1
|
Kuras M, Betancourt LH, Hong R, Szadai L, Rodriguez J, Horvatovich P, Pla I, Eriksson J, Szeitz B, Deszcz B, Welinder C, Sugihara Y, Ekedahl H, Baldetorp B, Ingvar C, Lundgren L, Lindberg H, Oskolas H, Horvath Z, Rezeli M, Gil J, Appelqvist R, Kemény LV, Malm J, Sanchez A, Szasz AM, Pawłowski K, Wieslander E, Fenyö D, Nemeth IB, Marko-Varga G. Proteogenomic Profiling of Treatment-Naïve Metastatic Malignant Melanoma. Cancers (Basel) 2025; 17:832. [PMID: 40075679 PMCID: PMC11899103 DOI: 10.3390/cancers17050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Melanoma is a highly heterogeneous disease, and a deeper molecular classification is essential for improving patient stratification and treatment approaches. Here, we describe the histopathology-driven proteogenomic landscape of 142 treatment-naïve metastatic melanoma samples to uncover molecular subtypes and clinically relevant biomarkers. METHODS We performed an integrative proteogenomic analysis to identify proteomic subtypes, assess the impact of BRAF V600 mutations, and study the molecular profiles and cellular composition of the tumor microenvironment. Clinical and histopathological data were used to support findings related to tissue morphology, disease progression, and patient outcomes. RESULTS Our analysis revealed five distinct proteomic subtypes that integrate immune and stromal microenvironment components and correlate with clinical and histopathological parameters. We demonstrated that BRAF V600-mutated melanomas exhibit biological heterogeneity, where an oncogene-induced senescence-like phenotype is associated with improved survival. This led to a proposed mortality risk-based stratification that may contribute to more personalized treatment strategies. Furthermore, tumor microenvironment composition strongly correlated with disease progression and patient outcomes, highlighting a histopathological connective tissue-to-tumor ratio assessment as a potential decision-making tool. We identified a melanoma-associated SAAV signature linked to extracellular matrix remodeling and SAAV-derived neoantigens as potential targets for anti-tumor immune responses. CONCLUSIONS This study provides a comprehensive stratification of metastatic melanoma, integrating proteogenomic insights with histopathological features. The findings may aid in the development of tailored diagnostic and therapeutic strategies, improving patient management and outcomes.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Lazaro Hiram Betancourt
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; (R.H.); (D.F.)
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (L.S.); (I.B.N.)
| | - Jimmy Rodriguez
- Department of Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Peter Horvatovich
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Indira Pla
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Jonatan Eriksson
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary
| | - Bartłomiej Deszcz
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Yutaka Sugihara
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Henrik Ekedahl
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
- SUS University Hospital Lund, 222 42 Lund, Sweden;
| | - Bo Baldetorp
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Christian Ingvar
- SUS University Hospital Lund, 222 42 Lund, Sweden;
- Department of Surgery, Clinical Sciences, Lund University, SUS, 221 00 Lund, Sweden
| | - Lotta Lundgren
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
- SUS University Hospital Lund, 222 42 Lund, Sweden;
| | - Henrik Lindberg
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Henriett Oskolas
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Zsolt Horvath
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Jeovanis Gil
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - Roger Appelqvist
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Lajos V. Kemény
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1085 Budapest, Hungary;
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Dermatology Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Johan Malm
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - Aniel Sanchez
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | | | - Krzysztof Pawłowski
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisabet Wieslander
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; (R.H.); (D.F.)
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Istvan Balazs Nemeth
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (L.S.); (I.B.N.)
| | - György Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
2
|
Wu H, Yan X, Zhao L, Li X, Li X, Zhang Y, Gu C, Yang F, Yan J, Lou Y, Li Y, Yang L, Qin X, Wang Y. p120-catenin promotes innate antiviral immunity through stabilizing TBK1-IRF3 complex. Mol Immunol 2023; 157:8-17. [PMID: 36958140 DOI: 10.1016/j.molimm.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
TBK1-IRF3 complex plays vital roles in antiviral immune responses, its regulatory mechanisms are currently incompletely understood. p120-catenin (p120), an armadillo-repeat protein, mainly regulates the stability of classical cadherins and the development of epithelial-to-mesenchymal transitions (EMTs). Here we report that p120 is a positive regulator of type I IFN production. Ectopic expression of p120 enhanced Vesicular stomatitis virus and Sendai-virus-induced type I IFN production, whereas knockdown of p120 expression suppressed type I IFN production. Mechanistically, p120 promoted phosphorylation of IRF3 via stabilizing the TBK1-IRF3 complex. Consistently, p120 knock down mice are more susceptible to VSV infection as indicated by higher tissue viral titers, less IFN-I production and greater infiltration of immune cells. This study reveals p120 as an important positive regulator in innate immunity and identifies that p120 facilitates host antiviral response through stabilizing TBK1-IRF3 complex.
Collapse
Affiliation(s)
- Haifeng Wu
- Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, Shandong, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Xiuqing Yan
- Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, Shandong, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Liang Zhao
- Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, Shandong, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Xiang Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, Shandong, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Ximing Li
- Linyi People's Hospital, Department of Anesthesiology, Lanshan District Wuhan Road and Wohushan Road Intersection, Linyi 276000, China
| | - Yi Zhang
- Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, Shandong, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Changping Gu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Fan Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Jingting Yan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yalin Lou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yufei Li
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Li Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Xiaofeng Qin
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yuelan Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan 250014, Shandong, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Anesthesia and Respiratory Critical Care Medicine, No. 16766 Jingshi Road, Jinan 250014, Shandong, China.
| |
Collapse
|
3
|
Wingo TS, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, Dammer EB, Lori A, Kim PJ, Ressler KJ, Beach TG, Reiman EM, Epstein MP, De Jager PL, Lah JJ, Bennett DA, Seyfried NT, Levey AI, Wingo AP. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci 2021; 24:810-817. [PMID: 33846625 PMCID: PMC8530461 DOI: 10.1038/s41593-021-00832-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023]
Abstract
Depression is a common condition, but current treatments are only effective in a subset of individuals. To identify new treatment targets, we integrated depression genome-wide association study (GWAS) results (N = 500,199) with human brain proteomes (N = 376) to perform a proteome-wide association study of depression followed by Mendelian randomization. We identified 19 genes that were consistent with being causal in depression, acting via their respective cis-regulated brain protein abundance. We replicated nine of these genes using an independent depression GWAS (N = 307,353) and another human brain proteomic dataset (N = 152). Eleven of the 19 genes also had cis-regulated mRNA levels that were associated with depression, based on integration of the depression GWAS with human brain transcriptomes (N = 888). Meta-analysis of the discovery and replication proteome-wide association study analyses identified 25 brain proteins consistent with being causal in depression, 20 of which were not previously implicated in depression by GWAS. Together, these findings provide promising brain protein targets for further mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Eric M Reiman
- Banner Alzheimer's Institute, Arizona State University and University of Arizona, Phoenix, AZ, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
4
|
Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, Fu GF, Xie C, Lin Q, Xie L, Huang L, Pu P, Ouyang Z, Chan HL, Zhao TJ, Chen XL, Fu G, Wang HR. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. SCIENCE ADVANCES 2020; 6:eaay9819. [PMID: 32010791 PMCID: PMC6976293 DOI: 10.1126/sciadv.aay9819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/20/2019] [Indexed: 05/02/2023]
Abstract
Disassembly of intercellular junctions is a hallmark of epithelial-mesenchymal transition (EMT). However, how the junctions disassemble remains largely unknown. Here, we report that E3 ubiquitin ligase Smurf1 targets p120-catenin, a core component of adherens junction (AJ) complex, for monoubiquitination during transforming growth factor β (TGFβ)-induced EMT, thereby leading to AJ dissociation. Upon TGFβ treatment, activated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylates T900 of p120-catenin to promote its interaction with Smurf1 and subsequent monoubiquitination. Inhibition of T900 phosphorylation or ubiquitination of p120-catenin abrogates TGFβ-induced AJ dissociation and consequent tight junction (TJ) dissociation and cytoskeleton rearrangement, hence markedly blocking lung metastasis of murine breast cancer. Moreover, the T900 phosphorylation level of p120-catenin is positively correlated with malignancy of human breast cancer. Hence, our study reveals the underlying mechanism by which TGFβ induces dissociation of AJs during EMT and provides a potential strategy to block tumor metastasis.
Collapse
Affiliation(s)
- Qingang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Gao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Chengwen Wen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
- Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxi Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Chunyan Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Guo-Feng Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Qi Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Liping Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Lei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Pengpeng Pu
- Department of Breast Surgery, First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Zhong Ouyang
- Department of Breast Surgery, First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, Department of Medical Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
- Corresponding author. (H.-R.W.); (G.F.); (X.L.C.)
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
- Corresponding author. (H.-R.W.); (G.F.); (X.L.C.)
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
- Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
- Corresponding author. (H.-R.W.); (G.F.); (X.L.C.)
| |
Collapse
|
5
|
Differential expression of p120-catenin 1 and 3 isoforms in epithelial tissues. Sci Rep 2019; 9:90. [PMID: 30643202 PMCID: PMC6331582 DOI: 10.1038/s41598-018-36889-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
P120 catenin (p120) is a non-redundant master regulatory protein of cadherin-based cell-cell junctions, intracellular signaling, and tissue homeostasis and repair. Alternative splicing can generate p120 isoforms 1 and 3 (p120-1 and p120-3), which are implicated in non-overlapping functions by differential expression regulation and unique interactions in different cell types, with often predominant expression of p120-1 in mesenchymal cells, and p120-3 generally prevalent in epithelial cells. However, the lack of specific p120-3 protein detection has precluded analysis of their relative abundance in tissues. Here, we have developed a p120-3 isoform-specific antibody and analyzed the p120-3 localization relative to p120-1 in human tissues. p120-3 but not p120-1 is highly expressed in cell-cell junctions of simple gastrointestinal epithelia such as colon and stomach, and the acini of salivary glands and the pancreas. Conversely, the basal layer of the epidermis and hair follicles expressed p120-1 with reduced p120-3, whereas most other epithelia co-expressed p120-3 and p120-1, including bronchial epithelia and mammary luminal epithelial cells. These data provide an inventory of tissue-specific p120 isoform expression and suggest a link between p120 isoform expression and epithelial differentiation.
Collapse
|
6
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|
7
|
Schaberg KE, Shirure VS, Worley EA, George SC, Naegle KM. Ensemble clustering of phosphoproteomic data identifies differences in protein interactions and cell-cell junction integrity of HER2-overexpressing cells. Integr Biol (Camb) 2017; 9:539-547. [PMID: 28492659 DOI: 10.1039/c7ib00054e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Overexpression of HER2, a receptor tyrosine kinase of the ERBB family, in breast cancer is related to increased cancer progression and aggressiveness. A breast epithelial cell model with the single perturbation of HER2 overexpression is capable of replicating the increased aggressiveness of HER2 overexpressing cancers. In previous work, Wolf-Yadlin and colleagues (Wolf-Yadlin et al., Mol. Syst. Biol., 2006, 2) measured the proximal tyrosine phosphorylation dynamics of the parental and HER2 overexpressing cells (24H) in response to EGF. Here, we apply an ensemble clustering approach to dynamic phosphorylation measurements of the two cell models in order to identify signaling events that explain the increased migratory potential of HER2 overexpressing cells. The use of an ensemble approach for identifying relationships within a dataset and how these relationships change across datasets uncovers relationships that cannot be found by the direct comparison of dynamic responses in the two conditions. Of particular note is a drastic change in the clustering of SHC1 phosphorylation (on site Y349) from an EGFR-MAPK module in parental cells to a module consisting of an E-cadherin junction protein phosphorylation site, catenin delta-1 Y228, in HER2 overexpressing (24H) cells. Given the importance of E-cadherin junctions in healthy epithelial wound healing and migration, we chose to test the computationally-derived identification of altered cell junctions and CTNND1:SHC1 relationships. Our cell and molecular biology experiments demonstrate that SHC and CTNND1 interact in an EGF- and HER2-dependent manner and that the cell junctions are phenotypically affected by HER2, breaking down in response to EGF and yet avoiding apoptosis as a result of cell junction loss. The results suggest a mechanism by which HER2 alters the localization of the SHC-MAPK signaling axis and a phenotypic effect on cell junction integrity.
Collapse
Affiliation(s)
- Katherine E Schaberg
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
8
|
Wang R, Chen YS, Dashwood WM, Li Q, Löhr CV, Fischer K, Ho E, Williams DE, Dashwood RH. Divergent roles of p120-catenin isoforms linked to altered cell viability, proliferation, and invasiveness in carcinogen-induced rat skin tumors. Mol Carcinog 2017; 56:1733-1742. [PMID: 28218467 DOI: 10.1002/mc.22630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) targets multiple organs for tumorigenesis in the rat, including the colon and the skin. PhIP-induced skin tumors were subjected to mutation screening, which identified genetic changes in Hras (7/40, 17.5%) and Tp53 (2/40, 5%), but not in Ctnnb1, a commonly mutated gene in PhIP-induced colon tumors. Despite the absence of Ctnnb1 mutations, β-catenin was overexpressed in nuclear and plasma membrane fractions from PhIP-induced skin tumors, coinciding with loss of p120-catenin from the plasma membrane, and the appearance of multiple p120-catenin-associated bands in the nuclear extracts. Real-time RT-PCR revealed that p120-catenin isoforms 1 and 4 were upregulated in PhIP-induced skin tumors, whereas p120-catenin isoform 3 was expressed uniformly, compared with adjacent normal-looking tissue. In human epidermoid carcinoma and colon cancer cells, transient transfection of p120-catenin isoform 1A enhanced the viability and cell invasion index, whereas transient transfection of p120-catenin isoform 4A increased cell viability and cell proliferation. Knockdown of p120-catenin revealed a corresponding reduction in the expression of β-catenin and a transcriptionally regulated target, Ccnd1/Cyclin D1. Co-immunoprecipitation experiments identified associations of β-catenin with p120-catenin isoforms in PhIP-induced skin tumors and human cancer cell lines. The results are discussed in the context of therapeutic strategies that might target different p120-catenin isoforms, providing an avenue to circumvent constitutively active β-catenin arising via distinct mechanisms in skin and colon cancer.
Collapse
Affiliation(s)
- Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Ying-Shiuan Chen
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas
| | - Wan-Mohaiza Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas
| | - Qingjie Li
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Kay Fischer
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas.,Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas.,Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Out-of-frame start codons prevent translation of truncated nucleo-cytosolic cathepsin L in vivo. Nat Commun 2014; 5:4931. [PMID: 25222295 DOI: 10.1038/ncomms5931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/07/2014] [Indexed: 11/08/2022] Open
Abstract
The lysosomal protease cathepsin L has been reported to cleave various functionally important cytosolic or nuclear proteins. To explain nucleo-cytosolic localization of cathepsin L, it has been hypothesized that skipping of the first start codon during translation initiation results in an N-terminally truncated protein lacking the endoplasmic reticulum-import signal. Here we demonstrate that out-of-frame AUGs prevent translation of truncated cathepsin L in cell culture as well as in a new knock-in mouse model. We further evaluate potential roles of nuclear cathepsin L during early embryonic development. Our analysis reveals normal epiblast development of cathepsin L-deficient embryos, but uncovers a pronounced lysosomal storage phenotype in the extra-embryonic tissue of the visceral endoderm. In conclusion, the phenotypes of cathepsin L deficiency can be fully assigned to lack of canonically targeted cathepsin L, while the biogenesis and functionality of nucleo-cytosolic cathepsin L remain elusive.
Collapse
|
11
|
Schackmann RCJ, Tenhagen M, van de Ven RAH, Derksen PWB. p120-catenin in cancer - mechanisms, models and opportunities for intervention. J Cell Sci 2014; 126:3515-25. [PMID: 23950111 DOI: 10.1242/jcs.134411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelial adherens junction is an E-cadherin-based complex that controls tissue integrity and is stabilized at the plasma membrane by p120-catenin (p120, also known as CTNND1). Mutational and epigenetic inactivation of E-cadherin has been strongly implicated in the development and progression of cancer. In this setting, p120 translocates to the cytosol where it exerts oncogenic properties through aberrant regulation of Rho GTPases, growth factor receptor signaling and derepression of Kaiso (also known as ZBTB33) target genes. In contrast, indirect inactivation of the adherens junction through conditional knockout of p120 in mice was recently linked to tumor formation, indicating that p120 can also function as a tumor suppressor. Supporting these opposing functions are findings in human cancer, which show that either loss or cytoplasmic localization of p120 is a common feature in the progression of several types of carcinoma. Underlying this dual biological phenomenon might be the context-dependent regulation of Rho GTPases in the cytosol and the derepression of Kaiso target genes. Here, we discuss past and present findings that implicate p120 in the regulation of cancer progression and highlight opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ron C J Schackmann
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Rappe U, Schlechter T, Aschoff M, Hotz-Wagenblatt A, Hofmann I. Nuclear ARVCF protein binds splicing factors and contributes to the regulation of alternative splicing. J Biol Chem 2014; 289:12421-34. [PMID: 24644279 DOI: 10.1074/jbc.m113.530717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The armadillo repeat protein ARVCF is a component of adherens junctions. Similar to related proteins, such as p120-catenin and β-catenin, with known signaling functions, localization studies indicate a cytoplasmic and a nuclear pool of ARVCF. We find that ARVCF interacts with different proteins involved in mRNA-processing: the splicing factor SRSF1 (SF2/ASF), the RNA helicase p68 (DDX5), and the heterogeneous nuclear ribonucleoprotein hnRNP H2. All three proteins bind to ARVCF in an RNA-independent manner. Furthermore, ARVCF occurs in large RNA-containing complexes that contain both spliced and unspliced mRNAs of housekeeping genes. By domain analysis, we show that interactions occur via the ARVCF C terminus. Overexpression of ARVCF, p68, SRSF1, and hnRNP H2 induces a significant increase in splicing activity of a reporter mRNA. Upon depletion of ARVCF followed by RNA sequence analysis, several alternatively spliced transcripts are significantly changed. Therefore, we conclude that nuclear ARVCF influences splicing of pre-mRNAs. We hypothesize that ARVCF is involved in alternative splicing, generating proteomic diversity, and its deregulation may contribute to diseased states, such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Ulrike Rappe
- From the Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Zhang Y, Zhao Y, Jiang G, Zhang X, Zhao H, Wu J, Xu K, Wang E. Impact of p120-catenin isoforms 1A and 3A on epithelial mesenchymal transition of lung cancer cells expressing E-cadherin in different subcellular locations. PLoS One 2014; 9:e88064. [PMID: 24505377 PMCID: PMC3913724 DOI: 10.1371/journal.pone.0088064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) is an important process in tumor development. Despite previous investigations, it remains unclear how p120-catenin (p120ctn) isoforms 1A and 3A affect the EMT of tumor cells. Here we investigated expression of p120ctn, E-cadherin and vimentin in 78 human non-small cell lung cancer (NSCLC) samples by immunohistochemistry and found that p120ctn membrane expression positively correlated with E-cadherin expression (P<0.001) and negatively correlated with vimentin expression and lymph node metastasis (P<0.05). Meanwhile, p120ctn cytoplasmic expression negatively correlated with E-cadherin expression (P<0.001) and positively correlated with vimentin expression and lymph node metastasis (P<0.05). Cells expressing high (H460 and SPC) and low (H1299 and LK2) levels of p120ctn were screen to investigate its impact on EMT. E-cadherin was restricted to the cell membrane in H460 and H1299 cells, whereas it was expressed in the cytoplasm of SPC and LK2 cells. Ablation of endogenous p120ctn isoform 1A in cells expressing high levels of the protein resulted in decreased E-cadherin expression, increased N-cadherin, vimentin and snail expression and enhanced invasiveness in H460 cells. Meanwhile, completely opposite results were observed in SPC cells. Furthermore, transfection of in H1299 cells expressing low p120ctn levels with the p120ctn isoform 1A plasmid resulted in increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness, while LK2 cells showed completely opposite results. Both cell lines expressing low p120ctn levels and transfected with the p120ctn isoform 3A plasmid appeared to have increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness. In conclusion, in cells with membrane E-cadherin, both p120ctn isoforms 1A and 3A inhibited EMT and decreased cell invasiveness. In cells with cytoplasmic E-cadherin, p120ctn isoform 1A promoted EMT and increased cell invasiveness, while p120ctn isoform 3A inhibited the EMT and decreased cell invasiveness.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Huanyu Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Junhua Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
14
|
Liu Y, Dong QZ, Wang S, Xu HT, Miao Y, Wang L, Wang EH. Kaiso interacts with p120-catenin to regulate β-catenin expression at the transcriptional level. PLoS One 2014; 9:e87537. [PMID: 24498333 PMCID: PMC3911973 DOI: 10.1371/journal.pone.0087537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We have reported that p120-catenin could regulate β-catenin transcription in lung cancer cells, but the specific mechanism is unclear. METHODS AND RESULTS In this study, bisulfite sequencing PCR showed that the β-catenin promoter region in SPC-A-1 and LTEP-a-2 lung cancer cell lines has Kaiso binding sites sequences and CpG islands which may combine with Kaiso. The demethylating reagent 5-Aza-2'-deoxycytidine significantly upregulated β-catenin mRNA expression in lung cancer cell lines, whereas expression was significantly reduced following transfection with Kaiso. However, the upregulation of β-catenin mRNA expression after treatment with 5-Aza-2'-deoxycytidine was not reduced by subsequent transfection with Kaiso cDNA. Chromatin immunoprecipitation showed that, in lung cancer cell lines, methylated CpG-dinucleotides sequences combined with Kaiso and the Kaiso binding sites sequence did not. The capacity of Kaiso to combine with p120-catenin isoforms was confirmed by immunoprecipitation. CONCLUSIONS Based on these results, we concluded that Kaiso participates in the regulation by p120ctn of β-catenin mRNA expression in the lung cancer cell lines.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Qian-Ze Dong
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Si Wang
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Hong-Tao Xu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Yuan Miao
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - Liang Wang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
| | - En-Hua Wang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, PR China
- * E-mail:
| |
Collapse
|
15
|
Espejo R, Jeng Y, Paulucci-Holthauzen A, Rengifo-Cam W, Honkus K, Anastasiadis PZ, Sastry SK. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity. J Cell Sci 2013; 127:497-508. [PMID: 24284071 PMCID: PMC4007762 DOI: 10.1242/jcs.120154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Biology and UTMB Comprehensive Cancer Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Peglion F, Etienne-Manneville S. p120catenin alteration in cancer and its role in tumour invasion. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130015. [PMID: 24062585 DOI: 10.1098/rstb.2013.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since its discovery in 1989 as a substrate of the Src oncogene, p120catenin has been revealed as an important player in cancer initiation and tumour dissemination. p120catenin regulates a wide range of cellular processes such as cell-cell adhesion, cell polarity and cell proliferation and plays a pivotal role in morphogenesis, inflammation and innate immunity. The pleiotropic effects of p120catenin rely on its interactions with numerous partners such as classical cadherins at the plasma membrane, Rho-GTPases and microtubules in the cytosol and transcriptional modulators in the nucleus. Alterations of p120catenin in cancer not only concern its expression level but also its intracellular localization and can lead to both pro-invasive and anti-invasive effects. This review focuses on the p120catenin-mediated pathways involved in cell migration and invasion and discusses the potential consequences of major cancer-related p120catenin alterations with respect to tumour spread.
Collapse
Affiliation(s)
- Florent Peglion
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS URA 2582, , 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
17
|
Sasaya K, Sudo H, Maeda G, Kawashiri S, Imai K. Concomitant loss of p120-catenin and β-catenin membrane expression and oral carcinoma progression with E-cadherin reduction. PLoS One 2013; 8:e69777. [PMID: 23936352 PMCID: PMC3735538 DOI: 10.1371/journal.pone.0069777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022] Open
Abstract
The binding of p120-catenin and β-catenin to the cytoplasmic domain of E-cadherin establishes epithelial cell-cell adhesion. Reduction and loss of catenin expression degrades E-cadherin-mediated carcinoma cell-cell adhesion and causes carcinomas to progress into aggressive states. Since both catenins are differentially regulated and play distinct roles when they dissociate from E-cadherin, evaluation of their expression, subcellular localization and the correlation with E-cadherin expression are important subjects. However, the same analyses are not readily performed on squamous cell carcinomas in which E-cadherin expression determines the disease progression. In the present study, we examined expression and subcellular localization of p120-catenin and β-catenin in oral carcinomas (n = 67) and its implications in the carcinoma progression and E-cadherin expression using immunohitochemistry. At the invasive front, catenin-membrane-positive carcinoma cells were decreased in the dedifferentiated (p120-catenin, P < 0.05; β-catenin, P < 0.05) and invasive carcinomas (p120-catenin, P < 0.01; β-catenin, P < 0.05) and with the E-cadherin staining (p120-catenin, P < 0.01; β-catenin, P < 0.01). Carcinoma cells with β-catenin cytoplasmic and/or nuclear staining were increased at the invasive front compared to the center of tumors (P < 0.01). Although the p120-catenin isoform shift from three to one associates with carcinoma progression, it was not observed after TGF-β, EGF or TNF-α treatments. The total amount of p120-catenin expression was decreased upon co-treatment of TGF-β with EGF or TNF-α. The above data indicate that catenin membrane staining is a primary determinant for E-cadherin-mediated cell-cell adhesion and progression of oral carcinomas. Furthermore, it suggests that loss of p120-catenin expression and cytoplasmic localization of β-catenin fine-tune the carcinoma progression.
Collapse
Affiliation(s)
- Kazunobu Sasaya
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Haruka Sudo
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Genta Maeda
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Shuichi Kawashiri
- Department of Oral Surgery, School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Kazushi Imai
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Aparicio LA, Abella V, Valladares M, Figueroa A. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci 2013; 70:4463-77. [PMID: 23715860 PMCID: PMC3827902 DOI: 10.1007/s00018-013-1379-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), one of the crucial steps for carcinoma cells to acquire invasive capacity, results from the disruption of cell–cell contacts and the acquisition of a motile mesenchymal phenotype. Although the transcriptional events controlling EMT have been extensively studied, in recent years, several posttranscriptional mechanisms have emerged as critical in the regulation of EMT during tumor progression. In this review, we highlight the regulation of posttranscriptional events in EMT by RNA-binding proteins (RBPs). RBPs are responsible for controlling pre-mRNA splicing, capping, and polyadenylation, as well as mRNA export, turnover, localization, and translation. We discuss the most relevant aspects of RBPs controlling the metabolism of EMT-related mRNAs, and describe the implication of novel posttranscriptional mechanisms regulating EMT in response to different signaling pathways. Novel insight into posttranscriptional regulation of EMT by RBPs is uncovering new therapeutic targets in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Luis A Aparicio
- Servizo de Oncología Médica, Complejo Hospitalario Universitario A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | | | | | | |
Collapse
|
19
|
N-terminal 1-54 amino acid sequence and Armadillo repeat domain are indispensable for P120-catenin isoform 1A in regulating E-cadherin. PLoS One 2012; 7:e37008. [PMID: 22615871 PMCID: PMC3353978 DOI: 10.1371/journal.pone.0037008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/11/2012] [Indexed: 01/20/2023] Open
Abstract
P120-catenin (p120ctn) exerts important roles in regulating E-cadherin and invasiveness in cancer cells. However, the mechanisms by which p120ctn isoforms 1 and 3 modulate E-cadherin expression are poorly understood. In the current study, HBE, H460, SPC and LTE cell lines were used to examine the effects of p120ctn isoforms 1A and 3A on E-cadherin expression and cell invasiveness. E-cadherin was localized on the cell membrane of HBE and H460 cells, while it was confined to the cytoplasm in SPC and LTE cells. Depletion of endogenous p120ctn resulted in reduced E-cadherin expression; however, p120ctn ablation showed opposite effects on invasiveness in the cell lines by decreasing invasiveness in SPC and LTE cells and increasing it in HBE and H460 cells. Restitution of 120ctn isoform 1A restored E-cadherin on the cell membrane and blocked cell invasiveness in H460 and HBE cells, while it restored cytoplasmic E-cadherin and enhanced cell invasiveness in SPC and LTE cells. P120ctn isoform 3A increased the invasiveness in all four cell lines despite the lack of effect on E-cadherin expression, suggesting a regulatory pathway independent of E-cadherin. Moreover, five p120ctn isoform 1A deletion mutants were constructed and expressed in H460 and SPC cells. The results showed that only the M4 mutant, which contains N-terminal 1–54 amino acids and the Armadillo repeat domain, was functional in regulating E-cadherin and cell invasiveness, as observed in p120ctn isoform 1A. In conclusion, the N-terminal 1–54 amino acid sequence and Armadillo repeat domain of p120ctn isoform 1A are indispensable for regulating E-cadherin protein. P120ctn isoform 1A exerts opposing effects on cell invasiveness, corresponding to the subcellular localization of E-cadherin.
Collapse
|
20
|
Munoz WA, Kloc M, Cho K, Lee M, Hofmann I, Sater A, Vleminckx K, McCrea PD. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 2012; 7:e34342. [PMID: 22496792 PMCID: PMC3320641 DOI: 10.1371/journal.pone.0034342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/31/2022] Open
Abstract
The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.
Collapse
Affiliation(s)
- William A. Munoz
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Kyucheol Cho
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Moonsup Lee
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Ilse Hofmann
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg- DKFZ, Mannheim, Germany
| | - Amy Sater
- Biology and Biochemistry Department, University of Houston, Houston, Texas, United States of America
| | - Kris Vleminckx
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology VIB, Ghent, Belgium
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Marciano DK, Brakeman PR, Lee CZ, Spivak N, Eastburn DJ, Bryant DM, Beaudoin GM, Hofmann I, Mostov KE, Reichardt LF. p120 catenin is required for normal renal tubulogenesis and glomerulogenesis. Development 2011; 138:2099-109. [PMID: 21521738 DOI: 10.1242/dev.056564] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.
Collapse
Affiliation(s)
- Denise K Marciano
- Department of Medicine, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ardawatia VV, Masià-Balagué M, Krakstad BF, Johansson BB, Kreitzburg KM, Spriet E, Lewis AE, Meigs TE, Aragay AM. Gα12 binds to the N-terminal regulatory domain of p120ctn, and downregulates p120ctn tyrosine phosphorylation induced by Src family kinases via a RhoA independent mechanism. Exp Cell Res 2011; 317:293-306. [DOI: 10.1016/j.yexcr.2010.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
|
23
|
Herron CR, Lowery AM, Hollister PR, Reynolds AB, Vincent PA. p120 regulates endothelial permeability independently of its NH2 terminus and Rho binding. Am J Physiol Heart Circ Physiol 2010; 300:H36-48. [PMID: 20971762 DOI: 10.1152/ajpheart.00812.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The association of p120-catenin (p120) with the juxtamembrane domain (JMD) of vascular endothelial (VE)-cadherin is required to maintain VE-cadherin levels and transendothelial resistance (TEER) of endothelial cell monolayers. To distinguish whether decreased TEER was due to a loss of p120 and not to the decrease in VE-cadherin, we established a system in which p120 was depleted by short hairpin RNA delivered by lentivirus and VE-cadherin was restored via expression of VE-cadherin fused to green fluorescent protein (GFP). Loss of p120 resulted in decreased TEER, which was associated with decreased expression of VE-cadherin, β-catenin, plakoglobin, and α-catenin. Decreased TEER was rescued by restoration of p120 but not by the expression of VE-cadherin-GFP, despite localization of VE-cadherin-GFP at cell-cell borders. Expression of VE-cadherin-GFP restored levels of β-catenin and α-catenin but not plakoglobin, indicating that p120 may be important for recruitment of plakoglobin to the VE-cadherin complex. To evaluate the role of p120 interaction with Rho GTPase in regulating endothelial permeability, we expressed a recombinant form of p120, lacking the NH(2) terminus and containing alanine substitutions, that eliminates binding of Rho to p120. Expression of this isoform restored expression of the adherens junction complex and rescued permeability as measured by TEER. These results demonstrate that p120 is required for maintaining VE-cadherin expression and TEER independently of its NH(2) terminus and its role in regulating Rho.
Collapse
Affiliation(s)
- Crystal R Herron
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
24
|
Talvinen K, Tuikkala J, Nykänen M, Nieminen A, Anttinen J, Nevalainen OS, Hurme S, Kuopio T, Kronqvist P. Altered expression of p120catenin predicts poor outcome in invasive breast cancer. J Cancer Res Clin Oncol 2010; 136:1377-87. [PMID: 20151151 DOI: 10.1007/s00432-010-0789-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/14/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE The study focuses on p120catenin, a regulator of cell adhesion, which has previously been described in many malignancies and suggested with a role in invasion and metastatic behaviour. In this study, we investigate the role of altered immunoexpression of p120catenin isoforms in the prognosis of invasive breast cancer (n = 351). METHODS We used cDNA microarrays to screen differences in gene expression in invasive breast cancer in general, and between local and metastasized disease particularly. On this basis, we performed p120catenin immunohistochemistry in order to confirm the prognostic value of p120catenin isoforms on tissue microarrays comprising 341 patients from the era of mammographic screening, directed to modern surgical and oncological treatments, and followed-up for maximum of 20 years. RESULTS In cDNA microarray analysis, p120catenin was discovered down-regulated along with E-cadherin and alpha-catenin. In addition, p120catenin distinguished metastasized breast cancer from local disease. Immunohistochemistry confirmed the value of p120catenin as an independent prognosticator of breast cancer survival. In our results, p120catenin was associated with 3.7-fold risk of breast cancer death in multivariate Cox's regression analyses adjusted for the established prognosticators of breast cancer (p = 0.039). Particularly, the long isoform of p120catenin predicted metastatic disease (p = 0.029). CONCLUSION The present paper is the first report on p120catenin in invasive breast cancer based on a well-characterized patient material with long-term follow-up. We observed altered expression of p120catenin isoforms in invasive breast cancer and, in our material, the decrease in p120 immunoexpression was significantly associated with poor outcome of disease.
Collapse
Affiliation(s)
- K Talvinen
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kümper S, Ridley AJ. p120ctn and P-cadherin but not E-cadherin regulate cell motility and invasion of DU145 prostate cancer cells. PLoS One 2010; 5:e11801. [PMID: 20668551 PMCID: PMC2910720 DOI: 10.1371/journal.pone.0011801] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022] Open
Abstract
Background Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin and α-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn. Methodology/Principal Findings We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, ß-catenin and α-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, β-catenin and α-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins. Conclusions/Significance Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or α-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.
Collapse
Affiliation(s)
- Sandra Kümper
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
RETRACTED: Kaiso is expressed in lung cancer: Its expression and localization is affected by p120ctn. Lung Cancer 2010; 67:205-15. [PMID: 19615783 DOI: 10.1016/j.lungcan.2009.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 01/11/2023]
|
27
|
Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122:4049-61. [PMID: 19843587 DOI: 10.1242/jcs.031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Catenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C. Further structural and functional complexity is suggested by three predicted and alternative translation initiation sites. Transcript analysis suggests that each splice isoform is expressed during embryogenesis, with the B and C transcript levels varying according to developmental stage. Unlike the primarily neural expression of delta-catenin reported in mammals, delta-catenin is detectable in most adult Xenopus tissues, although it is enriched in neural structures. delta-catenin associates with classical cadherins, with crude embryo fractionations further revealing non-plasma-membrane pools that might be involved in cytoplasmic and/or nuclear functions. Depletion of delta-catenin caused gastrulation defects, phenotypes that were further enhanced by co-depletion of the related p120-catenin. Depletion was significantly rescued by titrated p120-catenin expression, suggesting that these catenins have shared roles. Biochemical assays indicated that delta-catenin depletion results in reduced cadherin levels and cell adhesion, as well as perturbation of RhoA and Rac1. Titrated doses of C-cadherin, dominant-negative RhoA or constitutively active Rac1 significantly rescued delta-catenin depletion. Collectively, our experiments indicate that delta-catenin has an essential role in amphibian development, and has functional links to cadherins and Rho-family GTPases.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
p120ctn isoform 1 expression significantly correlates with abnormal expression of E-cadherin and poor survival of lung cancer patients. Med Oncol 2009; 27:880-6. [PMID: 19763914 DOI: 10.1007/s12032-009-9300-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Different p120ctn isoforms exert different, even opposing, effects on tumor cell growth depending on the level of E-cadherin expression, but the impact on clinicopathological parameters of lung cancer patients is not clear. Herein, we investigate the correlation between pan-p120ctn, p120ctn isoform 1, and E-cadherin expression and clinicopathological parameters, especially prognosis, of lung cancer patients. Immunohistochemistry on 20 specimens of normal bronchial epthelium revealed that, p120ctn isoform 1 was not expressed at the membrane; only weak cytoplasmic expression was seen. In contrast, both pan-p120ctn and E-cadherin were expressed clearly on the cell membrane or in the cytoplasmic peri-membrane region. However, in squamous cell lung cancer or lung adenocarcinomas, p120ctn isoform 1 over-expressed in the cytoplasm accompany with the abnormal pan-p120ctn and E-cadherin cytoplasm expression. p120ctn isoform 1 over-expression correlated positively with lymph node metastasis, poor differentiation, histological type, and high TNM stage. Cytoplasmic p120ctn isoform 1 expression in metastatic nodules was always higher than in the primary tumor. While the mean survival times of patients with normal p120 ctn isoform 1 or pan-p120ctn expression differed significantly, the mean survival times of patients with abnormal expression were similar. Lymph node metastasis, TNM stage, abnormal pan-p120ctn expression, and p120ctn isoform 1 over-expression were all independent factors affecting the prognosis of lung cancer patients. Over-expression of p120ctn isoform 1 positively correlated with poor prognosis of lung cancer patients, and therefore may be a useful marker of lung cancer patient survival.
Collapse
|
29
|
Liu Y, Wang Y, Zhang Y, Miao Y, Zhao Y, Zhang PX, Jiang GY, Zhang JY, Han Y, Lin XY, Yang LH, Li QC, Zhao C, Wang EH. Abnormal expression of p120-catenin, E-cadherin, and small GTPases is significantly associated with malignant phenotype of human lung cancer. Lung Cancer 2009; 63:375-82. [PMID: 19162367 DOI: 10.1016/j.lungcan.2008.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/10/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Studies on a variety of cell lines have shown that p120-catenin can directly regulate the stability of E-cadherin complexes and control the activity of small GTPases to influence cell adhesion. Despite this data, clinical studies of human solid tumors have not been reported to investigate these protein interactions. To explore the correlation between p120-catenin, E-cadherin, and small GTPases in human lung cancer, we examined the expression patterns of p120-catenin, E-cadherin, RhoA, Cdc42, and Rac1, and their prognostic significance in 138 patients with non-small cell lung cancer (NSCLC). While normal bronchial epithelium showed strong membrane expression of p120-catenin and E-cadherin, lung cancer tissues had reduced membrane expression and ectopic cytoplasmic expression of p120-catenin and E-cadherin. Expression of RhoA, Cdc42, and Rac1 was also found to be higher in tumor tissue than in normal lung tissue. A correlation between abnormal p120-catenin, E-cadherin expression, and overexpression of specific small GTPases was also associated with poor differentiation, high TNM stage, and lymph node metastasis in NSCLC patients. We also used an in vitro model to evaluate their expression, and to determine whether protein expression correlated with the invasive capacity of lung cancer cell lines. Consistent with our in vivo data, abnormal expression of p120-catenin and E-cadherin with overexpression of specific small GTPases were significantly associated with the high metastatic capacity of BE1 cells. Based on our results, we conclude that abnormal p120-catenin expression correlates with abnormal E-cadherin expression and specific small GTPase overexpression, which contribute to the malignancy-related to NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Y, Dong QZ, Zhao Y, Dong XJ, Miao Y, Dai SD, Yang ZQ, Zhang D, Wang Y, Li QC, Zhao C, Wang EH. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells. Exp Cell Res 2009; 315:890-8. [PMID: 19150613 DOI: 10.1016/j.yexcr.2008.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/14/2008] [Accepted: 12/17/2008] [Indexed: 11/25/2022]
Abstract
Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and beta-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University and Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rickelt S, Franke WW, Doerflinger Y, Goerdt S, Brandner JM, Peitsch WK. Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 2008; 334:401-22. [PMID: 18975006 DOI: 10.1007/s00441-008-0704-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
In the tissue integration of melanocytes and melanoma cells, an important role is attributed to cell adhesion molecules, notably the cadherins. In cultured melanoma cells, we have previously described a more heterogeneous repertoire of cadherins than normal, including some melanoma subtypes synthesizing the desmosomal cadherin, desmoglein 2, out of the desmosomal context. Using biochemical and immunological characterization of junctional molecules, confocal laser scanning, and electron and immunoelectron microscopy, we now demonstrate homo- and heterotypic cell-cell adhesions of normal epidermal melanocytes. In human epidermis, both in situ and in cell culture, melanocytes and keratinocytes are connected by closely aligned membranes that are interspersed by small puncta adhaerentia containing heterotypic complexes of E- and P-cadherin. Moreover, melanocytes growing in culture often begin to synthesize desmoglein 2, which is dispersed over extended areas of intimate adhesive cell-cell associations. As desmoglein 2 is not found in melanocytes in situ, we hypothesize that its synthesis is correlated with cell proliferation. Indeed, in tissue microarrays, desmoglein 2 has been demonstrated in a sizable subset of nevi and primary melanomas. The biological meanings of these cell-cell adhesion molecule arrangements, the possible diagnostic and prognostic significance of these findings, and the implications of the heterogeneity types of melanomas are discussed.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
KANNO M, AOYAMA Y, ISA Y, YAMAMOTO Y, KITAJIMA Y. p120 catenin is associated with desmogleins when desmosomes are assembled in high-Ca2+medium but not when disassembled in low-Ca2+medium in DJM-1 cells. J Dermatol 2008; 35:317-24. [DOI: 10.1111/j.1346-8138.2008.00480.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Yanagisawa M, Huveldt D, Kreinest P, Lohse CM, Cheville JC, Parker AS, Copland JA, Anastasiadis PZ. A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. J Biol Chem 2008; 283:18344-54. [PMID: 18407999 DOI: 10.1074/jbc.m801192200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p120 catenin is a cadherin-associated protein that regulates Rho GTPases and promotes the invasiveness of E-cadherin-deficient cancer cells. Multiple p120 isoforms are expressed in cells via alternative splicing, and all of them are essential for HGF signaling to Rac1. However, only full-length p120 (isoform 1) promotes invasiveness. This selective ability of p120 isoform 1 is mediated by reduced RhoA activity, both under basal conditions and following HGF treatment. All p120 isoforms can bind RhoA in vitro, via a central RhoA binding site. However, only the cooperative binding of RhoA to the central p120 domain and to the alternatively spliced p120 N terminus stabilizes RhoA binding and inhibits RhoA activity. Consistent with this, increased expression of p120 isoform 1, when compared with other p120 isoforms, is predictive of renal tumor micrometastasis and systemic progression, following nephrectomy. Furthermore, ectopic expression of the RhoA-binding, N-terminal domain of p120 is sufficient to block the ability of p120 isoform 1 to inhibit RhoA and to promote invasiveness. The data indicate that the increased expression of p120 isoform 1 during tumor progression contributes to the invasive phenotype of cadherin-deficient carcinomas and that the N-terminal domain of p120 is a valid therapeutic target.
Collapse
|
34
|
Ichii T, Takeichi M. p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner. Genes Cells 2007; 12:827-39. [PMID: 17584295 DOI: 10.1111/j.1365-2443.2007.01095.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
p120-catenin (p120) has been shown to be essential for cadherin stability. Here, we show that p120 is capable of regulating microtubule (MT) dynamics in a cadherin-independent manner. When p120 was depleted in cadherin-deficient Neuro-2a (N2a) cells, MT stability was reduced, as assessed by the nocodazole sensitivity of MTs. On the contrary, over-expression of p120 caused MTs to become resistant to nocodazole. Time-lapse recording of GFP-tagged EB1, a protein which binds the growing plus-ends of MTs, introduced into these cells demonstrated that the plus ends underwent more frequent catastrophe in p120-depleted cells. In addition, p120 knockdown up-regulated the motility of isolated cells, whereas it down-regulated the directional migration of cells from wound edges; and these migratory behaviors of cells were mimicked by nocodazole-induced MT depolymerization. These results suggest that p120 has the ability to regulate MT dynamics and that this activity, in turn, affects cell motility independently of the cadherin adhesion system.
Collapse
Affiliation(s)
- Tetsuo Ichii
- Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | | |
Collapse
|
35
|
Chung Y, Lam AKY, Luk JM, Law S, Chan KW, Lee PY, Wong J. Altered E-cadherin expression and p120 catenin localization in esophageal squamous cell carcinoma. Ann Surg Oncol 2007; 14:3260-7. [PMID: 17647062 DOI: 10.1245/s10434-007-9511-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/11/2007] [Accepted: 06/11/2007] [Indexed: 12/21/2022]
Abstract
BACKGROUND E-cadherin is a well-known tumor suppressor and its dysregulated expression correlates with tumor differentiation, metastasis and survival in esophageal squamous cell carcinoma (ESCC). p120 catenin is an Armadillo protein normally bound to E-cadherin in the cadherin-catenin complex at the adherens junction. Dysregulated expression and mislocalization of p120ctn affect the protective function of the complex. The objective of the present study was to evaluate the clinical significance of E-cadherin and p120ctn expression in ESCC. METHODS Immunohistochemistry was performed to investigate the expression of E-cadherin and p120ctn proteins in 71 patients with ESCC. The relationships between protein expression and clinicopathological characteristics were analyzed. RESULTS Reduced E-cadherin and p120ctn expressions were observed in 42.3% and 8.5% of ESCC cases, respectively. Reduction of membranous p120ctn was observed in 33.8% of cases. Membranous E-cadherin was preserved when p120ctn co-localized on the membrane of tumor cells (72.3%, P = 0.001). High level E-cadherin expression and membranous p120ctn preservation positively correlated with tumor differentiation (P = 0.001 and P = 0.008, respectively). p120ctn expression was also significantly related to lymph node metastasis (P = 0.003). Heterogeneous expression of both E-cadherin and p120ctn was observed in dysplasia. CONCLUSIONS Altered E-cadherin expression and p120ctn localization were related to tumor differentiation, indicating their important roles in the pathogenesis of ESCC.
Collapse
Affiliation(s)
- Yvonne Chung
- Division of Esophageal Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong Medical Centre, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu Y, Xu HT, Dai SD, Wei Q, Yuan XM, Wang EH. Reduction of p120(ctn) isoforms 1 and 3 is significantly associated with metastatic progression of human lung cancer. APMIS 2007; 115:848-56. [PMID: 17614852 DOI: 10.1111/j.1600-0463.2007.apm_673.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
P120-catenin plays an important role in cell adhesion and signalling transduction though the function of its isoforms is unclear. The aim of this study was to examine the expression of p120-catenin isoforms in lung cancer and investigate their relationship to clinicopathological factors in lung squamous cell carcinomas (SCCs) and adenocarcinomas. The expression patterns of p120-catenin in lung cancer tissues and lung cancer cells were examined by p120-catenin immunofluorescence, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR). Clear and continuous red fluorescence of p120-catenin is displayed at the cell membrane of corresponding normal bronchial epithelial cells, but not in lung cancer tissues that show reduction or absence of membrane expression of p120-catenin or cytoplasmic accumulation of p120-catenin. Compared with corresponding normal lung tissues, lung cancer tissues have significantly lower levels of p120-catenin proteins (P<0.001) and mRNA (P<0.001). The isoforms 1 (120 kD) and 3 (100 kD) proteins were major isoforms of p120-catenin expressed in normal lung tissues, which were significantly reduced in lung cancer samples (P=0.001 and P<0.001, respectively). The mRNA of p120-catenin isoforms 1.2, 1.3, 2.3, 3.1 and 3.3 was detected in corresponding normal lung tissues, but was significantly absent in lung cancer samples (P<0.001 and P=0.001, respectively). Furthermore, p120-catenin isoform 1 is negatively associated--whereas p120-catenin isoform 3 is positively associated--with lymph node metastasis. We conclude that reductions of isoforms 1 and 3 may play different roles in metastatic progression of human lung cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
37
|
Park JI, Ji H, Jun S, Gu D, Hikasa H, Li L, Sokol SY, McCrea PD. Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct Catenin Subfamilies Promote Wnt Signals. Dev Cell 2006; 11:683-95. [PMID: 17084360 DOI: 10.1016/j.devcel.2006.09.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/14/2006] [Accepted: 09/26/2006] [Indexed: 12/13/2022]
Abstract
p120-catenin is an Arm repeat protein that interacts with varied components such as cadherin, small G proteins, kinases, and the Kaiso transcriptional repressor. Despite recent advances in understanding the roles that p120-catenin and Kaiso play in downstream modulation of Wnt/beta-catenin signaling, the identity of the upstream regulators of the p120-catenin/Kaiso pathway have remained unclear. Here, we find that p120-catenin binds Frodo, which itself interacts with the Wnt pathway protein Dishevelled (Dsh). In Xenopus laevis, we demonstrate that Wnt signals result in Frodo-mediated stabilization of p120-catenin, which, in turn, promotes Kaiso sequestration or removal from the nucleus. Our results point to Dsh and Frodo as upstream regulators of the p120-catenin/Kaiso signaling pathway. Importantly, this suggests that Wnt signals acting through Dsh regulate the stability of p120-catenin in addition to that of beta-catenin, and that each catenin promotes its respective signal in parallel to regulate distinct, as well as shared, direct downstream gene targets.
Collapse
Affiliation(s)
- Jae-il Park
- Department of Biochemistry and Molecular Biology and Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McCrea PD, Park JI. Developmental functions of the P120-catenin sub-family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:17-33. [PMID: 16942809 DOI: 10.1016/j.bbamcr.2006.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 01/11/2023]
Abstract
For more than a decade, cell, developmental and cancer investigators have brought about a wide interest in the biology of catenin proteins, an attraction being their varied functions within differing cellular compartments. While the diversity of catenin localizations and roles has been intriguing, it has also posed a challenge to the clear interpretation of loss- or gain-of-function developmental phenotypes. The most deeply studied member of the larger catenin family is beta-catenin, whose contributions span areas including cell adhesion and intracellular signaling/ transcriptional control. More recently, attention has been directed towards p120-catenin, which in conjunction with the p120-catenin sub-family members ARVCF- and delta-catenins, are the subjects of this review. Although the requirement for vertebrate versus invertebrate p120-catenin are at variance, vertebrate p120-catenin sub-family members may each inter-link cadherin, cytoskeletal and gene regulatory functions in embryogenesis and disease.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston TX 77030, USA.
| | | |
Collapse
|
39
|
Wijnhoven BPL, Pignatelli M, Dinjens WNM, Tilanus HW. Reduced p120ctn expression correlates with poor survival in patients with adenocarcinoma of the gastroesophageal junction. J Surg Oncol 2005; 92:116-23. [PMID: 16231374 DOI: 10.1002/jso.20344] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES P120-catenin (p120ctn) is a member of the E-cadherin-catenin cell-cell adhesion complex. Impairment of one or more of the components of this complex is associated with tumorigenesis. The role of p120ctn in malignancy is not clear yet. We studied the in vivo expression and cellular localization of p120ctn in adenocarcinomas of the gastroesophageal junction. METHODS Immunohistochemical staining for p120ctn was performed on 96 tumor samples, 20 cases of Barretts metaplasia and 13 lymph node metastases. The relationship with pathological characteristics and patient survival was also assessed. RESULTS Loss of normal surface p120ctn expression was found in 4/20 (20%) Barretts metaplasia, in 65/96 (68%) tumors, and 11/13 (85%) lymph node metastases. Nuclear immunoreactivity for p120ctn was seen in five tumors. Loss of normal expression of p120ctn was associated with a higher tumor grade (P < 0.0001) but not with pTNM-stage. Reduced expression of p120ctn was correlated with poor survival (P = 0.0002). Cox regression analysis showed that p120ctn is an independent prognostic marker. CONCLUSIONS Abnormal p120ctn expression is frequently seen in adenocarcinomas of the gastroesophageal junction, and may be a useful as a prognostic marker in these tumors.
Collapse
|
40
|
Abstract
Kaiso belongs to the zinc finger and broad-complex, tramtrack and bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein family that has been implicated in tumorigenesis. Kaiso was first discovered in a complex with the armadillo-domain protein p120ctn and later shown to function as a transcriptional repressor. As p120ctn seems to relieve Kaiso-mediated repression, its altered intracellular localization in some cancer cells might result in aberrant Kaiso nuclear activity. Intriguingly, Kaiso's target genes include both methylated and sequence-specific recognition sites. The latter include genes that are modulated by the canonical Wnt (beta-catenin-T-cell factor) signalling pathway. Further interest in Kaiso stems from findings that its cytoplasmic versus nuclear localization is modulated by complex cues from the microenvironment.
Collapse
Affiliation(s)
- Frans M van Roy
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | | |
Collapse
|
41
|
Okumura M, Kondo S, Ogata M, Kanemoto S, Murakami T, Yanagida K, Saito A, Imaizumi K. Candidates for tumor-specific alternative splicing. Biochem Biophys Res Commun 2005; 334:23-9. [PMID: 16018876 DOI: 10.1016/j.bbrc.2005.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 11/23/2022]
Abstract
Gene expression can be regulated not only by transcription and post-transcriptional modifications, but also by splicing regulation. Recent genome-wide analyses have indicated that up to 70% of human genes may have alternatively spliced forms, suggesting that splicing regulation affects a wide range of gene expression. Tumor tissues show significantly altered protein expressions, and this is also thought to be affected by alternative splicing. Although some alternative splicing events have been reported to be cancer specific and others have been predicted from database analyses, the process of alternative splicing and its regulatory machinery are hardly understood. We searched for and detected alternative splicing events that alter protein splicing in all or a subset of tumor tissues. The results revealed tissue-specific alterations of splicing regulation by tumorigenesis, and regulatory cis-element analyses further suggested that multiple splicing regulatory machineries were affected by this process.
Collapse
Affiliation(s)
- Masayo Okumura
- Division of Structural Cellular Biology, The Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Smalley KSM, Brafford P, Haass NK, Brandner JM, Brown E, Herlyn M. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1541-54. [PMID: 15855653 PMCID: PMC1606406 DOI: 10.1016/s0002-9440(10)62370-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the process of malignant transformation, nascent melanoma cells escape keratinocyte control through down-regulation of E-cadherin and instead communicate among themselves and with fibroblasts via N-cadherin-based cell-cell contacts. The zonula occludens (ZO) protein-1 is a membrane-associated component of both the tight and adherens junctions found at sites of cell-cell contact. In most cancers, levels of ZO-1 are typically down-regulated, leading to increased motility. Here we report the novel observation that ZO-1 expression is up-regulated in melanoma cells and is located at adherens junctions between melanoma cells and fibroblasts. Immunofluorescence and co-immunoprecipitation studies showed co-localization of ZO-1 with N-cadherin. Down-regulation of ZO-1 in melanoma cells through RNA interference produced marked changes in cell morphology--leading to a less-dendritic, more rounded phenotype. Consistent with a role in N-cadherin-based adhesion, RNAi-treated melanoma cells were less adherent and invasive when grown in a collagen gel. These data provide the first evidence that increased ZO-1 expression in melanoma contributes to the oncogenic behavior of this tumor and further illustrate that protein products of genes, such as ZO-1, can function in either a pro- or anti-oncogenic manner when expressed in different cellular contexts.
Collapse
Affiliation(s)
- Keiran S M Smalley
- Wistar Institute, 3601 Spruce St., Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gimelbrant AA, Ensminger AW, Qi P, Zucker J, Chess A. Monoallelic Expression and Asynchronous Replication of p120 Catenin in Mouse and Human Cells. J Biol Chem 2005; 280:1354-9. [PMID: 15522875 DOI: 10.1074/jbc.m411283200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The number of autosomal mammalian genes subject to random monoallelic expression has been limited to genes highly specific to the function of chemosensory neurons or lymphocytes, making this phenomenon difficult to address systematically. Here we demonstrate that asynchronous DNA replication can be used as a marker for the identification of novel genes with monoallelic expression and identify p120 catenin, a gene involved in cell adhesion, as belonging to this class. p120 is widely expressed; its presence in available cell lines allowed us to address quantitative aspects of monoallelic expression. We show that the epigenetic choice of active allele is clonally stable and that biallelic clones express p120 at twice the level of monoallelic clones. Unlike previous reports about genes of this type, we found that expression of p120 can be monoallelic in one cell type and strictly biallelic in another. We show that in human lymphoblasts, the silencing of one allele is incomplete. These unexpected properties are likely to be wide-spread, as we show that the Tlr4 gene shares them. Identification of monoallelic expression of a nearly ubiquitous gene indicates that this type of gene regulation is more common than previously thought. This has important implications for carcinogenesis and definition of cell identity.
Collapse
|
44
|
Ishizaki Y, Omori Y, Momiyama M, Nishikawa Y, Tokairin T, Manabe M, Enomoto K. Reduced expression and aberrant localization of p120catenin in human squamous cell carcinoma of the skin. J Dermatol Sci 2004; 34:99-108. [PMID: 15033192 DOI: 10.1016/j.jdermsci.2003.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/27/2003] [Accepted: 12/01/2003] [Indexed: 01/16/2023]
Abstract
BACKGROUND p120catenin (p120ctn), a member of the Armadillo protein family, is ubiquitously expressed and binds to classical cadherins together with other catenins to participate in the adherens junction. p120ctn has numerous isoforms generated through extensive splicing and alternative usage of translation initiation codons. Although the involvement of p120ctn in cell growth control has been postulated, little has so far been known about its expression patterns in the skin and epidermal tumors. OBJECTIVE To identify the isoforms expressed in benign and malignant keratinocytes and to analyze the expression patterns of p120ctn in epidermal tumor specimens. METHODS HaCaT, DJM-1, BSCC-93, HSC-1, HSC-5 and A431 cells along with normal skin tissue were subjected to RT-PCR to identify the expressed isoforms. For immunofluorescence study, surgical specimens including 29 squamous cell carcinomas (SSCs), 4 basal cell carcinomas (BCCs) and 4 seborrheic keratoses as well as 3 normal skin samples were stained with specific antibodies to detect p120ctn and E-cadherin. RESULTS RT-PCR revealed that the isoform 3A was predominantly expressed with faint expression of the isoform 4 and that there was no difference in expressed isoforms between the examined cell lines. Immunofluorescent staining indicated that the expression of p120ctn was significantly reduced in all of the examined squamous cell carcinomas and that p120ctn was frequently localized in cytoplasm. In benign tumors and normal samples, p120ctn was properly expressed in cell-cell boundaries. Furthermore, there were several SCCs where E-cadherin continued to be expressed with no expression of p120ctn. CONCLUSION Reduced expression and aberrant localization of p120ctn are among the most common events during the development and/or progression of SCCs.
Collapse
Affiliation(s)
- Yasuko Ishizaki
- Department of Pathology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Roura S, Domínguez D. Inducible expression of p120Cas1B isoform corroborates the role for p120-catenin as a positive regulator of E-cadherin function in intestinal cancer cells. Biochem Biophys Res Commun 2004; 320:435-41. [PMID: 15219847 DOI: 10.1016/j.bbrc.2004.05.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Indexed: 12/25/2022]
Abstract
Over the past decade, the exact function of p120-catenin in regulation of E-cadherin/catenins complex has remained particularly controversial. We have previously reported that E-cadherin-mediated adhesion is tightly regulated by tyrosine phosphorylation of catenins. However, this effect is not observed in human colon carcinoma cell line Caco-2. Here, we have generated inducible Caco-2 clones that display p120Cas1B, a p120-catenin isoform poorly expressed by these cells. As a result, neither expression of the transgene nor tyrosine phosphorylation of catenins induces redistribution of E-cadherin to the cytosol and disassembly of adherens and tight junctions. In contrast, E-cadherin appears markedly increased reinforcing cell-cell adhesion. Interestingly, a substantial decrease in p120-catenin levels is found in MDCK cells expressing Snail, in which E-cadherin expression is strongly inhibited. Additionally, we show that the specific depletion of p120-catenin decreases cell-cell contacts, and increases cell motility and scattering of colonies established by HT-29 M6 cells. Together our results corroborate that p120-catenin plays an essential role in the maintenance of the required E-cadherin protein levels that prevent the loss of epithelial characteristics occurred during tumorigenesis.
Collapse
Affiliation(s)
- Santiago Roura
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | |
Collapse
|
46
|
Sarrió D, Pérez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, Martín-Pérez J, Gamallo C, Palacios J. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene 2004; 23:3272-83. [PMID: 15077190 DOI: 10.1038/sj.onc.1207439] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulating evidences indicate that p120 catenin, a member of the E-cadherin (E-CD)/catenin adhesion complex, plays a role in tumor invasion. To establish the expression pattern of p120 in breast cancer, we analysed 326 breast tissue biopsies by tissue microarray. Most of the lobular tumors (88%) showed exclusive cytoplasmic localization, and 6% of them also had p120 nuclear staining. Cytoplasmic p120 strongly associated with complete loss of E-CD and beta-catenin not only in lobular carcinoma and its metastases but also in atypical lobular hyperplasias. In the latter, loss of heterozygosity of E-CD gene was also observed. Complete loss of E-CD and cytoplasmic and nuclear p120 staining was also observed in primary lobular cancer cell cultures generated by us. In ductal tumors, by contrast, reduction of p120 and E-CD in membrane was very common (57 and 53%, respectively), whereas cytoplasmic p120 staining was rarely seen. This simultaneous reduction of membranous E-CD and p120 was not associated with increased Src kinase activity. To demonstrate that cytoplasmic p120 localization was a consequence of the absence of E-CD, the endogenous E-CD was re-expressed in MDA-231 cells by 5-Aza-2'-deoxycytidine (5Aza) treatment. After treatment, p120 shifted from the cytoplasm to the membrane, where it colocalized with endogenous E-CD. Additionally, suppressing E-CD expression in Madin-Darby canine kidney cells by stable transfection of the transcriptional repressors Snail, E47 or Slug, provokes p120 cytoplasmic localization and p120 isoform switching. In conclusion, abnormal cytoplasmic and nuclear localization of p120, which are mediated by the absence of E-CD, characteristically occur in the early stages of lobular breast cancer and are maintained during tumor progression to metastasis. Consequently, p120 may be an important mediator of the oncogenic effects derived from E-CD inactivation, including enhanced motility and invasion, in lobular breast cancer.
Collapse
Affiliation(s)
- David Sarrió
- Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Seidel B, Braeg S, Adler G, Wedlich D, Menke A. E- and N-cadherin differ with respect to their associated p120ctn isoforms and their ability to suppress invasive growth in pancreatic cancer cells. Oncogene 2004; 23:5532-42. [PMID: 15107817 DOI: 10.1038/sj.onc.1207718] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 01/11/2023]
Abstract
E-cadherin functions as suppressor of invasion in epithelial cells and its loss is described in many invasive carcinomas. In some tumours, the disappearance of E-cadherin has been correlated with upregulation of other classical cadherins, such as N- or P-cadherin. To analyse the different cellular functions of cadherin molecules, we stably expressed E-cadherin or N-cadherin in the E- and N-cadherin-deficient pancreatic tumour cell line MIA PaCa-2. Only E-cadherin was able to induce a mesenchymal-epithelial transition and suppressed invasion of MIA PaCa-2 cells. Furthermore, only re-expression of E-cadherin resulted in an upregulation of alpha- and beta-catenin mRNAs and protein concentrations. Ectopically expressed N-cadherin failed to assemble cadherin/catenin adhesion complexes and failed to inhibit invasion. Analysis of p120(ctn), which was associated with both cadherins, demonstrated that E-cadherin was linked to a shorter isoform of p120(ctn). In contrast, N-cadherin was associated with the long, 120 kDa p120(ctn) isoforms. In addition, p120(ctn) connected with N-cadherin was phosphorylated at tyrosine residues, whereas the isoform linked to E-cadherin was not phosphorylated. Thus, the differences between E- and N-cadherin in recruiting different phosphorylated isoforms of p120(ctn) to the membrane might be responsible for the inability of N-cadherin to replace E-cadherin as suppressor of invasion in pancreatic carcinoma cells.
Collapse
Affiliation(s)
- Bjoern Seidel
- Department of Internal Medicine I, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
48
|
Krakstad BF, Ardawatia VV, Aragay AM. A role for Galpha12/Galpha13 in p120ctn regulation. Proc Natl Acad Sci U S A 2004; 101:10314-9. [PMID: 15240885 PMCID: PMC478569 DOI: 10.1073/pnas.0401366101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The catenin p120 (p120ctn) is an armadillo repeat domain protein that binds to cadherins and has been shown to facilitate strong cell-cell adhesion. We have investigated a possible link between heterotrimeric G proteins and p120ctn, and found that both Galpha12 and Galpha13 can completely and selectively abrogate the p120ctn-induced branching phenotype in different cell types. Consistent with these observations, the expression of Galpha12 or Galpha13 compensates for the reduction of Rho activity induced by p120ctn. On the other hand, p120ctn can be selectively coimmunoprecipitated with Galpha12, and the coimmunoprecipitation was favored by activation of the G protein. A specific interaction between p120ctn and Galpha12Q231L was also observed in in vitro binding experiments. In addition, p120ctn can be immunoprecipitated along with Galpha12Q231L in L cells in absence of E-cadherin. Interestingly, the expression of Galpha12Q231L increases the amount of p120ctn associated with E-cadherin. These findings demonstrate that Galpha12 and p120ctn are binding partners, and they also suggest a role for Galpha12 in regulating p120ctn activity and its interaction with cadherins. We propose that the Galpha12-p120ctn interaction acts as a molecular switch, which regulates cadherin-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Beate F Krakstad
- Department of Biomedicine, Section for Anatomy and Cell Biology, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | | | |
Collapse
|
49
|
Chauvet N, Privat A, Prieto M. Differential expression of p120 catenin in glial cells of the adult rat brain. J Comp Neurol 2004; 479:15-29. [PMID: 15389614 DOI: 10.1002/cne.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120ctn) is involved in the regulation of cadherin-mediated adhesion and the dynamic organization of the actin cytoskeleton by modulating RhoGTPase activity. We have previously described the distribution of p120ctn during rat brain development and provided substantial evidence for the potential involvement of p120ctn in morphogenetic events and plasticity in the central nervous system. Here, we analyzed the cellular and ultrastructural distribution of p120ctn in glial cells of the adult rat forebrain. The highest intensity of immunostaining for p120ctn was found in cells of the choroid plexus and ependyma and was mainly restricted to the plasma membrane. However, p120ctn was almost absent from astrocytes. In contrast, in tanycytes, a particular glial cell exhibiting remarkable morphological plasticity, p120ctn, was localized at the plasma membrane and also in the cytoplasm. We show that a large subpopulation of oligodendrocytes expressed multiple isoforms, whereas other neural cells predominantly expressed isoform 1, and that p120ctn immunoreactivity was distributed through the cytoplasm and at certain portions of the plasma membrane. Finally, p120ctn was expressed by a small population of cortical NG2-expressing cells, whereas it was expressed by a large population of these cells in the white matter. However, in both regions, proliferating NG2-positive cells consistently expressed p120ctn. The expression of p120ctn by cells of the oligodendrocyte lineage suggests that p120ctn may participate in oligodendrogenesis and myelination. Moreover, the expression of p120ctn by various cell types and its differential subcellular distribution strongly suggest that p120ctn may serve multiple functions in the central nervous system.
Collapse
Affiliation(s)
- Norbert Chauvet
- Institut National de la Santé et de la Recherche Médicale U583, Institut des Neurosciences de Montpellier, 34095 Montpellier, France.
| | | | | |
Collapse
|
50
|
Yanagisawa M, Kaverina IN, Wang A, Fujita Y, Reynolds AB, Anastasiadis PZ. A novel interaction between kinesin and p120 modulates p120 localization and function. J Biol Chem 2003; 279:9512-21. [PMID: 14676216 DOI: 10.1074/jbc.m310895200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
p120-catenin exists in a membrane-associated cadherin-bound pool, a cytosolic pool that affects Rho GTPases, and a nuclear pool that is thought to associate with the methylation-relevant transcriptional repressor Kaiso. We show here that cytoplasmic p120 can also associate both directly and indirectly with the microtubule network, and that p120 traffics along microtubules toward their plus ends. The direct binding required most of the armadillo repeats and was mutually exclusive for interaction with E-cadherin. Perturbing the p120-microtubule interaction with nocodazole or taxol markedly affected both the tubulin interaction and the balance between cytoplasmic and nuclear p120. The indirect binding occurred via a novel interaction between a segment of the p120 N-terminal domain and conventional kinesin heavy chains. Selective uncoupling of the p120-kinesin interaction by overexpression of the respective p120 and kinesin-binding fragments promoted nuclear p120 accumulation. In addition, expression of full-length kinesin reduced the nuclear accumulation of p120 and blocked the branching phenotype associated with p120 overexpression. Taken together, the data suggest that kinesin affects both the targeting and activity of p120 at several cellular locations.
Collapse
|