA 4% the levels of adsorbed FN increased linearly with FN solution concentration, on DA 15% a saturation plateau was attained, and FN adsorbed amounts were significantly lower. These findings were supported by immunofluorescent studies that revealed, for the same FN solution concentration, higher levels of exposed cell-binding domains on DA 4% as compared with DA 15%. Following incubation in serum containing medium, DA 4% also revealed higher ability to exchange pre-adsorbed FN by new FN molecules from serum than DA 15%. In accordance, when assessing the efficacy of passively adsorbed FN to promote endothelial cell (EC) adhesion to CH, ECs were found to adhere at higher levels to DA 4% as compared with DA 15%, 5 µg/mL of FN being already efficient in promoting cell adhesion and cytoskeletal organization on CH with DA 4%. Taken together the results show that protein radiolabelling can be used as an effective tool to study protein adsorption to porous polymeric scaffolds, both from single and complex protein solutions.
Collapse
Affiliation(s)
- Isabel F Amaral
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
| | - Susana R Sousa
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal; REQUIMTE; Instituto Superior de Engenharia do Porto; Instituto Politécnico do Porto; Porto, Portugal
| | - Ismael Neiva
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
| | - Lara Marcos-Silva
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto; Porto, Portugal
| | - Charles J Kirkpatrick
- REPAIR Lab, Institute of Pathology; University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Mário A Barbosa
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal; Universidade do Porto; Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Engenharia; Porto, Portugal
| | - Ana P Pêgo
- INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal; Universidade do Porto; Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Engenharia; Porto, Portugal
| |
Collapse
|
27
|
Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A 2013; 110:E1361-70. [PMID: 23515331 PMCID: PMC3625291 DOI: 10.1073/pnas.1220723110] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.
Collapse
Affiliation(s)
- Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- Department of Physiological Sciences I, University of Barcelona, 08036 Barcelona, Spain
| | - Armando del Rio
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Center for Biophysical Studies, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | | | - Nils C. Gauthier
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411; and
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Michael P. Sheetz
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411; and
| |
Collapse
|
28
|
Kuznetsov IR, Evans EA. Brownian nanoimaging of interface dynamics and ligand-receptor binding at cell surfaces in 3-D. Methods 2013; 60:214-24. [PMID: 23643864 DOI: 10.1016/j.ymeth.2013.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 01/20/2023] Open
Abstract
We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.
Collapse
Affiliation(s)
- Igor R Kuznetsov
- Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
29
|
Goldmann WH, Auernheimer V, Thievessen I, Fabry B. Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 2013; 37:397-405. [PMID: 23494917 DOI: 10.1002/cbin.10064] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein, vinculin, is important for transmitting mechanical forces and orchestrating mechanical signalling events. Deregulation of vinculin results in altered cell adhesion, contractility, motility and growth, all of which are important processes in cancer metastasis. This review summarises recent reports on the role of vinculin in cellular force generation and signalling, and discusses implications for a role of vinculin in promoting cancer cell migration in 3D environments.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
30
|
Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7-10). Acta Biomater 2013; 9:5643-52. [PMID: 23117145 DOI: 10.1016/j.actbio.2012.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/17/2012] [Accepted: 10/23/2012] [Indexed: 12/22/2022]
Abstract
The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII(7-10)). Immobilized rhFNIII(7-10) was characterized in terms of amount ((125)I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII(7-10) with rhFNIII(7-10) concentration, and, for the same concentration, higher amounts of rhFNIII(7-10) on DA 4% compared with DA 15%. Moreover, rhFNIII(7-10) concentrations as low as 5 and 20μg ml(-1) in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20μg ml(-1) human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII(7-10) grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.
Collapse
|
31
|
Schwingel M, Bastmeyer M. Force mapping during the formation and maturation of cell adhesion sites with multiple optical tweezers. PLoS One 2013; 8:e54850. [PMID: 23372781 PMCID: PMC3556026 DOI: 10.1371/journal.pone.0054850] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/17/2012] [Indexed: 01/19/2023] Open
Abstract
Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity.
Collapse
Affiliation(s)
- Melanie Schwingel
- Karlsruhe Institute of Technology (KIT), Zoological Institute, Cell- and Neurobiology, Karlsruhe, Germany
- DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT), Zoological Institute, Cell- and Neurobiology, Karlsruhe, Germany
- DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
32
|
Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, García AJ. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J Cell Sci 2012; 125:5110-23. [PMID: 22899715 DOI: 10.1242/jcs.108035] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Integrin-based focal adhesions (FA) transmit anchorage and traction forces between the cell and the extracellular matrix (ECM). To gain further insight into the physical parameters of the ECM that control FA assembly and force transduction in non-migrating cells, we used fibronectin (FN) nanopatterning within a cell adhesion-resistant background to establish the threshold area of ECM ligand required for stable FA assembly and force transduction. Integrin-FN clustering and adhesive force were strongly modulated by the geometry of the nanoscale adhesive area. Individual nanoisland area, not the number of nanoislands or total adhesive area, controlled integrin-FN clustering and adhesion strength. Importantly, below an area threshold (0.11 µm(2)), very few integrin-FN clusters and negligible adhesive forces were generated. We then asked whether this adhesive area threshold could be modulated by intracellular pathways known to influence either adhesive force, cytoskeletal tension, or the structural link between the two. Expression of talin- or vinculin-head domains that increase integrin activation or clustering overcame this nanolimit for stable integrin-FN clustering and increased adhesive force. Inhibition of myosin contractility in cells expressing a vinculin mutant that enhances cytoskeleton-integrin coupling also restored integrin-FN clustering below the nanolimit. We conclude that the minimum area of integrin-FN clusters required for stable assembly of nanoscale FA and adhesive force transduction is not a constant; rather it has a dynamic threshold that results from an equilibrium between pathways controlling adhesive force, cytoskeletal tension, and the structural linkage that transmits these forces, allowing the balance to be tipped by factors that regulate these mechanical parameters.
Collapse
Affiliation(s)
- Sean R Coyer
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30330, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Boettiger D. Mechanical control of integrin-mediated adhesion and signaling. Curr Opin Cell Biol 2012; 24:592-9. [PMID: 22857903 DOI: 10.1016/j.ceb.2012.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 01/13/2023]
Abstract
Integrin-mediated adhesion is controlled by the number of bonds between cell surface integrins and substrate-bound ligands. Integrin-ligand affinity is modulated by chemical allostery, mechanical allostery and integrin clustering. This review analyzes how each of these factors changes through the phases of cell attachment, adhesion strengthening, and clustering. The analysis predicts a dominant role of mechanical factors in both adhesive regulation and integrin signaling for adherent cells. New approaches and experimental analyses will be required to substantiate this hypothesis.
Collapse
Affiliation(s)
- David Boettiger
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Ventre M, Causa F, Netti PA. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J R Soc Interface 2012; 9:2017-32. [PMID: 22753785 DOI: 10.1098/rsif.2012.0308] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional biological tissues, advanced cell culture systems, single-cell diagnosis as well as for cell sorting and differentiation. It is well established that crosstalk at the cell-material interface occurs and this has a profound influence on cell behaviour. However, the complete deciphering of the cell-material communication code is still far away. A variety of material surface properties have been reported to affect the strength and the nature of the cell-material interactions, including biological cues, topography and mechanical properties. Novel experimental evidence bears out the hypothesis that these three different signals participate in the same material-cytoskeleton crosstalk pathway via adhesion plaque formation dynamics. In this review, we present the relevant findings on material-induced cell response along with the description of cell behaviour when exposed to arrays of signals-biochemical, topographical and mechanical. Finally, with the aid of literature data, we attempt to draw unifying elements of the material-cytoskeleton-cell fate chain.
Collapse
Affiliation(s)
- Maurizio Ventre
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia and Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Napoli, Italy
| | | | | |
Collapse
|
35
|
Elineni K, Gallant N. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution. Biophys J 2011; 101:2903-11. [DOI: 10.1016/j.bpj.2011.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022] Open
|
36
|
Schvartzman M, Palma M, Sable J, Abramson J, Hu X, Sheetz MP, Wind SJ. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. NANO LETTERS 2011; 11:1306-12. [PMID: 21319842 PMCID: PMC3061283 DOI: 10.1021/nl104378f] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density, and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least four liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures.
Collapse
Affiliation(s)
- Mark Schvartzman
- Department of Chemical Engineering, Columbia University, 500 West 120 St., New York, NY 10027
- Nanomedicine Center for Mechanobiology – Directing the Immune Response, Columbia University, New York, NY 10027
| | - Matteo Palma
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 West 120 St., New York, NY 10027
- Department of Mechanical Engineering, Columbia University, 500 West 120 St., New York, NY 10027
- Nanomedicine Center for Mechanobiology – Directing the Immune Response, Columbia University, New York, NY 10027
| | - Julia Sable
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027
- Nanomedicine Center for Mechanobiology – Directing the Immune Response, Columbia University, New York, NY 10027
| | - Justin Abramson
- Department of Mechanical Engineering, Columbia University, 500 West 120 St., New York, NY 10027
- Nanomedicine Center for Mechanobiology – Directing the Immune Response, Columbia University, New York, NY 10027
| | - Xian Hu
- Department of Biological Sciences National University of Singapore
| | - Michael P. Sheetz
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027
- Nanomedicine Center for Mechanobiology – Directing the Immune Response, Columbia University, New York, NY 10027
| | - Shalom J. Wind
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 West 120 St., New York, NY 10027
- Nanomedicine Center for Mechanobiology – Directing the Immune Response, Columbia University, New York, NY 10027
| |
Collapse
|
37
|
Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:350-60. [PMID: 20435097 PMCID: PMC2924948 DOI: 10.1016/j.bbagen.2010.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/31/2010] [Accepted: 04/16/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND The goal of tissue engineering is to restore tissue function using biomimetic scaffolds which direct desired cell fates such as attachment, proliferation and differentiation. Cell behavior in vivo is determined by a complex interaction of cells with extracellular biosignals, many of which exist on a nanoscale. Therefore, recent efforts in tissue engineering biomaterial development have focused on incorporating extracellular matrix- (ECM) derived peptides or proteins into biomaterials in order to mimic natural ECM. Concurrent advances in nanotechnology have also made it possible to manipulate protein and peptide presentation on surfaces on a nanoscale level. SCOPE OF REVIEW This review discusses protein and peptide nanopatterning techniques and examples of how nanoscale engineering of bioadhesive materials may enhance outcomes for regenerative medicine. MAJOR CONCLUSIONS Synergy between ECM-mimetic tissue engineering and nanotechnology fields can be found in three major strategies: (1) Mimicking nanoscale orientation of ECM peptide domains to maintain native bioactivity, (2) Presenting adhesive peptides at unnaturally high densities, and (3) Engineering multivalent ECM-derived peptide constructs. GENERAL SIGNIFICANCE Combining bioadhesion and nanopatterning technologies to allow nanoscale control of adhesive motifs on the cell-material interface may result in exciting advances in tissue engineering. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Asha Shekaran
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
38
|
Moore SW, Roca-Cusachs P, Sheetz MP. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 2010; 19:194-206. [PMID: 20708583 DOI: 10.1016/j.devcel.2010.07.018] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/13/2010] [Accepted: 07/16/2010] [Indexed: 01/06/2023]
Abstract
Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here, we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins and discuss the evidence supporting these proteins as mechanosensors.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
39
|
Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, Collard DM, García AJ. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med 2010; 2:45ra60. [PMID: 20720217 PMCID: PMC3128787 DOI: 10.1126/scitranslmed.3001002] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Engineered biointerfaces covered with biomimetic motifs, including short bioadhesive ligands, are a promising material-based strategy for tissue repair in regenerative medicine. Potentially useful coating molecules are ligands for the integrins, major extracellular matrix receptors that require both ligand binding and nanoscale clustering for maximal signaling efficiency. We prepared coatings consisting of well-defined multimer constructs with a precise number of recombinant fragments of fibronectin (monomer, dimer, tetramer, and pentamer) to assess how nanoscale ligand clustering affects integrin binding, stem cell responses, tissue healing, and biomaterial integration. Clinical-grade titanium was grafted with polymer brushes that presented monomers, dimers, trimers, or pentamers of the alpha(5)beta(1) integrin-specific fibronectin III (7 to 10) domain (FNIII(7-10)). Coatings consisting of trimers and pentamers enhanced integrin-mediated adhesion in vitro, osteogenic signaling, and differentiation in human mesenchymal stem cells more than did surfaces presenting monomers and dimers. Furthermore, ligand clustering promoted bone formation and functional integration of the implant into bone in rat tibiae. This study establishes that a material-based strategy in which implants are coated with clustered bioadhesive ligands can promote robust implant-tissue integration.
Collapse
Affiliation(s)
- Timothy A. Petrie
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Room 2314 IBB, Atlanta, GA 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jenny E. Raynor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David W. Dumbauld
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Room 2314 IBB, Atlanta, GA 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ted T. Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Room 2314 IBB, Atlanta, GA 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Subodh Jagtap
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kellie L. Templeman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Room 2314 IBB, Atlanta, GA 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Room 2314 IBB, Atlanta, GA 30332-0363, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
40
|
Wright GJ. Signal initiation in biological systems: the properties and detection of transient extracellular protein interactions. MOLECULAR BIOSYSTEMS 2010; 5:1405-12. [PMID: 19593473 PMCID: PMC2898632 DOI: 10.1039/b903580j] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular glycoprotein interactions are not detected by most high throughput assays creating “blind-spots” in protein interaction maps. This review examines this problem and discusses recent advances that have begun to address it.
Individual cells within biological systems frequently coordinate their functions through signals initiated by specific extracellular protein interactions involving receptors that bridge the cellular membrane. Due to their biochemical nature, these membrane-embedded receptor proteins are difficult to manipulate and their interactions are characterised by very weak binding strengths that cannot be detected using popular high throughput assays. This review will provide a general outline of the biochemical attributes of receptor proteins focussing in particular on the biophysical properties of their transient interactions. Methods that are able to detect these weak extracellular binding events and especially those that can be used for identifying novel interactions will be compared. Finally, I discuss the feasibility of constructing a complete and accurate extracellular protein interaction map, and the methods that are likely to be useful in achieving this goal.
Collapse
Affiliation(s)
- Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| |
Collapse
|
41
|
Roca-Cusachs P, Gauthier NC, del Rio A, Sheetz MP. Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc Natl Acad Sci U S A 2009; 106:16245-50. [PMID: 19805288 PMCID: PMC2752568 DOI: 10.1073/pnas.0902818106] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Indexed: 12/12/2022] Open
Abstract
A key molecular link between cells and the extracellular matrix is the binding between fibronectin and integrins alpha(5)beta(1) and alpha(v)beta(3). However, the roles of these different integrins in establishing adhesion remain unclear. We tested the adhesion strength of fibronectin-integrin-cytoskeleton linkages by applying physiological nanonewton forces to fibronectin-coated magnetic beads bound to cells. We report that the clustering of fibronectin domains within 40 nm led to integrin alpha(5)beta(1) recruitment, and increased the ability to sustain force by over six-fold. This force was supported by alpha(5)beta(1) integrin clusters. Importantly, we did not detect a role of either integrin alpha(v)beta(3) or talin 1 or 2 in maintaining adhesion strength. Instead, these molecules enabled the connection to the cytoskeleton and reinforcement in response to an applied force. Thus, high matrix forces are primarily supported by clustered alpha(5)beta(1) integrins, while less stable links to alpha(v)beta(3) integrins initiate mechanotransduction, resulting in reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds.
Collapse
Affiliation(s)
- Pere Roca-Cusachs
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027; and
- Institute for Bioengineering of Catalonia, c/Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Nils C. Gauthier
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027; and
| | - Armando del Rio
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027; and
| | - Michael P. Sheetz
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027; and
| |
Collapse
|
42
|
Chen M, Patra PK, Lovett ML, Kaplan DL, Bhowmick S. Role of electrospun fibre diameter and corresponding specific surface area (SSA) on cell attachment. J Tissue Eng Regen Med 2009; 3:269-79. [PMID: 19347841 DOI: 10.1002/term.163] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to develop scaffolds for tissue regeneration applications, it is important to develop an understanding of the kinetics of cell attachment as a function of scaffold geometry. In the present study, we investigated how the specific surface area of electrospun scaffolds affected cell attachment and spreading. Number of cells attached to the scaffold was measured by the relative intensity of a metabolic dye (MTS) and cell spreading was analysed for individual cells by measuring the area of projected F-actin cytoskeleton. We varied the fibre diameter to obtain a specific surface area distribution in the range 2.24-18.79 microm(-1). In addition, we had one case where the scaffolds had beads in them and therefore had non-uniform fibres. For each of these different geometries, we varied the cell-seeding density (0.5-1 x 10(5)) and the serum concentration (0-12%) over the first 8 h in an electrospun polycaprolactone NIH 3T3 fibroblast system. Cells on beaded scaffolds showed the lowest attachment and almost no F-actin spreading in all experiments indicating uniform fibre diameter is essential for electrospun scaffolds. For the uniform fibre scaffolds, cell attachment was a function of scaffold specific surface area (SSA) (18.79-2.24 microm(-1)) and followed two distinct trends: when scaffold SSA was < 7.13 microm(-1), cell adhesion rate remained largely unchanged; however, for SSA > 7.13 microm(-1) there was a significant increase in cellular attachment rate with increasing SSA. This indicated that nanofibrous scaffolds increased cellular adhesion compared to microfibrous scaffolds. This phenomenon is true for serum concentrations of 7.5% and higher. For 5% and lower serum concentration, cell attachment is low and higher SSA fails to make a significant improvement in cell attachment. When cell attachment was investigated at a single-cell level by measuring the projected actin area, a similar trend was noted where the effect of higher SSA led to higher projected area for cells at 8 h. These results indicate that uniform electrospun scaffolds with SSA provide a faster cell attachment compared to lower SSA and beaded scaffolds. These results indicate that continuous electrospun nanofibrous scaffolds may be a good substrate for rapid tissue regeneration.
Collapse
Affiliation(s)
- Ming Chen
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, N. Dartmouth, MA 02747, USA
| | | | | | | | | |
Collapse
|
43
|
Kreiner M, Byron O, Domingues D, van der Walle CF. Oligomerisation and thermal stability of polyvalent integrin α5β1 ligands. Biophys Chem 2009; 142:34-9. [DOI: 10.1016/j.bpc.2009.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/27/2009] [Accepted: 03/01/2009] [Indexed: 11/16/2022]
|
44
|
Anamelechi CC, Clermont EC, Novak MT, Reichert WM. Dynamic seeding of perfusing human umbilical vein endothelial cells (HUVECs) onto dual-function cell adhesion ligands: Arg-Gly-Asp (RGD)-streptavidin and biotinylated fibronectin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5725-30. [PMID: 19348476 PMCID: PMC4070296 DOI: 10.1021/la803963r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for alpha5beta1 and alphavbeta3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both alpha5beta1 and alphavbeta3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately.
Collapse
Affiliation(s)
- Charles C. Anamelechi
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, Durham, North Carolina 27708
| | - Edward C. Clermont
- School of Medicine, Emory University, 1648 Pierce Drive, Atlanta, Georgia 30322
| | - Matthew T. Novak
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, Durham, North Carolina 27708
| | - William M. Reichert
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, Durham, North Carolina 27708
| |
Collapse
|
45
|
Slater JH, Frey W. Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation. J Biomed Mater Res A 2008; 87:176-95. [PMID: 18085648 DOI: 10.1002/jbm.a.31725] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Investigating stages of maturation of cellular adhesions to the extracellular matrix from the initial binding events to the formation of small focal complexes has been challenging because of the difficulty in fabricating the necessary nanopatterned substrates with controlled biochemical functionality. We present the fabrication and characterization of surfaces presenting fibronectin nanopatterns of controlled size and pitch that provide well-defined cellular adhesion sites against a nonadhesive polyethylene glycol background. The nanopatterned surfaces allow us to control the number of fibronectin proteins within each adhesion site from 9 to 250, thereby limiting the number of integrins involved in each cell-substrate adhesion. We demonstrate the presence of fibronectin on the nanoislands, while no protein was observed on the passivated background. We show that the cell adheres to the nanopatterns with adhesions that are much smaller and more evenly distributed than on a glass control. The nanopattern influences cellular proliferation only at longer times, but influences spreading at both early and later times, indicating adhesion size and adhesion density play a role in controlling cell adhesion and signaling. However, the overall density of fibronectin on all patterns is far lower than on homogeneously coated control surfaces, showing that the local density of adhesion ligands, not the average density, is the important parameter for cell proliferation and spreading.
Collapse
Affiliation(s)
- John H Slater
- Department of Biomedical Engineering and Center for Nano and Molecular Science and Technology, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | | |
Collapse
|
46
|
Sprowson AP, McCaskie AW, Birch MA. ASARM-truncated MEPE and AC-100 enhance osteogenesis by promoting osteoprogenitor adhesion. J Orthop Res 2008; 26:1256-62. [PMID: 18383145 DOI: 10.1002/jor.20606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is a member of the SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) family of secreted glycophosphoproteins. Several previous studies have demonstrated that MEPE and its peptide motif, AC-100, may regulate bone mass and influence osteoblast activity, suggesting its potential for inclusion in novel therapeutic strategies aimed at increasing osteogenesis. Our study uses in vitro approaches to assess how adhesion of nonadherent cells is influenced by MEPE and whether response to MEPE is dependent on the maturity of osteoblastic cells. Truncated MEPE (ASARM removed) or AC-100 enhanced the adhesion, spreading, and focal complex formation of unadhered osteoblastic cells leading to increased differentiation and bone formation after 28 days of culture. Furthermore, addition of truncated MEPE or AC-100 to mature osteoblasts had no significant effect on bone formation. Our data supports an action for truncated MEPE and AC-100 in altering the physiology of immature poorly adherent cells which subsequently influences the way in which these cells interact with a substrate to facilitate their survival and/or commitment to the osteoblast lineage.
Collapse
Affiliation(s)
- Andrew P Sprowson
- Musculoskeletal Research Group, Institute for Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
47
|
Kreiner M, Li Z, Beattie J, Kelly SM, Mardon HJ, van der Walle CF. Self-assembling multimeric integrin alpha5beta1 ligands for cell attachment and spreading. Protein Eng Des Sel 2008; 21:553-60. [PMID: 18515822 DOI: 10.1093/protein/gzn032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
Substrates utilising clustered arginine-glycine-aspartic acid (RGD) ligand displays support greater cell adhesion over random displays. However, cell adhesion to integrin alpha5beta1 requires the synergy site on the 9th type III fibronectin domain (FIII) in addition to RGD on the 10th FIII domain. Here, we have designed and expressed soluble protein chimeras consisting of an N-terminal 9th-10th FIII domain pair, IgG-derived hinge and leucine zipper-derived helix; the latter mutated to yield di-, tri- and tetrameric coiled coils and thus self-assembling, multimeric integrin alpha5beta1 ligands. A unique C-terminal cysteine was appended to the helix to facilitate 'anchoring' of the chimeras with a defined orientation on a surface. Size-exclusion chromatography and circular dichroism demonstrated that the chimeras self-assembled as multimers in solution with defined secondary structures predicted from theoretical calculations. Biotinylation via a thioether bond was used to selectively bind the chimeras to streptavidin-coated surfaces, each of which was then shown to bind integrin alpha5beta1 by surface plasmon resonance. Spreading of fibroblasts to surfaces derivatised with the chimeras was found to proceed in the order: tetramer > trimer > dimer > monomer. Thus, we describe novel polyvalent integrin alpha5beta1 ligands for facile derivatisation of substrates to improve cell adhesion in vitro.
Collapse
Affiliation(s)
- M Kreiner
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
48
|
Cognet L, Tardin C, Négrier MLM, Breillat C, Coussen F, Choquet D, Lounis B. Robust single-molecule approach for counting autofluorescent proteins. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:031216. [PMID: 18601540 DOI: 10.1117/1.2940600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using single-molecule microscopy, we present a method to quantify the number of single autofluorescent proteins when they cannot be optically resolved. This method relies on the measurement of the total intensity emitted by each aggregate until it photobleaches. This strategy overcomes the inherent problem of blinking of green fluorescent proteins. In the case of small protein aggregates, our method permits us to describe the mean composition with a precision of one protein. For aggregates containing a large number of proteins, it gives access to the average number of proteins gathered and a signature of the inhomogeneity of the aggregates' population. We applied this methodology to the quantification of small purified citrine multimers.
Collapse
Affiliation(s)
- Laurent Cognet
- Universite Bordeaux, Centre de Physique Moleculaire Optique et Hertzienne, Centre National de la Recherche Scientifique, 351 Cours de la Liberation, 33405 Talence, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Thoumine O, Ewers H, Heine M, Groc L, Frischknecht R, Giannone G, Poujol C, Legros P, Lounis B, Cognet L, Choquet D. Probing the dynamics of protein-protein interactions at neuronal contacts by optical imaging. Chem Rev 2008; 108:1565-87. [PMID: 18447398 DOI: 10.1021/cr078204m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olivier Thoumine
- CNRS UMR 5091, Institut Magendie, Université Bordeaux 2, 33077 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dequidt C, Danglot L, Alberts P, Galli T, Choquet D, Thoumine O. Fast turnover of L1 adhesions in neuronal growth cones involving both surface diffusion and exo/endocytosis of L1 molecules. Mol Biol Cell 2007; 18:3131-43. [PMID: 17538021 PMCID: PMC1949362 DOI: 10.1091/mbc.e06-12-1101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the interplay between surface trafficking and binding dynamics of the immunoglobulin cell adhesion molecule L1 at neuronal growth cones. Primary neurons were transfected with L1 constructs bearing thrombin-cleavable green fluorescent protein (GFP), allowing visualization of newly exocytosed L1 or labeling of membrane L1 molecules by Quantum dots. Intracellular L1-GFP vesicles showed preferential centrifugal motion, whereas surface L1-GFP diffused randomly, revealing two pathways to address L1 to adhesive sites. We triggered L1 adhesions using microspheres coated with L1-Fc protein or anti-L1 antibodies, manipulated by optical tweezers. Microspheres coupled to the actin retrograde flow at the growth cone periphery while recruiting L1-GFP molecules, of which 50% relied on exocytosis. Fluorescence recovery after photobleaching experiments revealed a rapid recycling of L1-GFP molecules at L1-Fc (but not anti-L1) bead contacts, attributed to a high lability of L1-L1 bonds at equilibrium. L1-GFP molecules truncated in the intracellular tail as well as neuronal cell adhesion molecules (NrCAMs) missing the clathrin adaptor binding sequence showed both little internalization and reduced turnover rates, indicating a role of endocytosis in the recycling of mature L1 contacts at the base of the growth cone. Thus, unlike for other molecules such as NrCAM or N-cadherin, diffusion/trapping and exo/endocytosis events cooperate to allow the fast renewal of L1 adhesions.
Collapse
Affiliation(s)
- Caroline Dequidt
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| | - Lydia Danglot
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Philipp Alberts
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Thierry Galli
- Membrane Traffic in Epithelial and Neuronal Morphogenesis, Equipe Avenir Inserm, Institut Jacques Monod, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7592, Universités Paris 6 et 7, 75251 Paris, France
| | - Daniel Choquet
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| | - Olivier Thoumine
- *Unité Mixte de Recherche Centre National de la Recherche Scientifique 5091, Institut François Magendie, Université Bordeaux 2, 33077 Bordeaux, France; and
| |
Collapse
|